maple中解一个复杂的偏微分方程,使用pdsolve命令后没有任何结果出来。这是为什么?
因为这个方程可能是不能解的,复杂的偏微分方程。。。一般比较行的是低阶的方程,或比较有规则的方程,有成熟的算法的方程,如果一个方程的数学上的解法都没有那当然也不可能编制成代码求解。你说这个是四阶的,估计就是不能得解析解的,如果命令和使用没有错误的话,而且复杂的方程软件一般擅长的是数值解。
耦合偏微分方程组怎么求解
matlab是不能求偏微分方程组的解析解的,主要求数值解。况且你的方程既不椭圆也不抛物,还有一阶导数相互耦合,matlab自带的偏微分方程工具也不能做。只有自己利用数值计算编程序了,据我所知编程的数值计算思想还没有出来呢。坐等高手正解。我估计能做出这个方程的解析解的人还没有出生呢。数值解也很难啊。
用mathematica求解具有边界条件的连续性方程(偏微分方程),要可执行的代码
Please take a look my example. Besides, check your help document before posting your question.Using D to take derivativespde = D[y[x, t], t] + 2 D[y[x, t], x] == 0Use DSolve to solve the equation and store the solution as soln.soln = DSolve[pde, y[x, t], {x, t}]To use the solution as a function, say f[x,t], use /. (the short form of ReplaceAll) and [[...]]f[x_, t_] = y[x, t] /. soln[[1]]
求《偏微分方程数值解法》(李荣华编 高等教育出版社)课后答案一份,最好两天内发给我!急!急!急!
是这个吗?http://wenku.baidu.com/view/de145326ccbff121dd3683b0.html
在空气动力学中会不会用到偏微分方程?
鸭哥,这我还真不知道杂回答.根据白度里面说法:在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、举力线理论、举力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程,研究这类流动的主要理论和近似方法有小扰动线化方法,普朗特-格劳厄脱法则、卡门-钱学森公式和速度图法,在粘性流动方面有可压缩边界层理论;对于超声速流动,无粘流动所服从的方程是[非线性双曲型(偏微分方程)]。
matlab怎么求解二元二次偏微分方程
一个方程两个未知数,解不出的另外,方程式是否写成:(dx/dt)^2+(dy/dt)^2=x+y,这是导数平方或者:d^2x/dt^2+d^2y/dt^2=x+y,这是二次导数
要学习偏微分方程,作为一个初学者,哪本参考书比较好
是学习偏微分方程的数值解法的话,可以选择:李荣华的《偏微分方程数值解法》-高等教育出版社,还有陆金甫的《偏微分方程数值解法》-清华大学出版社。
用mathematica解一个简单的二阶偏微分方程
1 你的代码里混了中文标点。2 你的方程是热传导方程,它的解析解一般是级数解。Mathematica截止目前,是不用级数来表示方程的解的。(软件的这种处理方法可能和级数的收敛判定困难有关——Mathematica是个非常严谨的数学软件。)所以DSolve无法求解你的方程。3 退一步讲,即使你想补上a的具体数值,使用NDSolve来求解这个方程的数值解,在你所给的条件下,这也是做不到的。如果你学习过偏微分方程的相关知识,或者你手头有《数学物理方程》之类的课本,你就会知道,你所给的限制条件,不属于教科书里通常会给出的限制条件的任何一种。如果你具备更深入的有限差分方面的知识,你就会知道,仅仅给出三个孤立的点上的函数值,也是根本无法求得这个方程的定解的。你的限制条件是你随手给的?还是你只是单纯地写错了条件?总之你再检查检查吧。----知道允许编辑已采纳答案了,那就把评论区的东西弄上来吧:结合题主在追问中的补充来看,他所想求解的很可能是一个初始条件为DiracDelta函数的热传导方程初值问题,这个问题的正确设法是:DSolve[{D[p[x, t], t] - (1/(2*a))*D[p[x, t], x, x] == 0, p[x, 0] == DiracDelta[x]}, p[x, t], {x, t}]v10.3以上的Mathematica应该都是可以直接求解此问题的。