欧拉线有什么性质?
三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。
欧拉线超过三种证法
欧拉线 三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 莱昂哈德·欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。他证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。 欧拉线的证明: 作△ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点G" ∵ BD是直径 ∴ ∠BAD、∠BCD是直角 ∴ AD⊥AB,DC⊥BC ∵ CH⊥AB,AH⊥BC ∴ DA‖CH,DC‖AH ∴ 四边形ADCH是平行四边形 ∴ AH=DC ∵ M是BC的中点,O是BD的中点 ∴ OM= 1/2DC ∴ OM= 1/2AH ∵ OM‖AH ∴ △OMG" ∽△HAG" ∴AG/GM=2/1 ∴ G"是△ABC的重心 ∴ G与G"重合 ∴ O、G、H三点在同一条直线上 如果使用向量,证明过程可以极大的简化,运用向量中的坐标法,分别求出O G H三点的坐标即可. 欧拉线的另证: 设H,G,O,分别为△ABC的垂心、重心、外心。连接AG并延长交BC于D, 则可知D为BC中点。 连接OD ,又因为O为外心,所以OD⊥BC。连接AH并延长交BC于E,因H为垂心,所以 AE⊥BC。所以OD//AE,有∠ODA=∠EAD。由于G为重心,则GA:GD=2:1。 连接CG并延长交BA于F,则可知D为BC中点。同理,OF//CM.所以有∠OFC=∠MCF 连接FD,有FD平行AC,且有DF:AC=1:2。FD平行AC,所以∠DFC=∠FCA,∠FDA=∠CAD,又∠OFC=∠MCF,∠ODA=∠EAD,相减可得∠OFD=∠HCA,∠ODF=∠EAC,所以有△OFD∽△HCA,所以OD:HA=DF:AC=1:2;又GA:GD=2:1所以OD:HA=GA:GD=2:1 又∠ODA=∠EAD,所以△OGD∽△HGA。所以∠OGD=∠AGH,又连接AG并延长,所以∠AGH+∠DGH=180°,所以∠OGD+∠DGH=180°。即O、G、H三点共线。
什么是欧拉线
三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。 欧拉线的证明:作△ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点G"。 ∵ BD是直径, ∴ ∠BAD、∠BCD是直角。 ∴ AD⊥AB,DC⊥BC。 ∵ CH⊥AB,AH⊥BC, ∴ DA‖CH,DC‖AH。 ∴ 四边形ADCH是平行四边形, ∴ AH=DC。 ∵ M是BC的中点,O是BD的中点。 ∴ OM= DC。 ∴ OM= AH。 ∵ OM‖AH, ∴ △OMG" ∽△HAG"。 ∴ 。 ∴ G"是△ABC的重心。 ∴ G与G"重合。 ∴ O、G、H三点在同一条直线上。
欧拉线如何证明?
三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 莱昂哈德·欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。他证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。 欧拉线的证明: 作△ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点G" ∵ BD是直径 ∴ ∠BAD、∠BCD是直角 ∴ AD⊥AB,DC⊥BC ∵ CH⊥AB,AH⊥BC ∴ DA‖CH,DC‖AH ∴ 四边形ADCH是平行四边形 ∴ AH=DC ∵ M是BC的中点,O是BD的中点 ∴ OM= 1/2DC ∴ OM= 1/2AH ∵ OM‖AH ∴ △OMG" ∽△HAG" ∴AG/GM=2/1 ∴ G"是△ABC的重心 ∴ G与G"重合 ∴ O、G、H三点在同一条直线上 如果使用向量,证明过程可以极大的简化,运用向量中的坐标法,分别求出O G H三点的坐标即可.
欧拉线如何证明?
