有哪种形式一碳单位参与嘌呤和嘧啶核苷酸的合成
在DNA和RNA,一对在部分含氮碱发挥作用。 5种碱是杂环化合物,氮原子位于所述环或取代的氨基,其中一些(取代氨基,和氮气嘌呤环,嘧啶环氮3)直接参与碱基配对的。 有五个基地:胞嘧啶(简称C),鸟嘌呤(G),腺嘌呤(A),胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义五种碱基,腺嘌呤和鸟嘌呤,嘌呤属于家庭(缩写为R&下),它们具有双环结构。胞嘧啶,尿嘧啶,胸腺嘧啶嘧啶属于家庭(Y),该环系统是一个六元杂环。 RNA,尿嘧啶代替胸腺嘧啶的位置。值得注意的是,胸腺嘧啶尿嘧啶比5-甲基更多,甲基增加的继承的准确性。通过与核糖或脱氧核糖共价键 基化合物附着于碳原子以形成称为核苷。与磷酸结合形式再次核苷连接到五碳糖5个碳原子的核苷酸的磷酸基团。 基地:腺嘌呤 - 胸腺嘧啶 - 尿嘧啶 - 鸟嘌呤 - 胞嘧啶 - 嘌呤 - 嘧啶核苷腺苷 - 尿苷 - 鸟苷 - 胞苷 - 脱氧 - 胸部苷 - 脱氧鸟嘌呤 - 脱氧核糖核苷酸:AMP - UMP - GMP - CMP - ADP - UDP - 国内生产总值 - CDP - 三磷酸腺苷 - UTP - GTP - CTP - 坎普 - cGMP的脱氧核苷酸:恒定 - DTMP - 卸载 - 的dGMP - 的dCMP - DADP - DTDP - DUDP - dGDP - DCDP - 的dATP - dTTP的 - 的dUTP - dGTP - 的dCTP 核酸:DNA - RNA - LNA - 巴勒斯坦民族权力机构 - 基因 - 非编码RNA - 的miRNA - rRNA基因 - shRNA的 - 的siRNA - 酰tRNA - 线粒体 - 寡核苷酸核糖核酸酸(缩写为RNA,即,核糖核酸),存在于生物细胞和某些病毒的遗传信息的病毒样载体。 RNA由磷酸酯键的成长链分子凝结的核糖核苷酸。核糖核苷酸分子由磷酸,核糖和基地。 RNA碱基有四种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA牛逼胸腺嘧啶和RNA特性变得基地。 随着不同的DNA,RNA通常是单链的分子长度,不形成双螺旋结构,但是很多的RNA还需要通过碱基配对的规则来实行某种生物学功能,甚至三级结构的二级结构。 DNA和RNA基本上是相同的碱基配对规则,但是除了A-U,G-C与外部,G-U也可以配对。 在细胞中,根据不同的RNA结构和功能主要分为三类,即,酰tRNA(转运RNA),rRNA基因(核糖体RNA),mRNA(信使RNA)。的mRNA是蛋白质合成的模板,根据在细胞核的DNA转录的内容; tRNA的核苷酸序列(即遗传密码)mRNA的认可和氨基酸的转运; rRNA基因是核糖体的蛋白质的合成工作场所的组合物的组分。 在病毒,许多病毒只RNA作为遗传信息的唯一载体(而不是通常用作载体的双链DNA细胞生物)。 自1982年以来,有研究表明,许多RNA,如I,II型内含子RNA酶P,HDV,大亚基核糖体RNA,而且有这么有生化反应催化方法的酶活性活动此类核酶被称为RNA(核酶)。 90年代以来,也发现RNA干扰(RNA干扰,RNA干扰)等等现象证明了RNA在基因表达调控中起重要作用。
asp参与了那些核苷酸的合成
亲你好,嘧啶核苷酸的从头合成与嘌呤核苷酸不同,生物体先利用小分子化合物形成嘧啶环。再与核糖磷酸结合成尿苷酸。关键的中间化合物是乳清酸。其它嘧啶核苷酸由尿苷酸转变而成。在嘧啶核苷酸合成过程中有:Gln和Asp参加。嘧啶核苷酸的分解代谢是先去除磷酸和核糖生成嘧啶碱,嘧啶碱在肝内降解。降解产物易溶于水,这点与嘌呤碱不同,嘌呤碱的代谢产物尿酸仅微溶于水。扩展资料:氨基酸在人体内通过代谢可以发挥下列一些作用:合成组织蛋白质;变成酸、激素、抗体、肌酸等含氨物质;转变为碳水化合物和脂肪;氧化成二氧化碳和水及尿素,产生能量。乳清酸磷酸核糖转移酶催化乳清酸转变为乳清酸核苷酸,而乳清酸核苷酸脱羧酶又催化乳清酸核苷酸转变为尿嘧啶核苷酸。两种酶有异常则尿嘧啶核苷酸的合成被阻断,失去最终产物对合成代谢的抑制作用,于是乳清酸便过度产生,尿中乳清酸排出增多。
关于嘧啶核苷酸的生物合成哪种说法是错的。()
关于嘧啶核苷酸的生物合成哪种说法是错的。() A.首先合成的嘧啶环,再与磷酸核糖焦磷酸结合,生成嘧啶核苷酸 B.二氢乳清酸脱氢酶是一个含铁的黄素酶,有氧存在时产生H2O2 C.氨甲酰磷酸合成酶受UMP反馈抑制 D.胞嘧啶与磷酸核糖焦磷酸反应生成CMP E.UTP在CTP合成酶作用下可生成CTP 正确答案:D
核酸的基本组成单位是核苷酸,它是由()、()、()组成。嘌呤和嘧啶环中均含有()?
核苷酸是由(碱基)、(核糖)、(磷酸)组成。嘌呤和嘧啶环中均含有(氮元素)。核酸的组成核苷酸的组成
嘧啶核苷酸合成原料是否需要一碳单位
需要dUMP甲基化生成dTMP的时候,需要N5,N10-亚甲四氢叶酸作为甲基供体,一碳单位直接参与。
嘧啶核苷酸从头合成的原料有哪些
天冬氨酸、谷氨酰胺、二氧化碳。嘧啶核苷酸的生物合成嘧啶核苷酸的生物合成1、嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。后者又在天冬氨酸转氨甲酰酶催化下,将氨基甲酰基转移到天冬氨酸的氨基上生成氨甲酰天冬氨酸。氨甲酰天冬氨酸脱水环化,生成二氢乳清酸,再脱氢即成乳清酸(嘧啶衍生物)。2、尿嘧啶核苷酸(UMP)和胞嘧啶核苷酸(cMP)合成:乳清酸与PRPP作用生成乳清酸核苷酸,后者脱羧即成尿苷酸。扩展资料反应过程中的关键酶在不同生物体内有所不同,在细菌中,天冬氨酸氨基甲酰转移酶是嘧啶核苷酸从头合成的主要调节酶;而在哺乳动物细胞中,嘧啶核苷酸合成的调节酶主要是氨基甲酰磷酸合成酶Ⅱ。主要合成过程:形成的第一个嘧啶核苷酸是乳氢酸核苷酸(OMP),进而形成尿嘧啶核苷酸(UMP),UMP在一系列酶的作用下生成CTP。dTMP由dUMP经甲基化生成的。嘧啶核苷酸从头合成的特点是先合成嘧啶环,再磷酸核糖化生成核苷酸。参考资料来源:百度百科-嘧啶核苷酸的生物合成参考资料来源:百度百科-核苷酸
求生物化学--嘧啶核苷酸的合成 ppt课件
嘧啶核苷酸的生物合成 嘧啶核苷酸的从头合成与嘌呤核苷酸不同,嘧啶环的元素来源于谷氨酰胺、二氧化碳和天冬氨酸,其特点是首先将这些原料合成嘧啶环,然后与PRPP反应生成。 ①嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。后者又在天冬氨酸转氨甲酰酶催化下,将氨基甲酰基转移到天冬氨酸的氨基上生成氨甲酰天冬氨酸。氨甲酰天冬氨酸脱水环化,生成二氢乳清酸,再脱氢即成乳清酸(嘧啶衍生物)。 ②尿嘧啶核苷酸(UMP)和胞嘧啶核苷酸(cMP)合成:乳清酸与PRPP作用生成乳清酸核苷酸,后者脱羧即成尿苷酸。 尿苷酸是所有其他嘧啶核苷酸的前体。由尿嘧啶核苷酸转变成胞嘧啶核苷酸是在核苷三磷酸水平上进行的。UMP经相应的激酶催化而生成UDP和UTP,由谷氨酰胺提供氨基,使UTP转变为CTP。
关于核苷酸人体内的核苷酸是直接从食物里获得还是自
大多数是人体自己合成的,嘌呤的合成是从5-磷酸核糖焦磷酸开始,经过一系列酶促反应,生成次黄嘌呤核苷酸,然后再转变成腺嘌呤核苷酸和鸟嘌呤核苷酸的,对于嘧啶来说,就是先形成嘧啶环,再磷酸核糖结合为乳清苷酸,然后生成尿嘧啶核糖核酸,其他的嘧啶是由尿嘧啶转换而来的。尿嘧啶核苷三磷酸氨基化后就是胞嘧啶核苷三磷酸。核苷酸 hegansuan 核苷酸 nucleotide 一类由碱基(主要是嘌呤、嘧啶碱的衍生物)、戊糖(核糖或脱氧核糖)和磷酸连接而成的化合物。也叫核苷磷酸,是构成核酸的基本单位。1983年有人发现一类不含戊糖而含葡萄糖(一种己糖)的“核苷酸”组成的核酸——葡萄糖核酸 (GNA)。核苷酸及其衍生物广泛地参与生物体内各类生物化学反应,如(ATP)和鸟苷三磷酸(GTP)是生命活动广泛需要的能源;环腺苷酸(cAMP)、环鸟苷酸(cGMP)和2′,5′-寡聚腺苷酸是代谢调节信号分子;烟酰胺腺嘌呤二核苷酸(NA)、烟酰胺腺嘌呤二核苷酸磷酸 (NAD)、黄素腺嘌呤二核苷酸(FAD)和辅酶 A(CoA)是广泛存在的;
嘧啶核苷酸的合成有何特点?分别有哪些氨基酸参加?
