二级结构

DNA图谱 / 问答 / 标签

二级结构工程师考试有哪些科目要考?

二级注册结构工程师只考专业课,科目为:1、钢筋混凝土结构。2、钢结构。3、砌体结构与木结构。4、地基与基础。5、高层建筑、高耸结构与横向作用。报名时间:报名时间一般为每年的6月份(以当地人事考试部门公布的时间为准)。报考者由本人提出申请,经所在单位审核同意后,统一到所在省(区、市)注册结构工程师管理委员会或人事考试管理机构办理报名手续。党中央、国务院各部门、部队及直属单位的人员,按属地原则报名参加考试。职业要求:建筑工程、结构工程、机械、机电一体化、电子、工业设计等相关专业本科以上学历。要求1-3年相关工作设计经验以及一定的产品管理、项目管理经验。熟悉结构设计开发流程,懂得模具的设计知识,了解相关的新技术、新工艺,能够熟练使用AutoCAD软件,同时根据企业需要熟练使用Inventor,Pro/E,UG和Solid works等三维辅助设计软件中的一种,工作主动积极有责任心,动手能力强,做事仔细有条理,逻辑思维能力强。

二级结构工程师和二级建造师区别在哪?

【导语】二级结构师和二级建造师数据建筑工程类证书,虽然都是比较值钱的注册类证书,但是二者之间也是有着比较大的差别的,针对的点也是不一样的,所以大家在选择的时候,一定要重视,那么二级结构工程师和二级建造师区别在哪?接下来就具体看看吧。这是属于建筑行业的二个不同工种的证书。二级建造师主要是施工单位的项目经理必须要有的证书,当然二级建造设计单位。二级结构工程师是设计院进行结构设计的需要的证书,是属于设计范畴的,只在设计的单位才能发挥作就具有一定的局限性。1、考试难度上说,二级建造师市政专业和二级结构工程师的考试难度差异很大,二建要比二级结构简单的多。2、工作性质上说,二建搞施工的,二级结构搞设计的。二建室外工作,尤其市政专业风吹日晒,搞施工的四处受气内工作,整天面对电脑辐射多,搞设计的地位较高。3、从“钱”途上说,二建能当项目经理,如果是包工头搞施工的肯定风险大收益大。二级结构一般在设计单位连个项不上,凡是项目负责人一般是一级的,但是由于结构设计软件的已经很完善了,一般风险较小,但是赚钱不多。以上就是二级结构工程师和二级建造师区别相关介绍,想要报考结构工程师考生,对于结构工程师报考条件及执业范围,一定要提前了解,祝大家成功,未来有更好的发展!

什么是dna的二级结构,其结构要点是什么?

  DNA二级结构:生物大分子主链周期性折叠形成的规则构象成为二级结构,即DNA螺旋。  1.两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋,螺旋的直径2.0nm  2.两条多核苷酸链是反向平行的,一条5"-3",另一条3"-5"  3.两条多核苷酸链的糖-磷酸骨架位于双螺旋外侧,碱基平面位于链的内侧  4相邻碱基对之间的轴向距离为0.34nm,每个螺旋的轴距为3.4nm  DNA二级结构的稳定作用力:  1.两条多核苷酸链间的互补碱基对之间的氢键  2.碱基对疏水的芳香环堆积所产生的疏水作用力,以及堆积的碱基对间的范德华力,  3.磷酸集团上的负电荷与介质中的阳离子化合物之间形成的盐键。

