生物学

DNA图谱 / 问答 / 标签

简述HLA的生物学功能及其与临床的关系。

(1)生物学功能:①作为诱导同种异体移植排斥反应的靶抗原;②参与免疫应答的调控(MHC限制性、抗原转递、补体产生等);③某些HLA的表达与疾病发生的关系。(2)临床关系:①研究某些疾病的遗传倾向(某些特定的HLA表达与疾病,HLA表达异常与疾病的关系);②器官移植时选择供体和预测排斥反应;③亲子鉴定等法医学应用。

HLA的HLA的生物学功能

靶功能HLAⅠ类抗原分布于所有有核细胞。其抗原特异性在于肽链抗原决定簇的特定氨基酸顺序。这些抗原可被外来物质例如某种病毒或化学物质加以改变,当这些基因产物被改变之后,便成为自身免疫原,成为免疫排除的靶子。可见,靶功能的实质在于“识别自我”,以保证机体的完整性。因此,分布于所有细胞及其多态性这一特点十分重要。识别功能HLA的识别功能实指在免疫反应中特有的协同作用。抗体在B细胞生成,但在多数情况下,需要巨噬细胞和T淋巴细胞参与。其过程是:抗原经巨噬细胞处理后,抗原信息传递给T辅助细胞,后者再将信息传给B细胞,使B细胞进而分化生成专一抗体。在这个过程中,T辅助细胞不仅识别致敏巨噬细胞上的抗原,同时也要识别巨噬细胞是否与其本身的Ⅱ类抗原相一致。就是说,只有巨噬细胞的单体型和T辅助细胞的单体型相一致时,T辅助细胞才被激活,从而使免疫反应在严密的遗传控制下进行。

dna多态性 的生物学意义

DNA多态性是指染色体DNA等位基因中核苷酸排列的差异性。DNA区域中等位基因(或片段)存在两种或两种以上形式,对基因功能没有影响,可分为序列多态性和序列长度多态性。基因多态性的研究,为临床医学、遗传病学和预防医学的发展研究开拓了新的领域。 人类基因多态性在阐明人体对疾病、毒物的易感性与耐受性,疾病临床表现的多样性,以及对药物治疗的反应性上都起着重要的作用。扩展资料:对mRNA剪接的影响:如果点突变发生内含子的剪切位点,可以产生两种影响:一是原有的剪接位点消失,二是产生新的剪切位点。无论是那一种形式,都可以导致mRNA的错误剪接,产生异常的mRNA,最终产生异常的表达产物,数个碱基的缺失、片段缺失等匀有可能造成剪接位点的缺失。蛋白质肽链中的片段缺失:无义突变和DNA片段的缺失都可以导致肽链中的片段缺失,致使基因编码的蛋白质失去原有的功能。移码突变不仅翻译后的肽链中氨基酸序列发生改变,而且也导致肽链中的大片段缺失。参考资料来源:百度百科-基因多态性生物学作用

生物学上的多样性diversity与多态性polymorphisms有什么区别

多样性和多态性是近些年来出现频次较高的一个热词,尤其在生命科学领域。多样性(diversity)是指同一属性事物或现象的不同类型或式样。多态性(polymorphism)是指同一属性事物或现象的多种存在形态或状态。两个词汇的差别在于,前者强调类型差异,后者突出存在状态。以生物为例,其多样性体现在三个层次,即遗传多样性、生物多样性和生态系统多样性。以基因为例,其多态性表现为二个层面,即基因组多态性和基因多态性,而后者又包括长度多态性和位点。

亲子鉴定生物学父亲是什么意思

  很多人对于亲子鉴定可能就会比较的了解,可是对于亲子鉴定生物学父亲这个词可能就会比较懵逼了,因为压根就不知道是什么意思,因为没有了解过这方面的事情,所以不知道也是很正常的事,那么亲子鉴定生物学父亲是什么意思呢? 亲子鉴定生物学父亲是什么意思   亲子鉴定支持父亲生物学关系,那就是孩子是亲生的。   指导意见:   亲子鉴定就是利用医学、生物学和遗传学的理论和技术,从子代和亲代的形态构造或生理机能方面的相似特点,分析遗传特征,判断父母与子女之间是否是亲生关系。   亲子鉴定是什么   亲子鉴定在中国古代就已经有了,但是以前都是滴血验亲之说。随着科技的发达,科学的发展,以及对血型的认识,大家伙已经对滴血认亲不相信了,所以,亲子鉴定就出现了。亲子鉴定就是利用法医学、生物学和遗传学的理论和技术,从子代和亲代的形态构造或生理机能方面的相似特点,分析遗传特征,判断父母与子女之间是否是亲生关系,是法医物证鉴定的主要组成部分,简单来说,就是通过血型或DNA测试等鉴定父母与子女之间的亲缘关系。   亲子鉴定司法亲子鉴定和个人亲子鉴定两种情形。目前国内外进行亲子鉴定的手段主要有:   1、血型检验,即血液中各种成分的遗传多态性标记检验。此种检验方法操作和判读结果依靠人工,操作相对复杂。   2、DNA多态性检验:是目前国际公认的最有效的用于亲子鉴定和个体识别的方法。而且采用的检材可以是血液、血痕、唾液、毛发、骨骼等几乎人体任何组织或器官。 亲子鉴定需要什么   因为亲子鉴定不是一个普遍都要做的项目,所以或许很多人不了解做亲子鉴定需要什么条件?那么赶紧围观一下吧!   首先,要做好人员的准备:   1、成年被鉴定人均应自愿同意鉴定,14岁以上的青少年应适当征求其对鉴定的意见;   2、被鉴定人应由母-子-可疑父亲或父母-子组成,只要求父子或母子二人鉴定者一般要求说明鉴定理由;   3、被鉴定人应了解自己或近亲属有无遗传病史,为鉴定提供参考(有遗传病史的易于基因变异);   4、被鉴定人年龄在半岁以上;   除此之外,还要做好资料的准备:   1、司法鉴定。需当面采样,所有提供材料必须真实可靠。   2、需要准备相应的证件有:身份证,户口簿,护照,军官证或者孩子的出生证等,以及相关的复印件。   3、需要准备1寸证件照片各3张。   4、常规检测样本,具体包括:血痕、口腔拭子、带毛囊头发。

有丝分裂和减数分裂的生物学意义

有丝意义是:在生物的亲代和子代之间保持了遗传性状的稳定性,对于生物的遗传有重要意义。减数分裂的遗传学意义1.保证了有性生殖生物个体世代之间染色体数目的稳定性。 通过减数分裂导致了性细胞(配子)的染色体数目减半,即由体细胞的2n条染色体变为n条染色体的雌雄配子,再经过两性配子结合,合子的染色体数目又重新恢复到亲本的2n水平,使有性生殖的后代始终保持亲本固有的染色体数目,保证了遗传物质的相对稳定。 2.为有性生殖过程中创造变异提供了遗传的物质基础: (1)通过非同源染色体的随机组合;各对非同源染色体之间以自由组合进入配子,形成的配子可产生多种多样的遗传组合,雌雄配子结合后就可出现多种多样的变异个体,使物种得以繁衍和进化,为人工选择提供丰富的材料。 (2)通过非姐妹染色单体片段的交换:在减数分裂的粗线期,由于非姐妹染色单体上对应片段可能发生交换,使同源染色体上的遗传物质发生重组,形成不同于亲代的遗传变异。减数分裂的生物学意义 减数分裂是遗传学的基础。具体表现在: 1、在减I分裂过程中,因为同源染色体分离,分别进入不同的子细胞,故在子细胞中只具有每对同源染色体中的一条染色体。减数分裂中同源染色体的分离,正是基因分离律的细胞学基础。 2、同源染色体联会时,非姐妹染色单体之间对称的位置上可能发生片段交换,也就是父源和母源染色体之间发生遗传物质的交换。这种交换可使染色体上连锁在一起的基因发生重组,这就是染色体上基因连锁和互换的细胞学基础。 由于减数分裂,使每种生物代代都能够保持二倍体的染色体数目。在减数分裂过程中非同源染色体重新组合,同源染色体间发生部分交换,结果使配子的遗传基础多样化,使后代对环境条件的变化有更大的适应性。 1.保证了有性生殖生物个体世代之间染色体数目的稳定性通过减数分裂导致了性细胞(配子)的染色体数目减半,即由体细胞的2n条染色体变为n条染色体的雌雄配子,再经过两性配子结合,合子的染色体数目又重新恢复到亲本的2n水平,使有性生殖的后代始终保持亲本固有的染色体数目,保证了遗传物质的相对稳定。 2.为有性生殖过程中创造变异提供了遗传的物质基础: (1)通过非同源染色体的随机组合;各对非同源染色体之间以自由组合进入配子,形成的配子可产生多种多样的遗传组合,雌雄配子结合后就可出现多种多样的变异个体,使物种得以繁衍和进化,为人工选择提供丰富的材料。 (2)通过非姐妹染色单体片段的交换:在减数分裂的粗线期,由于非姐妹染色单体上对应片段可能发生交换,使同源染色体上的遗传物质发生重组,形成不同于亲代的遗传变异。

细胞有哪些生物学特征?

4、真核细胞与原核细胞的差异: 原核细胞 真核细胞 无真正细胞核,遗传物质无核膜包被, 散状分布或相对集中分布形成核区或拟核区 具完整细胞核,有核膜包被,还有明显的核仁等构造 遗传物质DNA分子仅一条,不与蛋白质结合, 呈裸露状态 DNA分子有多条,常与蛋白质结合成染色质或染色质 无内膜系统,缺乏膜性细胞器 具发达的内膜系统 不存在细胞骨架系统,无非膜性细胞器 具由微管、微丝、中间纤维等构成的细胞骨架系统 基本表达两个基本过程即转录和翻译相偶联 遗传信息的转录和翻译过程具有明显的阶级性和区域性 细胞增殖无明显周期性,以无丝分裂进行 增殖以有丝分裂进行,周期性很强 细胞体积较小 细胞体积较大 细胞之中有不少的病原微生物 细胞为构成人体和动植物的基本单位 5、细胞生物学研究的主要技术与手段: a.观察细胞显微结构的光学显微镜技术; b.探索细胞超微结构的电子显微镜技术; c.研究蛋白质和核酸等生物大分子结构的X射线衍射技术; d.用于分离细胞内不同大小细胞器的离心技术; e.用于培养具有新性状细胞的细胞融合和杂交技术; f.使机体细胞能在体外长期生长繁殖的细胞培养技术; g.能对不同类型细胞进行分类并测其体积、DNA含量等数据的流式细胞术; h.利用放射性同位素对细胞中的DNA、RNA或蛋白质进行定位的放射自显影技术; i.用于探测基因组中英雄模范种基因是否存在,是否表达以及拷贝数多少的核酸分子杂交技术; j.能将细胞中的特定蛋白质或梳酸分子进行分离纯化的层析技术和电泳技术; k.对细胞化学定性、定量分析

在生物学上什么叫一对等位基因?并举例说明

控制生物体的一对相对形状的基因叫等位基因例如:人有酒窝由基因A控制,没有酒窝由基因a控制,那么A与a就是一对等位基因!人有耳垂由基因B控制,没有耳垂由基因b控制,那么B与b就是一对等位基因!

亲子鉴定结果为什么写支持某某是某某的生物学父亲,是不是不肯定?

亲子鉴定结果为什么写支持某某是某某的生物学父亲,是比较肯定的说法了。常规的亲生血缘关系鉴定,包括父母子三方(又称为三联体)、父子(或母子)双方(又称为二联体)的亲权鉴定。这类鉴定的准确率可以达到99.999999%。亲子鉴定有司法效力,如打官司、移民、上户口等;需要提供当事人的身份证明资料就可以了,父母提供身份证,孩子可提供出生证或户口簿证明身份(证明委托人是孩子的监护人)。若已进入司法程序或已聘请律师,可由法官或律师委托进行鉴定。也可由当事人双方共同或单方委托。扩展资料:《婚姻法司法解释三》第二条 明确规定亲子关系诉讼中一方当事人拒绝鉴定将导致法院推定另一方主张成立的法律后果。亲子关系诉讼属于身份关系诉讼,主要包括否认婚生子女和认领非婚生子女的诉讼,即否认法律上的亲子关系或承认事实上的亲子关系。现代生物医学技术的发展,使得DNA鉴定技术被广泛用于子女与父母尤其是与父亲的血缘关系的证明。亲子鉴定技术简便易行,准确率较高,在诉讼中起到了极为重要的作用,全世界已经有120多个国家和地区采用DNA技术直接作为判案的依据。在处理有关亲子关系纠纷时,如果一方提供的证据能够形成合理的证据链条证明当事人之间可能存在或不存在亲子关系,另一方没有相反的证据又坚决不同意做亲子鉴定的,人民法院可以按照2002年4月1日开始施行的《最高人民法院关于民事诉讼证据的若干规定》第七十五条的规定做出处理,即可以推定请求否认亲子关系一方或者请求确认亲子关系一方的主张成立,而不配合法院进行亲子鉴定的一方要承担败诉的法律后果。参考资料来源:百度百科——亲子鉴定

生物学离心方法

1.差速离心(differential centrifugation)依据实际物系特点(目的物和其他组分性质和相互作用等)、分离目的和分离所需程度,调整离心力和时间,使得不同组分得以分离。2.区带离心(zonal centrifugation)区带离心又分为:差速区带离心和平衡区带离心.其中差速区带离心:物质密度大于密度梯度最大密度平衡区带离心:物质密度小于密度梯度最大密度具体例子记得学分离工程的时候课本上好像有,记不太清了,希望能帮到你。