三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 莱昂哈德·欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。他证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。 欧拉线的证明: 作△ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点G" ∵ BD是直径 ∴ ∠BAD、∠BCD是直角 ∴ AD⊥AB,DC⊥BC ∵ CH⊥AB,AH⊥BC ∴ DA‖CH,DC‖AH ∴ 四边形ADCH是平行四边形 ∴ AH=DC ∵ M是BC的中点,O是BD的中点 ∴ OM= 1/2DC ∴ OM= 1/2AH ∵ OM‖AH ∴ △OMG" ∽△HAG" ∴AG/GM=2/1 ∴ G"是△ABC的重心 ∴ G与G"重合 ∴ O、G、H三点在同一条直线上 如果使用向量,证明过程可以极大的简化,运用向量中的坐标法,分别求出O G H三点的坐标即可.
什么是欧拉线
三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。欧拉线的证明:作△ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点Gu2019。∵BD是直径,u2234u2220BAD、u2220BCD是直角。u2234ADu22a5AB,DCu22a5BC。∵CHu22a5AB,AHu22a5BC,u2234DA‖CH,DC‖AH。u2234四边形ADCH是平行四边形,u2234AH=DC。∵M是BC的中点,O是BD的中点。u2234OM=DC。u2234OM=AH。∵OM‖AH,u2234△OMGu2019∽△HAGu2019。u2234。u2234Gu2019是△ABC的重心。u2234G与Gu2019重合。
欧拉线的性质
三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。 欧拉线的证明: 作△ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点G"。 ∵ BD是直径, ∴ ∠BAD、∠BCD是直角。 ∴ AD⊥AB,DC⊥BC。 ∵ CH⊥AB,AH⊥BC, ∴ DA‖CH,DC‖AH。 ∴ 四边形ADCH是平行四边形, ∴ AH=DC。 ∵ M是BC的中点,O是BD的中点。 ∴ OM= DC。 ∴ OM= AH。 ∵ OM‖AH, ∴ △OMG" ∽△HAG"。 ∴ 。 ∴ G"是△ABC的重心。 ∴ G与G"重合。 ∴ O、G、H三点在同一条直线上。在平面几何中,欧拉线(图中的红线)是指过三角形的垂心(蓝)、外心(绿)、重心(黄)和九点圆圆心(红点)的一条直线。莱昂哈德·欧拉证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。 [编辑]证明如图,H、G、O分别是△ABC的垂心、重心、外心,连AH,作△ABC的外接圆直径BOD,再连DB、DA,则DC⊥BC…①,DA⊥AB…② ∵H为△ABC垂心 ∴AH⊥BC…③,CH⊥AB…④ 由①、③可知DC‖AH,由②、④可知DA‖CH,故四边形ADCH为平行四边形,∴AH=DC。∵点O与点M分别是BD、CB的中点 ∴DC=2OM,即AH=2OM。作BC边上的中线AM,连OM、OH;设OH交AM与点G" ∵OM⊥BC,△AHG"∽△MOG",∴AG"=2G"M,因此G"即△ABC重心G。 故△ABC的垂心H、重心G和外心O三点共线,直线HGO即欧拉线。 [
欧拉线定理
欧拉线定理:三角形的外心、垂心和重心在一条直线上,而且外心和重心的距离是垂心和重心的距离一半。内容:三角形的外心、垂心和重心在一条直线上,而且外心和重心的距离是垂心和重心的距离一半。证明:设△ABC的垂心、重心、外心分别为H,G,O、则向量OH=向量OA+向量OB+向量OC。而向量OG=(向量OA+向量OB+向量OC)/3。向量OH=3向量OG。所以O、G、H三点共线,且外心和重心的距离是垂心和重心的距离一半。欧拉定理指出:如果产品市场和要素市场都是完全竞争的,而且厂商生产的规模报酬不变,那么在市场均衡的条件下,所有生产要素实际所取得的报酬总量正好等于社会所生产的总产品。
已知三角形ABC的顶点是A(2,0),B(0,4),三角形的欧拉线方程是x-y+2=0,则顶点C的坐标是多少?
