错位相减法待定系数法公式
错位相减法待定系数法公式:bn=b1+(n-1)×d。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和。待定系数法一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
错位相减和裂项求和的关系?区别在哪里?分组求和呢?
错位相减解决的是这类问题:an为等比数列bn为等差数列cn=an×bnTn=c1+c2+......+cn这类问题的思路是将Tn两边都乘以an的公比然后错位相减除去第一项和最后一项其他的项全变成y×an的形式其中y为bn公差裂项求和又叫裂项相消顾名思义它解题的精髓是列项后除去第一项和最后一项,其他的全部抵消最简单的是an=1/n×(n+1)=1/n-1/(n+1)这种问题一般用它来解决分式数列分组求和类型就比较多了,比如cn=an+bn类问题其中an等比bn等差就是把anbn分开常见的就是这个,还有的是将奇数项与偶数项分开,适用于奇偶项通项公式不同的情况至于其他的印象已经有些模糊,一时之间也想不起来。
错位相减法的几个例题
错位相减法换种说法就是q被相乘法,在原来的数列上乘以q倍后,与原来的相减. 已知数列{bn}前n项和为Sn,且bn=2-2sn,数列{an}是等差数列,a5=5/2,a7=7/2. ①求{bn}的通向公式. ② 若=an*bn,n=1,2,3…..求;数列{}前n项和Tn 1、b1=2-2b1 b1=2/3 当n>=2时 b n=2-2s n (1) b(n-1)=2-2s(n-1) (2) (1)式-(2)式得: bn-b(n-1)=2s(n-1)-2sn bn-b(n-1)= -2bn 3bn=b(n-1) bn/b(n-1)=1/3 bn=b1*(1/3)^(n-1)=2*(1/3)^n 经检验当n=1时等式成立 所以:bn=2*(1/3)^n 2、a7=a5+2d 7/2=5/2+2d d=0.5 an=a5+(n-5)d=0.5n =an*bn=n*(1/3)^n Tn=1*(1/3)^1+2*(1/3)^2+3*(1/3)^3+...+n*(1/3)^n 1/3*Tn=1*(1/3)^2+2*(1/3)^3+3*(1/3)^4+...+(n-1)*(1/3)^n+n*(1/3)^(n+1) Tn-1/3*Tn=1/3+(1/3)^2+(1/3)^3+(1/3)^4+...+(1/3)^n+n*(1/3)^(n+1) Tn= 3/4*[1-(1/3)^n] +3n/2*(1/3)^(n+1) =0.75-0.25*(1/3)^(n-1)+0.5n*(1/3)^n
错位相减最后一步的化简怎么化求解
请参考
用错位相减法计算(用两次) 求1/2+2/4+3/8+4/16.10/1024
设S=1/2+2/4+3/8+4/16.10/1024 S/2=1/4+2/8+3/16.9/1024+10/2048 S-S/2=1/2+2/4-1/4+.+10/1024-9/1024-10/1024=1/2+1/4+1/8+.+1/1024-10/2048=10[1-(1/2)^10]/(1-1/2) -10/2048=20-25/1024=20455/1024.
用错位相减法计算(用两次) 求1/2+2/4+3/8+4/16.10/1024
设S=1/2+2/4+3/8+4/16.10/1024 S/2=1/4+2/8+3/16.9/1024+10/2048 S-S/2=1/2+2/4-1/4+.+10/1024-9/1024-10/1024=1/2+1/4+1/8+.+1/1024-10/2048=10[1-(1/2)^10]/(1-1/2) -10/2048=20-25/1024=20455/1024.