求分子生物学实验讲义

【实验目的】(1)了解实验的常规仪器、设备、耗材。(2)掌握本实验所用仪器的功能和使用方法。【实验内容】一、验室的常规仪器、设备(一) 温度控制系统:1. 冰箱: 根据药品、试剂及多种生物制剂保存的需要,必须具备不同控温级别的冰箱,最常使用的有:4℃、-20℃、-80℃冰箱。4℃适合储存某些溶液、试剂、药品等。-20℃适用于某些试剂、药品、酶、血清、配好的抗生素和DNA、蛋白质样品等。-80℃适合某些长期低温保存的样品、纯化的样品、特殊的低温处理消化液等的保存。0-10℃的冷柜适合低温条件下的电泳、层析、透析等实验。2.液氮罐:有些实验材料、某些器官组织、细胞株、菌株及纯化的样品等,要求速冻和长期保存在超低温环境下,就需要一个液氮罐(-196℃)具有经济、省力和较好地保持细胞生物学特性的优点。3.培养箱:37℃恒温箱用于细菌的固体培养和细胞培养。CO2培养箱适用于培养各种细胞,可恒定地提供一定量的CO2(通常5%),用来维持培养液的酸度(pH值)。37℃恒温空气摇床可进行液体细菌的培养。4. 水浴锅:用于保温。25-100℃水浴摇床可用于分子杂交试验,各种生物化学酶反应等试验的保温。25-100℃水浴箱用于常规试验。5. 烘箱:主用于烘干实验器皿,有些需要温度高些,有些需要温度低些。用于RNA方面的实验用具,需要在250℃烤箱中烘干,有些塑料用具只能在42-45℃的烤箱中进行烘干。(二)水的净化装置:随着分子生物学的飞速发展,许多实验对水纯度的要求越来越高。1. 蒸馏水皿:单蒸水常难以满足实验要求。双蒸水、三蒸水配液,许多实验要去离子水。多次蒸馏水可除去水中挥发性杂质,不能完全除去水中溶解的气体杂质(Mn2+、Cu2+、Zn2+、Fe3+、Mo(Ⅵ))。2. 离子交换器:去离子水—用离子交换法制取的水,称去离子水。去离子效果好,但不能除去水中的非离子型杂质,其中常含有微量的有机物(树脂等)。13.超纯水:用蒸馏水、离子交换水、反渗透纯水做为供水,磁铁耦合齿轮泵作用使水循环。用于PCR、PCR氨基酸分析、DNA测序、酶反应、组织和细胞培养等。(三)菌消毒设备:分子生物学所用大部分试剂,而且实验用具都应严格消毒灭菌。。1.蒸汽消毒锅:用于小批量物品的随时消毒。大批实验物品、试剂、培养基可使用大型消毒且定时进行消毒2. 紫外线:75%乙醇 、0.1%SDS(消毒剂)一些耐高压、高温消毒且可用紫外线照射或乙醇和SDS浸泡。紫外线照射使用方便,且很方便,但灭菌效果与距离有关,且产生臭氧污染安全,用于无菌室,超净台和塑料用具的消毒。3. 滤器滤膜:不耐高温、高压的试剂用其处菌。4. 煮沸消毒:主用于金属器械和针急需时采用。(四) 计量系统:1. 称量系统:(各种天平)台秤、托盘天平、钮力摆动天平、光电分子天平、精密电子分析天平2. 液体体积的度量:精:量筒、移液管、微量取液器粗:刻度试管、烧杯、锥形瓶3. pH值测量:pH计:测定溶液中H+的直接电位的仪器,主要通过一对电极,在不同的pH溶液中产生不同的电动势用pH值表示出来。pH试纸:只适用于培养液、酚饱和液、缓冲液或其它试剂溶液的pH值的粗略估计。而大部分试剂的配制要求严格的pH值,需精确度高(小数点后两位)的pH计。4. OD值测量:光密度、分光光度计是利用物质在可见光和紫外线区域中的吸收光谱来鉴定该物质的性质及其含量的一种仪器。它是由光源、单色器、吸收池、接收器、测量仪表或显示屏幕所组成。OD值是许多溶液中溶质定量的方便指标之一,通过所产生的单色光而测定某一溶液对该单色光的吸收值,利用它可进行核酸溶液定量和纯度的初步判断。(五)离心机:离心技术是研究生物的结构和功能中不可缺少的一种物理技术手段。因为各种物质在沉淀系数、浮力、和质量等方面有差异,可利用强大的离心力场,使其分离、纯化和浓缩。目前有各种各样的离心机。可供少于0.05ml到几升的样品离心之用。离心技术应用广泛,包括收集和分离细胞、细胞器和生物大分子等。据其转速的不同,可分为以下几种类型:1. 普通离心机:最大转速6000 r/m ,最大离心力6000g①医用或台式离心机:是离心机中最简单而廉价的,最常用于收集快速沉降系数的物质,如红细胞、粗大的沉淀物、酵母菌和细菌等。②低速冷冻离心机:主要用于细胞、细胞核、细胞膜和细菌的沉淀和收集等。 22. 高速离心机:最大转速25000 r/m ,最大离心力89000g有冷冻和常温两种,多用于制备和手收集微生物、细胞碎片、细胞、大的细胞器、硫酸铵沉淀物以及免疫沉淀物等。3. 超速离心机:最大转速9000 r/m ,最大离心力694000g。4. 台式超速离心机:最大转速12000r/m ,最大离心力625000g。(六)超净工作台:内有紫外灯、照明灯、还应有酒精灯火焰、75%乙醇等灭菌的设备,是一种提供局部洁净度的设备。其原理是鼓风机驱动空气,经过低、中效的过滤器后,通过工作台面,使实验操作区域成为无菌的环境。超净台按气流方向的不同大致有几种类型:①侧流式:净化后气流,从左侧或右侧通过工作台面,流向对侧,或者从上往下或从下往上流向对侧,他们都能形成气流屏障而保障台面无菌。缺点:在净化气流和外边气体交界处,可因气体的流向而出现负压,使少量的未净化气体混入,而造成污染。②外流式:气流是面向操作人员的方向流动,从而保证外面气体不能混入。缺点:在进行有害物质实验时,对操作人员不利,但可采用有机玻璃把上半部分遮挡起来,使气流往下方流出。(七)电泳系统:电泳技术是检测、鉴定各种生物大分子的纯度、含量及描述它们的特征,甚至还是分离、纯化、回收和浓缩样品的工具之一。核酸和蛋白质等都带有电荷,当它们被置于电场中时,能够移动。电泳装置由两部分组成:电源装置和电泳槽装置。① 电泳装置:电源需经稳流通过稳压器,既能提供稳定的直流电,又能输出稳定的电压。可用于三种:常度稳压电泳仪:输出电压0-500v 0-15mA中度稳压电泳仪:输出电压400-1000v高度稳压电泳仪:输出电压1000以上的电源装置。② 电泳槽装置:分两种水平式电泳槽:一般分为微型电泳槽和大号水平式电泳槽垂直式电泳槽:分垂直平板电泳槽和圆柱形电泳槽装置。(八)PCR仪:Polymerase Chain Reaction仪,也称DNA热循环仪,基因扩增,它是使一对寡核苷酸引物结合到正负DNA链上的靶序列两侧,从而酶促合成拷贝数百万倍的靶序列DNA片段,它的每一循环包括在三种不同温度进行的DNA变性,引物复性,DNA聚合酶催化的延伸反应三个过程。(九)凝胶成像分析系统:对电泳后含溴乙锭(EB)核酸样品的观察分析。(十)干燥设备: 31. 真空加热干燥箱:核酸在硝酸纤维素膜和尼龙膜上固定,用于杂交实验。2. 电泳凝胶干燥箱:电泳后的凝胶进行脱水干燥的仪器,一般可将凝胶干燥到一些玻璃纸上,干燥后的凝胶易于保存。3. 液氮冷冻干燥:适用于活性蛋白质样品的干燥与结晶。4. 真空泵:许多实验都需要抽真空。如:乙醇沉淀后核酸样品的干燥,电泳凝胶的干燥等。(十一) 其他1. 微波炉:便于一些溶液的快速加热和定温加热,电泳琼脂糖凝胶配制、溶化等。2. 制冰机:用于制造大多数核酸、蛋白质的实验操作所需的低温环境,以减少核酸酶或蛋白质酶的水解。3. 层析装置:(色谱分离)是一种分离多组分混合物的有效物理方法。真空印记系统,DNA合成/测序仪:这些都是对核酸进行深入研究的必备仪器。4. 磁力搅拌器:多角度旋转混匀器、快速振荡混合器:用于混合仪器。5. 组织匀浆器:超声组织及细胞破碎器,用其进行样品的分离提纯实验。6. 通风橱:很多溶剂能逸出毒气,必备柜 ,放射性试验还要有有机玻璃屏蔽。7. 玻璃蒸馏器、电热加帽、变压器:用于酚等有机溶剂的蒸馏。8. Tip头、Eppendorf管:微管移液器tip头(吸液尖)、Eppendorf管(微量离心管)可洗涤,硅化消毒后反复使用。对一些要求严格的实验,如RNA的提取、保存等操作,应使用新的消毒tip头与Eppendorf管。另外还应备有常用规格的离心管(1000ml、500 ml、250 ml、50 ml、7 ml等)及96孔、24孔、12孔、6孔的细胞培养塑料平板等。9. 小型设备、用具:定时器、滤膜、保鲜膜、防护眼镜鸭嘴镊、常规的玻璃或塑料器皿(包括平皿、试管、烧杯、量瓶、试剂分液漏斗、避光保存的试剂应使用棕色试剂瓶,如饱和酚、巯基乙醇等)、记号笔、各种手套PE、乳胶、家用、防酸的等)二、本期实验所用主要仪器、 设备的功能及操作1. 酚的重蒸馏装置:空气冷凝式玻璃蒸馏器。一般酚是无色透明的结晶,如呈粉色或黄色,表明其中含有酚的氧化产物,如醌、二酸等,变色的酚不能用于实验,因其中的酚氧化物可破坏核酸的磷酸二酯键,并引起DNA链的交联。使用前必须在160℃-180℃重蒸馏以去除能引起RNA和DNA断裂和交联的污染杂质,从而得到纯净的酚。2. 磁力搅拌器:81-2型恒温磁力搅拌器将导电温度表用导线与二芯插头连接,插入后面的温度表孔内,当温度上升到预先调整好的度数时即自动停止加热(控温搅拌)。主要用于物质的快速搅拌、溶解和混匀。如配制试剂,制备酚的水饱和液等。 43. 蒸馏水器:1810B自动双重纯水蒸馏器,石英管加热式,本器的一次及二次蒸馏均有保护装置,使用安全可靠,热继电器当冷却水突然中断或缺水的情况下,即自动切断电源。干簧继电器控制二次蒸馏瓶内的水位,其高度应以在水位降低时能自动切断电源为准,从而达到自动控制水位的目的。该仪器主要用于制备双蒸水和三蒸水。4. 离心机:TGL-16G台式高速离心机,最大转速20000rpm,主要用于核酸提取时蛋白质的沉淀和有机相与水相的分层,PCR检测的瞬时离心。5. 微量取液器:主要用于精确量取微量液体体积和核酸水相的转移。6. 匀浆器:5ml、10ml玻璃匀浆器。主用于组织细胞的破碎。7. 凝胶成像分析系统主用于核酸样品琼脂糖凝胶和PCR电泳结果的紫外观察和照像。8. PCR仪:PTC-200基因扩增仪体外扩增核酸的仪器9. 蒸汽消毒锅:用于实验用试剂、器皿、用具等的灭菌清毒有电加热式、电炉加热式两种。10. 超净台:JJT-1300型洁净工作台,侧流式。原理:吸进气经过初、中级过滤皿(无纺布滤过)后,再通过风机经高级过滤器(超细玻璃纤维滤纸制成)而形成洁净空气。主要是在局部空气造成洁净空气环境,以使工作区域中的悬浮粒子及微生物控制在最低限度内。本台操作压为垂直层流压,因此出风面与操作位置不应放置多余的物品,以免妨碍气流的正常流动,影响洁净度,台面板上的孔作为通风孔,使用时避免有液体或其他物品漏入空中,以免影响内部构件。风速可调。使用:75%乙醇消毒2-3次,摆放好实验用品。插上电源,紫外消毒30分钟,启动风机5m后关灯,关灯后10分钟打开照明灯,即可使用。11. 电泳系统:①电泳仪:HV-3000型高度三恒多用电泳仪(恒压、恒流、恒功率)②电泳槽:水平式两种。12.微波炉:主要用于琼脂糖的快速溶解。

大肠杆菌的生物学特性

大肠杆菌的生物学特性   革兰阴性杆菌,大小为(0.3-1.0)um×(1.0-6.0)um、无芽孢、多数菌种有鞭毛,对营养要求不高,绝大多数菌种在普通培养基和麦康凯琼脂上生长良好.兼性厌氧,发酵葡萄糖产酸或产酸产气.氧化酶试验阴性,触酶试验阳性,还原硝酸盐为亚硝酸盐.