首先求出AB的中垂线方程,它与欧拉线的交点即为外心(-1,1)。由此可写出外接圆方程。c必在外接圆上,设C点坐标(Xo,Yo),然后可得AC与AB中点m、n坐标,求出BM、CN方程,建立可得重心坐标X=(Xo+2)/3;Y=(Yo+4)/3代入欧拉线方程得方程1,与圆之方程2联立,可得C(-4,0).即得。
求解释向量证欧拉线中的一段
这道题比较复杂,工具所限我就不画图了~~D是做CD垂直于BC在圆O上的交点,容易知道∠BOD=2∠BCD=180°,即BOD共线;因为A、B、C、D都在圆O上,所以∠ACD=∠ABD=∠ABO=∠BAO,∠CAD=∠CBD=∠CBO=∠OCB,∠OCA=∠OAC。于是∠BCD=∠ACD+∠OCB+∠OCA=∠BAO+∠CAD+∠OAC=∠BAD=90°。则DA垂直于AB,于是DA和CH平行。又DC垂直于BC,所以DC与AH平行。所以AHCD为平行四边形~~向量AH=DC。第二问则是早就知道了的,DO=OB。基本就是这样,不知是否满意~~
正三角形有欧拉线吗
有莱昂哈德·欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。他证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。
欧拉线的向量证明。 为什么AH=2OD??
这个是三角形的一个性质,垂心到某一顶点的距离等於外心到该顶点对边距离的二倍.而且其实你的证明有点本末倒置,因为本身这个性质的向量证明恰好是通过OH→=OA→+OB→+OC→得到的,你现在用结果推出原因简直就是胡说八道证明这个很简单作△ABC的外接圆和直径AE,连接BE,CE那麼BE⊥AB,CE⊥AC∵H是垂心,∴HB⊥AC,HC⊥AB∴有HB∥CE,HC∥BE,那麼四边形BECH是平行四边形∴BE→=HC→BE→=BO→+OE→=-OB→-OA→HC→=HO→+OC→=-OH→+OC→∴OH→=OA→+OB→+OC→
已知欧拉线和三角形的两个顶点,怎么求另一个
设这两点为A(m1,n1),B(m2,n2) 求这两点所对应的一次函数y1=ax+b 求这条对角线的中点M((m1+m2)/2,(n1+n2)/2) 求点A到点M的距离为l 过点M作A的垂线,求出这条直线的一次函数关系式y2=x/a+b" 设线上一点C(x,x/a+b") MC=l 求出x 可以算出两个x,代入y2,可得两个点,即是所求点
欧拉线与外接圆的交点是什么?
在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.
正三角形有欧拉线吗 正三角形的各点都重合啊 为什么有?
有 莱昂哈德·欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线.他证明了在任意三角形中,以上四点共线.欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半.
关于欧拉线和欧拉公式
第一个:直接用解析几何证。省去辅助线一类烦人的东西。把各个点的坐标都设出来,比如(a,0),(0,b),(0,c),然后代公式进去算,可以把垂心重心外心的坐标都算出来,算一下距离和斜率,就ok了。第二个:用第一问的结论,R和r都可以用a、b、c的式子来表示,算一下就是了。
欧拉线有什么性质?
太简单了,就是欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半
旁心、费马点,欧拉线都是什么?
旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点. 一个三角形有三个旁心,而且一定在三角形外,三角形三个旁心构成的三角形称旁心三角形.在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。 在平面三角形中: (1).三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (3)当△ABC为等边三角形时,此时外心与费马点重合 (1) 等边三角形中BP=PC=PA,BP、PC、PA分别为三角形三边上的高和中线、三角上的角分线。是内切圆和外切圆的中心。△BPC≌△CPA≌△PBA。 (2) 当BC=BA但CA≠AB时,BP为三角形CA上的高和中线、三角上的角分线。三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 莱昂哈德·欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。他证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。
设△ABC最大内角小于120度,O是它的费马点.证明三角形AOB,BOC,AOC的欧拉线共点.