蛋白质的二级结构主要有哪些形式

α-螺旋、β-折叠、β-转角等蛋白质二级结构(secondary structure of protein)指它的多肽链中有规则重复的构象,限于主链原子的局部空间排列,不包括与肽链其他区段的相互关系及侧链构象。α-螺旋(α-helix)蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基氧与多肽链C端方向的第4个残基(第n+4个)的酰胺氮形成氢键。在典型的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm。螺旋的半径为0.23nm。α-螺旋 黄色部分为氢键β-折叠(β-sheet)是蛋白质中的常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链或相邻肽链的另一个酰胺氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(走向都是由N到C方向);或者是反平行排列(肽链反向排列)。β-转角(β-turn)多肽链中常见的二级结构,连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个氨基酸残基以上的转角又常称之环(loops)。常见的转角含有4个氨基酸残基,有两种类型。转角I的特点是:第1个氨基酸残基羰基氧与第4个残基的酰胺氮之间形成氢键;转角II的第3个残基往往是甘氨酸。这两种转角中的第2个残基大都是脯氨酸。

蛋白质中 如何分别 一级结构二级结构三级结构和四级结构?

一级结构:氨基酸残基在蛋白质肽链中的排列顺序称为蛋白质的一级结构,每种蛋白质都有唯一而确切的氨基酸序列。二级结构:蛋白质分子中肽链并非直链状,而是按一定的规律卷曲(如α-螺旋结构)或折叠(如β-折叠结构)形成特定的空间结构,这是蛋白质的二级结构。蛋白质的二级结构主要依靠肽链中氨基酸残基亚氨基(—NH—)上的氢原子和羰基上的氧原子之间形成的氢键而实现的。三级结构:在二级结构的基础上,肽链还按照一定的空间结构进一步形成更复杂的三级结构。肌红蛋白,血红蛋白等正是通过这种结构使其表面的空穴恰好容纳一个血红素分子。四级结构:具有三级结构的多肽链按一定空间排列方式结合在一起形成的聚集体结构称为蛋白质的四级结构。如血红蛋白由4个具有三级结构的多肽链构成,其中两个是α-链,另两个是β-链,其四级结构近似椭球形状。扩展资料:过量表现:蛋白质如果摄取过量的话也会在体内转化成脂肪,造成脂肪堆积。肾脏要排泄进食的蛋白质,当分解蛋白质时会产生大量的氮素这样会增加肾脏的负担。蛋白质,尤其是动物性蛋白摄入过多,对人体同样有害。首先过多的动物蛋白质的摄入,就必然摄入较多的动物脂肪和胆固醇。其次蛋白质过多本身也会产生有害影响。正常情况下,所以必须将过多的蛋白质脱氨分解,氮则由尿排出体外,这加重了代谢负担,而且,这一过程需要大量水分,从而加重了肾脏的负荷,若肾功能本来不好,则危害就更大。过多的动物蛋白摄入,也造成含硫氨基酸摄入过多,这样可加速骨骼中钙质的丢失,易产生骨质疏松。危害:1、蛋白质如果摄取过量的话也会在体内转化成脂肪,造成脂肪堆积。2、一旦蛋白质在体内转化为脂肪,血液的酸性就会提高,这样就会消耗大量的钙质,结果储存在骨骼当中的钙质就被消耗了,使骨质变脆。3、肾脏要排泄进食的蛋白质,当分解蛋白质时会产生大量的氮素这样会增加肾脏的负担。缺乏症:蛋白质缺乏在成人和儿童中都有发生,但处于生长阶段的儿童更为敏感。蛋白质的缺乏常见症状是代谢率下降,对疾病抵抗力减退,易患病,远期效果是器官的损害,常见的是儿童的生长发育迟缓、营养不良、体质量下降、淡漠、易激怒、贫血以及干瘦病或水肿,并因为易感染而继发疾病。蛋白质的缺乏,往往又与能量的缺乏共同存在即蛋白质—热能营养不良,分为两种,一种指热能摄入基本满足而蛋白质严重不足的营养性疾病,称加西卡病。另一种即为“消瘦”,指蛋白质和热能摄入均严重不足的营养性疾病。参考资料来源:百度百科-蛋白质