分子生物学中的ori是什么意思

  1,Origin(原点,Ori):复制起始处的DNA 序列。  2,(replication )origin应该是指复制起始位点,firing有点燃的意思,结合语境该理解为开始,start.  3,origin firing应该是指开始复制开始.  4,原核生物DNA复制起始点,是DNA链上独特的具有起始DNA复制功能的碱基序列。大肠杆菌的复制起点包括OriC和OriH.  5, 双向复制(一般) 复制起始点(origin)+两侧复制叉=复制单位(复制子, Replicon) 。

生物学,染色体半保留复制

半保留复制(semiconservative replication):一种双链脱氧核糖核酸(DNA)的复制模型,其中亲代双链分离后,每条单链均作为新链合成的模板。因此,复制完成时将有两个子代DNA分子,每个分子的核苷酸序列均与亲代分子相同,这是1953年沃森(J.D.Watson)和克里克(F.H.C.Crick)在DNA双螺旋结构基础上提出的假说,1958年得到实验证实。 1958年Meselson和Stahl利用氮标记技术在大肠杆菌中首次证实了DNA的半保留复制,他们将大肠杆菌放在含有15N标记的NH4Cl培养基中繁殖了15代,使所有的大肠杆菌DNA被15N所标记,可以得到15N桪NA。然后将细菌转移到含有14N标记的NH4Cl培养基中进行培养,在培养不同代数时,收集细菌,裂介细胞,用氯化铯(CsCl)密度梯度离心法观察DNA所处的位置。由于15N桪NA的密度比普通DNA(14N-DNA)的密度大,在氯化铯密度梯度离心(density gradient centrifugation)时,两种密度不同的DNA分布在不同的区带。 实验结果表明:在全部由15N标记的培养基中得到的15N桪NA显示为一条重密度带位于离心管的管底。当转入14N标记的培养基中繁殖后第一代,得到了一条中密度带,这是15N桪NA和14N-DNA的杂交分子。第二代有中密度带及低密度带两个区带,这表明它们分别为15N14N-DNA和14N14N-DNA。随着以后在14N培养基中培养代数的增加,低密度带增强,而中密度带逐渐减弱,离心结束后,从管底到管口,CsCl溶液密度分布从高到低形成密度梯度,不同重量的DNA分子就停留在与其相当的CsCl密度处,在紫外光下可以看到DNA分子形成的区带。为了证实第一代杂交分子确实是一半15N-DNA-半14N-DNA,将这种杂交分子经加热变性,对于变性前后的DNA分别进行CsCl密度梯度离心,结果变性前的杂交分子为一条中密度带,变性后则分为两条区带,即重密度带(15N-DNA)及低密度带(14N-DNA)。它们的实验只有用半保留复制的理论才能得到圆满的解释。 DNA既然是主要的遗传物质,它必须具备自我复制的能力。瓦特森和克里克(1953)在提出DNA双螺旋结构模型的同时,对DNA复制也进行了假设。他们根据DNA分子双螺旋结构模型,认为DNA分子的复制,首先是从它的一端氢键逐渐断开。当双螺旋的一端已拆开为两条单链时,各自可以作为模板,从细胞核内吸取与自己碱基互补的游离核苷酸(A吸取T,C吸取G),进行氢键的结合,在复杂的酶系统的作用下,逐渐连接起来,各自形成一条新的互补链,与原来模板单链互相盘旋在一起,两条分开的单链恢复为双链DNA分子,与原来的完全一样。DNA的这种复制方式称为半保留复制(semiconservative replication),因为通过复制所形成的新的DNA分子,保留原来亲本DNA双链分子的一条单链。 DNA在活体内的半保留复制特征已为1958年以来的大量试验所证实。DNA的这种复制方式对保持生物遗传的稳定具有非常重要的作用。 还可能存在其他两种复制方式,都以原来亲本DNA双链分子作为模板链。一种方法称为全保留复制(conservative replication),在复制过程中新的DNA分子单链结合在一起,形成一条新的DNA双链,而亲本DNA双链仍然被保留在一起。另一种方法称为散布式复制(dispersive replication),在复制过程中亲本DNA双链被切割成小片段,分散在新合成的两条DNA双链分子中。 1953年J.D.Watson和 F.H.C. Crick在提出DNA双螺旋结构时,对其互补关系予以很大的重视,而且提出了DNA的复制模型。DNA在进行复制时各以双链中的每一条链作为模板,各个和互补的前体单核苷酸配对重合而形成与这二条单链各各对应的双重子螺旋二条。所谓互补就是指腺嘌呤一定只与胸腺嘧啶配对,鸟嘌呤一定只与胞嘧啶配对,新的单核苷酸排列在模板上时,其排列法是依原来链上的碱基通过互补来决定的。这样无论子分子与子分子间,还是子分子与母分子间,碱基排列顺序是完全相同。这样一来具有和亲本完全一样的遗传信息的子分子自我增殖了二倍。这时所产生的子双重螺旋分子一条链是从亲代原封不动的接受下来的,只有相对的一条链是新合成的,所以把这种复制方式称作半保留复制。这个模型曾用重同位素标记的DNA以密度梯度离心法进行分析,或用放射性同位素标记的DNA以放射自显影法进行测定等等,用几种不同原理的方法,曾在从人到病毒的许多种生物中进行了验证,肯定了这个模型的正确性和普遍性。关于DNA是以半保留方式复制这一点已被认为是生物学中最基本的肯定性原理。

何谓DNA的半保留复制?它是如何证明的?生物学意义是什么?

【答案】:DNA复制时,亲代DNA先行解链,然后以这两条亲代链为模板,按照碱基配对的原则,各形成一条互补的新链。这样,从亲代DNA的一个双股螺旋变为子代的两个双股螺旋。子代DNA分子的一条链来自亲代,另一条链是新合成的,这种复制方式就是半保留复制。1958年,Meselson和Stahl首次用15N标记的大肠杆菌DNA实验直接证明了DNA的半保留复制。用14NH4Cl作为唯一的N源培养大肠杆菌,使大肠杆菌DNA全部是含15N的,再将大肠杆菌转移到14N培养基上培养,每隔一段时间取样,提取DNA并作密度梯度离心,经过一代后,DNA只出现一条区带,浮力密度位于15N-DNA和14N-DNA之间,表明这条区带的DNA是由14N/15N-DNA组成的。经过两代后,出现两条区带,一条为14N-DNA,另一条为14N/15N-DNA,若再继续培养,可以看到14N-DNA分子增多。以此方法可证明新合成的DNA双链中,一条链来自亲代,另一条链是新合成的,从而证明了DNA的复制是半保留复制。半保留复制具有极其重要的生物学意义。生物细胞的遗传特性是通过DNA的复制而传给子代细胞的,DNA以半保留的方式进行复制,使子代DNA分子与亲代DNA分子顺序相同,保证了遗传上的稳定性。

简述抗体的生物学效应

在人和动物体内,由于抗原或半抗原入侵刺激机体而在细胞中产生的免疫球蛋白.能可逆、非共价、特异地与相应抗原结合,形成抗原-抗体复合体. 作用:(1)特异性结合抗原:抗体本身不能直接溶解或杀伤带有特异抗原的靶细胞,通常需要补体或吞噬细胞等共同发挥效应以清除病原微生物或导致病理损伤.然而,抗体可通过与病毒或毒素的特异性结合,直接发挥中和病毒的作用.  (2)激活补体:IgM、IgG1、IgG2和IgG3可通过经典途径激活补体,凝聚的IgA、IgG4和IgE可通过替代途径激活补体.  (3)结合细胞:不同类别的免疫球蛋白,可结合不同种的细胞,产生不同的疚,参与免疫应答.  (4)可通过胎盘及粘膜:免疫球蛋白G(IgG)能通过胎盘进入胎儿血流中,使胎儿形成自然被动免疫.免疫球蛋白A(IgA)可通过消化道及呼吸道粘膜,是粘膜局部抗感染免疫的主要因素.  (5)具有抗原性:抗体分子是一种蛋白质,也具有刺激机体产生免疫应答的性能.不同的免疫球蛋白分子,各具有不同的抗原性.  (6)抗体对理化因子的抵抗力与一般球蛋白相同:不耐热,60~70℃即被破坏.各种酶及能使蛋白质凝固变性的物质,均能破坏抗体的作用.抗体可被中性盐类沉淀.在生产上常可用硫酸铵或硫酸钠从免疫血清中沉淀出含有抗体的球蛋白,再经透析法将其纯化.  (7)通过与细胞Fc受体结合发挥多种生物效应   ①调理作用   IgG、IgM的Fc段与吞噬细胞表面的FcγR、FcμR结合,增强其吞噬能力,通常将抗体促进吞噬细胞吞噬功能的作用称为抗体的调理作用 (opsonization).  ②发挥抗体依赖的细胞介导的细胞毒作用

生物学中噬菌斑是什么

噬菌斑即噬菌体侵染细菌细胞,导致寄主细胞溶解死亡.因而在琼脂培养基表面形成的空斑.   将适量的噬菌体和敏感细菌在软琼脂中混合,然后平埔于琼脂培养基上,凝固后保温放置,在培养基平面上的细菌,由于噬菌体的作用被溶菌而形成圆形斑,称为噬菌斑。噬菌斑的大小,从肉眼勉强可见的小形斑直到直径1厘米以上的大形斑不等。一般溶原性噬菌体的噬菌斑中央残存着已溶原化的细胞,故成为混浊噬菌斑。相反,烈性噬菌体则形成透明噬菌斑。另还有透明与混浊部分相混杂的斑驳噬菌斑。在适当条件下,一个噬菌体粒子形成一个噬菌斑。对动物病毒一般是把它少量地接种培养于玻璃试管或器皿的单层培养细胞上。当在它上面铺上一层含有中性红染料的琼脂时,由于被病毒感染而变性的细胞不能摄取染料,在一定时间(天数)后便出现噬菌斑。   噬菌斑是噬菌体感染敏感宿主细菌以后在含受体菌的涂布平板上形成的肉眼可见的透明圈。   在涂布有敏感宿主细胞的固体培养基表面,若接种上相应噬菌体的稀释液,其中每一噬菌体粒子 由于 先侵染和裂解一个细胞,然后以此为中心,再反复侵染和裂解周围大量的细胞,结果就会在菌苔上形成一个具有一定形状、大小、边缘和透明度的噬菌斑。

生物学 重组DNA都包括什么?

重组DNA是目的基因与DNA载体连接而成的。如果该DNA载体是质粒,则重组DNA就是重组质粒。如果该DNA载体不是质粒而是噬菌体的遗传物质或者其他的,就有别的说法,具体我也不清楚。因为基因工程中经常用大肠杆菌质粒作为DNA载体,所以通常称重组质粒为重组DNA。

生物学的探针是什么概念?

基因探针(probe)就是一段与目的基因或DNA互补的特异核苷酸序列,它可以包括整个基因,也可以仅仅是/基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。1.探针的来源DNA探针根据其来源有3种:一种来自基因组中有关的基因本身,称为基因组探针(genomicprobe);另一种是从相应的基因转录获得了mRNA,再通过逆转录得到的探针,称为cDNa探针(cDNaprobe)。与基因组探针不同的是,cDNA探针不含有内含子序列。此外,还可在体外人工合成碱基数不多的与基因序列互补的DNA片段,称为寡核苷酸探针。2.探针的制备进行分子突变需要大量的探针拷贝,后者一般是通过分子克隆(molecularcloning)获得的。克隆是指用无性繁殖方法获得同一个体、细胞或分子的大量复制品。当制备基因组DNA探针进,应先制备基因组文库,即把基因组DNA打断,或用限制性酶作不完全水解,得到许多大小不等的随机片段,将这些片段体外重组到运载体(噬菌体、质粒等)中去,再将后者转染适当的宿主细胞如大肠肝菌,这时在固体培养基上可以得到许多携带有不同DNA片段的克隆噬菌斑,通过原位杂交,从中可筛出含有目的基因片段的克隆,然后通过细胞扩增,制备出大量的探针。为了制备cDNA探针,首先需分离纯化相应mRNA,这从含有大量mRNA的组织、细胞中比较容易做到,如从造血细胞中制备α或β珠蛋白mRNA。有了mRNA作模板后,在逆转录酶的作用下,就可以合成与之互补的DNA(即cDNA),cDNA与待测基因的编码区有完全相同的碱基顺序,但内含子已在加工过程中切除。