错位相减法公比为负数时要怎么处理
此时不能用错位相减法。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中Bn为等差数列,Cn为等比数列。分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn。然后错一位,两式相减即可。
错位相减法是求和的一种解题方法,应用于等比数列与等差数列相乘的形式。
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如,求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2;+5x^3;+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x^2;+x^3;+…+x^(n-2)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式): S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan(1) 在(1)的左右两边同时乘上a。得到等式(2)如下: aS=a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1(2) 用(1)—(2),得到等式(3)如下: (1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1(3) (1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式。 (1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S的通用公式了。 例子:求和Sn=3x+5x^2;+7x^3;+……..+(2n-1)·x的n-1次方(x不等于0) 解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2;+7x^3;;+……..+(2n-1)·x的n-1次方 所以xSn=x+3x^2;+5x^3;+7x四次方……..+(2n-1)·x的n次方 所以两式相减的(1-x)Sn=1+2x(1+x+x^2;;+x^3;;+...+x的n-2次方)-(2n-1)·x的n次方。 化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方 Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得 -Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1)(等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法 这个在求等比数列求和公式时就用了 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n
数列里的错位相减法怎么运用 请举例
错位相减法:(适用于是由一个等差数列和一个等比数列组成的数列求和)eg: 1x2+2x4+3x8+……+nx2的n次方 …… 1式 1x4+2x8+3x16……+(n-1)x2的n次方+ nx2的n+1次方 …2式1和2相减,得答案。
数列错位相减法秒杀公式是什么?
形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进行求和,首先列出Sn,记为式(1)。再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法 。举例:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。当x=1时,Sn=1+3+5+…+(2n-1)=n2。当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。
高中数学数列错位相减。这一步是怎么来的?
又是你啊。用Pn画黄圈的减掉(-2)Pn画紫圈的,就是用Pn的第2项,减掉(-2)Pn的第1项,以此类推,用Pn的第k项减掉(-2)Pn的第k-1项,直到用Pn的第n项减掉(-2)Pn的第n-1项。所以不是对应相减,是错位相减至于Pn的第1项(画紫框的)和(-2)Pn的最后一项,不,用,管——————————————————————追问里的图:首先,第一行那个2·(-2),拆成(-2)+(-2)然后,其中一个-2和后面的(-2)平方到(-2)的n次方构成一个等比数列,其它的项不用管,照写最后,代入等比数列求和公式框框里就是另一个(-2)加上求和公式
公务员行测中的资料分析的“错位相减法“为什么会有两种不同的结果呢?
一、错位加减法使用环境适用于计算多次乘除,例如求增长量、上一年比重、上一年进出口总额等。以增长量为例: 三个量中如果能约掉两个量,则另外一个就是答案了。二、错位加减法基本原理分子、分母同时扩大或缩小相同的倍数,分数的数值保持不变。(1)当分母加1234.5,相当于加了原数的10%,那么分子对应加5432.1,才能保证分数值大小不变;(2)当分母加123.41,相当于加了原数的1%,则分子对应加543.21。画一条竖线只考虑前三位数字,观察特征。当分母加两位数时,看两位12开头加12,12与123的前两位数字(12)是1倍关系,因此分子54开头加54,都恰好也是一倍;当分母加1位数,则看第一位,分母1开头加1,1与123的第1位数字(1)是1倍关系,因此分子5开头加5,也是加1倍关系。【例题1】利用错位加减法求上一年比重问题想到利用错位加减法把1.132除以1.246约掉,则剩下的式子运用一步除法即可。
等比数列中的 错位相减咋做?
一般是一个等差数列乘一个等比数列,先乘等比数列的公比,然后把位错好,用乘后的与原来的式子相减。多做几题你就会找到规律的。
两个式子错位相减,有什么口诀!
错位相减。就是×公比,两项相减。难度不在于口诀,或者说是套路,难在计算。一般会涉及到等差数列求和公式,等比数列求和公式。其次就是正负符号的变化,这个是计算容易错的地方。最后,错误相减想提高正确率,计算完毕后,可以检查一下前两项,是否和你算的结果相符合,然后一般就没问题了!