什么是蛋白质的二级结构?它主要有哪几种

二级结构(secondary structure):蛋白质分子中肽链并非直链状,而是按一定的规律卷曲(如α-螺旋结构)或折叠(如β-折叠结构)形成特定的空间结构,这是蛋白质的二级结构。蛋白质的二级结构主要依靠肽链中氨基酸残基亚氨基(—NH—)上的氢原子和羰基上的氧原子之间形成的氢键而实现的。主要有:1、纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。2、角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。3、胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。扩展资料α-螺旋的主要特征1、肽链以螺旋状盘卷前进,每圈螺旋由3.6个氨基酸构成,螺圈间距(螺距)为5.44埃。2、螺旋结构被规则排布的氢键所稳定,氢键排布的方式是:每个氨基酸残基的N—H与其氨基侧相间三个氨基酸残基的C=O形成氢键。这样构成的由一个氢键闭合的环,包含13个原子。因此,α-螺旋常被准确地表示为3.6/13螺旋。螺旋的盘绕方式一般有右手旋转和左手旋转,在蛋白质分子中实际存在的是右手螺旋。参考资料来源:百度百科-蛋白质

什么是蛋白质的二级结构?它主要有哪几种?各有何结构特征?

蛋白质的二级结构是指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型:⑴α-螺旋:其结构特征为:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm;③ 相邻螺旋圈之间形成许多氢键;④ 侧链基团位于螺旋的外侧。⑵β-折叠:其结构特征为:① 若干条肽链或肽段平行或反平行排列成片;② 所有肽键的C=O和N—H形成链间氢键;③侧链基团分别交替位于片层的上、下方。⑶β-转角:多肽链180°回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系。⑷无规卷曲:主链骨架无规律盘绕的部分

DNA的二级结构是什么?

DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋,螺旋的直径2.0nm;两条多核苷酸链是反向平行的,一条5"-3方向,另一条3"-5"方向;两条多核苷酸链的糖-磷酸骨架位于双螺旋外侧,碱基平面位于链的内侧;相邻碱基对之间的轴向距离为0.34nm,每个螺旋的轴距为3.4nm。

蛋白质的二级结构?维系力是什么?有哪些类型?

蛋白质的二级结构指蛋白质多肽链本身的折叠和盘绕方式。维系力是通过骨架上的羰基和酰胺基团之间形成的氢键维持的,氢键是稳定二级结构的主要作用力。二级结构主要有α-螺旋、β-折叠、β-转角。蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。扩展资料:蛋白质在胃液消化酶的作用下,初步水解,在小肠中完成整个消化吸收过程。氨基酸的吸收通过小肠黏膜细胞,是由主动运转系统进行,分别转运中性、酸性和碱性氨基酸。在肠内被消化吸收的蛋白质,不仅来自于食物,也有肠黏膜细胞脱落和消化液的分泌等,每天有70g左右蛋白质进入消化系统,其中大部分被消化和重吸收。未被吸收的蛋白质由粪便排出体外。参考资料来源:百度百科——蛋白质

二级结构工程师有多难?

二级结构工程师在所有土建类证中,算是最难的。二级结构工程师一年举行一次考试,作为建筑行业含金量高的证书报考人数也是逐年递增,注册结构工程师考试难度要比建造师难度大,现在注册结构的人也比较多了,国家控制通过率,再就是计算量大考试范围涉及广大。二级结构工程师的特点注册结构工程师含金量高,考试通过率低,结构工程师考试通过率一般在百分之8左右,但是每年的通过率也不完全一样,要根据报名人数分数线综合考虑通过率,二级注册结构工程师要容易不少,因此含金量不如一级注册结构工程师。这只是相对一级注册结构工程师而言,整体上来说二级注册结构工程师的含金量并不低,价值也不小,二级结构工程师的通过率是非常低的,据统计全国平均二级结构工程师的通过率只有百分之10左右,也就是说100个人参加考试,只有10个人才能通过,所以说通过率是很低的。