通过基因调节机制而发挥生物学效应的激素有哪些

通过基因调节机制而发挥生物学效应的激素有哪些  激素(Hormone)音译为荷尔蒙。它是我们生命中的重要物质。  激素是内分泌细胞制造的。  人体内分泌细胞有群居和散住两种。  群居的形成了内分泌腺,如脑壳里的脑垂体,脖子前面的甲状腺、甲状旁腺,肚子里的肾上腺、胰岛、卵巢及阴囊里的睾丸。  散住的如胃肠粘膜中有胃肠激素细胞,丘脑下部分泌肽类激素细胞等。  每一个内分泌细胞都是制造激素的小作坊。  大量内分泌细胞制造的激素集中起来,便成为不可小看的力量。  激素是化学物质。  目前对各种激素的化学结构基本都搞清楚了。  按化学结构大体分为四类。  第一类为类固醇,如肾上腺皮质激素、性激素。  第二类为氨基酸衍生物,有甲状腺素、肾上腺髓质激素、松果体激素等。  第三类激素的结构为肽与蛋白质,如下丘脑激素、垂体激素、胃肠激素、降钙素等。  第四类为脂肪酸衍生物,如前列腺素。  激素是调节机体正常活动的重要物质。它们中的任何一种都不能在体内发动一个新的代谢过程。它们也不直接参与物质或能量的转换,只是直接或间接地促进或减慢体内原有的代谢过程。如生长和发育都是人体原有的代谢过程,生长激素或其他相关激素增加,可加快这一进程,减少则使生长发育迟缓。激素对人类的繁殖、生长、发育、各种其他生理功能、行为变化以及适应内外环境等,都能发挥重要的调节作用。一旦激素分泌失衡,便会带来疾病。  激素只对一定的组织或细胞(称为靶组织或靶细胞)发挥特有的作用。人体的每一种组织、细胞,都可成为这种或那种激素的靶组织或靶细胞。而每一种激素,又可以选择一种或几种组织、细胞作为本激素的靶组织或靶细胞。如生长激素可以在骨骼、肌肉、结缔组织和内脏上发挥特有作用,使人体长得高大粗壮。但肌肉也充当了雄激素、甲状腺素的靶组织。  生长激素  我们通常所说的激素是指糖皮质激素。它是肾上腺分泌的几种类固醇物质的总称,医生处方中的”强的松”,”考的松”,氢化考的松”,”地塞米松”等即为其人工合成物。这旨一种维持生命所必需的激素,能够升高血糖,促进蛋白质分解,促进脂肪动员以提供热量,并有增强心脏功能,促进食欲,退热,抑制机体的免疫过程等作用,所以常用于哮喘,肾病综合症和许多自身免疫性疾病的治疗,也常用于危重病人的抢救,对肾上腺皮质功能低下者更是必需。  糖皮质激素对维持体内脂肪组织的正常分布起着重要作用。长期服用激素会导致头颈部及躯干部(尤其是腹部)脂肪聚积,而四肢脂肪减少,体内总脂肪量增加,外形上呈”向心性肥胖”,即面如满月,躯干肥胖,而四肢相对瘦小。但激素的这种副作用与其种类,疗程,总剂量等因素有关,如地塞米松引起食欲亢进,向心性肥胖的作用较为明显,而氟羟强的松龙使食欲减退,故而较少出现向心性肥胖,但可引肌软弱,神经系统抑制等。一般疗程越长,剂量越大,肥胖也越明显。停用激素后,体重会逐渐下降,体型也逐渐恢复。  释放激素  参考资料:  激素的调节 为了保持机体内主要激素间的平衡,在中枢神经系统的作用下,有一套复杂系统。激素一般以相对恒定速度(如甲状腺素)或一定节律(如皮质醇,性激素)释放,生理或病理因素可影响激素的基础性分泌,也由传感器监测和调节激素水平。反馈调节系统是内分泌系统中的重要自我调节机制,中枢神经系统的信息经过下丘脑,垂体到达外周腺体,由靶细胞发挥生理效应,其中任何一段均受正或负反馈调节的控制。  激素的传输 肽类激素在循环中主要呈游离形式,固醇激素和甲状腺激素(除醛固醇酮外)均与高亲和力的特异血浆蛋白结合,仅少量(约1-10%)呈有生物活笥的游离状态。这种对结合与游离比例控制可以辅助性地调节腺体功能,既可以调节生物活性,又可以调节半衰期。  激素与受体 激素需与特异的受体结合以启动其生理活性。不同激素可有不同的过程;多肽激素和儿茶酚胺与细胞表面受体结合,通过对基因的影响发挥其生物效应;胰岛素与细胞表面受体结合后共同进入细胞内形成胰体素-受体复合物,再与第二受体结合产生生物效应,激素与受体的结合为特异性的,并且是可逆性的,符合质量与作用定律。

分子生物学的转录调控中,什么是cis element 什么是trans element

cis-elements (顺式作用元件)指对基因调节起作用的DNA上的序列.由于一般都处于其所调控基因的上游,因此称为cis-.比如你说的enhancer,还有attenuator、operator等,都被称为cis-elements.而trans-elements(反式作用因子)则是对基因起调节作用的蛋白质.由于这些蛋白质由其他基因转录产生,不位于其所调节基因的上下游,并且其作用的时候要和cis-elements结合才能发挥作用,因此称为trans-.各种转录因子都属于trans-elements.

生物学中的外显子~内含子~是什么?

外显子和内含子都在DNA的编码区,是真核细胞的特征。外显子是编码区中可转录的,内含子是编码区中不可转录的,它们交替排列,所以真核细胞的转录是不连续的,而原核细胞的转录是连续的。

生物学里内含子是什么?

内含子是阻断基因线性表达的序列。dna上的内含子会被转录到前体rna中,但rna上的内含子会在rna离开细胞核进行转译前被剪除。在成熟mrna被保留下来的基因部分被称为外显子。内含子有时也叫内显子,与外显子相对。真核生物的基因含有外显子和内含子,是前者区别原核生物的特征之一。

生化:超螺旋DNA的生物学意义是?拜托了各位 谢谢

超螺旋dna的生物学意义:1.超螺旋dna形状更紧密,在dna组装中有重要作用2.超螺旋程度的改变介导了dna结构的变化,有利于功能的发挥3.超螺旋dna能实现松弛态dna所不能实现的结构转化

请问分子生物学的两个名词顺式作用元件和反式作用因子中的顺式和反式是什么意思?

顺式作用元件本质上说是一段DNA序列,存在基因序列的上游或者是下游,来对基因的表达进行调控。而反式作用因子实际上是一些可以调控基因表达的蛋白质分子,这些蛋白质通过与顺式作用元件发生作用来调控基因表达。顺式作用元件顺式作用元件(cis-actingelement)存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,它们的作用是参与基因表达的调控。顺式作用元件本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。反式作用因子:指和顺式作用元件结合的可扩散性蛋白,包括基础因子,上游因子,诱导因子。顺式作用元件件在分子遗传学领域,相对同一染色体或DNA分子而言为“顺式”(cis);对不同染色体或DNA分子而言为“反式”(trans)。