先证△AOB的欧拉线过△ABC重心G:向外作等边△ABD,其中心为M,AB中点为E,则ME=DE/3,GE=CE/3,连接MG交OE于F,由O是费马点知O在CD上,故EF=OE/3,即OF/EF=2,故F为△AOB重心,而又由∠AOB=120°,∠AMB=120°,AM=MB,得M是△AOB外心,由于MFG共线得到△AOB欧拉线MF过原三角形重心G.因此三条欧拉线交于一点——原三角形重心G.(PS:其实原三角形△ABC欧拉线也经过G.)
欧拉线定理的证明
设△ABC的垂心、重心、外心分别为H,G,O,则向量OH=向量OA+向量OB+向量OC而向量OG=(向量OA+向量OB+向量OC)/3,向量OH=3向量OG所以O、G、H三点共线,且外心和重心的距离是垂心和重心的距离之半。
欧拉线的证法
设H,G,O,分别为△ABC的垂心、重心、外心。联结AG并延长交BC于D, 则可知D为BC中点。联结OD ,又因为O为外心,所以OD⊥BC。联结AH并延长交BC于E,因H为垂心,所以 AE⊥BC。所以OD//AE,有∠ODA=∠EAD。由于G为重心,则GA:GD=2:1。联结CG并延长交BA于F,则可知F为AB中点。同理,OF//CM.所以有∠OFC=∠MCF联结FD,有FD平行AC,且有DF:AC=1:2。FD平行AC,所以∠DFC=∠FCA,∠FDA=∠CAD,又∠OFC=∠MCF,∠ODA=∠EAD,相减可得∠OFD=∠HCA,∠ODF=∠EAC,所以有△OFD∽△HCA,所以OD:HA=DF:AC=1:2;又GA:GD=2:1所以HA:OD=GA:GD=2:1又∠ODA=∠EAD,所以△OGD∽△HGA。所以∠OGD=∠AGH,又联结AG并延长,所以∠AGH+∠DGH=180°,所以∠OGD+∠DGH=180°。即O、G、H三点共线。 利用向量证明,简单明了设H,G,O,分别为△ABC的垂心、重心、外心.,D为BC边上的中点。∵向量OH=向量OA+向量AH=向量OA+2向量OD……………………………………………………………………(1)=向量OA+向量OB+向量BD+向量OC+向量CD=向量OA+向量OB+向量OC;而向量OG=向量OA+向量AG=向量OA+1/3(向量AB+向量AC)…………………………………………………(2)=1/3[向量OA+(向量OA+向量AB)+(向量OA+向量AC)]=1/3(向量OA+向量OB+向量OC).∴向量OG=1/3向量OH,∴O、G、H三点共线且OG=1/3OH。 还是向量做法,设△ABC的外心,重心,垂心分别为O,G,H。作△ABC的中点三角形DEF∵OD⊥AC∴OD⊥EF同理OE⊥DF,OF⊥DE∴O是△DEF的垂心。又EF∥AC,DF∥AB,DE∥BC且△ABC∽△DEF∴向量HB=-2向量OD,向量HA=-2向量OF,向量HC=-2向量OE∴向量HA+向量HB+向量HC=-2向量OD-2向量OE-2向量OF=-2向量OA-2向量OB-2向量OC又向量BG=2/3向量BD=1/3(向量BA+向量BC)同理向量CG=1/3(向量CA+向量CB),向量AG=1/3(向量AB+向量AC)∴向量BG+向量AG+向量CG=向量0向量HG=向量HA+向量AG=向量HB+向量BG=向量HC+向量CG向量OG=向量OA+向量AG=向量OB+向量BG=向量OC+向量CG∴3向量HG=向量HA+向量HB+向量HC,3向量OG=向量OA+向量OB+向量OC∴向量HG=-2向量OG 如图所示,设AM为△ABC的中线,H、O分别是垂心和外心,连接AH、OM,则OM⊥BC,AH⊥BC∴AH∥OM连接OB、OC,易证∠BAC=∠BOC/2=∠COM∴OM=OCcos∠COM=Rcos∠BAC(R是△ABC外接圆半径)又连接BH并延长交AC於D,则BD⊥AC∴AH=AD/cos∠CAH=ABcos∠BAC/sin∠ACB=2Rcos∠BAC∴AH=2OM设OH和AM交於G,则△AHG∽△MOG∴AG:GM=AH:OM=2:1∴G是△ABC的重心,即O、M、G三点共线,且GH:GO=AG:GM=2:1
等边三角形的欧拉线在哪儿?