什么是蛋白质的二级结构?它主要有哪几种形式

蛋白质二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构。蛋白质二级结构主要为α螺旋和β折叠。α-螺旋的结构特点如下:①多个肽键平面通过α-碳原子旋转,相互之间紧密盘曲成稳固的右手螺旋。②主链呈螺旋上升,每3.6个氨基酸残基上升一圈,相当于0.54nm,这与X线衍射图符合。③相邻两圈螺旋之间借肽键中C=O和H桸形成许多链内氢健,即每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,这是稳定α-螺旋的主要键。④肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响α-螺旋的形成。酸性或碱性氨基酸集中的区域,由于同电荷相斥,不利于α-螺旋形成;较大的R(如苯丙氨酸、色氨酸、异亮氨酸)集中的区域,也妨碍α-螺旋形成;脯氨酸因其α-碳原子位于五元环上,不易扭转,加之它是亚氨基酸,不易形成氢键,故不易形成上述α-螺旋;甘氨酸的R基为H,空间占位很小,也会影响该处螺旋的稳定。β-片层结构特点是:①是肽链相当伸展的结构,肽链平面之间折叠成锯齿状,相邻肽键平面间呈110°角。氨基酸残基的R侧链伸出在锯齿的上方或下方。②依靠两条肽链或一条肽链内的两段肽链间的C=O与N-H形成氢键,使构象稳定。③两段肽链可以是平行的,也可以是反平行的。即前者两条链从“N端”到“C端”是同方向的,后者是反方向的。β-片层结构的形式十分多样,正、反平行能相互交替。④平行的β-片层结构中,两个残基的间距为0.65nm;反平行的β-片层结构,则间距为0.7nm.扩展资料:蛋白质的发现历史:1959年佩鲁茨和肯德鲁对血红蛋白和肌血蛋白进行结构分析,解决了三维空间结构,获1962年诺贝尔化学奖。鲍林发现了蛋白质的基本结构。克里克、沃森在X射线衍射资料的基础上,提出了DNA三维结构的模型。获1962年诺贝尔生理或医学奖。50年代后豪普特曼和卡尔勒建立了应用X射线分析的以直接法测定晶体结构的纯数学理论,在晶体研究中具有划时代的意义,特别在研究大分子生物物质如激素、抗生素、蛋白质及新型药物分子结构方面起了重要作用。他们因此获1985年诺贝尔化学奖。参考资料:百度百科-蛋白质二级结构