生物学名词解释

1、 分子生物学:是一门从分子水平研究生命现象、生命本质、生命活动及其规律的科学。2、 医学分子生物学:是分子生物学的一个重要分支,又是一门新兴交叉学科。它是从分子水平上研究人体在正常和疾病状态下的生命活动及其规律,从分子水平开展人类疾病的预防、诊断和治疗研究的一门科学。3、酶工程:过去主要是通过生物化学方法从各种材料中提取、制备酶制剂。现在主要应用基因工程技术制取酶制剂。4、蛋白质工程:过去主要是采用化学方法对纯化的蛋白质进行结构改造,制备出有特定功能的蛋白质。现在主要应用基因工程技术,从改造目的基因的结构入手,在受体细胞中表达不同结构的蛋白质。5、微生物工程:又称发酵工程是利用微生物特定性状,使微生物产生有用物质或直接用于工业化生产的技术。6、DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。7、 CG岛:在整个基因组中存在一些成簇、稳定的非甲基化CG,这类CG称为CG岛。8 、信使RNA:从DNA分子转录的RNA分子中,有一类可作为蛋白质生物合成的模板,称为信使RNA。9、顺反子:由结构基因转录生成的RNA序列亦称为顺反子。10、 帽子结构:5端第1个核苷酸是甲基化鸟嘌呤核苷酸,它以5端三磷酸酯键与第2个核苷酸的5端相连,而不是通常的3、5磷酸二酯键。11 、核酶:在没有任何蛋白质(酶)存在的条件下,某些RNA分子也能催化其自身或其它RNA分子进行化学反应,即某些RNA具有酶样的催化活性,这类具有催化活力的RNA被命名为核酶。12、 蛋白质的变性:蛋白质分子爱到物理化学因素(如加热、紫外线、高压、有机溶剂、酸、碱等)的影响时,可使维持空间结构的次级键断裂,性质改变,生物活性丧失,称为蛋白质的变性。13、蛋白质的复性:导致蛋白质变性的因素除去后,某些蛋白质又可重新回复天然构象,表现出天然蛋白质的生物活性,称为蛋白质的复性。14、 基因:是核酸分子中贮存遗传信息的遗传单位,是指贮存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列。15、 基因组:细胞或生物体中,一套完整单倍体的遗传物质的总和称为基因组。16、 操纵子:是指数个功能上相关联的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。转录单位:储存RNA和蛋白质肽链序列信息的结构基因与指导转录起始部位的序列(启动子)和转录终止的序列(终止子)共同组成转录单位。17、 启动子:是RNA聚合酶结合的区域,操纵基因实际上不是一个基因,而是一段能被特异阻遏蛋白识别和结合的DNA序列。18、 质粒:是细菌细胞内携带的染色体外的DNA分子,是共价闭合的环状DNA分子,能独立进行复制。19 、质粒的不相容性:具有相同复制起始位点和分配区的两种质粒不能共存于一个宿主菌,这种现象称为质粒的不相容性。20、 转位因子:即可移动的基因成分,是指能够在一个DNA分子内部或两个DNA分子之间移动的DNA片段。20、自私DNA:核生物基因组中也存在一些可移动的遗传因素,这些DNA顺序并无明显生物学功能,似乎为自己的目的而组织,故有自私DNA之称。21、 自杀基因:将某些细菌、病毒和真菌中特异性的基因转导入肿瘤细胞,此基因编码的特异性酶类能将原先对细胞无毒或毒性极低的前体物质在肿瘤细胞内代谢成毒性物质,达到杀死肿瘤的目的,这类前体转移酶基因称为自杀基因。22 、断裂基因:真核生物的结构基因是不连续的,编码氨基酸的序列被非编码序列所打断,因而被称为--在编码序列之间的序列称为内含子,被分隔开的编码序列称为外显子。23、 顺式调控元件(顺式作用元件):是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的DNA序列。24 、反式作用因子:一些蛋白质因子可通过结合顺式作用元件而调节基因转录活性,这些蛋白质因子称为反式作用因子。真核细胞内含有大量的序列特异性的DNA结合蛋白,其中一些蛋白的主要功能是使基因开放或关闭,称为反式作用因子,简称反式因子。25、 启动子:是RNA聚合酶特异性识别和结合的DNA序列。26 、上游启动子元件:是TATA盒上游的一些特定的DNA序列,反式作用因子可与这些元件结合,通过调节TATA因子与TATA盒的结合、RNA聚合酶与启动子的结合及转录起始复合物的形成(转达录起始因子与RNA聚合酶结合)来调控基因的转录效率。27 、反应元件:一些信息分子的受体被细胞外信息分子激活后,能与特异的DNA序列结合,调控基因的表达。这种特异的DNA序列实际上也是顺式元件,由于能介导基因对细胞外的某种信号产生反应,被称为反应元件。28 、增强子:是一段DNA序列,其中含有多个能被反式作用因子识别与结合的顺式作用元件。29、负增强子(沉默子);增强子内含负调控序列。30 、基因家族:指核苷酸序列或编码产物的结构具有一定程度同源性的一组基因。31、 基因超家族:是指一组由多基因家族及单基因组成的更大的基因家族。32、 逆转录转座子:真核生物中一些中度重复序列的转移成分则与一般细菌中的转移成分不同,要先转录成RNA,再逆转录生成cDNA,然后重新整合到基因组中,这种逆转录旁路的转移成分称为逆转录转座子。34 、反向重复顺序:是指两个顺序相同的拷贝在DNA链上呈反向排列。其中一种形式是两个拷贝反向串联在一起,中间没有间隔顺序,这种结构亦称回文结构。35、 RFLP技术:通过限制酶酶切片段的长度多态性来揭示DNA碱基组成不同的技术称为限制性片段长度多态性技术,简称RFLP技术。36、 遗传图:又称连锁图,是以具有遗传多态性的遗传标记作为“位标”遗传学距离为“图标”的基因组图。37、 物理图:是以一段已知核苷酸序列的DNA片段为“位标”,以DNA实际长度(Mb或kb)作为图距的基因组图。38、光修复:生物体内有一种光复活酶,被光激活后能利用光反提供的能量使紫外线照射引起的嘧淀二聚体分开,恢复原来的两个核苷酸,称为光修复。39、逆转录:是指以RNA为模板,利用宿主细胞中4种dNTP为原料,在引物的3端以5-3方向合成与RNA互补的DNA链的过程,此过程与中心法则方向相反,故称为逆转录。40、SD序列:AUG密码子上游8~13个碱基处存在一个称为SD序列的结构,该序列与小亚基中16SrRNA3端的序列互补,当mRNA与小亚基结合时,SD序列与16SrRNA3端互补序列配对结合,起始密码准确的定位于翻译起始部位。41 、基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。42、基因工程:将基因进行克隆,并利用克隆的基因表达、制备特定的蛋白或多肽产物,或定向改造细胞乃至生物个体的特性所用的方法及相关的工作统称为基因工程43、分子克隆:制备DNA片段,并通过载体将其导入受体细胞,在受体细胞中复制、扩增,以获得单一DNA分子的大量拷贝。44、 DNA重组:不同来源的DNA分子可以通过末端共价连接(磷酸二酯键)而形成重新组合的DNA分子。45、管家基因:有些在生命全过程都是必需的,且在一个生物个体的几乎所有细胞中持续表达的基因,通常被称为管家基因。46、诱导表达:有些基因表达极易爱环境变化影响,在特定环境信号刺激下,有些基因的表达表面为开放或增强,则这种表达方式称为诱导表达。47、 严谨反应:细菌在缺乏氨基酸的环境中,RNA聚合酶活性降低,RNA(rRNA,tRNA)合成减少或停止,这种现象称为严谨反应。48、 衰减子:细菌中的mRNA转录和蛋白质翻译合成是偶联在一起的。这一特点使细菌的一些操纵子的特殊序列可以在转录过程中控制转录水平。这些特殊序列称为--又称弱化子,位于一些操纵子中第一个结构基因之前,是一段能减弱转录作用于的顺序。49、组合式基因调控:每一种反式作用因子结合顺式作用元件后虽然可发挥促进或抑制作用,但反式作用因子对基因表达的调控不是由单一因子完成的,而是几种因子组合,发挥特定的作用,称为组合式基因调控。50、 细胞通讯:细胞间识别、联络和相互作用的过程称为细胞通讯。51、信号转导:针对外源信号所发生的细胞应答反应全过程称为信号转导。52、 调控结合元件:细胞内的信号转导分子有许多都是蛋白质,其分子中存在着一些特殊的结构域,它们是信号分子相互识别的部位,信号分子通过这些特殊结构域的识别和相互作用而有序衔接,形成不同的信号传递链或称为信号转导途径,这些结构域称为调控结合元件。53、 第二信使:G蛋白活化之后唧 可激活其下游的效应分子,如腺苷酸环化酶和磷脂酶C等。这些效应分子随后可催化一些分子的产生或浓度和分布的变化。这些小分子能够继续向下游传递信息,因而被称为细胞内小分子信使,亦称为第二信使。已知的细胞内小分子信使包括cAMP、cGMP、甘油二酯(DAG)、IP3和Ca2+等等。54、 DNA重组:不同来源的DNA分子可以通过末端共价连接(磷酸二酯键)而形成重新组合的DNA分子,这一过程称为DNA重组。55、 限制酶:是一类内切核酸酶,因而又称为限制性内切核酸酶。这类酶能识别双链DNA内部特异位点并且裂解磷酸二酯键。56、 同功异源酶:来源不同的酶,但能识别和切割同一位点,这些酶称为同功异源酶。57、 同尾酶:有些限制酶识别序列不同,但是产生相同的粘性末端,这些酶为同尾酶。58、 Klenow片段:用枯草杆菌蛋白酶可将DNA聚合酶I裂解为大小两个片段,大片段的分子量为76kD,这个片段也称为 Klenow片段。59、 入 噬菌体:是感染细菌的病毒,其基因组是线性双链DNA分子,当其感染宿主细胞并将基因整合到细胞后,基因组DNA变成环状,用于分子克隆中的载体。60、 基因文库:采用限制酶将基因组DNA切成片段,每一DNA片段都与一个载体分子拼接成重组DNA,将所有的重组DNA分子都引入宿主细胞并进行扩增,得到分子克隆的混合体,这样一个混合体称为--61、 cDNA文库:将cDNA的混合体与载体进行连接,使每一个cDNA分子都与一个载体分子拼接成重组DNA。将所有的重组DNA分子都导入宿主细胞并进行扩增,得到分子克隆的混合体,这样一个混合体称为-62、cDNA:是指体外用逆转录酶催化,以mRNA为模板合成的互补DNA。63、转化:是指将质粒或其它外源DNA导入处于感受态的宿主细胞。并使其获得新的表型 的过程。64、 转导:由噬菌体和细胞病毒介导的遗传信息转移过程也称为转导。65、转染:真核细胞主动摄取或被导入外源DNA片段而获得新的表型的过程。66、显微注射法:在制备转基因动物时,将外源基因通过毛细玻璃管,在显微镜下直接注射到受精卵的细胞核内,称为显微注射法。67、 基因定点诱变:是指将基因的某一个或某些位点进行人工替换或删除的过程。68、 双脱氧链终止法;是以单链或双链DNA为模板,采用DNA引物引导新生DNA的合成,因此又称为引物合成法,或酶促引物合成法。69、核酸分子杂交:是指具有互补序列的两条核酸单链在一定条件下按碱基配对原则形成双链的过程。70、探针:杂交体系中已知的核酸序列称作探针。71、DNA变性:在物理或化学因素作用下,例如加热、酸碱或紫外线照射,可以导致两条DNA链之间的氢键断裂,而核酸分子中的所有共价键(如磷酸二酯键、糖苷键等)则不受影响,称为DNA变性。常见方法:热变性、碱变性、化学试剂变性。72、DNA复性:当促使变性的因素解除后,两条DNA链又可通过碱基互补配对结合形成DNA双螺旋结构,称DNA复性。73、印迹:凝胶中的DNA片段虽然在碱变性过程中已经变性成单链并已断裂,转移后,各个DNA片段在膜上的相对位置与在凝胶中的相对位置仍然一样,因而称为印迹。74、Northern印迹杂交:将待测RNA样品经电泳分离后转移到固相支持物上,然后与标记的核酸探针进行固-液相杂交,检测RNA(主要是mRNA)的方法。75、斑点印迹:将RNA或DNA变性后直接点样于硝酸纤维素膜或尼龙膜上,用于基因组中特定基因及其表达的定性及定量研究,称斑点印迹。76、原位杂交:核酸保持在细胞或组织切片中,经适当方法处理细胞或组织后,将标记的核酸探针与细胞或组织中的核酸进行杂交,称原位杂交。77、液相杂交:待测核酸分子与核酸探针都存在于杂交液中,碱基互补的单链核酸分子在液体中配对形成杂交分子。目前常用的液相杂交的RNA酶保护分析法(RPA)、核酸酶S1保护分析法。78、停滞效应:(平台期):随着目的DNA扩增产物的逐渐积累,酶的催化反应趋于饱和,此时DNA扩增产物的增加减慢,进入相对稳定状态,即出现停滞效应。79、筑巢PCR:先用一对外侧引物扩增含目的基因的大片段,再用内侧引物以大片段为模板扩增获取目的基因。80、多重PCR:是在一次反应中加入多对引物,同时扩增一份DNA样品中不同序列的PCR过程。81、连接酶链反应(LCR连接酶扩增反应LAR):是以DNA连接酶将某一DNA链的5磷酸与另一相邻链的3羟基连接为基础的循环反应。82、基因打靶:是指通过DNA定点同源重组,改变基因组中的某一特定基因,从而在生物活体内研究此基因的功能。若定向敲除某个基因,称为基因敲除,若定向将一段基因序列替代另一段基因序列,称为基因敲入。83、基因敲除:通过DNA同源重组,使得ES细胞特定的内源基因被破坏而造成其功能丧失,然后通过ES细胞介导得到该基因丧失的小鼠模型的过程称为--;其基本程序:(1)构建打靶载体;(2)ES细胞的体外培养;(3)重组载体转染ES细胞;(4)重组体转染的ES细胞的鉴定;(5)ES细胞胚胎移植和嵌合体杂交育种。84、打靶载体:由部分残留的待敲除基因的同源片段、位于其内部的neo基因和位于其外侧的HSU-tk基因共同构成的载体即为打靶载体。85、DNA芯片技术:指在固相支持物上原位合成寡核苷酸或者直接将大量DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可得出样品的遗传信息。DNA芯片的类型:原位合成芯片和DNA微集阵列。86、自发突变:引起DNA一级结构改变的原因主要有两类:一类是复制时碱基的偶然性错配,由此引起的突变称为自发突变;另一类是体内代谢过程中产生的自由基由某些环境因素引起的DNA一级结构改变,由此引起的突变称为诱发突变。87、 错义突变:DNA分子中碱基对的取代,使得mRNA的某一密码子发生变化,由它所编码的氨基酸就变成另一种不同的氨基酸,使得多肽链中氨基酸的顺序也相应地发生改变,这种突变称--88、同义突变:碱基取代,在蛋白质水平上没有引起变化,氨基酸没有被取代,这是因为突变后的密码子与原来的密码子代表同一个氨基酸,这种突变称为同义突变。89、移码突变:在编码序列中,单个碱基数个碱基的缺失或插入以及片段的缺失或插入等均可使突变位点之后的三联体密码阅读框发生改变,不能编码原来的正常蛋白质,即所谓--90、原癌基因:是一种正常细胞的正常基因,在正常细胞中编码关键性调控蛋白,在细胞增殖和分化中起重要调控作用,它不具有致癌性,但当其受到物理、化学或病毒等致癌因素的作用而失控或发生突变时,可过度表达或持续表达其产物,就变成了癌基因,可以使细胞恶性转化。91、病毒癌基因:病毒所携带着的致转化基因。92、抑癌基因(抗癌基因):存在于正常细胞内的一大类可抑制细胞生长并具有潜在抑癌作用的基因。其表达产物主要包括跨膜受体、胞质调节因子或结构蛋白、转录因子和转录调节因子、细胞周期因子、DNA损伤修复因子以及其它一些功能蛋白。93、细胞周期素/周期依赖性激酶:有些蛋白激酶的细胞周期特异性或时相性激活依赖于一类呈细胞周期特异性或时相性表达、累积与分解的蛋白质,后者被称为细胞周期素激酶,前者周期依赖性激酶。94、启动因子:在癌变的启动阶段使细胞发生癌前期改变的因素。95、基因诊断:是以DNA和RNA为诊断材料,通过检查基因的存在、缺陷或表达异常,对人体状态和疾病作出诊断的方法和过程。96、 基因治疗:通过在特定靶细胞中表达该细胞本来不表达的基因,或采用特定方式关闭、抑制异常表达基因,达到治疗疾病目的的治疗方法。97、 基因置换:(基因矫正):将特定的目的基因导入特定的细胞,通过定位重组,以导入的正常基因置换基因组内原有的缺陷基因。98、基因添加(基因增补)通过导入外源基因使靶细胞表达其本身不表达的基因。99、基因干预:采用特定的方式抑制某个基因的表达,或者通过破坏某个基因而使之不能表达,以达到治疗疾病的目的。

分子生物学(生物)

3题::①真核生物5‘端有帽子结构大部分成熟没mRNA还同时具有3"多聚A尾巴,原核一般没有;②原核的没mRNA可以编码几个多肽真核只能编码一个。③原核生物以AUG作为起始密码有时以GUG,UUG作为起始密码,真核几乎永远以AUG作为起始密码。④原核生物mRNA半衰期短,真核长。⑤原核生物以多顺反子的形式存在,真核以单顺反子形式存在。1题: 顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。 反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。 真核生物转录水平的调控机制?答:真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程。1、 转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的蛋白质-DNA复合物,只有当一个或多个转录因子结合到DNA上,形成有功能的启动子,才能被RNA聚合酶所识别并结合。转录起始复合物的形成过程为:TFⅡD结合TATA盒;RNA聚合酶识别并结合TFⅡD-DNA复合物形成一个闭合的复合物;其他转录因子与RNA聚合酶结合形成一个开放复合物。在这个过程中,反式作用因子的作用是:促进或抑制TFⅡD与TATA盒结合;促进或抑制RNA聚合酶与TFⅡD-DNA复合物的结合;促进或抑制转录起始复合物的形成。2、 反式作用因子:一般具有三个功能域(DNA识别结合域、转录活性域和结合其他蛋白结合域);能识别并结合上游调控区中的顺式作用元件;对基因的表达有正性或负性调控作用。3、 转录起始的调控:⑴反式作用因子的活性调节:①表达式调节——反式作用因子合成出来就具有活性;②共价修饰——磷酸化和去磷酸化,糖基化;③配体结合——许多激素受体是反式作用因子;④蛋白质与蛋白质相互作用——蛋白质与蛋白质复合物的解离与形成。⑵反式作用因子与顺式作用元件的结合:反式作用因子被激活后,即可识别并结合上游启动子元件和增强子中的保守性序列,对基因转录起调节作用 同学2题实在是不晓得,呵呵

DNA双螺旋结构的生物学功能

DNA双螺旋(DNA double helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。  大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。  DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。

DNA超螺旋的生物学意义是什么?

大沟是调控蛋白质识别DNA信息的主要场所。维系DNA二级结构的主要作用力是氢键和碱基堆集力,而磷酸基的负电荷和碱基内能则不利于双螺旋结构的稳定, 在生理状况下,双螺旋的碱基对之间氢键不断地发生断裂和再生,这就是DNA的所谓呼吸作用。DNA在热或其他变性剂作用之下,双链发生分离,即变性作用。变性的DNA单链在适合的条件下又能恢复双螺旋结构,即复性作用。基于DNA的变性作用和复性作用,产生了十分有用的分子杂交技术。 小沟这也没什么好说的,它是客观形成的

为什么所有生物的DNA几乎有5%为负超螺旋? 分子生物学问题

对于真核生物来说,虽然其染色体多为线形分子但其DNA均与蛋白质相结合,两个结合点之间的DNA形成一个突环(loop)结构,类似于CCC分子,同样具有超螺旋形式。超螺旋按其方向分为正超螺旋和负超螺旋两种。真核生物中,DNA与组蛋白八聚体形成核小体结构时,存在着负超螺旋。

Z-DNA及其可能的生物学意义

【答案】:Z-DNA及其可能的生物学意义Z-DNA是左手双螺旋,在主链中各个磷酸根呈锯齿状排列,有如“之”字形一样,因此叫它Z构象(英文字Zigzag的第一个字母);这一构象中的重复单位是二核苷酸而不是单核苷酸;只有一个螺旋沟,它相当于B-DNA构象中的小沟,它狭而深,大沟则不复存在。目前,Z-DNA所具有的生物学意义还不清楚。应当指出Z-DNA的形成通常在热力学上是不利的,因为Z-αDNA中带负电荷的磷酸根距离太近了,这会产物静电排斥。但是,DNA链的局部不稳定区的存在就成为潜在的解链位点。DNA解螺旋却是DNA复制和转录等过程中必要的环节。此外,DNA螺旋上沟的特征在其信息表达过程中起关键作用。调控蛋白都是通过其分子上特定的氨基酸侧链与DNA双螺旋沟中的碱基对一侧的氢原子供体或受体相互作用,形成氢键从而识别DNA上的遗传信息的。沟的宽窄和深浅也直接影响到调控蛋白质对DNA信息的识别。Z-DNA中大沟消失,小沟狭而深,使调控蛋白识别方式也发生变化。这些都暗示Z-DNA的存在不仅仅是由于DNA中出现嘌呤一啶嘧交替排列之结果,也可能是在漫漫的进化长河中对DNA序列与结构不断调整与筛选的结果,有其内在而深刻的含意,只是人们还未充分认识而已。

Z构象的DNA有什么生物学意义

Z型DNA是左手双螺旋.在转录和复制等活动中,DNA在拓扑异构酶的作用下,形成负超螺旋,有利于缠绕双链的松开,此时即为左手螺旋构象,形成Z-DNA

Z构象的DNA 有什么生物学意义啊?