一般三角形 的 Euler(欧拉)线是指: 三角形的 垂心H、重心G、外心O 三点共线 —— 称为Euler线 且 HG : GO = 2 : 1 用几何画板演示发现,正三角形的欧拉线是过三心(合一)且与某条边平行(有3条?)
欧拉线定理
方法1:(利用几何画板) 逐步减少多面体的棱数,分析V+F-E 先以简单的四面体ABCD为例分析证法。 去掉一个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1 (1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。 (2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。 以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。 对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。方法2:计算多面体各面内角和 设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和∑α 一方面,在原图中利用各面求内角总和。 设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为: ∑α = [(n1-2)·180度+(n2-2)·180度+…+(nF-2) ·180度] = (n1+n2+…+nF -2F) ·180度 =(2E-2F) ·180度 = (E-F) ·360度 (1) 另一方面,在拉开图中利用顶点求内角总和。 设剪去的一个面为n边形,其内角和为(n-2)·180角,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·360度,边上的n个顶点处的内角和(n-2)·180度。 所以,多面体各面的内角总和: ∑α = (V-n)·360度+(n-2)·180度+(n-2)·180度 =(V-2)·360度(2) 由(1)(2)得: (E-F) ·360度=(V-2)·360度 所以 V+F-E=2.方法3 用拓朴学方法证明欧拉公式 图尝试一下用拓朴学方法证明关于多面体的面、棱、顶点数的欧拉公式。 欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假设F,E和V分别表示面,棱(或边),角(或顶)的个数,那末 F-E+V=2。 证明 如图(图是立方体,但证明是一般的,是“拓朴”的): (1)把多面体(图中①)看成表面是薄橡皮的中空立体。 (2)去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。 (3)对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。 (4)如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。 (5)如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。 (6)这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。 (7)因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。 (8)如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。 即F′-E′+V′=1 成立,于是欧拉公式: F-E+V=2 得证。
欧拉线及三角形的几个问题
欧拉线:任意三角形的外心,垂心,重心必在同一直线,这条直线叫欧拉线。垂心到重心距离等于重心到外心距离的2倍。重心:三边中线的交点。定点到重心距离等于重心到中点距离的2倍。外心:三边中垂线交点。外心到三角形三个顶点的距离相等。内心:三内角平分线交点。内心到三边的距离相等。垂心:三边高线的交点。垂心分每条高线的两部分乘积相等。旁心:同一条边上的外角平分线交点。旁心到三边距离相等。
欧拉线的详细证明方法