嘧啶核苷酸的从头合成与嘌呤核苷酸不同,生物体先利用小分子化合物形成嘧啶环。再与核糖磷酸结合成尿苷酸。关键的中间化合物是乳清酸。其它嘧啶核苷酸由尿苷酸转变而成。在嘧啶核苷酸合成过程中有:Gln和Asp参加。嘧啶核苷酸的分解代谢是先去除磷酸和核糖生成嘧啶碱,嘧啶碱在肝内降解。降解产物易溶于水,这点与嘌呤碱不同,嘌呤碱的代谢产物尿酸仅微溶于水。扩展资料:氨基酸在人体内通过代谢可以发挥下列一些作用:合成组织蛋白质;变成酸、激素、抗体、肌酸等含氨物质;转变为碳水化合物和脂肪;氧化成二氧化碳和水及尿素,产生能量。乳清酸磷酸核糖转移酶催化乳清酸转变为乳清酸核苷酸,而乳清酸核苷酸脱羧酶又催化乳清酸核苷酸转变为尿嘧啶核苷酸。两种酶有异常则尿嘧啶核苷酸的合成被阻断,失去最终产物对合成代谢的抑制作用,于是乳清酸便过度产生,尿中乳清酸排出增多。
生物体内嘌呤环及嘧啶环是如何合成的?有哪些氨基酸直接参与核苷酸的合成
在DNA和RNA,一对在部分含氮碱发挥作用。 5种碱是杂环化合物,氮原子位于所述环或取代的氨基,其中一些(取代氨基,和氮气嘌呤环,嘧啶环氮3)直接参与碱基配对的。 有五个基地:胞嘧啶(简称C),鸟嘌呤(G),腺嘌呤(A),胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义五种碱基,腺嘌呤和鸟嘌呤,嘌呤属于家庭(缩写为R&下),它们具有双环结构。胞嘧啶,尿嘧啶,胸腺嘧啶嘧啶属于家庭(Y),该环系统是一个六元杂环。 RNA,尿嘧啶代替胸腺嘧啶的位置。值得注意的是,胸腺嘧啶尿嘧啶比5-甲基更多,甲基增加的继承的准确性。通过与核糖或脱氧核糖共价键 基化合物附着于碳原子以形成称为核苷。与磷酸结合形式再次核苷连接到五碳糖5个碳原子的核苷酸的磷酸基团。 基地:腺嘌呤 - 胸腺嘧啶 - 尿嘧啶 - 鸟嘌呤 - 胞嘧啶 - 嘌呤 - 嘧啶核苷腺苷 - 尿苷 - 鸟苷 - 胞苷 - 脱氧 - 胸部苷 - 脱氧鸟嘌呤 - 脱氧核糖核苷酸:AMP - UMP - GMP - CMP - ADP - UDP - 国内生产总值 - CDP - 三磷酸腺苷 - UTP - GTP - CTP - 坎普 - cGMP的脱氧核苷酸:恒定 - DTMP - 卸载 - 的dGMP - 的dCMP - DADP - DTDP - DUDP - dGDP - DCDP - 的dATP - dTTP的 - 的dUTP - dGTP - 的dCTP 核酸:DNA - RNA - LNA - 巴勒斯坦民族权力机构 - 基因 - 非编码RNA - 的miRNA - rRNA基因 - shRNA的 - 的siRNA - 酰tRNA - 线粒体 - 寡核苷酸核糖核酸酸(缩写为RNA,即,核糖核酸),存在于生物细胞和某些病毒的遗传信息的病毒样载体。 RNA由磷酸酯键的成长链分子凝结的核糖核苷酸。核糖核苷酸分子由磷酸,核糖和基地。 RNA碱基有四种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA牛逼胸腺嘧啶和RNA特性变得基地。 随着不同的DNA,RNA通常是单链的分子长度,不形成双螺旋结构,但是很多的RNA还需要通过碱基配对的规则来实行某种生物学功能,甚至三级结构的二级结构。 DNA和RNA基本上是相同的碱基配对规则,但是除了A-U,G-C与外部,G-U也可以配对。 在细胞中,根据不同的RNA结构和功能主要分为三类,即,酰tRNA(转运RNA),rRNA基因(核糖体RNA),mRNA(信使RNA)。的mRNA是蛋白质合成的模板,根据在细胞核的DNA转录的内容; tRNA的核苷酸序列(即遗传密码)mRNA的认可和氨基酸的转运; rRNA基因是核糖体的蛋白质的合成工作场所的组合物的组分。 在病毒,许多病毒只RNA作为遗传信息的唯一载体(而不是通常用作载体的双链DNA细胞生物)。 自1982年以来,有研究表明,许多RNA,如I,II型内含子RNA酶P,HDV,大亚基核糖体RNA,而且有这么有生化反应催化方法的酶活性活动此类核酶被称为RNA(核酶)。 90年代以来,也发现RNA干扰(RNA干扰,RNA干扰)等等现象证明了RNA在基因表达调控中起重要作用。
嘧啶核苷酸从头合成的原料有哪些
天冬氨酸、谷氨酰胺、二氧化碳。嘧啶核苷酸的生物合成嘧啶核苷酸的生物合成1、嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。后者又在天冬氨酸转氨甲酰酶催化下,将氨基甲酰基转移到天冬氨酸的氨基上生成氨甲酰天冬氨酸。氨甲酰天冬氨酸脱水环化,生成二氢乳清酸,再脱氢即成乳清酸(嘧啶衍生物)。2、尿嘧啶核苷酸(UMP)和胞嘧啶核苷酸(cMP)合成:乳清酸与PRPP作用生成乳清酸核苷酸,后者脱羧即成尿苷酸。扩展资料反应过程中的关键酶在不同生物体内有所不同,在细菌中,天冬氨酸氨基甲酰转移酶是嘧啶核苷酸从头合成的主要调节酶;而在哺乳动物细胞中,嘧啶核苷酸合成的调节酶主要是氨基甲酰磷酸合成酶Ⅱ。主要合成过程:形成的第一个嘧啶核苷酸是乳氢酸核苷酸(OMP),进而形成尿嘧啶核苷酸(UMP),UMP在一系列酶的作用下生成CTP。dTMP由dUMP经甲基化生成的。嘧啶核苷酸从头合成的特点是先合成嘧啶环,再磷酸核糖化生成核苷酸。参考资料来源:百度百科-嘧啶核苷酸的生物合成参考资料来源:百度百科-核苷酸
下列不能用做探针的分子是( ) A.人工合成的寡核苷酸片段 B.克隆的基因组DNA C.cDNA D.蛋白质 E.RNA片段
【答案】:D探针是带有特殊可检测标记的核酸片段,它具有特定的序列,能够与待测的核酸片段互补结合,因此可以用于检测核酸样品中的特定基因。人工合成的寡核苷酸片段、克隆的基因组DNA、cDNA均可在DNA印迹和RNA印迹中作探针,为了提高RNA印迹的敏感性,亦可选用RNA片段作为探针,而蛋白质不符合探针的定义。
单核苷酸多态性和表观遗传学的区别
不是一个层面的两个名词,如何比较?前者是SNP,属于一种普遍性的核苷酸点突变。后者是一门学科,在不改变DNA序列的前提下,发生可遗传的表型变异。
求嘧啶核苷酸和嘌呤核苷酸代谢知识点详细对比。
嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。嘧啶与核酸形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。Image:Cytosine chemical structure.png|胞嘧啶Image:Thymine chemical structure.png|胸腺嘧啶Image:Uracil chemical structure.png|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。 嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。2、重要的能源物质 三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。3、重要的信使分子 环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。4、作为某些活性基因的载体 S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。5、参与组成某些辅酶 腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。
嘌呤核苷酸分解代谢的终产物是
尿酸。具体来说,嘌呤核苷酸先被代谢成为黄嘌呤核苷酸,再被黄嘌呤核苷酸水解成为黄嘌呤和核苷酸。最终,黄嘌呤继续被氧化成为尿酸,通过肾脏和尿液排出体外。
嘌呤碱基、嘧啶碱基、核苷、核苷酸和多聚核苷酸链在分子结构上的关系怎样?
核苷,核苷酸,核酸三者在分子结构上的关系是“核苷酸是核苷的磷酸酯,是组成核酸的基本单元”,核酸也叫多聚核苷酸,核糖体的核糖核酸,简称rRNA。核苷酸Nucleotide是一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸
黄嘌呤核苷酸的缩写符号是
黄嘌呤核苷酸的缩写符号是imp。是一种在核糖核酸(RNA)中发现的核苷酸。在酶的作用下,由肌苷酸可以分解得到次黄嘌呤。目前越来越多的研究证实肌苷酸具有风味特性。
黄嘌呤核苷酸氨基化,氨基的来源
黄嘌呤核苷酸氨基化,氨基的来源谷氨酰胺。黄嘌呤核苷酸转变为鸟嘌呤核苷酸核苷酸时需要氨基酸,其氨基来自谷氨酰胺。蛋白质二级结构除了螺旋、折叠、转角还有什么无规则卷曲。转氨酶的作用是催化氨基酸与相应酮酸之间进行氨基转移,主要的脱氨基作用是联合脱氨基作用。
次黄嘌呤核苷酸IMP的日文名称
イノシン酸<IMP>イノシン酸:肌苷酸因次黄嘌呤核苷酸也称肌苷酸、而肌苷酸的日语为“イノシン酸”,故次黄嘌呤核苷酸日语也为“イノシン酸”。
参与嘌呤核苷酸循环的物质有:
参与心肌、骨骼肌等组织中氨基酸的联合脱氨基作用。嘌呤核苷酸循环指骨骼肌中存在的一种氨基酸脱氨基作用方式。转氨基作用中生成的天冬氨酸与次黄嘌呤核苷酸(imp)作用生成腺苷酸代琥珀酸,后者在裂解酶作用下生成延胡索酸和腺嘌呤核苷酸,腺嘌呤核苷酸在腺苷酸脱氨酶作用下脱掉氨基又生成imp的过程.原因是骨骼肌中l-谷氨酸脱氢酶活性低的缘故.
4.嘌呤碱基、嘧啶碱基、核苷、核苷酸和多聚核苷酸链在分子结构上的关系怎样?
搜索登录首页教育/科学理工学科化学生物化学嘌呤和嘧啶的结构关系如何2***全部答案2***2013-04-04 14:40:28 嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。嘧啶与核酸形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。 chemicalg|胞嘧啶chemicalg|胸腺嘧啶chemicalg|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。 杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。 嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。 2、重要的能源物质三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。3、重要的信使分子环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。 4、作为某些活性基因的载体S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。5、参与组成某些辅酶腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。 人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。 嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。 嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。 鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。 研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。
五种核苷酸是哪五种
胞嘧啶核苷酸、尿嘧啶核苷酸、腺嘌呤核苷酸、鸟嘌呤核苷酸、次黄嘌呤核苷酸等。1、胞嘧啶核苷酸胞嘧啶核苷酸的缩写为CMP。为嘧啶核苷酸之一,是RNA的构成成分。天然存在的有5′-胞苷酸(胞苷-5′-磷酸)。RNA碱解可生成2′-胞苷酸(胞苷-2′-磷酸)和3′-胞苷酸(胞苷-3′-磷酸)。2、尿嘧啶核苷酸尿嘧啶核苷酸也称一磷尿苷(简称UMP),与胞苷酸一起构成RNA的嘧啶核苷酸部分。在生物体内是UTP、CTP合成的共同的前体,由乳清酸核苷-5′-磷酸经酶催化脱羧而成。由酶催化磷酸化生成UDP、UTP。3、腺嘌呤核苷酸腺嘌呤核苷酸又称为维生素B8,是一种药品,也是人类必需的营养。分子式是C10H14O7N5P。动物缺乏生物素引起皮肤疾患和脱毛。卵蛋白质含有能与生物素紧密结合的抗生物素蛋白。如大量食用生鸡蛋,因妨碍生物素的吸收,可导致人类生物素缺乏症。在正常情况下,人类肠细菌合成的生物素足敷需要。4、鸟嘌呤核苷酸鸟嘌呤核苷酸是一种分子。形态为白色正方形结晶或无定形粉末,化学式是C5H5N5O。易溶于氢氧化铵、氢氧化碱和稀酸溶液,微溶于乙醇和乙醚,几乎不溶于水。360℃以上分解并部分升华。用于生物代谢的研究中。5、次黄嘌呤核苷酸次黄嘌呤核苷酸是嘌呤核苷酸生物合成过程中的第一个核苷酸产物,即6-羟基嘌呤核苷酸。在谷氨酰胺转移酶作用下接受氨基合成腺嘌呤核苷酸(AMP),或经氧化生成黄嘌呤核苷酸(XMP)后再接受氨基合成鸟嘌呤核苷酸(GMP),IMP主要存在于转运核糖核酸(tRNA)中。参考资料来源:百度百科-五种核苷酸
嘌呤核苷酸的从头合成的特点是什么?
嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等为原料合成嘌呤核苷酸的过程。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。
人体内嘌呤核苷酸分解代谢的主要终产物是( )。
【答案】:D本题考核考生对嘌呤核苷酸分解代谢的了解程度,以及与其他化合物的区分。嘌呤核苷酸AMP和GMP在体内都代谢产生尿酸。AMP生成次黄嘌呤,后者在黄嘌呤氧化酶作用下氧化成黄嘌呤,最后生成尿酸。GMP生成乌嘌呤,后者转变成黄嘌呤,最后也生成尿酸。而答案中β-丙氨酸为尿嘧啶分解代谢产物之一;尿素为乌氨酸循环产物;肌酸和肌酸酐为与能量储存相关的化合物。本题准确答案为D。
简述嘌呤和嘧啶核苷酸的从头合成途径的要点.两者有何区别
1、原料不同嘌呤核苷酸:磷酸核糖、甘氨酸、天冬氨酸、谷氨酰胺、COu2082、一碳单位。嘧啶核苷酸:磷酸核糖、天冬氨酸、谷氨酰胺、COu2082。2、合成特点不同嘌呤核苷酸:嘌呤核苷酸是在磷酸核糖分子上逐步合成嘌呤环,先合成次黄嘌呤核苷酸,再转变为腺嘌呤核苷酸和鸟嘌呤核苷酸。嘧啶核苷酸:先形成嘧啶环,再与磷酸核糖相连生成尿苷一磷酸酸,由此转变为其他嘧啶核苷酸。扩展资料核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞的核及胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起着主要的作用。体内的能量释放及吸收主要是以产生及消耗三磷酸腺苷来体现的。此外,三磷酸尿苷、三磷酸胞苷及三磷酸鸟苷也是有些物质合成代谢中能量的来源。腺苷酸还是某些辅酶,如辅酶Ⅰ、Ⅱ及辅酶A等的组成成分。参考资料来源:百度百科--核苷酸
次黄嘌呤核苷酸位于trna哪里
嘌呤核苷酸生物合成过程中的第一个核苷酸产物,即6-羟基嘌呤核苷酸。在谷氨酰胺转移酶作用下接受氨基合成腺嘌呤核苷酸(AMP),或经氧化生成黄嘌呤核苷酸(XMP)后再接受氨基合成鸟嘌呤核苷酸(GMP)。IMP主要存在于转运核糖核酸(tRNA)中。AMP在脱氨酶作用下分解生成IMP,GMP在鸟嘌呤核苷酸还原酶作用下分解亦生成IMP,即AMP和GMP之间可以通过IMP相互转变,以保持AMP,GMP含量的平衡。
参加核苷酸的合成代谢,5‘磷酸核糖必须先活化为?
参加核苷酸合成的5"磷酸核糖必须先活化为PRPP,即5-磷酸核酸-1-焦磷酸。嘌呤核苷酸的合成主要有两条合成途径:从头合成途径和补救合成途径,从头合成途径是以5"磷酸核糖为原料,在磷酸核糖焦磷酸合成酶作用下生成PRPP,之后经过多步反应生成次黄嘌呤核苷酸,次黄嘌呤核苷酸可进一步转化为腺苷酸和鸟苷酸。
五种核苷酸是哪五种
胞嘧啶核苷酸、尿嘧啶核苷酸、腺嘌呤核苷酸、鸟嘌呤核苷酸、次黄嘌呤核苷酸等。1、胞嘧啶核苷酸胞嘧啶核苷酸的缩写为CMP。为嘧啶核苷酸之一,是RNA的构成成分。天然存在的有5′-胞苷酸(胞苷-5′-磷酸)。RNA碱解可生成2′-胞苷酸(胞苷-2′-磷酸)和3′-胞苷酸(胞苷-3′-磷酸)。2、尿嘧啶核苷酸尿嘧啶核苷酸也称一磷尿苷(简称UMP),与胞苷酸一起构成RNA的嘧啶核苷酸部分。在生物体内是UTP、CTP合成的共同的前体,由乳清酸核苷-5′-磷酸经酶催化脱羧而成。由酶催化磷酸化生成UDP、UTP。3、腺嘌呤核苷酸腺嘌呤核苷酸又称为维生素B8,是一种药品,也是人类必需的营养。分子式是C10H14O7N5P。动物缺乏生物素引起皮肤疾患和脱毛。卵蛋白质含有能与生物素紧密结合的抗生物素蛋白。如大量食用生鸡蛋,因妨碍生物素的吸收,可导致人类生物素缺乏症。在正常情况下,人类肠细菌合成的生物素足敷需要。4、鸟嘌呤核苷酸鸟嘌呤核苷酸是一种分子。形态为白色正方形结晶或无定形粉末,化学式是C5H5N5O。易溶于氢氧化铵、氢氧化碱和稀酸溶液,微溶于乙醇和乙醚,几乎不溶于水。360℃以上分解并部分升华。用于生物代谢的研究中。5、次黄嘌呤核苷酸次黄嘌呤核苷酸是嘌呤核苷酸生物合成过程中的第一个核苷酸产物,即6-羟基嘌呤核苷酸。在谷氨酰胺转移酶作用下接受氨基合成腺嘌呤核苷酸(AMP),或经氧化生成黄嘌呤核苷酸(XMP)后再接受氨基合成鸟嘌呤核苷酸(GMP),IMP主要存在于转运核糖核酸(tRNA)中。参考资料来源:百度百科-五种核苷酸
零食里都有!食品添加物「核苷酸」是什么?
作者\食力编辑 黄毓棻 自从 *** 规定食品添加物名称须完整标示后,包装上开始出现各种陌生的添加物名,常让人们一头雾水。 其中有两种常见的添加物「5"–次黄嘌呤核苷磷酸二钠(Sodium 5"–Inosinate,通常称IMP)」与「5"–鸟嘌呤核苷磷酸二钠(Sodium 5"–Guanylate ,通常称GMP)」,名字让人看不出所以然,但其实他们并不神秘,因为你常买的高汤、泡面、洋芋片、微波食品与各种零食中,他们都有! IMP与GMP是鸟苷酸(Guanosine monophosphate)与次黄嘌呤核苷酸(Inosine monophosphate)的钠盐,这两个核苷酸在人体代谢中,都扮演了重要的角色,因此IMP与GMP对于人体来说,完全不如我们以为的那么陌生。 IMP与GMP在食品添加物法规中分类为调味剂,主要的功能是增添食品的鲜味,常被放在高汤、泡面、洋芋片、微波食品、各种零食中。 ■IMP天然存在于肉、鱼类、鱼干之中,能呈现出肉的鲜味,鲜度约为味精的40倍。 ■GMP则天然存在于香菇中,能呈现出香菇的鲜味,鲜度约为味精的160倍。使用IMP和GMP作为调味,只需要很少的量,就能让食品鲜美可口。 推荐阅读:泡面吃多会变木乃伊?破解五大泡面迷思 IMP与GMP除了本身带有的鲜味,若与味素搭配使用时,则会有加乘效应(Synergistic effect),让鲜味达到1+1>2的效果。若把原先使用味精用量的8%,改以各4%的IMP、GMP作取代,鲜味浓度可提升至7.1倍,换算下来,如果产品原本使用10kg的味精,调整配方后,只需1.3公斤的味精与各0.057kg的IMP与GMP,就能达到原本增添鲜味的效果,足足减少了86%的添加物用量。 IMP与GMP能有效降低添加物的使用量,保持着相同的调味表现,同时也节省了生产成本,这就是为什么它们成为食品包装上常见的添加物的原因。市售的高鲜味精即是利用这个原理,让烹饪者以更少的添加量制作出更美味的菜肴。 IMP与GMP在食品工业中的主要制造方法与味精相似,都是利用微生物将糖发酵之后纯化结晶制成,素食者也可以食用。 推荐阅读:看懂「食品营养标示」,计算健康远离超标人生 因为IMP与GMP提升鲜味的效果十分明显,实际上食品在制造时,只会适量的使用,过量使用可能反而会让食品的风味变差。而一般人在日常生活中所食用的量,亦不至于产生健康的疑虑。以后在食品包装上再看见「5"–次黄嘌呤核苷磷酸二钠」与「5"鸟–嘌呤核苷磷酸二钠」时,就不用再惊慌罗! 【食力foodNEXT】授权转载 原文出处【泡面、洋芋片、零嘴里都有的5"–次黄嘌呤核苷磷酸二钠、5 "–鸟嘌呤核苷磷酸二钠 它们到底是谁?】
imp是什么核苷酸?