错位相减法万能公式5秒
错位相减法万能公式5秒:一加:写出展开的各项;二乘:对展开式的每一项乘以等比数列的公比;三减:用“一加”所得等式减去“二乘”所得等式,在相减时一定要错位相减;四除:等式两边除以的系数,整理得出的结果。
错位相减法最后形式是什么
错位相减法最后形式是错位相减是否是数列的错位相减。求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n两式相减得(1-x)Sn=1+2[x+x^2+x^3+x^4+…+x^(n-1)]-(2n-1)*x^n化简得Sn=1/1-x+(2x-2x^n)/(1-x)^2-(2n-1)*x^n/1-x形如An=BnCn其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进行求和,首先列出Sn,记为式(1);再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。
怎样用错位相减法求数列的和?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2),然后错开一位,将式(1)与式。(2)作差,对从而简化对数列An的求和,这种数列求和方法叫做错位相减法。错位相减法举例:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。当x=1时,Sn=1+3+5+…+(2n-1)=n2。当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。
数学错位相减法公式
举一个例子比如An=n Bn=2^n求An*Bn前n项和A1*B1+...+An*Bn=1*2^1+2*2^2+3*2^3....+(n-1)*2^(n-1)+n*2^n2(A1*B1+...+An*Bn)= 1*2^2+2*2^3....+(n-2)*2^(n-1)+(n-1)*2^n+n*2^(n+1)下面减上面就有A1*B1+...+An*Bn=1*2^1+n*2^(n+1)-(2^2+2^3+...+2^n)应用一下等比数列求和公式就有答案了这就是错误相减
错位相减法公比为负数时要怎么处理
此时不能用错位相减法。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中Bn为等差数列,Cn为等比数列。分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn。然后错一位,两式相减即可。
分组求和法和错位相减法的区别
分组求和法和错位相减法的区别如下:1、分组求和法适用于等比+等差,裂项适用于分母是某个数列。2、错位相减法是等比乘等差,累加是类似等差,累乘是对数数列。3、分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。4、错位相减法是一种常用的数列求和方法。应用于等比数列与等差数列相乘的形式。
数列错位相减是怎么回事?
错位相减使用在数列:AP*GP类型的数列,主要利用GP中的公比,错开一位,把指数增加一位,从而把每一位都向后推一步,然后利用AP的特点,使系数全部一致,然后把系数一体。。就OK了,自己整理整理就行了。没例题不好说
错位相减法的数学表达式是什么?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2),然后错开一位,将式(1)与式。(2)作差,对从而简化对数列An的求和,这种数列求和方法叫做错位相减法。错位相减法举例:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。当x=1时,Sn=1+3+5+…+(2n-1)=n2。当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。
已知数列an,bn,其中an=2n-1,bn=3∧n,求anbn的前n项和sn,如何用错位相减
c(n)=a(n)b(n)=(2n-1)3^n,s(n) = (2*1-1)3 + (2*2-1)3^2 + (2*3-1)3^3 + ... + [2*(n-1)-1]3^(n-1) + [2n-1]3^n,3s(n) = (2*1-1)3^2 + (2*2-1)3^3+...+[2(n-1)-1]3^n + [2n-1]3^(n+1),2s(n) = 3s(n) - s(n) = -(2*1-...
能否用错位相减法解数列an=2n(-1)^(n-1)的前n项和?
{2n}为等差数列 {(-1)^(n-1)}为等比数列 形如 等差*等比 形式的,都能用错位相减 错位相减如下 Sn=2*(-1)^0+4*(-1)^1+…+2(n-1)*(-1)^(n-2)+2n*(-1)^(n-1) (1) (-1)Sn=2*(-1)^1+4*(-1)^2+…+2(n-1)*(-1)^(n-1)+2n*(-1)^n (2) (1)-(2) 2Sn=2*(-1)^0+2*(-1)^1+…+2*(-1)^(n-1)-2n*(-1)^n Sn=(-1)^0 +(-1)^1+…+(-1)^(n-1)-n*(-1)^n Sn=1*[1-(-1)^n]/(1-(-1))-n*(-1)^n 当n为偶 1*[1-(-1)^n]/(1-(-1))=0 Sn=n 当n为奇 1*[1-(-1)^n]/(1-(-1))=1 Sn=1+n
数列的错位相减法
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2[x+x^2+x^3+x^4+…+x^(n-1)]-(2n-1)*x^n; 化简得Sn=1/1-x+(2x-2x^n)/(1-x)^2-(2n-1)*x^n/1-x 如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求和。
错位相减法万能公式是什么?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2),然后错开一位,将式(1)与式。(2)作差,对从而简化对数列An的求和,这种数列求和方法叫做错位相减法。错位相减法举例:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。当x=1时,Sn=1+3+5+…+(2n-1)=n2。当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。
等比数列的错位相减法
如果求的是n项和,则中间等比数列有n-1项能用错位相减法求和的数列一般是一个等差数列乘以一个等比数列求前n项的和sn=a1+a2+……an先乘以一个公比q,得qsn=qa1+qa2+……qa(n-1)+qan错一位相减,就是a2+……+an减去qa1+……qa(n-1)结果是一个等比数列,一共有n-1项(a1和qan是不参加错位相减的)
“错位相减法”公式
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如,求和Sn=x+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-2)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 Sn= 1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。
等差数列中错位相减? 错位相减在数列运算中如何运用?有例题更好!