至于早于 v10.3 的Mathematica,也可以使用FourierTransform+DSolve进行求解,不过 FourierTransform 不能直接用于方程,需要给它写个“壳儿”——现在普遍都是新版大概也没什么人想知道具体做法,真感兴趣的请上Stackexchange搜索《Workarounds for a possible bug in the linearity of FourierTransform》(问题编号56237),链接就不直接贴了,怕被吞。
偏微分方程数值解法(第四版)课后答案 高教出版的 主编是李荣华
下载地址: http://www.khdaw.com/bbs/thread-41865-1-1.html 自己注册号,下载啊。采纳哦希望能解决您的问题。
用mathematica解一个简单的二阶偏微分方程
1 你的代码里混了中文标点。2 你的方程是热传导方程,它的解析解一般是级数解。Mathematica截止目前,是不用级数来表示方程的解的。(软件的这种处理方法可能和级数的收敛判定困难有关——Mathematica是个非常严谨的数学软件。)所以DSolve无法求解你的方程。3 退一步讲,即使你想补上a的具体数值,使用NDSolve来求解这个方程的数值解,在你所给的条件下,这也是做不到的。如果你学习过偏微分方程的相关知识,或者你手头有《数学物理方程》之类的课本,你就会知道,你所给的限制条件,不属于教科书里通常会给出的限制条件的任何一种。如果你具备更深入的有限差分方面的知识,你就会知道,仅仅给出三个孤立的点上的函数值,也是根本无法求得这个方程的定解的。你的限制条件是你随手给的?还是你只是单纯地写错了条件?总之你再检查检查吧。----知道允许编辑已采纳答案了,那就把评论区的东西弄上来吧:结合题主在追问中的补充来看,他所想求解的很可能是一个初始条件为DiracDelta函数的热传导方程初值问题,这个问题的正确设法是:DSolve[{D[p[x, t], t] - (1/(2*a))*D[p[x, t], x, x] == 0, p[x, 0] == DiracDelta[x]}, p[x, t], {x, t}]v10.3以上的Mathematica应该都是可以直接求解此问题的。至于早于 v10.3 的Mathematica,也可以使用FourierTransform+DSolve进行求解,不过 FourierTransform 不能直接用于方程,需要给它写个“壳儿”——现在普遍都是新版大概也没什么人想知道具体做法,真感兴趣的请上Stackexchange搜索《Workarounds for a possible bug in the linearity of FourierTransform》(问题编号56237),链接就不直接贴了,怕被吞。
偏微分方程数值解法及应用属于数学什么范畴
属于应用数学范围。
如何用matlab 解这个偏微分方程。详细讲解.......急切。。。
降阶由于偏导数符号无法打出,暂以d代替y=dc/dtdy/dt=d2c/dt2上式化解成两个一阶微分方程
偏微分方程数值解法的图书目录:
第一章 边值问题的变分形式§1 二次函数的极值§2 两点边值问题2.1 弦的平衡2.2 Sobolev空间H?m(I)2.3 极小位能原理2.4 虚功原理§3 二阶椭圆边值问题3.1 Sobolev空间H?m(G)3.2 极小位能原理3.3 自然边值条件3.4 虚功原理§4 Ritz-Galerkin方法第二章 椭圆和抛物型方程的有限元法§1 两点边值问题的有限元法1.1 从Ritz法出发1.2 从Galerkin法出发§2 线性有限元法的误差估计2.1 H?1-估计2.2 L?2-估计 对偶论证法§3 一维高次元3.1 一次元(线性元)3.2 二次元3.3 三次元 ?§4 二维矩形元4.1 Lagrange型公式4.2 Hermite型公式§5 三角形元5.1 面积坐标及有关公式5.2 Lagrange型公式5.3 Hermite型公式*§6 曲边元和等参变换§7 二阶椭圆方程的有限元法7.1 有限元方程的形成7.2 矩阵元素的计算7.3 边值条件的处理7.4 举例*§8 收敛阶的估计§9 抛物方程的有限元法第三章 椭圆型方程的有限差分法§1 差分逼近的基本概念§2 两点边值问题的差分格式2.1 直接差分化?2.2 积分插值法2.3 边值条件的处理 ?