IMP是肌苷酸,也叫次黄嘌呤单核苷酸或次黄苷酸,英文简称IMP。是一种在核糖核酸(RNA)中发现的核苷酸。这种核苷酸在生物代谢中起到重要的作用。电表上imp表示的是脉冲数,属于电能表常数。imp是脉冲的英文impulse的缩写。电表上的电表常数,记录的电能和相应的转数或脉冲数之间关系的常数。有功电表以kWh/r(imp)或r(imp)/kWh形式表示;无功电表kvarh/r(imp)或r(imp)/kvarh形式表示。两种常数互为倒数关系。特性肌苷酸做为鲜香物质,主要是因为5—肌苷酸与谷氨酸钠中间有强成正比,5—肌苷酸和谷氨酸钠以1∶5至1∶20的占比混和,能够使谷氨酸钠的鲜香提升6倍。多肽链对清甜味又提质增效功效,对腥味儿糊味苦涩味、怪味有消毒功效。对酸、苦涩味有消毒功效,其原理可能是鳌合功效的原因,即因为多肽链把金属离子从鲜香觉得位置去除,而使谷氨酸钠在味蕾神经上合理地功效。以上内容参考:百度百科-肌苷酸
次黄嘌呤核苷酸元素来源顺口溜
嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及co2等为原料合成嘌呤核苷酸的过程。 主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(imp),然后imp再转变成腺嘌呤核苷酸(amp)与鸟嘌呤核苷酸(gmp)。 嘌呤环各元素来源如下:n1由天冬氨酸提供,c2由n10-甲酰fh4提供、c8由n5,n10-甲炔fh4提供,n3、n9由谷氨酰胺提供,c4、c5、n7由甘氨酸提供,c6由co2提供。 嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。 反应过程中的关键酶包括prpp酰胺转移酶、prpp合成酶。prpp酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。imp、amp及gmp使活性形式转变成无活性形式,而prpp则相反。 从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的prpp合成酶和prpp酰胺转移酶活性可被合成产物imp、amp及gmp等抑制;在形成amp和gmp过程中,过量的amp控制amp的生成,不影响gmp的合成,过量的gmp控制gmp的生成,不影响amp的合成;imp转变成amp时需要gtp,而imp转变成gmp时需要atp。
次黄嘌呤核苷酸合成需要几个atp
体内嘌呤核苷酸的合成有下列两条途径: (1)从头合成途径:利用磷酸核糖、氨基酸、一碳单位和co等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸,此途径在肝细胞胞液中进行,反应步骤较为复杂,可分为两阶段 1)首先合成次黄嘌呤核苷酸(imp),共经历11步反应,其起始阶段的磷酸核糖焦磷酸(prpp)合成酶和prpp酰胺转移酶是两个关键酶。 2)imp再转变成腺嘌呤核苷酸(amp)和鸟嘌呤核苷酸(gmp)。 反应特点:嘌呤核苷酸是在磷酸核糖分子上逐步合成的,imp的合成需5个atp、6~p。amp或gmp的合成,再需消耗1个atp。 (2)补救合成途径:细胞利用现成的游离嘌呤碱或嘌呤核苷重新合成嘌呤核苷酸,称为补救合成途径,其反应过程较简单,合成部位是脑、骨髓,两种特异性不同的酶——腺嘌呤磷酸核糖转移酶(aprt)和次黄嘌呤-鸟嘌呤磷酸核糖转移酶(hgprt)参与嘌呤核苷酸的补救合成。
次黄嘌呤识别哪几种核苷酸
嘌呤核苷酸(AMP)和次黄嘌呤核苷酸(XMP)。次黄嘌呤(英语:Hypoxanthine)也称6-羟基嘌呤,是一种天然存在的嘌呤衍生物,它的核苷酸肌苷酸是核酸的嘌呤核苷酸的合成前体,可以识别嘌呤核苷酸(AMP)和次黄嘌呤核苷酸(XMP)。
核酸和核苷酸的区别?
核酸是由什么组成的? 核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X109个核苷酸。 单个核苷酸是由含氮有机碱(称碱基)、戊糖和磷酸三部分构成的。 碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶>(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。 嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。 此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。 戊糖:RNA中的戊糖是D-核糖,DNA中的戊糖是D-2-脱氧核糖。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。 戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。 核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。 核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。 当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。
组成病毒的遗传物质的核苷酸有几种,碱基有几种?有细胞结构的遗传物质的核苷酸有几种,碱基有几种?有什
单个核苷酸是由含氮有机碱(称碱基)、戊糖(即五碳糖)和磷酸三部分构成的。 碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶>;(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。 嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。 此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。 戊糖(五碳糖):RNA中的戊糖是D-核糖(即在2号位上连接的是一个羟基),DNA中的戊糖是D-2-脱氧核糖(即在2号位上只连一个H)。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。 戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。 核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。 核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。 当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。
核酸是生物的遗传物质,组成核酸的碱基、五碳糖、核苷酸各有几种
单个核苷酸是由含氮有机碱(称碱基)、戊糖(即五碳糖)和磷酸三部分构成的。 碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶>;(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。 嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。 此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。 戊糖(五碳糖):RNA中的戊糖是D-核糖(即在2号位上连接的是一个羟基),DNA中的戊糖是D-2-脱氧核糖(即在2号位上只连一个H)。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。 戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。 核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。 核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。 当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。
一分子核苷酸完全分解产物
核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。核酸完全水解产生嘌呤和嘧啶等碱性物质、戊糖(核糖或脱氧核糖)和磷酸的混合物。核酸部分水解则产生核酸和核苷酸。每个核苷分子含一分子碱基和一分子戊糖,一分子核苷酸部分水解后除产生核苷外,还有一分子磷酸。单个核苷酸是由含氮有机碱(称碱基)、戊糖(即五碳糖)和磷酸三部分构成的。碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶>;(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。戊糖(五碳糖):RNA中的戊糖是D-核糖(即在2号位上连接的是一个羟基),DNA中的戊糖是D-2-脱氧核糖(即在2号位上只连一个H)。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。
游离核苷酸和核苷酸的区别
核酸是由什么组成的? 核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X109个核苷酸。 单个核苷酸是由含氮有机碱(称碱基)、戊糖和磷酸三部分构成的。 碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶>(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。 嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。 此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。 戊糖:RNA中的戊糖是D-核糖,DNA中的戊糖是D-2-脱氧核糖。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。 戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。 核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。 核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。 当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。
核苷 核酸 核苷酸的区别
核酸是由什么组成的? 核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X109个核苷酸。 单个核苷酸是由含氮有机碱(称碱基)、戊糖和磷酸三部分构成的。 碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶>(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。 嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。 此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。 戊糖:RNA中的戊糖是D-核糖,DNA中的戊糖是D-2-脱氧核糖。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。 戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。 核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。 核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。 当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。
一段寡聚合糖核苷酸
三个修饰碱基分别是:ψ,m1A,cmm5 修饰碱基是指不是正常的常见的碱基,除了AGCTU之外的
核糖核苷酸TψCGm1ohm5CC,其中含有多少个修饰碱基
T是一个,ψ是一个,m1ohm5C是一个
人体含N碱基有几种核苷酸有几种
含N碱基有五种:胞嘧啶,胸腺嘧啶,鸟嘌呤,腺嘌呤,尿嘧啶核苷酸有八种:胞嘧啶核糖核苷酸 尿嘧啶核糖核苷酸 鸟嘌呤核糖核苷酸 腺嘌呤核糖核苷酸 胞嘧啶脱氧核糖核苷酸 胸腺嘧啶脱氧核糖核苷酸 鸟嘌呤脱氧核糖核苷酸 腺嘌呤脱氧核糖核苷酸没有为什么,人就是这么长的.
核苷酸有哪8种,碱基有哪几种?
脱氧核糖核苷酸A脱氧核糖核苷酸C脱氧核糖核苷酸T脱氧核糖核苷酸G核糖核苷酸A核糖核苷酸C核糖核苷酸T核糖核苷酸G碱基碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。 除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 A G C T U
稀有核苷酸主要存在于哪里
稀有核苷酸主要存在于【tRNA】稀有核苷酸主要存在于tRNA中,其量可高这5%~20%。DNA一般都不含稀有核苷酸。稀有核苷指的是核糖和脱氧核糖与稀有碱基结合成相应的核苷,有碳-碳键连结在一起的假尿嘧啶核苷(f)。是一种复杂的核苷酸。常见的核苷有:尿嘧啶核苷(尿嘧啶-1-β-D-呋喃核糖核苷)(见结构式a)、腺嘌呤核苷(腺嘌呤-9-β-D-呋喃核糖核苷)(b)、胞嘧啶核苷(胞嘧啶-1-β-D-呋喃核糖核苷)(c)、鸟嘌呤核苷(鸟嘌呤-9-β-D-呋喃核糖核苷)(d)、胸腺嘧啶核苷(胸腺嘧啶-1-β-D-2′-脱氧呋喃核糖核苷)(e)。大部分稀有碱基主要存在tRNA中,主要有假尿嘧啶核苷(ψ),各种甲基化的嘌呤和嘧啶核苷,二氢尿嘧啶(hU或D)和胸腺嘧啶(T)核苷等。它们功能不十分清楚。转运RNA(Transfer RNA),又称传送核糖核酸、转移核糖核酸,通常简称为tRNA,是一种由76-90个核苷酸所组成的RNA,其3"端可以在氨酰-tRNA合成酶催化之下,接附特定种类的氨基酸。转译的过程中,tRNA可借由自身的反密码子识别mRNA上的密码子,将该密码子对应的氨基酸转运至核糖体合成中的多肽链上。每个tRNA分子理论上只能与一种氨基酸接附,但是遗传密码有简并性(degeneracy),使得有多于一个以上的tRNA可以跟一种氨基酸接附。
稀有核苷酸主要存在于哪一类核酸中?
RNA分很多类型,如rRNA、mRNA、tRNA等,其中tRNA为含稀有碱基最多的RNA(占10%~20%)。稀有碱基包括双氢尿嘧啶(DHU)、假尿嘧啶()、甲基化的嘌呤(mG、mA)。
什么是稀有核苷酸碱基?
trna中经典碱基经过各种化学修饰所产生的不同于经典a、c、g、t、u的其他碱基,如假尿嘧啶核苷(ψ),各种甲基化的嘌呤和嘧啶核苷,二氢尿嘧啶(hu或hd)和胸腺嘧啶(ht)核苷等。对绝大多数原核细胞和真核细胞一个trna分子来说,一般有10-15个稀有碱基。这些稀有碱基的功能不十分清楚。
核苷酸有哪8种,碱基有哪几种?
脱氧核糖核苷酸C 脱氧核糖核苷酸T 脱氧核糖核苷酸G 核糖核苷酸A 核糖核苷酸C 核糖核苷酸T 核糖核苷酸G碱基碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分.DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的. 除主要碱基外,核酸中也有一些含量很少的稀有碱基.稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物.tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%.嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收.
组成DNA和RNAD的五碳糖,碱基,核苷酸和磷酸各共有几种?
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分.DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的. 除主要碱基外,核酸中也有一些含量很少的稀有碱基.稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物.tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%.嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收. DNA是由四种碱基组成的螺旋结构 DNA(脱氧核糖核酸)的结构出奇的简单.DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样.整个分子环绕自身中轴形成一个双螺旋. 在形成稳定螺旋结构的碱基对中共有4种不同碱基.根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、G(GUANINE 鸟嘌呤)、C(CYTOSINE 胞嘧啶).每种碱基分别与另一种碱基的化学性质完全互补,这样A总与T配对,G总与C配对.这四种化学"字母"沿DNA骨架排列."字母"(碱基)的一种独特顺序就构成一个"词"(基因).每个基因有几百甚至几万个碱基对. 碱基对 形成DNA、RNA单体以及编码遗传信息的化学结构.组成碱基对的碱基包括A、G、T、C、U.严格地说,碱基对是一对相互匹配的碱基(即A:T,G:C,A:U相互作用)被氢键连接起来.然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链).它还与核苷酸互换使用,尽管后者是由一个五碳 糖、磷酸和一个碱基组成
两个脱氧核苷酸结合的方式
上一分子脱氧核苷酸的第3号碳原子脱去(—OH),下一分子脱氧核苷酸的磷酸分子脱去(—H),这样脱去一分子水使两个脱氧核苷酸连在一起。
脱氧核糖核苷酸的数目怎么求
DNA为脱氧核糖核酸,单体为脱氧核糖核苷酸,每个核苷酸由1个脱氧核糖+1个磷酸分子+1个含氮碱基组成(有A,T,G,C四种),所以只要知道DNA分子中含多少个核苷酸,就可以知道有多少个上述组分。核糖核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。使用预先形成的脱氧核苷酸和一系列的脱氧核苷激酶、脱氧核苷一磷酸激酶和核苷二磷酸激酶,生成脱氧核苷三磷酸。这两个合成途径提供特定脱氧核苷酸用于DNA合成和修复的能力不同。扩展资料:在细胞分裂之前,DNA复制过程复制了遗传信息,这避免了在不同细胞世代之间的转变中遗传信息的丢失。 在真核生物中,DNA存在于细胞核内称为染色体的结构中。在没有细胞核的其它生物中,DNA要么存在于染色体中要么存在于其它组织(细菌有单环双链DNA分子,而病毒有DNA或RNA基因组)。在染色体中,染色质蛋白如组蛋白、共存蛋白和凝聚蛋白将DNA在一个有序的结构中。这些结构指导遗传密码和负责转录的蛋白质之间的相互作用,有助于控制基因的转录。两条核苷酸链沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基。DAN双螺旋是右旋螺旋。不同磷酸盐基团之间的凹槽仍然暴露在外。参考资料来源:百度百科--脱氧核糖核苷酸参考资料来源:百度百科--脱氧核糖核酸
DNA中每个脱氧核苷酸含有几个磷酸集团?