数列{an}的通项公式an=n×2n-(1n∈N+),求其前n项和Sn. 错位相减法: Sn=1×20+2×21+3×22+…+n×2n-1 (1) 2Sn=1×21+2×22+…+(n-1)×2n-1+n×2n(2) 由(1)-(2)得,-Sn=1+21+22+…2n-1-n×2n, 有Sn=1+(n-1)×2n(n∈N+) 导数法:令f(x)=x+x2+x3+…+xn(x≠0,x≠1) 数列{an}的通项公式an=n×2n-(1n∈N+), 求其前n项和Sn. 错位相减法:Sn=1×20+2×21+3×22+…+n×2n-1(1) 2Sn=1×21+2×22+…+(n-1)×2n-1+n×2n(2) 由(1)-(2)得,-Sn=1+21+22+…2n-1-n×2n, 有Sn=1+(n-1)×2n(n∈N+) 导数法:令f(x)=x+x2+x3+…+xn(x≠0,x≠1) f′(x)=1×x0+2 采纳哦
错位相减法用于什么情况?
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如,求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2;+5x^3;+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x^2;+x^3;+…+x^(n-2)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式): S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan(1) 在(1)的左右两边同时乘上a。得到等式(2)如下: aS=a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1(2) 用(1)—(2),得到等式(3)如下: (1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1(3) (1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式。 (1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S的通用公式了。 例子:求和Sn=3x+5x^2;+7x^3;+……..+(2n-1)·x的n-1次方(x不等于0) 解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2;+7x^3;;+……..+(2n-1)·x的n-1次方 所以xSn=x+3x^2;+5x^3;+7x四次方……..+(2n-1)·x的n次方 所以两式相减的(1-x)Sn=1+2x(1+x+x^2;;+x^3;;+...+x的n-2次方)-(2n-1)·x的n次方。 化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方 Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得 -Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1)(等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法 这个在求等比数列求和公式时就用了 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n
“错位相减法”公式
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如,求和Sn=x+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-2)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 Sn= 1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。
错位相减法万能公式是什么?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式。(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。解题方法:在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(公比为a,格式问题,在a后面的数字和n都是指数形式):S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n(1)。在(1)的左右两边同时乘上a。得到等式(2)如下:aS=a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1)(2)。用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1)(3)。(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
数列前n项求和错位相减法
数列前n项求和错位相减法一般形如数列{an·bn}的求和用错位相减法。,其中{an},{bn}一个是等差数列,一个是等比数列。一般分三步:①巧拆分,②构差式,③求和。
错位相减法求和公式是什么?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式。(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。解题方法:在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(公比为a,格式问题,在a后面的数字和n都是指数形式):S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n(1)。在(1)的左右两边同时乘上a。得到等式(2)如下:aS=a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1)(2)。用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1)(3)。(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
错位相减法的公比是怎么看出来的?
这个直接看数列的通项就行了. 能用错位相减的题目,an的形式是一个等差数列的通项公式乘以等比数列的通项公式的形式 即 an=(An+B)*c^n 则 c就是你要找的公比.
错位相减法是什么意思
您好 wuningyiyi穷酸秀才错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式): S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1) 在(1)的左右两边同时乘上a。 得到等式(2)如下:aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)(1-a)S=a+a2+a3+……+an-1+an-nan+1S=a+a2+a3+……+an-1+an用这个的求和公式。(1-a)S=a+a2+a3+……+an-1+an-nan+1最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
错位相减法万能公式是什么?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2),然后错开一位,将式(1)与式。(2)作差,对从而简化对数列An的求和,这种数列求和方法叫做错位相减法。错位相减法举例:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。当x=1时,Sn=1+3+5+…+(2n-1)=n2。当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。
错位相减法为啥要验证第一项
形如An=BnCn,其中{Bn}为等差数列,{Cn}为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比q,即q·Sn;然后错开一位,两个式子相减。这种数列求和方法叫做错位相减法。错位相减法是一种常用的数列求和方法。应用于等比数列与等差数列相乘的形式。
除以1.1为什么等同于错位相减?