蛋白质的二级结构包括哪几种

蛋白质的二级结构主要有4种,α-螺旋、β-折叠、β-转角和无规卷曲四种。蛋白质二级结构是指多肽主链骨架原子沿一定的轴盘旋或折叠而形成的特定的构象,即肽链主链骨架原子的空间位置排布,不涉及氨基酸残基侧链。 α螺旋 蛋白质分子中多个肽平面通过氨基酸a-碳原子的旋转,使多肽主链各原子沿中心轴向右盘曲形成稳定的α螺旋(a-helix)构象。α螺旋具有下列特征: (1)多肽链以肽单元为基本单位,以Cα为旋转点形成右手螺旋,氨基酸残基的侧链基团伸向螺旋的外侧。 (2)每3.6个氨基酸旋转一周,螺距为0.54nm,每个氨基酸残基的高度为0.15nm,肽键平面与中心轴平行。 (3)氢键是α螺旋稳定的主要次级键。相邻螺旋之间形成链内氢键,即每个肽单位N上的氢原子与第四个肽单位羰基上的氧原子生成氢键,氢键与中心轴平行。若氢键破坏,α螺旋构象即被破坏。 α螺旋的形成和稳定性受肽链中氨基酸残基侧链基团的形状、大小及电荷等影响。如多肽中连续存在酸性或碱性氨基酸,由于带同性电荷而相斥,阻止链内氢键形成趋势而不利于α螺旋的生成;R侧链较大的氨基酸残基(如异亮氨酸、苯丙氨酸、色氨酸等)集中的区域,因空间位阻的影响,也不利于α螺旋的稳定;脯氨酸或羟脯氨酸残基的N原子位于吡咯环中,C-N单键不能旋转,并且其α-亚氨基在形成肽键后,N原子上无氢原子,不能生成维持仅螺旋所需之氢键,故不能形成α螺旋。 显然,蛋白质分子中氨基酸的组成和排列顺序对α螺旋的形成和稳定性具有决定性的影响。 α螺旋是蛋白质二级结构的主要形式,肌红蛋白和血红蛋白分子有许多肽段呈α螺旋,毛发的角蛋白、肌肉的肌球蛋白以及血凝块中的纤维蛋白,它们的多肽链几乎都是α螺旋。数条α螺旋状的多肽链缠绕在一起,可增强其机械强度和伸缩性(弹性)。 β折叠 β折叠是指多肽链以肽单元为单位,以Cα为旋转点形成伸展的锯齿状折叠构象,又称3片层(3-strand)结构,具有下列特征: (1)肽链折叠成伸展的锯齿状,肽单元间的夹角为110°,氨基酸残基的R侧链分布在片层的上下。 (2)两条以上肽链(或同一条多肽链的不同部分)平行排列,相邻肽链之间的肽键相互交替形成许多氢键,是维持这种结构的主要次级键。 (3)肽链平行的走向有顺式和反式两种,肽链的N端在同侧为顺式,不在同侧为反式,反式较顺式平行折叠更加稳定。 能形成β折叠的氨基酸残基一般不大,而且不带同种电荷,这样有利于多肽链的伸展,如甘氨酸、丙氨酸在p折叠中出现的概率最高。β折叠常见于蛋白质的二级结构,蚕丝蛋白几乎都是p折叠结构,一些球状蛋白中也含有β折叠。 β转角 多肽链中出现的180°回折的结构称为β转角(β-bend)或β回折(β-turn),即U型转折结构。它是由四个连续氨基酸残基构成,第2个氨基酸残基多为脯氨酸,甘氨酸、天冬氨酸、天冬酰胺也常出现在β转角结构中,第一个氨基酸残基的羰基与第四个氨基酸残基的亚氨基之间形成氢键以维持其稳定。 常见的转角含有4个氨基酸残基,有两种类型。转角I的特点是:第1个氨基酸残基羰基氧与第4个残基的酰胺氮之间形成氢键;转角II的第3个残基往往是甘氨酸。这两种转角中的第2个残基大都是脯氨酸。 无规卷曲 除上述有规则的构象外,多肽链中肽平面的一些无规则排列的无规律构象,称为无规卷曲。无规卷曲通过主链间的氢键或主链与侧链间的氢键稳定其构象,是蛋白质结构中的基本构件。卷曲的柔性构象可使肽链改变走向,利于连接结构相对刚性的α螺旋和β折叠,在蛋白质肽链的卷曲、折叠过程中起重要作用。

二级结构主要是做什么事?

看自己的专业能力,岗位职责

DNA的二级结构

DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋。DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋,螺旋的直径2.0nm;两条多核苷酸链是反向平行的,一条5"-3方向,另一条3"-5"方向;两条多核苷酸链的糖-磷酸骨架位于双螺旋外侧,碱基平面位于链的内侧;相邻碱基对之间的轴向距离为0.34nm,每个螺旋的轴距为3.4nm。 DNA二级结构的稳定作用力有两条多核苷酸链间的互补碱基对之间的氢键;碱基对疏水的芳香环堆积所产生的疏水作用力,以及堆积的碱基对间的范德华力;磷酸基团上的负电荷与介质中的阳离子化合物之间形成的盐键。 DNA是脱氧核糖核酸,是生物细胞内含有的四种生物大分子之一核酸的一种。DNA携带有合成RNA和蛋白质所必需的遗传信息,是生物体发育和正常运作必不可少的生物大分子。

dna二级结构有哪些

DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋。DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋,螺旋的直径2.0nm;两条多核苷酸链是反向平行的,一条5"-3方向,另一条3"-5"方向;两条多核苷酸链的糖-磷酸骨架位于双螺旋外侧,碱基平面位于链的内侧;相邻碱基对之间的轴向距离为0.34nm,每个螺旋的轴距为3.4nm。DNA二级结构的稳定作用力有两条多核苷酸链间的互补碱基对之间的氢键;碱基对疏水的芳香环堆积所产生的疏水作用力,以及堆积的碱基对间的范德华力;磷酸基团上的负电荷与介质中的阳离子化合物之间形成的盐键。DNA是脱氧核糖核酸,是生物细胞内含有的四种生物大分子之一核酸的一种。DNA携带有合成RNA和蛋白质所必需的遗传信息,是生物体发育和正常运作必不可少的生物大分子。