DNA中每个脱氧核苷酸在每条单链的大多数含有2个磷酸基团,但在3端位置最后一个脱氧核苷酸只含一个磷酸基团。
PCR使用三磷酸脱氧核苷做原料,为什么不用脱氧核苷酸啊
因为DNA复制的时候,是dNTP的高能磷酸键断裂,释放能量才能合成到DNA新链上去的,直接用脱氧核苷酸是合成不上去的。。。。。。
腺嘌呤 腺苷 腺苷酸 腺苷三磷酸 脱氧三磷酸腺苷 腺嘌呤脱氧核苷酸 核糖 脱氧核糖的区别?
核糖脱氧核糖都是五碳糖,两者差一个氧。腺嘌呤是碱基。腺苷是腺嘌呤和核糖组成的。腺苷三磷酸是腺苷和三个磷酸组成的。腺嘌呤脱氧核苷酸是由腺嘌呤和脱氧核糖还有磷酸组成的,三者都是一个。由名子类推就知道了。
关于核苷酸的一些问题
只有将DNA的双链解开,才能暴露出相应的碱基等形成适合的化学反应接入点,也就是模板。 根据碱基互补原理,这样RNA合成就能最大程度保持DNA的遗传信息。反复的化学反应就是为了起到新陈代谢,你的DNA如果不代谢是很容易枯萎的,人的生命总不能昙花一显吧,新陈代谢不能说是浪费。个人之见,欢迎指正
生物:三磷酸脱氧核苷酸
若供能,为什么不可以是dTMP、dCMP、dGMP、dAMP再加上ATP啊?ATP三磷酸腺苷在生物体内普遍存在但含量不高ATP三磷酸腺苷结构式:A—P—P~P(A:腺苷T:三P:磷酸基)“~”表示高能磷酸键在提供能量的过程中实际上是ATP中的~(高能磷酸键)断裂释放能量的而在~断裂后ATP就变成了ADP(二磷酸腺苷A—P—P)当出现ATP缺少的时候就由ADP(A—P“—”P)断开引号里边的硫酸键来提供能量形成AMP(A—P)如果,在ADP提供能量的时候出现能量还是不够用的话它(AMP)再断裂生成能量 在以上化学键断裂的过程中只有~(高能磷酸键)释放的能量最多当出现AMP提供能量的情况时那这个生物就离死不远了。
脱氧核苷酸三磷酸是什么
脱氧核苷酸是组成DNA的材料.而三磷酸脱氧核苷酸则组成一种叫做引物的物质.引物作用于体外进行合成DNA的技术,叫做PCR技术扩增目的基因.DNA解链后引物与其结合然后再进行DNA合成.所以引物也有多种!
双脱氧核苷酸末端终止法(dideoxynucleotide chain termination method)
【答案】:在DNA合成反应体系中,除含有正常脱氧核苷三磷酸底物外,还加入少量的双脱氧核苷三磷酸(ddNTPs)特殊底物,由于这种底物的5"-磷酸基团是正常的,能够替代相对应的脱氧核苷三磷酸而与引物延伸链的3"羟基连接,进入部分新合成链;但由于这种特殊底物不存在3"羟基末端,故下一个核苷酸底物不能通过5"-磷酸基团与之形成3",5"-磷酸二酯键,从而导致DNA新链的延伸提前终止于这一“异常”核苷酸处,而掺入的双脱氧核苷三磷酸则位于DNA延伸链的最末端。
核苷酸为什么用NTP表示 生物化学上用NTP 表示核苷酸 dNTP为脱氧核苷酸 为什么是T? 而不是M?
虽然核酸单体是含有一个磷酸,但是合成时原料是含有三个磷酸的,原因是它们是富于能量的化合物,参与合成过程同时能提供大量能量
dNTP聚合后在什么酶的作用下催化成脱氧核苷酸长链
DNA连接酶
pcr反应中为什么使用dntp而不是脱氧核苷酸
dNTP既是复制的原料,又为链延长的过程提供能量。
PCR技术中,dntp作用原理是什么?为什么不用脱氧核苷酸呢?
dNTPS作用是能在Taq酶的作用下与模版DNA进行复制,如果直接用脱氧核苷算的话是没有多余的两个磷酸基团的,都知道ATP含有高能磷酸键,dNTPs也含有高能磷酸键,这样就可以在PCR体系中提供能量。
下列关于脱氧核糖核苷酸生物合成的叙述哪一个是正确的?( )
【答案】:C脱氧核糖核苷酸生物合成还原反应多发生在核苷二磷酸水平上。脱氧核苷酸的从头合成核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。
核酸中核苷酸之间的连接方式是
核酸中核苷酸之间的连接方式是3",5"-磷酸二酯键资料拓展:核苷酸是一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物,又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,8种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。一类由嘌呤碱或嘧啶碱基、核糖或脱氧核糖以及磷酸三种物质组成的化合物,又称核甙酸。五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸(腺苷酸,AMP)、鸟嘌呤核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸,CMP)、尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌呤核苷酸(肌苷酸,IMP)等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。核苷二磷酸酯与三磷酸酯(nucleotide diphosphates and triphosphates)等通过在核苷名称后面加短语“二磷酸酯”、“三磷酸酯”等来命名。分子中二磷酸根、三磷酸根等上游离酸氢原子也须在名称中表明,通常加括号以免混淆。
几种碱基参与构成的核苷酸
.由 A 参与的有:腺嘌呤核糖核酸(A)、腺嘌呤脱氧核糖核酸(dA)由 T 参与的有:胸腺嘧啶脱氧核糖核酸(dT)由 U 参与的有:尿嘧啶核糖核酸(U)所以你的题目答案是4===================================================另外,由 G 参与的有:鸟嘌呤核糖核酸(G)、鸟嘌呤脱氧核糖核酸(dG)由 C 参与的有:胞嘧啶核糖核酸(C)、胞嘧啶脱氧核糖核酸(dC).
核苷酸补救合成途径名词解释
核苷酸的解释 核酸的基本单位。由磷酸、戊糖(核糖或脱氧核糖)和含氮碱基(嘌呤或嘧啶)组成。根据所含碱基,可分嘧啶核苷酸和嘌呤核苷酸;根据所含戊糖,可分为核糖核苷酸和脱氧核糖核苷酸。 词语分解 核的解释 核 é 果实中坚硬并包含果仁的部分: 桃核 。杏核。 像核的 东西 :核细胞。核酸。核心(中心)。结核。原子核。核子。核反应。核武器。 仔细 地对照、考察:核定。核计。核实。核算。 核查 。 翔实 正确 :其文直,其事
核苷酸是什么的基本组成单位
核苷酸是一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物,又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,8种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。一类由嘌呤碱或嘧啶碱基、核糖或脱氧核糖以及磷酸三种物质组成的化合物,又称核甙酸。五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸(腺苷酸,AMP)、鸟嘌呤核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸,CMP)。尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌呤核苷酸(肌苷酸,IMP)等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。合成:核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞核及细胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起着主要的作用。体内的能量释放及吸收主要是以产生及消耗三磷酸腺苷来体现的。此外,三磷酸尿苷、三磷酸胞苷及三磷酸鸟苷也是有些物质合成代谢中能量的来源。腺苷酸还是某些辅酶,如辅酶Ⅰ、辅酶Ⅱ及辅酶A等的组成成分。
组成酶的基本组成单位是( )A.氨基酸B.核苷酸C.葡萄糖D.A或
组成酶的基本组成单位是氨基酸或核苷酸。单纯酶分子中只有氨基酸残基组成的肽链。结合酶分子中则除了多肽链组成的蛋白质,还有非蛋白成分,如金属离子、铁卟啉或含B族维生素的小分子有机物。结合酶的蛋白质部分称为酶蛋白(apoenzyme),非蛋白质部分统称为辅助因子 (cofactor),两者一起组成全酶(holoenzyme);只有全酶才有催化活性,如果两者分开则酶活力消失。非蛋白质部分如铁卟啉或含B族维生素的化合物若与酶蛋白以共价键相连的称为辅基(prosthetic group),用透析或超滤等方法不能使它们与酶蛋白分开。反之两者以非共价键相连的称为辅酶(coenzyme),可用上述方法把两者分开。辅助因子有两大类,一类是金属离子,且常为辅基,起传递电子的作用;另一类是小分子有机化合物,主要起传递氢原子、电子或某些化学基团的作用。扩展资料根据酶所催化的反应性质的不同,将酶分成六大类:1、氧化还原酶类(oxidoreductase)促进底物进行氧化还原反应的酶类,是一类催化氧化还原反应的酶,可分为氧化酶和还原酶两类。2、转移酶类(transferases)催化底物之间进行某些基团(如乙酰基、甲基、氨基、磷酸基等)的转移或交换的酶类。例如,甲基转移酶、氨基转移酶、乙酰转移酶、转硫酶、激酶和多聚酶等。3、水解酶类(hydrolases )催化底物发生水解反应的酶类。例如,淀粉酶、蛋白酶、脂肪酶、磷酸酶、糖苷酶等。4、裂合酶类(lyases)催化从底物(非水解)移去一个基团并留下双键的反应或其逆反应的酶类。例如,脱水酶、脱羧酶、碳酸酐酶、醛缩酶、柠檬酸合酶等。许多裂合酶催化逆反应,使两底物间形成新化学键并消除一个底物的双键。合酶便属于此类。5、异构酶类(isomerases)催化各种同分异构体、几何异构体或光学异构体之间相互转化的酶类。例如,异构酶、表构酶、消旋酶等。6、合成酶类(ligase)催化两分子底物合成为一分子化合物,同时偶联有ATP的磷酸键断裂释能的酶类。例如,谷氨酰胺合成酶、DNA连接酶、氨基酸:tRNA连接酶以及依赖生物素的羧化酶等。参考资料来源:百度百科-酶
嘌呤食物的嘌呤核苷酸的合成代谢:
体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。 1.嘌呤核苷酸的从头合成 肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。 2.嘌呤核苷酸的补救合成 反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。 3.嘌呤核苷酸的相互转变 IMP可以转变成AMP和GMP,AMP和GMP也可转变成IMP。AMP和GMP之间可相互转变。 4.脱氧核苷酸的生成 体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。 5.嘌呤核苷酸的抗代谢物 ①嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP应用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。 ②氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用,从而抑制嘌呤核苷酸的合成。 ③叶酸类似物:氨喋呤及甲氨喋呤(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌呤核苷酸的合成。
生物化学笔记——第二篇四章核苷酸代谢
第四章 核苷酸代谢 一、嘌呤核苷酸代谢 1、合成原料 CO2 甘氨酸 C6 N7 天冬氨酸 N1 C5 甲酰基(一碳单位) C2 C4 C8 甲酰基(一碳单位) N3 N9 谷氨酰胺 2、合成过程 1)从头合成: 5-磷酸核糖 PRPP合成酶 磷酸核糖焦磷酸 PRPP酰胺转移酶 5-磷酸核糖胺 ATP AMP (PRPP) ATP AMP 次黄嘌呤核苷酸 (IMP) GTP GMP 黄嘌呤核苷酸 (XMP) 嘌呤核苷酸是在磷酸核糖分子上逐步合成的,而不是首先单独合成嘌呤碱然后再与磷酸核糖结合而成的。 2) 补救合成: 利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸。生理意义为:一方面在于可以节省从头合成时能量和一些氨基酸的消耗;另一方面,体内某些组织器官,如脑、骨髓等由于缺乏从头合成的酶体系,只能进行补救合成。 3、 脱氧核苷酸的生成 脱氧核苷酸的生成是在二磷酸核苷水平上,由核糖核苷酸还原酶催化,核糖核苷酸C2上的羟基被氢取代生成。 4、 分解产物 AMP 次黄嘌呤 黄嘌呤氧化酶 黄嘌呤 黄嘌呤氧化酶 尿酸 GMP 鸟嘌呤 人体内嘌呤碱最终分解生成尿酸,随尿排出体外。 痛风症患者血中尿酸含量升高。临床上常用别嘌呤醇治疗痛风症,这是因为别嘌呤醇与 次黄嘌呤结构类似,可抑制黄嘌呤氧化酶,从而抑制尿酸的生成。 5、 抗代谢物
脱氧核苷酸在生物体内有了原料后直接可以形成吗?