§3 二维椭圆边值问题的差分格式3.1 五点差分格式 ?3.2 边值条件的处理3.3 极坐标形式的差分格式§4 极值定理 敛速估计4.1 差分方程 ?4.2 极值定理4.3 五点格式的敛速估计?*§5 先验估计5.1 差分公式5.2 若干不等式5.3 先验估计5.4 解的存在惟一性及敛速估计§6 有限体积法6.1 三角网的差分格式6.2 有限体积法第四章 抛物型方程的有限差分法§1 最简差分格式§2 稳定性与收敛性2.1 稳定性概念2.2 判别稳定性的直接估计法2.3 收敛性和误差估计§3 Fourier方法§4 判别差分格式稳定性的代数准则*§5 变系数抛物方程§6 分数步长法6.1 ADI法6.2 预-校法6.3 LOD法§7 有限体积法第五章 双曲型方程的有限差分法§1 波动方程的差分逼近1.1 波动方程及其特征1.2 显格式1.3 稳定性分析 ?1.4 隐格式1.5 强迫振动§2 一阶双曲型方程组2.1 双曲型方程组特征概念2.2 Cauchy问题 依存域 影响域 决定域2.3 其他定解问题2.4 拟线性双曲方程组*2.5 一维不定常流§3 双曲方程差分格式的构造3.1 迎风格式3.2 Lax格式与Box格式3.3 粘性差分格式 Lax-Wendroff格式 ?*§4 Godunov格式 守恒型格式 单调格式4.1 Godunov格式4.2 守恒型格式4.3 单调格式*§5 有限体积法第六章 离散化方程的解法§1 基本迭代法1.1 离散方程的基本特征1.2 一般迭代法1.3 超松弛法(SOR法)?1.4 预处理迭代法§2 交替方向迭代法2.1 二维交替方向迭代2.2 三维交替方向迭代§3 预处理共轭梯度法3.1 共轭梯度法3.2 预处理共轭梯度法§4 多重网格法4.1 二重网格法:差分形式*4.2 二重网格法:有限元形式4.3 多重网格法和套迭代技术4.4 推广到多维问题主要参考文献……
matlab如何对偏微分方程求解的数值解进行积分
trapz函数可以对只知道离散数值的函数做积分,示意:trapz(ts,ys);
偏微分方程求解
其中只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。扩展资料偏微分方程示例二阶线性与非线性偏微分方程始终是重要的研究对象。这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题,这些问题通常十分复杂具有较大的难度。对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。另一方面,由于电子计算机的迅速发展,使得各种方程均可数值求解,并且揭示了许多重要事实,因此,数值解法的研究,在已取得许多重要成果的基础上,将会有更快地发展。
总结偏微分方程的解法
可分为两大方面:解析解法和数值解法。其中只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。数值解法又可以分为最常见的有三种:差分法、有限体积法、有限元法。其中,差分法是最普遍最通用的方法。扩展资料偏微分方程示例二阶线性与非线性偏微分方程始终是重要的研究对象。这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题,这些问题通常十分复杂具有较大的难度。对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。另一方面,由于电子计算机的迅速发展,使得各种方程均可数值求解,并且揭示了许多重要事实,因此,数值解法的研究,在已取得许多重要成果的基础上,将会有更快地发展。参考资料:百度百科——偏微分方程
偏微分方程数值解法
可分为两大分支:解析解法和数值解法只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等
差分方程有解,其相应的偏微分方程就一定有解吗
你说的是一个偏微分方程有数值解,就会有解析解么?不一定有的。 有些方程解不出来,会用到数值解法来处理。
多元统计分析和偏微分方程数值解哪个相对较难?
个人觉得多元统计分析,因为偏微分方程实际上还是属于正常方程的一种,我们会有熟悉的感觉;但多元统计分析基本平常没接触,高考之后更是没接触,所以没什么熟悉感
为什么要化偏微分方程为标准型,解偏微分方程的时候需要先化为标准型再求解吗?