除以1是他本身,除以0.1小数点左移一位,所以要比原来少0.1倍本身,所以错位相减;同理,乘以1.1是错位相加。
错位相减法万能公式ab代表什么
An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。例如,求和Sn=x+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-2)]-(2n-1)*x^n;化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2Sn= 1/2+1/4+1/8+....+1/2^n两边同时乘以1/21/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)两式相减1/2Sn=1/2-1/2^(n+1)Sn=1-1/2^n错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。
错位相减法的应用条件是什么?
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如,求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2;+5x^3;+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x^2;+x^3;+…+x^(n-2)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式): S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan(1) 在(1)的左右两边同时乘上a。得到等式(2)如下: aS=a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1(2) 用(1)—(2),得到等式(3)如下: (1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1(3) (1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式。 (1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S的通用公式了。 例子:求和Sn=3x+5x^2;+7x^3;+……..+(2n-1)·x的n-1次方(x不等于0) 解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2;+7x^3;;+……..+(2n-1)·x的n-1次方 所以xSn=x+3x^2;+5x^3;+7x四次方……..+(2n-1)·x的n次方 所以两式相减的(1-x)Sn=1+2x(1+x+x^2;;+x^3;;+...+x的n-2次方)-(2n-1)·x的n次方。 化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方 Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得 -Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1)(等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法 这个在求等比数列求和公式时就用了 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n
错位相减法是什么方法?
错位相减法是数列求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进行求和,首先列出Sn,记为式(1);再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。扩展资料数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{Sn}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。参考资料来源:百度百科——错位相减法参考资料来源:百度百科——数列求和
错位相减法怎么用
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。举例:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)错位相减法错位相减法当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-2)]-(2n-1)*x^n;化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2
错位相减法的通用公式是什么?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式。(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。解题方法:在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(公比为a,格式问题,在a后面的数字和n都是指数形式):S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n(1)。在(1)的左右两边同时乘上a。得到等式(2)如下:aS=a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1)(2)。用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1)(3)。(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
错位相减法,倒序相加法,的例题
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,等比数列的前n项和就是用此法推导的。用错位相减法求和应注意:1、要善于识别题目类型,特别是等比数列公比为负数的情形;2、在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式.3、在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.倒序相加法如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法,等差数列的前n项和即是用此法推导的
请教一下数列错位相减或相加怎么做,谢谢了
在数列求和时,若是通项公式是一个等差乘以一个等比的话,那就用错位相减,。所谓错位相减,就是第一排式子照写,第二排就全部乘以一个公比。且要空一格,即把位子给错开,再两式相减,减出来有一部分就是一个等差或等比数列,这时就可以用公式带出来,再整理整理就可以了。
数列错位相减法秒杀公式
错位相减法秒杀公式是A=BC,其中B为等差数列,通项公式为b=b+n-1*d,C为等比数列,通项公式为c=c*q。1、错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中Bn为等差数列,Cn为等比数列,分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。2、形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+n-1*d;{Cn}为等比数列,通项公式为cn=c1*q^n-1,对数列An进行求和,首先列出Sn,记为式1,再把所有式子同时乘以等比数列的公比q,即qSn记为式2,然后错开一位,将式1与式2作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法 。3、错位相加减是利用数列通项的规律,构造一个新数列,与原数列指定项做加减,消去或合并相等项。可用于求前n项和公式。如错位相加用于等差数列,错位相减用于等比数列。举例:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。当x=1时,Sn=1+3+5+…+(2n-1)=n2。当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。
数学数列错位相减法公式
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如,求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2;+5x^3;+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x^2;+x^3;+…+x^(n-2)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式): S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan(1) 在(1)的左右两边同时乘上a。得到等式(2)如下: aS=a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1(2) 用(1)—(2),得到等式(3)如下: (1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1(3) (1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式。 (1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S的通用公式了。 例子:求和Sn=3x+5x^2;+7x^3;+……..+(2n-1)·x的n-1次方(x不等于0) 解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2;+7x^3;;+……..+(2n-1)·x的n-1次方 所以xSn=x+3x^2;+5x^3;+7x四次方……..+(2n-1)·x的n次方 所以两式相减的(1-x)Sn=1+2x(1+x+x^2;;+x^3;;+...+x的n-2次方)-(2n-1)·x的n次方。 化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方 Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得 -Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1)(等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法 这个在求等比数列求和公式时就用了 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n
错位相减求和公式
错位相减法秒杀公式为:Cn=(An+b)*qn-B,比如An=BnCn,其中Bn为等差数列,Cn为等比数列,分别列出Sn,再把所有式子同时乘以等比数列的公比q,即q·Sn,然后错开一位,两个式子相减,这种数列求和方法叫做错位相减法。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进行求和,首先列出Sn,记为式(1);再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法[1]。错位相减法是一种常用的数列求和方法。应用于等比数列与等差数列相乘的形式
错位相减为什么叫错位相减法?