核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。 脱氧核苷酸生物合成的补救途径脱氧核苷一磷酸激酶和核苷二磷酸激酶,生成脱氧核苷三磷酸。 这两个合成途径提供特定脱氧核苷酸用于DNA合成和修复的能力不同。
核苷酸的嘌呤核苷酸
体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。⒈嘌呤核苷酸的从头合成肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。⒉嘌呤核苷酸的补救合成反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。⒊嘌呤核苷酸的相互转变IMP可以转变成AMP和GMP,AMP和GMP也可转变成IMP。AMP和GMP之间可相互转变。⒋脱氧核苷酸的生成体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。⒌嘌呤核苷酸的抗代谢物①嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP应用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。②氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用,从而抑制嘌呤核苷酸的合成。③叶酸类似物:氨喋呤及甲氨喋呤(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌呤核苷酸的合成。 分解代谢反应基本过程是核苷酸在核苷酸酶的作用下水解成核苷,进而在酶作用下成自由的碱基及1-磷酸核糖。嘌呤碱最终分解成尿酸,随尿排出体外。黄嘌呤氧化酶是分解代谢中重要的酶。嘌呤核苷酸分解代谢主要在肝、小肠及肾中进行。嘌呤代谢异常:尿酸过多引起痛风症,患者血中尿酸含量升高,尿酸盐晶体可沉积于关节、软组织、软骨及肾等处,导致关节炎、尿路结石及肾疾病。临床上常用别嘌呤醇治疗痛风症。⒈从头合成途径(de novo synthesis):体内嘌呤核苷酸的合成代谢中,利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸称为从头合成途径。⒉补救合成途径(salvage pathway):利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成途径。⒊自毁容貌症:又称(Lesch-Nyhan综合症),是由于某些基因缺乏而导致HGPRT完全缺失的患儿,表现为自毁容貌症。
生物体内脱氧核糖核苷酸是怎样合成的
脱氧核糖核苷酸是通过相应核糖核苷酸还原,以H取代其核糖分子中C2上的羟基而生成,而非从脱氧核糖从头合成。此还原作用是在二磷酸核苷酸(NDP)水平上进行的。
脱氧核糖核苷酸的数目怎么求
DNA为脱氧核糖核酸,单体为脱氧核糖核苷酸,每个核苷酸由1个脱氧核糖+1个磷酸分子+1个含氮碱基组成(有A,T,G,C四种),所以只要知道DNA分子中含多少个核苷酸,就可以知道有多少个上述组分。核糖核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。使用预先形成的脱氧核苷酸和一系列的脱氧核苷激酶、脱氧核苷一磷酸激酶和核苷二磷酸激酶,生成脱氧核苷三磷酸。这两个合成途径提供特定脱氧核苷酸用于DNA合成和修复的能力不同。扩展资料:在细胞分裂之前,DNA复制过程复制了遗传信息,这避免了在不同细胞世代之间的转变中遗传信息的丢失。 在真核生物中,DNA存在于细胞核内称为染色体的结构中。在没有细胞核的其它生物中,DNA要么存在于染色体中要么存在于其它组织(细菌有单环双链DNA分子,而病毒有DNA或RNA基因组)。在染色体中,染色质蛋白如组蛋白、共存蛋白和凝聚蛋白将DNA在一个有序的结构中。这些结构指导遗传密码和负责转录的蛋白质之间的相互作用,有助于控制基因的转录。两条核苷酸链沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基。DAN双螺旋是右旋螺旋。不同磷酸盐基团之间的凹槽仍然暴露在外。参考资料来源:百度百科--脱氧核糖核苷酸参考资料来源:百度百科--脱氧核糖核酸
什么是核糖核苷酸还原酶?名词解释定义是什么?
核糖核苷酸还原酶可以被什么抑制核糖核苷酸是由一分子磷酸,一分子核糖以及一分子含N碱基构成的,核苷酸就是由一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。核糖就是在核苷酸里面的五碳糖。核糖核苷酸和核苷酸水解都可以得到核糖。核苷酸包括核糖核苷酸(rna)和脱氧核糖核酸(dna)两种,RNA主要分布细胞质中,DNA主要分布在细胞核中。还有叶绿体和线粒体中也有少量DNA和RNA分布
DNA合成时生物体如何提供合适比例的脱氧核糖核苷酸
简要的说就是ATP,GTP,CTP,TTP和ADP,CDP,TDP,GDP量此消彼长之间的相互促进和阻遏。一种NTP的积累量多了就会反馈抑制酶的合成并促进其他的合成。一种NTP的不足会促进酶使其合成增加。当某种NDP积累多了会促进酶合成NTP。
脱氧核苷酸能抗衰吗?
脱氧核苷酸(deoxynucleotide)是脱氧核糖核酸(Deoxyribonucleic acid,简称DNA)的基本单位 [1] ,是一类由嘌呤或嘧啶碱基 、脱氧核糖以及磷酸三种物质组成的小分子化合物 ,是构成生物体遗传物质DNA的物质基础 。决定生物的多样性的就是脱氧核苷酸中四种碱基腺嘌呤 (adenine,缩写为A)、胸腺嘧啶(thymine,缩写为T)、胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)排列顺序的不同。 [2] 四种碱基沿着DNA长链排列在内侧,其排列顺序储存着遗传信息。 功能编辑脱氧核苷酸为白细胞、血小板、 T 淋巴细胞及 NK细胞的增殖提供脱氧核苷酸原料,刺激上述细胞的增殖及分化成熟,促进骨髓释放白细胞,提高白细胞水平,减少重度骨髓抑制发生率,提高免疫功能,减少感染的发生。另外脱氧核苷酸通过补充机体肝脏、肌肉等全身的脱氧核苷酸,防止CSF过度动员骨髓造成的脱氧核苷酸转移到骨髓而引起的全身性的脱氧核苷酸原料缺乏,从而降低CSF所致的血液系统不良反应及肝脏功能不良反应。 [3] 脱氧核苷酸具有促进细胞成长,增强细胞活力的功能,以及改变机体代谢的作用。 [4] 脱氧核苷三磷酸还是PCR技术的物质基础 。 [2] 脱氧核苷酸的合成编辑二磷酸脱氧核糖核苷的生成在二磷酸核苷(NDP,N代表A、G、U、C、T等碱基)水平上直接还原,即以氢取代其核糖分子中C-2的羟基而成的,催化此反应的酶是核糖核苷酸还原酶(ribonucleotide re-ductase,RR)。 [5] 脱氧胸腺嘧啶核苷酸的合成首先,dUDP转换为dUMP,有几条途径:一条是在核苷单磷酸激酶催化下,dUDP与ADP反应生成dUMP和ATP;另一条途径是dUDP先形成dUTP,然后水解生成dUMP和PPi。dCMP经脱氨也可以形成dUMP。然后,dTMP是由dUMP的C-5甲基化而形成的。催化此反应的酶是胸腺嘧啶核苷酸合酶( thymidylate synthase)。DNA合成的底物为4种dNTP,一磷酸或二磷酸脱氧核苷可由激酶的催化和ATP供能而形成三磷酸脱氧核苷。
脱氧核苷酸的合成过程
生物体内的脱氧核苷酸的合成一般通过还原反应,这种还原反应多发生在核苷二磷酸的水平上,在核糖核苷酸还原酶,也称核苷二磷酸的作用下,核糖核苷二磷酸课转变为相应的脱氧核糖核苷二磷酸
下列关于脱氧核糖核苷酸生物合成的叙述哪一个是正确的?( )
【答案】:C脱氧核糖核苷酸生物合成还原反应多发生在核苷二磷酸水平上。脱氧核苷酸的从头合成核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。
脱氧核糖核苷酸简介
目录 1 拼音 2 英文参考 3 注解 1 拼音 tuō yǎng hé táng hé gān suān 2 英文参考 deoxyribonucleotide 3 注解 脱氧核糖核苷酸是指戊糖部分由2′脱氧核糖组成的核苷酸的总称分别对应于腺嘌呤,鸟便嘌呤,胸腺嘧啶和尿嘧啶等堿基的各种脱氧核糖核苷酸,是合成 DNA的前体物质。在非增殖中的细胞内核苷酸的浓度一般较低,但在增殖细胞内的浓度明显地增高。主要由核苷酸还原酶的作用由核苷酸生成。在增殖细胞内,经补救途径由脱氧核苷的磷酸化合成。
【核苷酸代谢】 核苷酸代谢的途径