为了规范。统一求解模式。方便理解。
想在研究生阶段做偏微分方程研究,需要什么知识。
偏微分方程,是研究生阶段比较复杂的课程。如果你的数学基础比较好,是可以去研究的。但是请不要把工程学科的数学和数学系的数学混淆。 相对于常微分方程(独立课程)偏微分方程的解通常难以有精确的解析解。 这门课程要求有数学分析,微风方程,积分原理(比如 关于 lebesgue integration), 泛函(我们老实说, 这课不学,就像汽车没有发动机, 你可以推车走,但是很费劲。) 偏微分方程的课通常分为理论部分 还有, 数值部分(求数值解,因为只有解析解通常难以获得)。所以并不是一门课程。如果你是工程学科,那么我想侧重数值部分就好,研究偏微分方程的数值解就需要 数值分析的基础, 最好学过 有限元,有限体积。
应用数理统计 数值分析 最优化方法与理论 矩阵分析 数学模型 模糊数学 近世代数 随机过程 偏微分方程数值
看来你是数学读研的朋友,这几门课都比较麻烦。 个人认为数学物理方程最麻烦,其实就是偏微分方程,单单数学专业,建立方程及定解条件的过程一般可以省掉,但如果是偏物理学专业课程,这个过程对于数学专业来说那就麻烦了。 另外个人觉得矩阵分析最简单,需要线性代数的知识; 近世代数学的是群、环、域等知识,比较抽象,其实就是一些研究对象加上运算满足一定运算率的运算后组成的集合,需要线性代数和一点微积分知识。其他几门课得看你是学什么专业,你最好是去咨询你的导师,只有他最清楚将来要你做哪一方面的东西,所以只有他能告诉你必须学什么,哪些可以略知一二。
偏微分方程的方程解释
客观世界的物理量一般是随时间和空间位置而变化的,因而可以表达为时间坐标t和空间坐标的函数,这种物理量的变化规律往往表现为它关于时间和空间坐标的各阶变化率之间的关系式,即函数u关于t与的各阶偏导数之间的等式。例如在一个均匀的传热物体中,温度u就满足下面的等式:(1)这样一类的包含未知函数及其偏导数的等式称为偏微分方程。一般说来,如果是自变量,以u为未知函数的偏微分方程的一般形式是(2)这里F是它的变元的函数,所包含的偏导数的最高阶数称为偏微分方程的阶数。由若干个偏微分方程所构成的等式组就称为偏微分方程组,其未知函数也可以是若干个。当方程的个数超过未知函数的个数时,就称这偏微分方程组为超定的;当方程的个数少于未知函数的个数时,就称为欠定的。如果一个偏微分方程(组)关于所有的未知函数及其导数都是线性的,则称为线性偏微分方程(组)。否则,称为非线性偏微分方程(组)。在非线性偏微分方程(组)中,如果对未知函数的最高阶导数来说是线性的,那么就称为拟线性偏微分方程(组)。设Ω是自变数空间R中一个区域,u是在这个区域上定义的具|α|阶连续导数的函数。如果它能使方程(2)在Ω上恒等成立,那么就称u是该方程在Ω中的一个经典意义下的解,简称为经典解。在不致误会的情况下,就称为解。偏微分方程理论研究一个方程(组)是否有满足某些补充条件的解(解的存在性),有多少个解(解的惟一性或自由度),解的各种性质以及求解方法等等,并且还要尽可能地用偏微分方程来解释和预见自然现象以及把它用之于各门科学和工程技术。偏微分方程理论的形成和发展都与物理学和其他自然科学的发展密切相关,并彼此促进和推动。其他数学分支,如分析学、几何学、代数学、拓扑学等理论的发展也都给予偏微分方程以深刻的影响。 另一种概述在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程。
matlab怎么解偏微分方程
pdetool是matlab的一个重要的工具箱,它可以用数值解法来求解各种繁琐的偏微分方程问题,并且操作非常便捷。它能够画出解的三维图像,更形象具体的展示结果。当然,展示这个过程的前提是大家要知道偏微分方程的相关知识。步骤阅读方法/步骤>01调用pdetool在Command Window当中输入pdetool,按回车,即可弹出图示界面。可以看到它是图形界面的,我们可以通过在操作区域内直接画图的方式设定求解的二维区域。>02画图下面图中给出了画矩形、椭圆、多边形的工具,画图的方式与普通画图没有什么区别。但有些画多边形的简单作图方法可以节省工作量。>03比如在这一幅图中,先画一个大的矩形R1【自动标注的】,再在它的边界附近画一个小矩形R2。我们看到最开始的状态是两个矩形重叠的。>04在圈中所示的set formula里面可以修改两个(多个)图形的重叠方式。比如我们把公式修改为R1-R2。