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如,求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2;+5x^3;+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x^2;+x^3;+…+x^(n-2)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式): S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan(1) 在(1)的左右两边同时乘上a。得到等式(2)如下: aS=a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1(2) 用(1)—(2),得到等式(3)如下: (1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1(3) (1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式。 (1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S的通用公式了。 例子:求和Sn=3x+5x^2;+7x^3;+……..+(2n-1)·x的n-1次方(x不等于0) 解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2;+7x^3;;+……..+(2n-1)·x的n-1次方 所以xSn=x+3x^2;+5x^3;+7x四次方……..+(2n-1)·x的n次方 所以两式相减的(1-x)Sn=1+2x(1+x+x^2;;+x^3;;+...+x的n-2次方)-(2n-1)·x的n次方。 化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方 Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得 -Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1)(等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法 这个在求等比数列求和公式时就用了 Sn=1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n
什么情况下可以用错位相减法
错位相减法是数列求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进行求和,首先列出Sn,记为式(1);再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。扩展资料数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{Sn}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。参考资料来源:百度百科——错位相减法参考资料来源:百度百科——数列求和
什么叫错位相减法
错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式):S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1) 在(1)的左右两边同时乘上a。 得到等式(2)如下:aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)(1-a)S=a+a2+a3+……+an-1+an-nan+1S=a+a2+a3+……+an-1+an用这个的求和公式。(1-a)S=a+a2+a3+……+an-1+an-nan+1最后在等式两边同时除以(1-a),就可以得到S的通用公式了
错位相减法的定义是什么?
错位相减法是数列求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进行求和,首先列出Sn,记为式(1);再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。扩展资料数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{Sn}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。参考资料来源:百度百科——错位相减法参考资料来源:百度百科——数列求和
错位相减法万能公式是什么?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式。(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。解题方法:在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(公比为a,格式问题,在a后面的数字和n都是指数形式):S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n(1)。在(1)的左右两边同时乘上a。得到等式(2)如下:aS=a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1)(2)。用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1)(3)。(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
错位相减法的公式是什么?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2),然后错开一位,将式(1)与式。(2)作差,对从而简化对数列An的求和,这种数列求和方法叫做错位相减法。错位相减法举例:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。当x=1时,Sn=1+3+5+…+(2n-1)=n2。当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。
什么是错位相减法? 麻烦写下过程,典型的。
错位相减法 是数列前N项和求解方法的一种 当数列的通项符合:由等差数列与等比数列的对应项的乘积构成 则可由错位相减法 例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2[x+x^2+x^3+x^4+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=1/1-x+(2x-2x^n)/(1-x)^2-(2n-1)*x^n/1-x