核苷酸代谢 一、名词解释 1.核苷酸的从头合成(de novo synthsis) 2.核苷酸的补救合成 3.核苷酸的抗代谢物 4.核苷酸合成的反馈调节(Feed-back regulation of nucleotide synthesis) 二、填空题 1.嘌呤核苷酸从头合成的原料有磷酸核糖、________、CO2、Gln、Asp和Gly。 2.PRPP是嘌呤核苷酸从头合成、嘧啶核苷酸的从头合成和_________________的重要中间代 谢物。 3.对嘌呤核苷酸生物合成产生反馈抑制作用的有GMP、______和IMP。 4.HGPRT除受GMP反馈抑制外,还受______核苷酸的反馈抑制。 5.氨甲蝶呤可用于治疗白血病的原因是___________________________________。 6.在NDP→dNDP的反应过程中,需要硫氧化还原蛋白还原酶,该酶的辐酶是______。 7.嘧啶从头合成途径首先合成的核苷酸为__________。 8.作为嘧啶合成过程的第一个多功能酶,u2022它除了具有氨基甲酰磷酸合成酶和天冬氨酸氨基 甲酰转移酶外,还有__________________功能。 9.当IMP→AMP时,Asp的碳链可直接转变为___________。 10.当IMP→GMP时,嘌呤环上的C2所连接的侧链NH2来源于__________。 11.嘌呤核苷酸合成和嘧啶核苷酸合成共同需要的物质是___________。 12.嘌呤环中第4位和第5位碳原子来自__________。 13.5-FU的抗癌作用机理为抑制_________________________酶的合成,因而抑制了DNA的生 物合成。 14.核苷酸抗代谢物中,常用嘌呤类似物是__________;常用嘧啶类似物是__________。 15.嘌呤核苷酸从头合成的调节酶是__________和__________。 16.在嘌呤核苷酸补救合成中HGPRT催化合成的核苷酸是__________和__________。 17.核苷酸抗代谢物中,叶酸类似物竞争性抑制__________酶,从而抑制了__________的生 成。 18.别嘌呤醇是__________的类似物,通过抑制__________酶,减少尿酸的生成。 19.由dUMP生成TMP时,其甲基来源于__________,催化脱氧胸苷转变成dTMP的酶是 __________,此酶在肿瘤组织中活性增强。 20.体内常见的两种环核苷酸是__________和__________。 21.核苷酸合成代谢调节的主要方式是__________,其生理意义是__________。 22.体内脱氧核苷酸是由__________直接还原而生成,催化此反应的酶是__________酶。 23.氨基蝶呤(MTX)干扰核苷酸合成是因为其结构与__________相似,并抑制__________ 酶,进而影响一碳单位代谢。 24.用于嘧啶核苷酸合成的氨基甲酰磷酸在细胞的__________中合成,而用于尿素合成的氨 基甲酰磷酸是在细胞的__________中合成。 25.痛风症患者血液中__________含量升高,可用__________药物来缓解。 三、选择题 A型 1.细胞内含量最多的核苷酸是______。 A.3"-CTP B.5"-UTP C.5"-ATP D.3"-ATP E.3"-dTTP 2.嘌呤核苷酸从头合成途径首先合成的是______。 A.XMP B.IMP C.GMP D.AMP E.CMP 3.下列关于嘌呤核苷酸从头合成的叙述中______是正确的。 A.嘌呤环上氮原子均来自氨基酸的α-氨基 B.合成中不会产生自由嘌呤碱 C.氨基甲酰磷酸为嘌呤环的形成提供氨甲酰基 D.在由IMP合成AMP和GMP时均用ATP供能 E.次黄嘌呤鸟嘌呤磷酸核糖转移酶催化IMP转变为GMP 4.嘌呤环中的N来源于______。 A.Ala B. Asp C.Gln D.Glu E.Gly 5.IMP转变为GMP的过程中,经历了______。 A.氧化反应 B.还原反应 C.脱水反应 D.硫化反应 E.生物转化 6.嘌呤核苷酸合成的特点是______。 A.先合成嘌呤碱,再与磷酸核糖结合 B.先合成嘌呤碱,再与氨基甲酰磷酸结合 C.在磷酸核糖焦磷酸的基础上逐步合成嘌呤核苷酸 D.在氨基甲酰磷酸基础逐步合成嘌呤核苷酸 E.不消耗能量 7.人体内嘌呤核苷酸分解代谢的主要终产物为______。 A.尿素 B.尿酸 C.肌酐 D.尿苷酸 E.肌酸 8.嘧啶环中的两个氮原子来自______。 A.谷氨酰胺和氨 B.谷氨酰胺和天冬酰胺 C.谷氨酰胺和谷氨酸 D.谷氨酸和氨甲酰磷酸 E.天冬氨酸和氨甲酰磷酸 9.dTMP合成的直接前体是______。 A.dUMP B.TMP C.TDP D.dUDP E.dCMP 10.嘧啶核苷酸生物合成途径的反馈抑制是由于控制了下列______酶的活性。 A.二氢乳清酸酶 B.乳清酸焦磷酸化酶 C.二氢乳清酸脱氢酶 D.天冬氨酸转氨甲酰酶 E.羟甲基胞苷酸合成酶 11.AMP在体内分解时,首先形成的核苷酸是______。 A.IMP B.XMP C.GMP D.CMP E.CTP 12.AMP与GMP在细胞内分解时,均首先转化成______。 A.黄嘌呤 B.次黄嘌呤 C.次黄嘌呤核苷酸 D.黄嘌呤核苷酸 E.黄嘌呤核苷 13.下列各项是嘧啶核苷酸从头合成途径的特点,嘌呤核苷酸从头合成途径与其在______u2022项 相同。 A.首先形成碱基,然后与PRPP结合 B.酶系位于胞浆和线粒体内 C.合成过程不消耗高能磷酸键 D.元素来源于Asp、CO2和Gln E.均需一碳单位 14.痛风症是因为血中某种物质在关节、软组织处沉淀,其成分为______。 A.尿酸 B.尿素 C.胆固醇 D.黄嘌呤 E.次黄嘌呤 15.哺乳动物体内直接催化尿酸生成的酶是______。 A.鸟嘌呤脱氨酶 B.尿酸氧化酶 C.黄嘌呤氧化酶 D.腺苷脱氨酶 E.鸟苷酸还原酶 16.氮杂丝氨酸能以竞争性抑制作用干扰或阻断核苷酸合成,因为它在结构上与______类似。 A.丝氨酸 B.甘氨酸 C.天冬氨酸 D.谷氨酰胺 E.天冬酰胺 17.在嘧啶核苷酸合成中,合成氨基甲酰磷酸的部位是______。 A.线粒体 B.微粒体 C.胞质 D.溶酶体 E.细胞核 18.脱氧核糖核苷酸生成方式主要是______。 7 A.直接由核糖还原 B.由核苷还原 C.由核苷酸还原 D.由二磷酸核苷还原 E.由三磷酸核苷还原 19.嘧啶环的第2位元素来自于______。 A.CO2 B.Gln C.Asp D.Ala E.Gly 20.嘧啶核苷酸合成特点是______。 A.在5-磷酸核糖上合成碱基 B.由FH4提供一碳单位 C.先合成氨基甲酰磷酸 D.甘氨酸完整地掺入分子中 E.谷氨酸是氮原子供体 21.5-FU是下列______的结构类似物。 A.U B.A C.G D.C E.T 22.嘧啶核苷酸补救合成途径的主要酶是______。 A.尿苷激酶 B.嘧啶磷酸核糖转移酶 C.胸苷激酶 D.胞苷激酶 E.氨基甲酰磷酸合成酶 23.体内嘧啶核苷酸合成的原料是______加上氨基甲酰磷酸和PRPP A.甘氨酸 B.谷氨酸 C.谷氨酰胺 D.天冬氨酸 E.精氨酸 24.嘌呤碱合成的限速步骤是合成下列______。 A. PRA B. AIR C. GAR D. IMP E. GMP 25.Lesch-Nyhan综合症是因为体内缺乏______。 A.核糖核苷酸还原酶 B.APRT C.HGPRT D.腺苷激酶 E.硫氧化还原蛋白还原酶 26.氨甲蝶呤在细胞内不能抑制______。 A.核分裂 B.蛋白质合成 C.核酸合成 D.嘌呤碱合成 E.四氢叶酸合成 27.下列______过程中没有延胡索酸的合成。 A.尿素合成 B.腺嘌呤核苷酸合成 C.嘌呤核苷酸循环 D.嘧啶合成 E.三羧酸循环 28.体内嘧啶的分解代谢产物中有______。 A. CO2 B. 尿酸 C. Gly D. ATP E. O2 29.核苷酸有多种功能,但下列______不是它的功能。 A.核酸的组成成分 B.生理性调节物 C.化学能源 D.膜结构成分 E.辅酶的结构成分 30.下列______组织主要以补救途径合成嘌呤核苷酸。 A.骨髓细胞 B.肝脏 C.肾 D.心肌 E.骨骼肌 31.黄嘌呤氧化酶催化反应的产物及底物中不包括有______。 A.尿酸 B.黄嘌呤核苷酸 C.黄嘌呤 D.次黄嘌呤 E.H2O2 32.下列______代谢途径是嘧啶生物合成特有的。 A.碱基是连在5"-磷酸核糖上合成 B.一碳单位由叶酸衍生物提供 C.氨甲酰磷酸提供一个氨甲酰基 D.甘氨酸完整地掺入分子中 E.谷氨酰胺是氮原子的供体 33.下列关于嘧啶核苷酸合成的叙述中______是正确的。 A.游离的氨是氨甲酰磷酸合成酶的底物 B.利用线粒体的氨基甲酰磷酸合成酶 C.二氢乳清酸脱氢酶是限速酶 D.CMP是其它嘧啶核苷酸的前体物 E.嘧啶环中的一个碳原子来自CO2 34.下列哪种物质的合成需要谷氨酰胺分子上的酰胺基? A.TMP上的两个氮原子 B.嘌呤环上的两个氮原子 C.UMP上的两个氮原子 D.嘧啶环上的两个氮原子 E.腺嘌呤上的氨基 35.嘌呤的从头合成途径不消耗______。 A.PRPP B.Gly C.CO2 D.氨基甲酰磷酸 E.一碳单位 36.下列关于嘌呤核苷酸从头合成的叙述哪项是正确的? A.嘌呤环的氮原子均来自氨基酸的α氨基 B.合成过程中不会产生自由嘌呤碱 C.氨基甲酸磷酸为嘌呤环提供氨甲酰基 D.由IMP合成ANP和GMP均由ATP供能 E.次黄嘌呤鸟嘌呤磷酸核糖转移酶催化IMP转变成GMP 37.体内进行嘌呤核苷酸从头合成最主要的组织是 A.胸腺 B.小肠粘膜 C.肝 D.脾 E.骨髓 38. 胸腺嘧啶的甲基来自 A.NCHO FH4 B.N,N= CH- FH4 C.N,N= CH2- FH4 D.N-CH3- FH4 E.N-CH=NH FH4 39.最直接联系核苷酸合成与糖代谢的物质是 A.葡萄糖 B.6-磷酸葡萄糖 C.1-磷酸葡萄糖 D.l,6-二磷酸葡萄糖 E.5-磷酸核糖 40.HGPRT(次黄嘌呤鸟嘌呤磷酸核糖转移酶)参与下列哪种反应? A.