>05现在我们可以通过打开“边界模式”的方式来查看修改了重叠方式之后的效果。点击菜单栏的Boundary菜单,在下拉框中点击Boundary Mode。>06可以看到,在下面这幅图中,R1和R2的边界的重叠部分被删除了,剩下了没有重叠的部分。这种方式可以用来画一些外形比较复杂但是有一定规律的图形。图中的每个边界还有一个箭头标识,他们构成一个闭合的回路,代表着求解时边界的正方向。还可以通过菜单对每条边界进行编号,这里不赘述了。>07设置问题的类型。如图,选择菜单中的options,下拉菜单中选择application。可以看到偏微分方程适用几乎所有常见数学问题类型。选择你想要求解的一类【这个一定要选择,因为后面的方程类型和边界条件,matlab都会按照你选择的类型帮你做好初始化,你只需要动手改改参数就可以了。】共2图>08设置方程的类型选择菜单中的PDE菜单,下拉菜单中选择PDE specification。弹出下面第二幅图中的对话框。这里面给出了四种基本的方程类型,每种分别展示的参数的初始值和具体方程。根据需要选择一种。共2图>09设置边界条件点击菜单中的Boundary,在下拉菜单中选择specify boundary conditions。弹出下面第二幅图中的对话框。边界条件也分两种,狄利克雷和纽曼条件【不做解释】。选择好,填好边界值。>10划分区域因为是数值解法,要将求解区域划分成一个一个的小格子。图中圈出的两个按钮就是自动划分区域的。左边那一个稀疏一些,划分的格子较大,一方面用于初步划分,另一方面如果划分的太细了,可以用它来初始化。右边那个是进一步做细分的,显然分得越细做出来的图越好看,但是分得太细会导致计算量过大,可能会等很久才能出结果。>11开始求解点击最上方红圈中的按钮,设置作图要求。如果需要画3D的图,点击中间红圈中的选框。其他如坐标轴设置、颜色设置等都可以在这里选择。设置没问题之后点击最下方的plot,开始画图。>12查看效果这就是画出来的3D图。
偏微分方程数值解是np难吗
偏微分方程数值解是np难吗?偏微分方程数值解是np难的。
怎么解如下的偏微分方程,用软件解出数值解也可以?
按道理说,matlab调用maple可以求解的,实际上,不知为什么。>> maple("pdsolve","{-diff(Q(x,t),t)=diff(Q(x,t),x)*exp(-15*Q(x,t)+4.5)*(1-15*Q(x,t)),Q(0,t)=N,Q(x,0)=N}")ans = "">> maple("pdsolve","{-diff(Q(x,t),t)=diff(Q(x,t),x)*exp(-15*Q+4.5)*(1-15*Q)}")ans =Q(x,t) = RootOf(-t+15*t*_Z+x*exp(15*_Z-9/2)+_F1(_Z)-15*_F1(_Z)*_Z)再研究研究。
要学习偏微分方程的数值解法要先掌握哪些基础知识?
大致上要熟悉数分和高代,数值分析,数学物理微分方程的基本知识。不过单纯学习算法而不做收敛性之类的深究的话,我觉得你你会编程就行了吧~
数值分析,偏微分方程数值解法和科学计算之间有什么关系
到了晶体管计算机时期(1959~1964),主存储器均采用磁心存储器,磁鼓和磁盘开始用作主要的辅助存储器。不仅科学计算用计算机继续发展,而且中、小型计算机,特别是廉价的小型数据处理用计算机开始大量生产。1964年,在集成电路计算机发展的同时,计算机也进入了产品系列化的发展时期。半导体存储器逐步取代了磁心存储器的主存储器地位,磁盘成了不可缺少的辅助存储器,并且开始普遍采用虚拟存储技术。随着各种半导体只读存储器和可改写的只读存储器的迅速发展,以及微程序技术的发展和应用,计算机系统中开始出现固件子系统。20世纪70年代以后,计算机用集成电路的集成度迅速从中小规模发展到大规模、超大规模的水平,微处理器和微型计算机应运而生,各类计算机的性能迅速提高。随着字长4位、8位、16位、32位和64位的微型计算机相继问世和广泛应用,对小型计算机、通用计算机和专用计算机的需求量也相应增长了。微型计算机在社会上大量应用后,一座公楼、一所学校、一个仓库常常拥有数十台以至数百台计算机。实现它们互连的局部网随即兴起,进一步推动了计算机应用系统从集中式系统向分布式系统的发展。在电子管计算机时期,一些计算机配置了汇编语言和子程序库,科学计算用的高级语言FORTRAN初露头角。