在生理条件的湿度和盐度下,DNA一般为B型,DNA双螺旋为右手螺旋。湿度降低,DNA双螺旋变为A型,依然为右手螺旋。当DNA进行遗传信息表达时,DNA需要结双螺旋,不断引入负超螺旋,进而形成DNA左手螺旋,而Z型DNA就是左手螺旋,所以Z型DNA是遗传信息表达时DNA的构象状态。

Z构象的DNA有什么生物学意义

界物理因素、氧化反应生物因素. 湿度,易被水解],有的DNA为线形:磷酸二酯键——维持一级结构氢键——维持二级结构碱基——与维持氢键有关温度,基因的遗传信息贮存在其碱基序列中.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近,主要分成A、湿度化学因素. 二级结构;大多数DNA含有两条这样的长链 [两条链间以氢键相连接——氢键在强电解质环境. 这些因素都直接与DNA的构型. [形成链的作用力——磷酸二脂键,5"-磷酸二酯键相连构成的长链,DNA双螺旋可有多种类型,碱基为含氮杂环化合物,后来这个模型得到科学家们的公认,易被氧化变性,综上可见:一级结构. 一般用几个层次描绘DNA的结构、分子组成有关 DNA分子结构,尤其在高酸度环境内易开键] 也有的DNA为单链.经深入研究: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",B构型最接近细胞中的DNA构象、水解反应、G4,并用以解释复制,易加速磷酸二酯键的水解:pH值:温度,它与双螺旋模型非常相似:DNA的一级结构即是其碱基序列. ——磷酸二酯键易被水解,发现因湿度和碱基序列等条件不同、参与磷酸二酯键的水解 2. 因此:维持DNA化学生物活性的关键在于其结构以及与其相结合的蛋白质:1.基因就是DNA的一个片段:高温,如大肠杆菌噬菌体φX174,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构、氢离子参与与催化磷酸二酯键的水解 2.这种构型适合多核苷酸链的嘌呤嘧啶交替区. 一般认为:酶解及微生物侵染等作用:1,其主链呈锯齿(Z)形.有的DNA为环形.Z-DNA以核苷酸二聚体为单元左向缠绕、过高或过低的PH值都易破坏氢键氧化反应、M13等、B和Z3大类:1953年,使其变性:氧化碱基中的含氮杂环,故名、转录等重要的生命过程、影响DNA螺旋的形成结构 PH值.而维持其结构的关键有,从而进一步改变一级与二级的DNA构象

什么是dna甲基化修饰?其生物学意义是什么

dna甲基化修饰:DNA甲基化(DNA methylation)是最早发现的修饰途径之一,大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5"-CG-3"序列。大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5"端的非编码区,并成簇存在。甲基化位点可随DNA的复制而遗传,因为DNA复制后,甲基化酶可将新合成的未甲基化的位点进行甲基化。DNA的甲基化可引起基因的失活,DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,甲基化达到一定程度时会发生从常规的B-DNA向Z-DNA的过渡,由于Z-DNA结构收缩,螺旋加深,使许多蛋白质因子赖以结合的原件缩入大沟而不利于转录的起始,导致基因失活。另外,序列特异性甲基化结合蛋白(MBD/MeCP)可与启动子区的甲基化CpG岛结合,阻止转录因子与启动子作用,从而阻抑基因转录过程。DNA甲基化主要形成5-甲基胞嘧啶(5-mC)和少量的N6-甲基腺嘌呤(N6-mA)及7-甲基鸟嘌呤(7-mG)dna甲基化修饰的生物学意义:基因甲基化与单亲遗传病:单亲遗传病是指由非孟德尔遗传方式引起的人类遗传病。正常情况下,存在部分与疾病相关的等位基因,其父源与母源甲基化模式不同,几乎所有与单亲遗传疾病相关的等位基因并不是父代与母代都发生甲基化,而是存在一些序列或父代发生甲基化或母代发生甲基化,这些序列被称为“差异甲基化区域”。单亲遗传病能否出现,取决于非孟德尔遗传方式在“差异甲基化区域”上是否发生。这是因为,甲基化后的基因不表达或表达程度低,因而基因的正常表达必须依赖于特定亲本(非甲基化一方)等位基因的正常表达。基因甲基化与肿瘤基因组甲基化模式异常(包括DNA过低甲基化)与肿瘤发生一直是医学界关注热点之一。基因甲基化与老化随着年龄的老化,基因组总体DNA甲基化水平逐渐降低。这一甲基化水平的变化,是否仅与老化有关,还是也参与来华过程中的肿瘤高发,尚有待进一步的研究。

Z构象DNA有什么生物学意义

界物理因素、氧化反应生物因素.湿度,易被水解],有的DNA为线形:磷酸二酯键——维持一级结构氢键——维持二级结构碱基——与维持氢键有关温度,基因的遗传信息贮存在其碱基序列中.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近,主要分成A、湿度化学因素.二级结构;大多数DNA含有两条这样的长链[两条链间以氢键相连接——氢键在强电解质环境.这些因素都直接与DNA的构型.[形成链的作用力——磷酸二脂键,5"-磷酸二酯键相连构成的长链,DNA双螺旋可有多种类型,碱基为含氮杂环化合物,后来这个模型得到科学家们的公认,易被氧化变性,综上可见:一级结构.一般用几个层次描绘DNA的结构、分子组成有关DNA分子结构,尤其在高酸度环境内易开键]也有的DNA为单链.经深入研究:DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",B构型最接近细胞中的DNA构象、水解反应、G4,并用以解释复制,易加速磷酸二酯键的水解:pH值:温度,它与双螺旋模型非常相似:DNA的一级结构即是其碱基序列.——磷酸二酯键易被水解,发现因湿度和碱基序列等条件不同、参与磷酸二酯键的水解2.因此:维持DNA化学生物活性的关键在于其结构以及与其相结合的蛋白质:1.基因就是DNA的一个片段:高温,如大肠杆菌噬菌体φX174,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构、氢离子参与与催化磷酸二酯键的水解2.这种构型适合多核苷酸链的嘌呤嘧啶交替区.一般认为:酶解及微生物侵染等作用:1,其主链呈锯齿(Z)形.有的DNA为环形.Z-DNA以核苷酸二聚体为单元左向缠绕、过高或过低的PH值都易破坏氢键氧化反应、M13等、B和Z3大类:1953年,使其变性:氧化碱基中的含氮杂环,故名、转录等重要的生命过程、影响DNA螺旋的形成结构PH值.而维持其结构的关键有,从而进一步改变一级与二级的DNA构象

现代分子生物学中cDNA中文名是什么?

叫做部分基因文库有mRNA逆转录形成的DNA即称为cDNA无启动子

DNA如何解释?生物学

脱氧核糖核酸(DNA,为英文Deoxyribonucleicacid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。事实上,原核细胞(无细胞核)的DNA存在于细胞质中,而真核生物的DNA存在于细胞核中,DNA片断并不像人们通常想像的那样,是单链的分子。严格的说,DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。这种核酸高聚物是由核苷酸链接成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成。DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链。分子链的开头部分称为3"端而结尾部分称为5"端,这些数字表示脱氧核糖中的碳原子编号

如何学习分子生物学?

一、知识要点核酸分两大类:DNA和RNA.所有生物细胞都含有这两类核酸.但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA.核酸的基本结构单位是核苷酸.核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成.核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起.核酸中还有少量的稀有碱基.RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶.在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤.核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使.DNA的空间结构模型是在1953年由Watson和Crick两个人提出的.建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性.DNA是由两条反向直线型多核苷酸组成的双螺旋分子.单链多核苷酸中两个核苷酸之间的唯一连键是3′,5′-磷酸二酯键.按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行.两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系.维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小.DNA能够以几种不同的结构形式存在.从B型DNA转变而来的两种结构A型和Z型结构巳在结晶研究中得到证实.在顺序相同的情况下A型螺旋较B型更短,具有稍大的直径.DNA中的一些特殊顺序能引起DNA弯曲.带有同一条链自身互补的颠倒重复能形成发卡或十字架结构,以镜影排列的多嘧啶序列可以通过分子内折叠形成三股螺旋,被称为H -DNA的三链螺旋结构.由于它存在于基因调控区,因而有重要的生物学意义.不同类型的RNA分子可自身回折形成发卡、局部双螺旋区,形成二级结构,并折叠产生三级结构,RNA与蛋白质复合物则是四级结构.tRNA的二级结构为三叶草形,三级结构为倒L形.mRNA则是把遗传信息从DNA转移到核糖体以进行蛋白质合成的载体.核酸的糖苷键和磷酸二酯键可被酸、碱和酶水解,产生碱基、核苷、核苷酸和寡核苷酸.酸水解时,糖苷键比磷酸酯键易于水解;嘌呤碱的糖苷键比嘧啶碱的糖苷键易于水解;嘌呤碱与脱氧核糖的糖苷键最不稳定.RNA易被稀碱水解,产生2"-和3"-核苷酸,DNA对碱比较稳定.细胞内有各种核酸酶可以分解核酸.其中限制性内切酶是基因工程的重要工具酶.核酸的碱基和磷酸基均能解离,因此核酸具有酸碱性.碱基杂环中的氮具有结合和释放质子的能力.核苷和核苷酸的碱基与游离碱基的解离性质相近,它们是兼性离子.核酸的碱基具有共轭双键,因而有紫外吸收的性质.各种碱基、核苷和核苷酸的吸收光谱略有区别.核酸的紫外吸收峰在260nm附近,可用于测定核酸.根据260nm与280nm的吸收光度(A260)可判断核酸纯度.变性作用是指核酸双螺旋结构被破坏,双链解开,但共价键并未断裂.引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等都能造成核酸变性.核酸变性时,物理化学性质将发生改变,表现出增色效应.热变性一半时的温度称为熔点或变性温度,以Tm来表示.DNA的G+C含量影响Tm值.由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度.根据经验公式xG+C =(Tm - 69.3)× 2.44可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值.变性DNA在适当条件下可以复性,物化性质得到恢复,具有减色效应.用不同来源的DNA进行退火,可得到杂交分子.也可以由DNA链与互补RNA链得到杂交分子.杂交的程度依赖于序列同源性.分子杂交是用于研究和分离特殊基因和RNA的重要分子生物学技术.染色体中的DNA分子是细胞内最大的大分子.许多较小的DNA分子,如病毒DNA、质粒DNA、线粒体DNA和叶绿体[]NA也存在于细胞中.许多DNA分子,特别是细菌的染色体DNA和线粒体、叶绿体DNA是环形的.病毒和染色体DNA有一个共同的特点,就是它们比包装它们的病毒颗粒和细胞器要长得多,真核细胞所含的DNA要比细菌细胞多得多.真核细胞染色质组织的基本单位是核小体,它由DNA和8个组蛋白分子构成的蛋白质核心颗粒组成.其中H2A,H2B,H3,H4各占两个分子,有一段DNA(约146bp)围绕着组蛋白核心形成左手性的线圈型超螺旋.细菌染色体也被高度折叠,压缩成拟核结构,但它们比真核细胞染色体更富动态和不规则,这反映了原核生物细胞周期短和极活跃的细胞代谢.

B型DNA的生物学意义

B-DNA是与细胞中DNA结构最接近的,B-DNA是一种理想结构,不能预示基因活动,与细胞中的DNA略有不同,体现在两个方面:第一,溶液中的DNA分子比B-DNA分子的螺旋程度更高,平均每螺周有10.5个碱基对;第二,B型DNA构象是均一的结构,然而实际的DNA没有如此规则,甚至从精细结构看,它的各个碱基对之间都有所不同。

B型DNA的生物学意义

B-DNA是与细胞中DNA结构最接近的,B-DNA是一种理想结构,不能预示基因活动,与细胞中的DNA略有不同,体现在两个方面:第一,溶液中的DNA分子比B-DNA分子的螺旋程度更高,平均每螺周有10.5个碱基对;第二,B型DNA构象是均一的结构,然而实际的DNA没有如此规则,甚至从精细结构看,它的各个碱基对之间都有所不同。

生物学家富兰克林是男的还是女的?