错位相减法例题
错位相减法已知数列{bn}前n项和为Sn,且bn=2-2sn,数列{an}是等差数列,a5=5/2,a7=7/2.①求{bn}的通向公式。② 若cn=an*bn,n=1,2,3…..求;数列{cn}前n项和Tn1、b1=2-2b1b1=2/3当n>=2时b n=2-2s n (1)b(n-1)=2-2s(n-1) (2)(1)式-(2)式得:bn-b(n-1)=2s(n-1)-2snbn-b(n-1)= -2bn3bn=b(n-1)bn/b(n-1)=1/3bn=b1*(1/3)^(n-1)=2*(1/3)^n经检验当n=1时等式成立所以:bn=2*(1/3)^n2、a7=a5+2d7/2=5/2+2dd=0.5an=a5+(n-5)d=0.5ncn=an*bn=n*(1/3)^nTn=1*(1/3)^1+2*(1/3)^2+3*(1/3)^3+...+n*(1/3)^n1/3*Tn=1*(1/3)^2+2*(1/3)^3+3*(1/3)^4+...+(n-1)*(1/3)^n+n*(1/3)^(n+1)Tn-1/3*Tn=1/3+(1/3)^2+(1/3)^3+(1/3)^4+...+(1/3)^n+n*(1/3)^(n+1)Tn= 3/4*[1-(1/3)^n] +3n/2*(1/3)^(n+1)=0.75-0.25*(1/3)^(n-1)+0.5n*(1/3)^n</SUB>
错位相减法的题目
等差等比公式就是用错位相减法做的
数学数列错位相减法公式
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如,求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2;+5x^3;+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x^2;+x^3;+…+x^(n-2)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 Sn= 1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式): S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1) 在(1)的左右两边同时乘上a。 得到等式(2)如下: aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2) 用(1)—(2),得到等式(3)如下: (1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3) (1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式。 (1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S的通用公式了。 例子:求和Sn=3x+5x^2;+7x^3;+……..+(2n-1)·x的n-1次方(x不等于0) 解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2;+7x^3;;+……..+(2n-1)·x的n-1次方 所以xSn=x+3x^2;+5x^3;+7x四次方……..+(2n-1)·x的n次方 所以两式相减的(1-x)Sn=1+2x(1+x+x^2;;+x^3;;+...+x的n-2次方)-(2n-1)·x的n次方。 化简得:Sn=(2n-1)·x地n+1次方 -(2n+1)·x的n次方+(1+x)/(1-x)平方 Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn= 3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得 -Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法 这个在求等比数列求和公式时就用了 Sn= 1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n
数学中的错位相减怎么算啊?谢谢各位了
具体计算就是这样的 Sn =C1+C2+C3+C4+。。。+Cn =1*2^2+2*2^3+3*2^4+4*2^5+...+n*2^(n+1) (1) 2Sn= 1*2^3+2*2^4+3*2^5+4*2^6+...(n-1)*2^(n+1) +n*2^(n+2) (2)由(1)-(2)得到-Sn =2^2+2^3+2^4+2^5+。。。++2^(n+1) -n*2^(n+2) = 2^(n+2)-4 -n*2^(n+2) = -(n-1)*2^(n+2)-4 Sn =(n-1)*2^(n+2)+4 错位相减适合每一项相差一个比例项。办法就是乘以比例项,或者除以比例项,然后相减 本题还可以另外的办法错位相减 Sn =C1+C2+C3+C4+。。。+Cn =1*2^2+2*2^3+3*2^4+4*2^5+...(n-1)*2^n +n*2^(n+1) (3) Sn/2= 1*2^1+2*2^2+3*2^3+4*2^4+...+n*2^n (4) 由(3)减(4)得到 Sn/2 = -2^1-2^2 -2^3 -2^4.... -2^n +n*2^(n+1) = -2^(n+1)+2+n*2^(n+1) =(n-1)*2^(n+1)+2 Sn =(n-1)*2^(n+2)+4
错位相减法的举例
例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2[x+x^2+x^3+x^4+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=1/1-x+(2x-2x^n)/(1-x)^2-(2n-1)*x^n/1-x
数列中错位相减法怎么用?
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2[x+x^2+x^3+x^4+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=1/1-x+(2x-2x^n)/(1-x)^2-(2n-1)*x^n/1-x
错位相减最后一步如何化简?
如图所示如果满意请采纳谢谢!
数学错位相减法?
An=(n+1)×2∧nSn=2×2∧1+3×2∧2+4×2∧3+……+(n+1)×2∧n ①2Sn=2×2∧2+3×2∧3+4×2∧4+……+(n+1)×2∧(n+1) ②①-②,得-Sn=2×2∧1+2∧2+2∧3+……+2∧(n+1)遇到等差数列乘等比数列这种形式的通项公式,采用错位相减法。先写出前n项和,然后写出公比与前n项和的乘积,两者相减,最终求得Sn.