在晶体管计算机阶段,事务处理的COBOL语言、科学计算机用的ALGOL语言,和符号处理用的LISP等高级语言开始进入实用阶段。操作系统初步成型,使计算机的使用方式由手工操作改变为自动作业管理。进入集成电路计算机发展时期以后,在计算机中形成了相当规模的软件子系统,高级语言种类进一步增加,操作系统日趋完善,具备批量处理、分时处理、实时处理等多种功能。数据库管理系统、通信处理程序、网络软件等也不断增添到软件子系统中。软件子系统的功能不断增强,明显地改变了计算机的使用属性,使用效率显著提高。在现代计算机中,外围设备的价值一般已超过计算机硬件子系统的一半以上,其技术水平在很大程度上决定着计算机的技术面貌。外围设备技术的综合性很强,既依赖于电子学、机械学、光学、磁学等多门学科知识的综合,又取决于精密机械工艺、电气和电子加工工艺以及计量的技术和工艺水平等。外围设备包括辅助存储器和输入输出设备两大类。辅助存储器包括磁盘、磁鼓、磁带、激光存储器、海量存储器和缩微存储器等;输入输出设备又分为输入、输出、转换、、模式信息处理设备和终端设备。在这些品种繁多的设备中,对计算机技术面貌影响最大的是磁盘、终端设备、模式信息处理设备和转换设备等。新一代计算机是把信息采集存储处理、通信和人工智能结合在一起的智能计算机系统。它不仅能进行一般信息处理,而且能面向知识处理,具有形式化推理、联想、学习和解释的能力,将能帮助人类开拓未知的领域和获得新的知识。计算技术在中国的发展在人类文明发展的历史上中国曾经在早期计算工具的发明创造方面写过光辉的一页。远在商代,中国就创造了十进制记数方法,领先于世界千余年。到了周代,发明了当时最先进的计算工具——算筹。这是一种用竹、木或骨制成的颜色不同的小棍。计算每一个数学问题时,通常编出一套歌诀形式的算法,一边计算,一边不断地重新布棍。中国古代数学家祖冲之,就是用算筹计算出圆周率在3.1415926和3.1415927之间。这一结果比西方早一千年。珠算盘是中国的又一独创,也是计算工具发展史上的第一项重大发明。这种轻巧灵活、携带方便、与人民生活关系密切的计算工具,最初大约出现于汉朝,到元朝时渐趋成熟。珠算盘不仅对中国经济的发展起过有益的作用,而且传到日本、朝鲜、东南亚等地区,经受了历史的考验,至今仍在使用。中国发明创造指南车、水运浑象仪、记里鼓车、提花机等,不仅对自动控制机械的发展有卓越的贡献,而且对计算工具的演进产生了直接或间接的影响。例如,张衡制作的水运浑象仪,可以自动地与地球运转同步,后经唐、宋两代的改进,遂成为世界上最早的天文钟。记里鼓车则是世界上最早的自动计数装置。提花机原理刘计算机程序控制的发展有过间接的影响。中国古代用阳、阴两爻构成八卦,也对计算技术的发展有过直接的影响。莱布尼兹写过研究八卦的论文,系统地提出了二进制算术运算法则。他认为,世界上最早的二进制表示法就是中国的八卦。经过漫长的沉寂,新中国成立后,中国计算技术迈入了新的发展时期,先后建立了研究机构,在高等院校建立了计算技术与装置专业和计算数学专业,并且着手创建中国计算机制造业。1958年和1959年,中国先后制成第一台小型和大型电子管计算机。60年代中期,中国研制成功一批晶体管计算机,并配制了ALGOL等语言的编译程序和其他系统软件。60年代后期,中国开始研究集成电路计算机。70年代,中国已批量生产小型集成电路计算机。80年代以后,中国开始重点研制微型计算机系统并推广应用;在大型计算机、特别是巨型计算机技术方面也取得了重要进展;建立了计算机服务业,逐步健全了计算机产业结构。在计算机科学与技术的研究方面,中国在有限元计算方法、数学定理的机器证明、汉字信息处理、计算机系统结构和软件等方面都有所建树。在计算机应用方面,中国在科学计算与工程设计领域取得了显著成就。在有关经营管理和过程控制等方面,计算机应用研究和实践也日益活跃。
偏微分方程解析解跟数值解的区别
数值解∑Cnx^n ,级数也要满足边界条件
金融本科生和研究生需要学习《偏微分方程》吗?学了之后有很大作用吗?有必要学习吗?《微分方程数值解》
金融本科生和研究生要学习《偏微分方程》,而且相对来说对经济类的本科生都要学习这门学科,其实这门学习对以后工作的帮助程度则要看你今后从事的职业而言,若果你是从事经济类的职业,那么还是有一点帮助的,至于帮助多大则看你自己的造化,因为每个人运用知识的能力不一样。而如果你想不学这门学科的话,在你考研的时候你可以选其他一些研究生的方向,如:法律。
求偏微分方程的数值解,是否必须要同时具备边界条件和初始条件呢?如果只给边界条件能否有结果?