维持DNA二级结构的键是

dna的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。连结键是氢键。请采纳

dna分子二级结构有哪些特点?

(1)是由反向平行的两条链组成。(2)碱基和脱氧核糖骨架排列在外侧,而碱基在内部。(3)有大小沟=======大概就记得这三个。。

蛋白质和dna一级,二级结构有何不同

  一级结构  与蛋白质结构相似,核酸的结构也可分级结构与空间结构进行讨论。核酸的一级结构是指其多核苷酸链中核苷酸的排列顺序。核酸的空间结构是指多核苷酸链内或链间通过氢键等折叠卷曲的构象。核酸的空间结构又有二级结构与三级结构之分。  DNA是由四种脱氧核糖核酸通过3′。5′——磷酸二酯键彼此连接而成的线形或环状大分子。DNA分子没有侧链。其骨架由脱氧核糖和磷酸组成DNA的一级结构即是DNA多核苷酸链中核苷酸的排列顺序。  由于生物遗传信息储存于DNA的核苷酸序列中,若能搞清各种生物DNA的脱氧核苷酸排列顺序,则对生命活动本质的认识将有重大意义。  二级结构  目前公认的DNA二级结构是双螺旋结构,这种模型的建立,主要有两个方面的根据。一是前面提到的50年代初E.Chargaff等人对各种DNA碱基组成的定量分析结果。二是Wilkins小组用X光衍射法研究DNA的晶体,测得DNA分子呈螺旋结构。1953年j .Watson和F.Crick通过进一步研究,提出了DNA分子双螺旋结构模型。从而大大推动了分子生物学的发展。

一 名词解释 糖蛋白 蛋白质的二级结构 同工酶 DNA双螺旋结构 抗生素 P/O比

糖蛋白:糖类分子与蛋白质分子共价结合形式形成的蛋白质。糖基化修饰使蛋白质分子的性质和功能更为丰富和多样。分泌蛋白质和质膜外表面的蛋白质大都为糖蛋白。蛋白质二级结构:指蛋白质多肽链本身的折叠和盘绕的方式。二级结构主要有α-螺旋、β-折叠、β-转角。常见的二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的,氢键是稳定二级结构的主要作用力。 同工酶:具有相同底物,但电泳迁移率不同的酶。可来源于多个基因座或等位基因的表达,也可能是基因翻译后形成的。DNA双螺旋结构:1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905— )测定了DNA中4种碱基的含量, DNA双螺旋结构发现其中腺膘呤与胸腺嘧啶的数量相等,鸟膘呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺膘呤与胸腺嘧啶配对、鸟膘呤与胞嘧啶配对的概念。抗生素:抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质。现临床常用的抗生素有微生物培养液液中提取物以及用化学方法合成或半合成的化合物。目前已知天然抗生素不下万种。P/O比 指一对电子通过呼吸链传递到氧所产生的ATP分子数。NADH的P/O比为3,ATP是在3个不连续的部位生成的:第一个部位是在NADH和辅酶Q之间(NADH脱氢酶);第二个在辅酶Q和细胞色素C之间(细胞色素C还原酶);第三个在细胞色素a和氧之间(细胞色素c氧化酶)。 呼吸过程中,消耗的O2和产生的ATP分子数之比。一般为3,即2e-通过呼吸链传至O2所产生的ATP的分子数。 NADH途径产生ATP为2.5,FADH2产生ATP为1.5
 首页 上一页  1 2