Franklin是一位杰出的女科学家;从剑桥大学毕业后,她在巴黎学习了X射线衍射技术。1951年,她返回英国,与威尔金斯同在一个实验室(国王学院),开始她的研究工作。就在这个实验室,她跟威尔金斯有了一些误解与摩擦,这种关系使得她后来饱受曲解。次年,富兰克林经过长时间的研究,获得了一张B型DNA的X射线衍射晶体衍射照片。后来,富兰克林的这张照片被威尔金斯拿去给当时也在做DNA结构研究的沃森看,受到了启发,沃森和克里克立刻在Nature杂志上发表了DNA双螺旋结构的论文,论文中并未对借鉴富兰克林的图片作详细说明,也没有致谢。1953年,富兰克林加入伯贝克学院,在那里,她将x射线晶体衍射技术应用在研究烟草镶嵌病毒(TMV)的结构中,并于1955年完成了TMV模型。1956年,富兰克林患上了肿瘤,在其生病期间她还坚持研究工作,发表了多篇论文。两年后,富兰克林因卵巢癌逝世于英国伦敦。1962年的诺贝尔奖颁给了沃森、克里克等人,而这个重大发现背后的富兰克林却鲜有人知,这时富兰克林已经去世,依据惯例,诺奖不授予已去世的人,且同一奖项最多由3人分享,最终她与该奖失之交臂。直到沃尔森在《双螺旋》一书中提及,人们才认可了富兰克林的成果的价值。

细胞生物学中c,h,0,n,c是胞嘧啶,h是什么0

细胞生物学中c,h,0,n,c是胞嘧啶,h是什么0在核糖核苷酸和脱氧核糖核苷酸中:胞嘧啶C、尿嘧啶U、腺嘌呤A、胸腺嘧啶T、鸟嘌呤G.其中A、C、T、G为脱氧核糖核酸(DNA)中才有的,A、G、C、U为核糖核酸(RNA)中的!

细胞生物学中c,h,0,n,c是胞嘧啶,h是什么0是什么,n是什么

你好好看一下是元素符号吗?碳C、氢H、氧O、氮N。在核糖核苷酸和脱氧核糖核苷酸中:胞嘧啶C、尿嘧啶U、腺嘌呤A、胸腺嘧啶T、鸟嘌呤G。其中A、C、T、G为脱氧核糖核酸(DNA)中才有的,A、G、C、U为核糖核酸(RNA)中的!

甲基绿在生物学上能够鉴别什么?

甲基绿能够鉴别DNA,吡罗红能鉴别RNA。DNA分布在核仁内,RNA分布在细胞质中,所以用甲基绿和吡罗红鉴别DNA和RNA时,核仁呈绿色,细胞质呈红色。

病原生物学相关:拟核=核质=核区?询问它们的关系

原核生物,如细菌,细胞具有原始的核,没有核膜,更没有核仁,结构简单,为了与真核细胞中典型的细胞核有所区别,称为核区或拟核. 核质(nuclear material):由单一密闭环状DNA 分子反复回旋卷曲盘绕组成的松散网状结构.集中于细胞质的某一区域.无核膜、核仁和有丝分裂器.是细菌的遗传物质.

生物学中拟核的化学本质是 什么

答:生物学中拟核的化学本质是脱氧核糖核酸(DNA)。

rRNA和mRNA的生物学意义各是什么?

mRNA是信使RNA tRNA是转移RNA rRNA是核糖体RNA核糖体RNA (ribosomal RNAs,rRNAs) 约占RNA总量的 80%,它们与蛋白质结合构成核糖体的骨架。核糖体是蛋白质合成的场所,所以rRNAs的功能是作为核糖体的重要组成成分参与蛋白质的生物合成。rRNAs是细胞中含量最多的一类RNA,且分子量比较大,代谢都不活跃,种类仅有几种,原核生物中主要有5S rRNAs、16S rRNAs和23S rRNAs三种,真核生物中主要有5S rRNAs、5.8S rRNAs、18S rRNAs和28S rRNAs四种。 信使RNA(messenger RNAs,mRNAs),约占RNA总量的5%。mRNAs是以DNA为模板合成的,又是蛋白质合成的模板。它是携带一个或几个基因信息到核糖体的核酸。由于每一种多肽都有一种相应的mRNAs,所以细胞内mRNAs是一类非常不均一的分子。但就每一种mRNAs的含量来说又十分低。这也解释了为什么mRNAs的发现比rRNAs与tRNAs要迟。 转移RNAs (transfer RNAs,tRNAs) 约占RNA总量的15%。tRNAs的分子量在2.5×104左右,由70~90个核苷酸组成,因此它是最小的RNA分子。它的主要功能是在蛋白质生物合成过程中把mRNA的信息准确地翻译成蛋白质中氨基酸顺序的适配器(adapter)分子,具有转运氨基酸的作用,并以此氨基酸命名。此外,它在蛋白质生物合成的起始作用中,在DNA反转录合成中及其他代谢调节中也起重要作用。细胞内tRNA的种类很多,每一种氨基酸都有其相应的一种或几种tRNA。

RNA有哪几种?其主要生物学功能是什么?

答:RNA的种类:在生物体内发现主要有三种不同的RNA分子在基因的表达过程中起重要的作用。它们是信使RNA(messengerRNA,mRNA)、转移(tranfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA)。RNA含有四种基本碱基,即腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。此外还有几十种稀有碱基。 RNA的一级结构主要是由AMP、GMP、CMP和UMP四种核糖核苷酸通过3",5"磷酸二酯键相连而成的多聚核苷酸链。天然RNA的二级结构,一般并不像DNA那样都是双螺旋结构,只有在许多区段可发生自身回折,使部分A-U、G-C碱基配对,从而形成短的不规则的螺旋区。不配对的碱基区膨出形成环,被排斥在双螺旋之外。RNA中双螺旋结构的稳定因素,也主要是碱基的堆砌力,其次才是氢键。每一段双螺旋区至少需要4~6对碱基对才能保持稳定。在不同的RNA中,双螺旋区所占比例不同。【RNA的二级结构】细胞内有三类主要的核糖核酸,即:mRNA、rRNA、tRNA。它们各有特点。在大多数细胞中RNA的含量比DNA多5~8倍。【大肠杆菌RNA的性质】mRNA 生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成。而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体。现已证明,这种中介物质是一种特殊的RNA。这种RNA起着传递遗传信息的作用,因而称为信使RNA(message RNA,mRNA)。mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程。在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnRNA)。tRNA 如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂。但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,必须用一种特殊的RNA——转移RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链。每种氨基酸可与1-4种tRNA相结合,现在已知的tRNA的种类在40 种以上。tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成。而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶。这类稀有碱基一般是在转录后,经过特殊的修饰而成的。1969年以来,研究了来自各种不同生物,:如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能折叠成三叶草形二级结构(图3-23),而且都具有如下的共性:① 5"末端具有G(大部分)或C。② 3"末端都以ACC的顺序终结。③ 有一个富有鸟嘌呤的环。④ 有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对。⑤ 有一个胸腺嘧啶环。rRNA 核糖体RNA(ribosomal RNA,rRNA)是组成核糖体的主要成分。核糖体是合成蛋白质的工厂。在大肠杆菌中,rRNA量占细胞总RNA量的75%-85%,而tRNA占15%,mRNA仅占3-5%。rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例。5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸。而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、1900和4700个核苷酸。rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域。在双链区,碱基因氢键相连,表现为发夹式螺旋。rRNA在蛋白质合成中的功能尚未完全明了。但16 S的rRNA3"端有一段核苷酸序列与mRNA的前导序列是互补的,这可能有助于mRNA与核糖体的结合。snRNA 除了上述三种主要的RNA外,细胞内还有小核RNA(small nuclearRNA,snRNA)。它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分。现在发现有五种snRNA,其长度在哺乳动物中约为100-215个核苷酸。snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用。另外,还有端体酶RNA(telomeraseRNA),它与染色体末端的复制有关;以及反义RNA(antisenseRNA),它参与基因表达的调控。上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA等并不携带翻译为蛋白质的信息,其终产物就是RNA。

RNA有哪几种?其主要生物学功能是什么?

答:RNA的种类: 在生物体内发现主要有三种不同的RNA分子在基因的表达过程中起重要的作用.它们是信使RNA(messengerRNA,mRNA)、转移(tranfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA).RNA含有四种基本碱基,即腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶.此外还有几十种稀有碱基. RNA的一级结构主要是由AMP、GMP、CMP和UMP四种核糖核苷酸通过3",5"磷酸二酯键相连而成的多聚核苷酸链.天然RNA的二级结构,一般并不像DNA那样都是双螺旋结构,只有在许多区段可发生自身回折,使部分A-U、G-C碱基配对,从而形成短的不规则的螺旋区.不配对的碱基区膨出形成环,被排斥在双螺旋之外.RNA中双螺旋结构的稳定因素,也主要是碱基的堆砌力,其次才是氢键.每一段双螺旋区至少需要4~6对碱基对才能保持稳定.在不同的RNA中,双螺旋区所占比例不同.【RNA的二级结构】细胞内有三类主要的核糖核酸,即:mRNA、rRNA、tRNA.它们各有特点.在大多数细胞中RNA的含量比DNA多5~8倍.【大肠杆菌RNA的性质】 mRNA 生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成.而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体.现已证明,这种中介物质是一种特殊的RNA.这种RNA起着传递遗传信息的作用,因而称为信使RNA(message RNA,mRNA). mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程.在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质.因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnRNA). tRNA 如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂.但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力.因此,必须用一种特殊的RNA——转移RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链.每种氨基酸可与1-4种tRNA相结合,现在已知的tRNA的种类在40 种以上. tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成.而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶.这类稀有碱基一般是在转录后,经过特殊的修饰而成的. 1969年以来,研究了来自各种不同生物,:如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能折叠成三叶草形二级结构(图3-23),而且都具有如下的共性: ① 5"末端具有G(大部分)或C. ② 3"末端都以ACC的顺序终结. ③ 有一个富有鸟嘌呤的环. ④ 有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对. ⑤ 有一个胸腺嘧啶环. rRNA 核糖体RNA(ribosomal RNA,rRNA)是组成核糖体的主要成分.核糖体是合成蛋白质的工厂.在大肠杆菌中,rRNA量占细胞总RNA量的75%-85%,而tRNA占15%,mRNA仅占3-5%. rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷.原核生物的核糖体所含的rRNA有5S、16S及23S三种.S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例.5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸.而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、1900和4700个核苷酸. rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域.在双链区,碱基因氢键相连,表现为发夹式螺旋. rRNA在蛋白质合成中的功能尚未完全明了.但16 S的rRNA3"端有一段核苷酸序列与mRNA的前导序列是互补的,这可能有助于mRNA与核糖体的结合. snRNA 除了上述三种主要的RNA外,细胞内还有小核RNA(small nuclearRNA,snRNA).它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分.现在发现有五种snRNA,其长度在哺乳动物中约为100-215个核苷酸.snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用.另外,还有端体酶RNA(telomeraseRNA),它与染色体末端的复制有关;以及反义RNA(antisenseRNA),它参与基因表达的调控. 上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA等并不携带翻译为蛋白质的信息,其终产物就是RNA.

RNA有哪几种?其主要生物学功能是什么?

RNA主要分三类,即tRNA(转运RNA),rRNA(核糖体RNA),mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。

磷酸戊糖途径有何特点?其生物学意义何在?

特点:1 产生NADPH(注意:不是NADH!NADPH不参与呼吸链) 2 生成磷酸核糖,为核酸代谢做物质准备 3 分解戊糖 意义:1 补充糖酵解2 氧化阶段产生NADPH,促进脂肪酸和固醇合成。 3 非氧化阶段产生大量中间产物为其它代谢提供原料

糖代谢答案什么是磷酸戊糖途径?有何生物学意义

磷酸戊糖途径是在动、植物和微生物中普遍存在的一条糖的分解代谢途径,但在不同的组织中所占的比重不同。如动物的骨胳肌中基本缺乏这条途径,而在乳腺、脂肪组织、肾上腺皮质中,大部分葡萄糖是通过此途径分解的。在生物体内磷酸戊糖途径除提供能量外,主要是为合成代谢提供多种原料。如为脂肪酸、胆固醇的生物合成提供NADPH;为核苷酸辅酶、核苷酸的合成提供5-磷酸核糖;为芳香族氨基酸合成提供4-磷酸赤藓糖。此途径生成的四碳、五碳、七碳化合物及转酮酶、转醛酶等,与光合作用也有关系。因此磷酸戊糖途径是一条重要的多功能代谢途径。戊糖磷酸途径(pentose phosphate pathway)也称之单磷酸己糖支路(hexose monophosphate shunt)。是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子的NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解中的两个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。戊糖磷酸途径的氧化阶段的两步脱氢反应在生理条件下是不可逆的,为整个戊糖磷酸途径的限速反应,催化这两步反应的G6PDH和6PGDH都是该途径的限速酶。戊糖磷酸途径除了受 G6PDH 和 6PGDH制约外,还受细胞内 NADPH 的调节,当[NADPH]/[NADP+]比率过高时,会抑制 G6PDH 和 6PGDH 的活性。

磷酸戊糖途径有何特点?其生物学意义何在

特点:1产生NADPH(注意:不是NADH!NADPH不参与呼吸链)2生成磷酸核糖,为核酸代谢做物质准备3分解戊糖意义:1补充糖酵解2氧化阶段产生NADPH,促进脂肪酸和固醇合成。3非氧化阶段产生大量中间产物为其它代谢提供原料

什么是“分子生物学”?什么是“基因工程”?