需同时具备边界条件和初始条件。只给边界条件,一般无法解。如题目无初始条件,可自定(设)一些初始条件。
求解一个偏微分方程
这是典型的抛物型偏微分方程。我只会数值解。解析解我不会求。数值解的话,可以找我
怎样用matlab解偏微分方程
方法/步骤1调用pdetool在Command Window当中输入pdetool,按回车,即可弹出图示界面。可以看到它是图形界面的,我们可以通过在操作区域内直接画图的方式设定求解的二维区域。2画图下面图中给出了画矩形、椭圆、多边形的工具,画图的方式与普通画图没有什么区别。但有些画多边形的简单作图方法可以节省工作量。3比如在这一幅图中,先画一个大的矩形R1【自动标注的】,再在它的边界附近画一个小矩形R2。我们看到最开始的状态是两个矩形重叠的。4在圈中所示的set formula里面可以修改两个(多个)图形的重叠方式。比如我们把公式修改为R1-R2。5现在我们可以通过打开“边界模式”的方式来查看修改了重叠方式之后的效果。点击菜单栏的Boundary菜单,在下拉框中点击Boundary Mode。6可以看到,在下面这幅图中,R1和R2的边界的重叠部分被删除了,剩下了没有重叠的部分。这种方式可以用来画一些外形比较复杂但是有一定规律的图形。图中的每个边界还有一个箭头标识,他们构成一个闭合的回路,代表着求解时边界的正方向。还可以通过菜单对每条边界进行编号,这里不赘述了。7设置问题的类型。如图,选择菜单中的options,下拉菜单中选择application。可以看到偏微分方程适用几乎所有常见数学问题类型。选择你想要求解的一类【这个一定要选择,因为后面的方程类型和边界条件,matlab都会按照你选择的类型帮你做好初始化,你只需要动手改改参数就可以了。】8设置方程的类型选择菜单中的PDE菜单,下拉菜单中选择PDE specification。弹出下面第二幅图中的对话框。这里面给出了四种基本的方程类型,每种分别展示的参数的初始值和具体方程。根据需要选择一种。9设置边界条件点击菜单中的Boundary,在下拉菜单中选择specify boundary conditions。弹出下面第二幅图中的对话框。边界条件也分两种,狄利克雷和纽曼条件【不做解释】。选择好,填好边界值。10划分区域因为是数值解法,要将求解区域划分成一个一个的小格子。图中圈出的两个按钮就是自动划分区域的。左边那一个稀疏一些,划分的格子较大,一方面用于初步划分,另一方面如果划分的太细了,可以用它来初始化。右边那个是进一步做细分的,显然分得越细做出来的图越好看,但是分得太细会导致计算量过大,可能会等很久才能出结果。11开始求解点击最上方红圈中的按钮,设置作图要求。如果需要画3D的图,点击中间红圈中的选框。其他如坐标轴设置、颜色设置等都可以在这里选择。设置没问题之后点击最下方的plot,开始画图。12查看效果这就是画出来的3D图。http://jingyan.baidu.com/article/19192ad833d86ce53e57073e.html
偏微分方程数值解法和计算流体力学之间有什么关系
完全不一样,流体力学中的是个状态量,没有微分积分之类的,高中生都能看懂它的推导方法。微分方程中的是形如:dy/dx=p(x)y+q(x)*(y的n次方)的一类方程,它有特定的解法。
有限差分求解偏微分方程matlab
如何使用matlab,用有限差分求解偏微分方程?求解思路:把偏微分方程离散化,采用合适的差分方法,将复杂的方程简化成简单的线性方程组,最后求解线性方程组,得到其数值解。现以一维扩散方程为例,说明其计算过程。第一步,根据条件,建立边界条件和初始条件,即g0=@(t)zeros(size(t)); g1=g0; %边界条件eta=@(x)sin(pi*x); %初始条件第二步,设置网格数,即n=101; %网格数m=101; %网格数第三步,设置步长,即h=0.01;%步长k=0.01;%步长第四步,设置t和x的初始值,即t0=0;%t的初始值x0=0;%x的初始值第五步,确定扩散系数,即K=1/pi^2;第六步,自定义Crank-Nicolson差分格式解函数[t,x,U]=diffusion_sol1(h,k,t0,x0,n,m,eta,g0,g1,K);第七步,绘制偏微分方程解的曲面,即surf(t,x,U)最后,运行程序得到一维扩散方程数值解的曲面图
多元统计分析和偏微分方程数值解哪个相对较难?