嘌呤核苷酸从头合成 B.嘧啶核苷酸从头合成 C.嘌呤核苷酸补救合成 D.嘧啶核苷酸补救合成 E.嘌呤核苷酸分解代谢 41.6-巯基嘌呤核苷酸不抑制 A.IMP→AMP B.IMP→GMP C.PRPP酰胺转移酶 D.嘌呤磷酸核糖转移酶 E.嘧啶磷酸核糖转移酶 42.下列哪种物质不是嘌呤核苷酸从头合成的直接原料 A.甘氨酸 B.天冬氨酸 C.谷氨酸 D.CO2 E.一碳单位 43.嘧啶核苷酸合成中,生成氨基甲酸磷酸的部位是 A.线粒体 B.微粒体 C.胞浆 D.溶酶体 E.细胞核 44.下列哪种化合物对嘌呤核苷酸的生物合成不产生直接反馈抑制作用 A.TMP B.IMP C.AMP D.GMP E.ADP 45.催化dUMP转变为dTMP的酶是 A.核苷酸还原酶 B.胸苷酸合成酶 C.核苷酸激酶 D.甲基转移酶 E.脱氧胸苷激酶 46.下列化合物中作为合成IMP和UMP的共同原料是 A.天冬酰胺 B.磷酸核糖 C.甘氨酸 D.甲硫氨酸 E.一碳单位 47.能在体内分解产生β氨基异丁酸的核苷酸是 A.CMP B.AMP C.IMP D.UMP E.IMP 48.阿糖胞苷作为抗肿瘤药物的机理是通过抑制下列哪种酶而干扰核苷酸代谢? A.二氢叶酸还原酶 B.核糖核苷酸还原酶 C.二氢乳清酸脱氢酶胸苷酸合成酶 D.胸苷酸合成酶 E.氨基甲酸基转移酶 49关于天冬氨酸氨基甲酰基转移酶的下列说法,哪一种是错误的? A.CTP是其反馈抑制剂 B.是嘧啶核苷酸从头合成的调节酶 C.由多个亚基组成 D.是变构酶 E.服从米一曼氏方程 50.PRPP酰胺转移酶活性过高可以导致痛风症,此酶催化 A.从R-5-P生成PRPP B.从甘氨酸合成嘧啶环 C.从PRPP生成磷酸核糖胺 510-5105105 D.从IMP合成AMP E.从IMP生成GMP B型 A.PRPP B.IMP C.XMP D. cGMP E.AMP 1.黄嘌呤核苷酸的缩写符号 2.次黄嘌呤核苷酸的缩写符号 3.l"焦磷酸5"磷酸核糖的缩写符号 A.参与DNA合成的原料 B.参与RNA合成原料 + C.参与辅酶NAD的组成 D.参与供给能量 E.参与细胞信息传递 4.cGMP 5.dGTP 6. AMP A. 参与嘌呤核苷酸从头合成 B.参与嘌呤核苷酸补救会成 C.参与嘧啶核苷酸从头合成 D.参与嘌呤核苷酸分解 E.参与嘧啶核苷酸分解 7.一碳单位 8.HGPRT 9.黄嘌呤氧化酶 A. 抑制嘌呤核苷酸从头合成 B.抑制 NDP→dNDP C.抑制UMP→UDP D.抑制尿酸生成 E.抑制嘧啶核苷酸分解 10.氮杂丝氨酸 11.6-MP 12.MTX 13.别嘌呤醇 A.抑制PRPP酰胺转移酶 B.抑制氨基甲酰磷酸合成酶H C.抑制核苷酸还原酶 D.促进PRPP合成酶 E.抑制黄嘌呤氧化酶 14.UMP 15.IMP 16.5一磷酸核糖 A.痛风症 B.苯酮酸尿症 C.乳清酸尿症 D.Lesch-Nyhan综合征 E.白化病 17.嘌呤核苷酸分解加强 18.HGPRT缺陷 19.嘧啶核苷酸合成障碍 A.AMP类似物 B.嘧啶类似物 C.叶酸类似物 D.谷氨酰胺类似物 E.次黄嘌呤类似物 20.5-Fu 21.MTX 22.别嘌呤醇 X型 A. 嘌呤核苷酸从头合成的原料包括 A.磷酸核糖 B.CO2 C.一碳单位 D.谷氨酸胺和天冬氨酸 B. PRPP参与的代谢途径有 A.核苷酸的从头合成 B.嘌呤核苷酸的从头合成 C.嘌呤核苷酸的补救会成 D.NMP→NDP→NTP C. 对嘌呤核苷酸合成产生反馈抑制作用的化合物有 A.IMP B.AMP C.GMP D.尿酸 D. 尿酸是下列哪些化合物分解的终产物 a) AMP B.UMP C.IMP D.TMP 5.下列关于由核糖核苷酸还原成脱氧核糖核苷酸的叙述,哪些是正确的 A.4种核苷酸都涉及到相同的还原酶体系 B.多发生在二磷酸核苷水平上 C.还原酶系包括氧化还原蛋白和硫氧化 D.与 NADPH+ H有关 6.嘧啶核苷酸合成反馈抑制的酶是 A.氨基甲酸磷酸合成酶Ⅱ B.二氢乳清酸酶 C.天冬氨酸氨基甲酰转移酶 D.乳清酸核苷酸脱羧酶 7.叶酸类似物抑制的反应有A.嘌呤核苷酸的从头合成 B.嘌呤核苷酸的补救合成 C.胸腺嘧啶核苷酸的生成 D.嘌呤核苷酸的补救合成 8.嘧啶核苷酸分解代谢产物有 A.NH3 B.尿酸 C.CO2 D.β氨基酸 + 四、问答题 1.讨论核苷酸在体内的主要生理功能。 2.讨论PRPP(磷酸核糖焦磷酸)在核苷酸代谢中的重要性。 3.试从合成原料、合成程序、反馈调节等方面比较嘌呤核苷酸与嘧啶核苷酸从头合成的异 同点。 4.试讨论各类核苷酸抗代谢物的作用原理及其临床应用。 参考答案 一、名词解释 1.核苷酸的从头合成: 机体利用磷酸核糖、氨基酸、一碳单位及CO2等简单物资为原料,经 过一系列酶促反应,合成核苷酸的反应过程。这是体内大部分组织器官合成核苷酸的主要方 式。 2.核苷酸的补救合成: 机体利用体内游离的碱基或核苷,经过简单的反应过程,合成出相应 的核苷酸。这是脑、骨髓等组织器官合成核苷酸的方式。 3.指某些嘌呤、嘧啶、叶酸以及某些氨基酸类似物具有通过竞争性抑制或以假乱真等方式 干扰或阻断核苷酸的正常合成代谢,从而进一步抑制核酸、蛋白质合成以及细胞增殖的作用, 即为核苷酸合成的抗代谢物。 4.Feed-back regulation of nucleotide synthesis核苷酸合成的反馈调节指核苷酸合成 过程中,反应产物对反应过程中某些调节酶的抑制作用,反馈调节一方面使核苷酸合成能适 应机体的需要,同时又不会合成过多,以节省营养物质及能量的消耗。 二、填空题 1. 一碳单位 2.嘌呤核苷酸的补救合成途径 3.CMP 4.IMP 5.直接抑制二氢叶酸还原酶 6.FAD 7.UMP 8.二氢乳氢酸酶 9.延胡索酸 10.谷氨酰胺 11.谷氨酰胺 12.Gly 13.胸腺嘧啶核苷酸合成酶 14.6-巯基嘌呤 5-氟尿嘧啶 15.PRPP合成酶 PRPP酰胺转移酶 16.IMP GMP 17.二氢叶酸还原酶 四氢叶酸 18.黄嘌呤 黄嘌呤氧化酶 19.N,N-甲烯四氢叶酸 胸苷激酶 20.cAMP cGMP 21.反馈调节 既满足对核苷酸的需要,又避免营养物质及能量的浪费 22.核糖核苷酸 核糖核苷酸还原酶 24.叶酸 二氢叶酸还原酶 25.胞浆 线粒体 26.尿酸 别嘌呤醇 510 三、选择题 A型 1.C 2.B 3.B 4.E 5.A 6.C 7.B 8.E 9.A 10.D 11.A 12.C 13.D 14.A 15.C 16.D 17.C 18.D 19.A 20.C 21.E 22.B 23.D 24.A 25.C 26.B 27.D 28.A 29.D 30.A 31.B 32.C 33.E 34.B 35.D 36.B 37.C 38.C 39.E 40.C 41.E 42.C 43.C 44.A 45.B 46.B 47.C 48.B 49.E 50.C B型 1.C 2.B 3.A 4.E 5.A 6.E 7.A 8.B 9.D 10.A 11.A 12.A 13.D 14.B 15.A 16.D 17.A 18.D 19.C 20.B 21.C 22.E X型 1.ABCD 2.ABC 3.ABC 4.AC 5.ABCD 6.AC 7.AC 8.ACD 四、问答题 1.核苷酸具有多种生物学功用,表现在(1)作为核酸DNA和RNA合成的基本原料;(2)体 内的主要能源物质,如 ATP、 GTP等;(3)参与代谢和生理性调节作用,如 cAMP是细胞内 第二信号分子,参与细胞内信息传递;(4)作为许多辅酶的组成部分,如腺苷酸是构成辅酶 I、辅酶Ⅱ、FAD、辅酶A等的重要部分;(5)活化中间代谢物的载体,如UDP-葡萄糖是合 成糖原等的活性原料,CDP-二酰基甘油是合成磷脂的活性原料,PAPS是活性硫酸的形式, SAM是活性甲基的载体等。2.PRPP(磷酸核糖焦磷酸)在嘌呤核苷酸、嘧啶核苷酸从头合 成与补救合成过程中都是不可缺少的成分,表现在:1.核苷酸补救合成中,PRPP与游离碱 基直接生成各种一磷酸核苷;2.嘌呤核苷酸从头合成过程中,PRPP作为起始原料与谷氨酰 胺生成PRA,然后逐步合成各种嘌呤核苷酸;3.嘧啶核苷酸从头合成过程中,PRPP参与乳 清酸核苷酸的生成,再逐渐合成尿嘧啶一磷酸核苷等。 3.嘌呤核苷酸与嘧啶核苷酸从头合成过程中在原料、合成程序及反馈调节等方面的异同点 如下表所示: 嘌呤核苷酸 嘧啶核苷酸 原料 天冬氨酸、谷氨酰胺、甘氨酸、CO2、一碳单 天冬氨酸、谷氨酰胺、CO2、PRPP、 一碳单位 位、PRPP (仅胸苷酸合成) 程序 在磷酸核糖分子上逐步合成嘌呤环,从而形 首先合成嘧啶环,再与磷酸核糖 结合形成核 成嘌呤核苷酸 苷酸 反馈调节 嘌呤核苷酸产物反馈抑制PRPP合成酶、酰胺 嘧啶核苷酸产物反馈抑制PRPP 合成酶、氨基 转移酶等起始反应的酶 甲酰磷酸合成酶、天冬氨酸氢 基甲酰转移酶 等起始反应的酶 4.5-氟尿嘧啶、6-巯基嘌呤、氨基喋呤和氨甲喋呤、氮杂丝氨酸等核苷酸抗代谢物均可 作为临床抗肿瘤药物,其各自机理如下表所示: 抗肿瘤药物 5-氟尿嘧啶 6-巯基嘌呤 氨基喋呤和氨甲喋呤 氮杂丝 氨酸 核苷酸代谢 胸腺嘧啶 次黄嘌呤 叶酸 谷 氨酰胺 中类似物 作用机理 抑制胸酰嘧啶核苷 抑制IMP转变为AMP和 抑制二氢叶酸还原酶 干扰嘌 呤、嘧啶核苷 酸合成酶 GMP 合成 的反应;抑制IMP 和GMP的补救合成 酸的