如图所示,设AM为△ABC的中线,H、O分别是垂心和外心,连接AH、OM,则OM⊥BC,AH⊥BC∴AH∥OM连接OB、OC,易证∠BAC=∠BOC/2=∠COM∴OM=OCcos∠COM=Rcos∠BAC(R是△ABC外接圆半径)又连接BH并延长交AC于D,则BD⊥AC∴AH=AD/cos∠CAH=ABcos∠BAC/sin∠ACB=2Rcos∠BAC∴AH=2OM设OH和AM交于G,则△AHG∽△MOG∴AG:GM=AH:OM=2:1∴G是△ABC的重心,即O、H、G三点共线,且GH:GO=AG:GM=2:1然后证明九点圆心也在线上,如下图,DEF为△ABC中点,OGH为△DEF外心、重心、垂心,则用线束可证G也是△ABC重心,DH,EH,FH分别垂直于△ABC三边且DEF为三角形ABC三边中点,∴H为△ABC外心,DO=EO=FO,∴O为△ABC九点圆心,∴九点圆心也在欧拉线上
什么是欧拉线性质
三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。
欧拉线是几年级的数学知识
欧拉线是高二所学的数学知识。如果一个三角形,它的外心、重心、九点圆圆心和垂心,都能依次位于同一直线上,那么我们说这条直线就叫三角形的欧拉线。(且外心到重心的距离等于垂心到重心距离的一半,且九点圆圆心为外心与垂心连线的中点)。莱昂哈德·欧拉曾经于1765年在他的著作《三角形的几何学》中首次提出这个定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线,而且重心到外心的距离是重心到垂心距离的一半。
任意三角形都有欧拉线吗
对。任何三角形都存在一条神奇的欧拉线,跟三角形的一些特殊点紧密相关。任意三角形的垂心、重心和外心在一条直线上,这条直线被称为欧拉线。
等腰三角形的欧拉线是底边的高吗
等腰三角形的欧拉线是底边的高。任意三角形的外心,重心,垂心三点共线,这就是三角形的欧拉线,等腰三角形的欧拉线垂直平分底边,此时欧拉线就是底边的高。
欧拉线定理
欧拉线定理:三角形的外心、垂心和重心在一条直线上,而且外心和重心的距离是垂心和重心的距离一半。证明:如图,三角形ABC,HGO分别是其垂心,重心和外心,连接BO并延长,和外接圆O相交于D,连接AH,AD,CD和CH。因为BD为外接圆O的直径,所以CD垂直BC,AD垂直AB;又H为垂心,所以AH垂直BC,CH垂直AB;因此CD//AH,HC//AD,ADCH为平行四边形,AH = DC;又O,M分别为BD和BC中点,OM为三角形DBC的中位线,OM = DC / 2 = AH / 2;连接AM,OM,OH,OH交AM于G";显然,三角形AHG"相似于三角形MOG",且对应边的比为AH / OM = 2,因此AG" = 2G"M,由于重心是中线靠近边的三等分点,因此重心G和G"重合,因此OGH三点共线。
欧拉线定理
欧拉线定理如下:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线,且外心到重心的距离等于垂心到重心距离的一半,且九点圆圆心为外心与垂心连线的中点。这是由莱昂哈德欧拉于1765年在他的著作《三角形的几何学》中首次提出的定理。三角形三边的中点,三高的垂足和三个欧拉点(连结三角形各顶点与垂心所得三线段的中点)九点共圆,称为欧拉圆。应用1、平面上共圆的5个点,任取其中3点组成三角形,过其重心作另外两点连线的垂线,共有10条。则这10线交于一点。2、平面上共圆的5个点,任取其中3点组成三角形,过其垂心作另外两点连线的垂线,共有10条。则这10线交于一点。3、平面上共圆的5个点,任取其中3点组成三角形,过其九点圆圆心作另外两点连线的垂线,共有10条。则这10线交于一点。证明:欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。4、在△ABC中,点D,E,F分别为边BC,CA,AB的中点,连接DE,EF,FD,则△ABC与△DEF的欧拉线重合。
欧拉线定理证明及应用
欧拉线定理:三角形的外心、垂心和重心在一条直线上,而且外心和重心的距离是垂心和重心的距离一半。内容:三角形的外心、垂心和重心在一条直线上,而且外心和重心的距离是垂心和重心的距离一半。证明:设△ABC的垂心、重心、外心分别为H,G,O、则向量OH=向量OA+向量OB+向量OC。而向量OG=(向量OA+向量OB+向量OC)/3。向量OH=3向量OG。所以O、G、H三点共线,且外心和重心的距离是垂心和重心的距离一半。欧拉定理指出:如果产品市场和要素市场都是完全竞争的,而且厂商生产的规模报酬不变,那么在市场均衡的条件下,所有生产要素实际所取得的报酬总量正好等于社会所生产的总产品。