个人认为是数值分析,多元统计好理解,数值分析个人认为有些枯燥
偏微分方程数值解法
稳定性分析是针对某一特定的差分算法来说的。而并不是对偏微分方程来说的。一般是用Fouier分析的办法来做。你可以看一下余德浩,汤华中编的科学出版社出版的“微分方程数值解法”里面216页有一些相关的东西。比较常用的差分算法有Lax_Wendroff格式以及MacCormack格式。另外,你如果想要解析解的话,估计可能要用特征线法。或者分离变量法看一下。
谁学过《偏微分方程数值解法》啊,就孙志忠
《偏微分方程数值解法》根据教育部专业目录调整后的要求及计算数学的发展,在笔者修订版《微分方程数值解法》的基础上编写而成。全书包括六章,第一、二章是变分形式和Galerkin有限元法,第三、四章和第五章是有限差分法和有限体积法,第六章是离散化方程的解法。《偏微分方程数值解法》是为信息与计算科学专业本科生编写的教材,但也可作为应用数学、力学及某些工程科学专业的教学用书。《偏微分方程数值解法》介绍的求解偏微分方程的数值方法是基本的,对于从事科学技术及工程计算的专业人员也有参考价值
总结偏微分方程的解法
可分为两大方面:解析解法和数值解法。其中只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。数值解法又可以分为最常见的有三种:差分法、有限体积法、有限元法。其中,差分法是最普遍最通用的方法。扩展资料偏微分方程示例二阶线性与非线性偏微分方程始终是重要的研究对象。这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题,这些问题通常十分复杂具有较大的难度。对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。另一方面,由于电子计算机的迅速发展,使得各种方程均可数值求解,并且揭示了许多重要事实,因此,数值解法的研究,在已取得许多重要成果的基础上,将会有更快地发展。参考资料:百度百科——偏微分方程
总结偏微分方程的解法
可分为两大分支:解析解法和数值解法。只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法,其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等。扩展资料:导数(Derivative)是微积分学中重要的基础概念。对于定义域和值域都是实数域的函数f:R→R,若f(x)在点x0的某个邻域△x内,极限定义如下f′(x0)=△x→0lim△xf(x0+△x)u2212f(x0)(1.1)若极限存在,则称函数f(x)在点x0处可导,f′(x0)称为其导数,或导函数,也可以记为dxdf(x0)。在几何上,导数可以看做函数曲线上的切线斜率。给定一个连续函数,计算其导数的过程称为微分(Differentiation)。微分的逆过程为积分(Integration)。函数f(x)的积分可以写为F(x)=∫f(x)dx(1.2)其中F(x)称为f(x)的原函数。若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。如果一个函数f(x)在定义域中的所有点都存在导数,则f(x)为可微函数(DifferentiableFunction)。可微函数一定连续,但连续函数不一定可微。例如函数_x_为连续函数,但在点x=0处不可导。下表是几个常见函数的导数:参考资料来源:百度百科_微积分
偏微分方程数值解法
图形界面解法要利用 pdetool 接口求解之前,需先定义 PDE 问题,其包含三大部分:(1)利用绘图(draw)模式,定义 需要求解的问题的空间范围(domain)Ω 。(2)利用 boundary 模式,指定边界条件。(3)利用 PDE 模式,指定 PDE 系数,即输入 c,a,f 和 d 等 PDE 模式中的系数。在定义 PDE 问题之后,可依以下两个步骤求解偏微分方程(1)在 mesh 模式下,产生 mesh 点,以便将原问题离散化。(2)在 solve 模式下,求解。(3)最后,在 Plot 模式下,显示答案。偏微分方程数值
二阶偏微分方程
二阶偏微分方程是:y′=f(x)。原函数问题便是最简单的微分方程。而如果在该方程中y连续求两次导数的话就是二阶微分方程。牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,二阶微分方程得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能。