错位相减法怎么减
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。目录简介举例错位相减法解题 编辑本段简介 错位相减较常用在数列的通项表现为一个等差数列与一个等比数列的乘积,如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列。编辑本段举例 例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-1)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2编辑本段错位相减法解题 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。 这是例子(格式问题,在a后面的数字和n都是指数形式): S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1) 在(1)的左右两边同时乘上a。 得到等式(2)如下: aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2) 用(1)—(2),得到等式(3)如下: (1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3) (1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式。 (1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S的通用公式了。 例子:求和Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方(x不等于0) 解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方 所以xSn=x+3x^2+5x^3+7x四次方……..+(2n-1)·x的n次方 所以两式相减的(1-x)Sn=1+2x(1+x+x^2+x^3+...+x的n-2次方)-(2n-1)·x的n次方。 化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方 Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得 -Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法 这个在求等比数列求和公式时就用了 Sn= 1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n
什么是错位相减法?
这是流水组织上面的东西。就是上下行相减时(譬如每行都是4个数),上面一行的第一位(自左数)减0得结果(也就是照抄),上面一行的第二位减去下面一行的第一位,这样错开。拿0减去下面一行的末位。
错位相减法的步骤
设等比数列{an},首项为a1,公比q≠1Sn=a1+a2+a3+----+anSn=a1+a1q+a1q^2+-----+a1q^(n-1)--------------(1)上式两边同乘以q得qSn=a1q+a1q^2+a1q^3-----+a1q^(n-1)+a1q^n-----(2)(1)式-(2)式得Sn-qSn=a1-a1q^nSn=a1(1-q^n)/(1-q)公比q是数列{an}的公比
分组求和 裂项相消 错位相减 累加 累乘 怎么区别,分别适用于什么式子?
分组适用于等比+等差,裂项适用于分母是某个数列,错位是等比乘等差,累加是类似等差,累乘是对数数列
数列和的求法,错位相减,倒序相加,裂项相消的用法及例子
解:错位相减通常用来解决等差数列乘以等比数列 例:n*2^n 倒序相加是证明等差数列前n项和的一个方法 裂项想消一般是求和中分母是整数的乘积 例:an=1/(n+1)*n如有疑问,可追问!
数列错位相减求和中为啥乘公比,其原理是什么?难道一定只能乘公比吗
成了公比以后,前一项的次数与后一项的次数就一样了,错位之后上下冲齐的两行相减得到一个规律的等比数列。
错位相减法
Cn=an*bn=nbn1)sn=1*2+2*2^2+.....n*2^n2) 2Sn=2*(1*2+2*2^2+.....n*2^n) (乘的2加在2的次幂上,然后每项就后移一项了) =1*2^2+2*2^3+.....n*2^(n+1) (Sn的第二项跟2sn的第二项相减……就这样斜着减就行了)Sn-2Sn=1*2+2^2+2^3+2^4+……+2^n-n*2^(n+1)-Sn= 2(1-2^n)/(1-2)-n*2^(n+1)=2^(n+1)-2-n*2^(n+1)Sn=(n-2)*2^(n+1)+2
错位相减法求和为什么还要算fx减加上fx-1
1、通项公式的幂一定是n-1,如果不是,则必须化成n-1;2、前n项和表达的幂一定是n。接下来就按技巧解题:错位相减求和公式(一文读懂错位相减求和解题技巧)大家看到没有,我们先在草稿上得出答案,然后按照正常书写流程,到了倒数第三步的时候,这里的计算是非常繁琐的(这道题是文科的,还比较简单),我们用技巧就可以直接跳过。这样既有步骤,答案又正确,就会得满分。如果用常规做,一旦某个环节计算错误,那么就解不出正确答案,就会扣光分。
错位相减法的公比是怎么看出来的?
这个直接看数列的通项就行了. 能用错位相减的题目,an的形式是一个等差数列的通项公式乘以等比数列的通项公式的形式 即 an=(An+B)*c^n 则 c就是你要找的公比.