什么是分子生物学? 生物学的研究可以说长期以来都是科研的重点,惟其所涉及的方方面面与人类生活紧密相连。本世纪5O年代以前的生物学研究,虽然有些已进人了微观领域,但总的来说,主要是研究生物个体组织、器官、细胞或是亚细胞器这些东西之间的相互关系。50年代中期,随着沃森和克里克揭示出DNA分子的空间结构,生物学才真正开始了其揭开分子水平生命秘密的研究历程。到70年代,重组DNA技术的发展又给人们提供了研究DNA的强有力的手段,于是分子生物学就逐渐形成了。顾名思义,分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础。从分子水平上对生物体的多种生命现象进行研究;分子生物学在理论和实践中的发展也为基因工程的出现和发展打下了良好的基础,因此可以说基因工程就是分子生物学的工程应用。现在基因工程所展现出的强大生命力和巨大的经济发展潜力完全得益于分子生物学的迅猛发展,而且有证据表明,基因工程的进一步发展仍然要依赖于分子生物学研究的发展。 ========================================什么是基因工程? 随着 DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。

重组DNA技术在现代分子生物学发展中的意义?

中心法则:http://baike.baidu.com/view/15948.html?wtp=tt由中心法则你可以知道重组的DNA可以表达新的蛋白,表达新的蛋白又可以调控DNA的转绿。我想我能给你提供的东西只有这么多。主要是你说的太大了。不好回答

重组DNA技术在现代分子生物学发展中的意义?

可以提取可用于基因治疗的基因工程细胞,进一步了解基因调控机制和疾病分子基理,也对于人类医学的发展具有重要意义另外,根据重组技术所制造的基因芯片,基因芯片即通过微价格技术将特定序列DNA片段(基因探针)固定与硅片上,基因芯片可用于基因测序,寻找有用的目的基因或对基因的序列进行分子水平上的分析。根据还可以从分子水平上了解疾病这主要是说重组DNA技术在现在分子水平上对生物医学发展的意义,你也看到了,基本上所说的都和疾病的治疗有关.我知道也就这些了,看看课本说不定还会有新的思路。

核苷酸有哪些生物学功能

核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一.最早是瑞士的化学家米歇尔于1870年从脓细胞的核中分离出来的,由于它们是酸性的,并且最先是从核中分离的,故称为核酸.核酸的发现比蛋白质晚得多.核酸分为脱氧核糖核酸(简称DNA)和核糖核酸(简称RNA)两大类,它们的基本结构单位都是核苷酸(包含脱氧核苷酸). 1.核酸的基本单位——核苷酸 每一个核苷酸分子由一分子戊糖(核糖或脱氧核糖)、一分子磷酸和一分子含氮碱基组成.碱基分为两类:一类是嘌呤,为双环分子;另一类是嘧啶,为单环分子.嘌呤一般均有A、G2种,嘧啶一般有C、T、U3种.这5种碱基的结构式如下图所示. 由上述结构式可知:腺嘌呤是嘌呤的6位碳原子上的H被氨基取代.鸟嘌呤是嘌呤的2位碳原子上的H被氨基取代,6位碳原子上的H被酮基取代.3种嘧啶都是在嘧啶2位碳原子上由酮基取代H,在4位碳原子上由氨基或酮基取代H而成,对于T,嘧啶的5位碳原子上由甲基取代了H.凡含有酮基的嘧啶或嘌呤在溶液中可以发生酮式和烯醇式的互变异构现象.结晶状态时,为这种异构体的容量混合物.在生物体内则以酮式占优势,这对于核酸分子中氢键结构的形成非常重要.例如尿嘧啶的互变异构反应式如下图. 酮式(2,4–二氧嘧啶) 烯酸式(2,4–二羟嘧啶) 在一些核酸中还存在少量其他修饰碱基.由于含量很少,故又称微量碱基或稀有碱基.核酸中修饰碱基多是4种主要碱基的衍生物.tRNA中的修饰碱基种类较多,如次黄嘌呤、二氢尿嘧啶、5–甲基尿嘧啶、4–硫尿嘧啶等,tRNA中修饰碱基含量不一,某些tRNA中的修饰碱基可达碱基总量的10%或更多. 核苷是核糖或脱氧核糖与嘌呤或嘧啶生成的糖苷.戊糖的第1碳原子(C1)通常与嘌呤的第9氮原子或嘧啶的第1氮原子相连.在tRNA中存在少量5–核糖尿嘧啶,这是一种碳苷,其C1是与尿嘧啶的第5位碳原子相连,因为这种戊糖与碱基的连接方式特殊(为C—C连接),故称为假尿苷如下图. 腺苷(A) 脱氧胸苷(dT) 假尿苷(ψ) 核苷酸是由核苷中糖的某一羟基与磷酸脱水缩合而成的磷酸酯.核苷酸的核糖有3个自由的羟基,可与磷酸酯化分别生成2"–、3"–和5"–核苷酸.脱氧核苷酸的脱氧核糖只有2个自由羟基,只能生成3"–和5"–脱氧核苷酸.生物体内游离存在的核苷酸都是5"–核苷酸.以RNA的腺苷酸为例:当磷酸与核糖5位碳原子上羟基缩合时为5"–腺苷酸,用5"–AMP表示;当磷酸基连接在核糖3位或2位碳原子上时,分别为3"–AMP和2"–AMP.5"–腺苷酸和3"–脱氧胞苷酸的结构式如下图所示. 核苷酸结构也可以用下面简式(如下图)表示.B表示嘌呤或嘧啶碱基,直线表示戊糖,P表示磷酸基. 2"–核苷酸 3"–核苷酸 5"–核苷酸 3"–或5"–核苷酸简式也可分别用Np和pN表示(N代表核苷).即当P在N右侧时为3"–核苷核,P在N左侧的为5"–核苷酸,如3"–核苷酸和5"–核苷酸可分别用Ap和pA表示. 在生物体内,核苷酸除了作为核酸的基本组成单位外,还有一些核苷酸类物质自由存在于细胞内,具有各种重要的生理功能. (1)含高能磷酸基的ATP类化合物:5"–腺苷酸进一步磷酸化,可以形成腺苷二磷酸和腺苷三磷酸,分别为ADP和ATP表示.ADP是在AMP接上一分子磷酸而成,ATP是由AMP接上一分子焦磷酸(PPi)而成,它们的结构式如下图所示. 腺苷二磷酸(ADP) 腺苷三磷酸(ATP) 这类化合物中磷酸之间是以酸酐形式结合成键,磷酸酐键具有很高的水解自由能,习惯上称为高能键,通常用“~”表示.ATP分子中有2个磷酸酐键,ADP中只含1个磷酸酐键. 在生活细胞中,ATP和ADP通常以Mg2+或Mn2+盐的复合物形式存在.特别是ATP分子上的焦磷酸基对二价阳离子有高亲和力;加上细胞内常常有相当高浓度的Mg2+,使ATP对Mg2+的亲和力远大于ADP.在体内,凡是有ATP参与的酶反应中,大多数的ATP是以Mg2+—ATP复合物的活性形式起作用的.当ATP被水解时,有两种结果:一是水解形成ADP和无机磷酸;另一种是水解生成AMP和焦磷酸.ATP是大多数生物细胞中能量的直接供体,ATP-ADP循环是生物体系中能量交换的基本方式. 在生物细胞内除了ATP和ADP外,还有其他的5"–核苷二磷酸和三磷酸,如GDP、CDP、UDP和GTP、CTP、UTP;5"–脱氧核苷二磷酸和三磷酸,如dADP、dGDP、 dTDP、dCDP和dATP、dCTP、dGTP、dTTP,它们都是通过ATP的磷酸基转移转化来的,因此ATP是各种高能磷酸基的主要来源.除ATP外,由其他有机碱构成的核苷酸也有重要的生物学功能,如鸟苷三磷酸(GTP)是蛋白质合成过程中所需要的,鸟苷三磷酸(UTP)参与糖原的合成,胞苷三磷酸(CTP)是脂肪和磷脂的合成所必需的.还有4种脱氧核糖核苷的三磷酸酯.即dATP、dCTP、dGTP、dTTP则是DNA合成所必需的原材料. (2)环状核苷酸;核苷酸可在环化酶的催化下生成环式的一磷酸核苷.其中以3",5"–环状腺苷酸(以cAMP)研究最多,它是由腺苷酸上磷酸与核糖3",5"碳原子酯化而形成的,它的结构式如下图所示. 正常细胞中cAMP的浓度很低.在细胞膜上的腺苷酸环化酶和Mg2+存在下,可催化细胞中ATP分子脱去一个焦磷酸而环化成cAMP,使cAMP的浓度升高,但cAMP又可被细胞内特异性的磷酸二酯酶水解成5"–AMP,故cAMP的浓度受这两种酶活力的控制,使其维持一定的浓度.该过程可简单表示如下: ATPcAMP+焦磷酸5"–AMP 现认为cAMP是生物体内的基本调节物质.它传递细胞外的信号,起着某些激素的“第二信使”作用.不少激素的作用是通过cAMP进行的,当激素与膜上受体结合后,活化了腺苷酸环化酶,使细胞内的cAMP含量增加.再通过cAMP去激活特异性的蛋白激酶,由激酶再进一步起作用.近年来发现3"、5"–环鸟苷酸(cGMP)也有调节作用,但其作用与cAMP正好相拮抗.它们共同调节着细胞的生长和发育等过程.此外,在大肠杆菌中cAMP也参与DNA转录的调控作用. 2.核酸的化学结构(或一级结构) 核酸分子是由核苷酸单体通过3",5"–磷酸二酯键聚合而成的多核苷酸长链.核苷酸单体之间是通过脱水缩合而成为聚合物的,这点与蛋白质的肽链形成很相似.在脱水缩合过程中,一个核苷酸中的磷酸给出一个氢原子;另一个相邻核苷酸中的戊糖给出一个羟基,产生一分子水,每个单体便以磷酸二酯键的形式连接起来.由许多个核苷酸缩合而形成多核苷酸链.如果用脾磷酸二酯酶来水解多核苷酸链,得到的是3"–核苷酸,而用蛇毒磷酸二酯酶来水解得到的却是5"–核苷酸.这证明多核苷酸链是有方向的,一端叫3"–未端,一端叫5"–末端.所谓3"–末端是指多核苷酸链的戊糖上具有3"–磷酸基(或羟基)的末端,而具有5"–磷酸基(或羟基)的末端则称为5"末–端.多核苷酸链两端的核苷酸为末端核苷酸,末端磷酸基与核苷相连的键称为磷酸单酯键.书写多核苷酸链时,通常将5"端写在左边,3"端写在右边.但在书写一条互补的双链DNA时,由于二条链是反向平行的,因此每条链的末端必须注明5"或3".通常寡核苷酸链可用右面的简式表示(如右图所示). 述简式还可简化为pApCpGpUOH,若进一步简化,还可将核苷酸链中的p省略,或在核苷酸之前加小点,则变为pACGUOH或pA·C·G·UOH. 3.核酸的性质 (1)一般性质 核酸和核苷酸既有磷酸基,又有碱性基团,为两性电解质,因磷酸的酸性强,通常表现为酸性.核酸可被酸、碱或酶水解成为各种组分,其水解程度因水解条件而异.RNA在室温条件下被稀碱水解成核苷酸而DNA对碱较稳定,常利用该性质测定RNA的碱基组成或除去溶液中的RNA杂质.DNA为白色纤维状固体,RNA为白色粉末;都微溶于水,不溶于一般有机溶剂.常用乙醇从溶液中沉淀核酸. (2)核酸的紫外吸收性质 核酸中的嘌呤碱和嘧啶碱均具有共轭双键,使碱基、核苷、核苷酸和核酸在240~290nm的紫外波段有一个强烈的吸收峰,最大吸收值在260nm附近.不同的核苷酸有不同的吸收特性.由于蛋白质在这一光区仅有很弱的吸收,蛋白质的最大吸收值在280nm处,利用这一特性可以鉴别核酸纯度及其制剂中的蛋白质杂质. (3)核酸的变性和复性 ①核酸的变性:是指核酸双螺旋区的氢键断裂,碱基有规律的堆积被破坏,双螺旋松散,发生从螺旋到单键线团的转变,并分离成两条缠绕的无定形的多核苷酸单键的过程.变性主要是由二级结构的改变引起的,因不涉及共价键的断裂,故一级结构并不发生破坏.多核苷酸骨架上共价键(3",5"—磷酸二酯健)的断裂称为核酸的降解,降解引起核酸分子量降低.引起核酸变性的因素很多,如加热引起热变性,pH值过低(如pH<4=的酸变性和pH值过高(pH>11.5)的碱变性,纯水条件下引起的变性以及各种变性试剂,如甲醇、乙醇、尿素等都能使核酸变性.此外,DNA的变性还与其分子本身的稳定性有关,由于C—C中有三对氢健而A-T对只有两对氢键,故C+G百分含量高的DNA分子就较稳定,当DNA分子中A+T百分含量高时就容易变性.环状 DNA分子比线形DNA要稳定,因此线状DNA较环状DNA容易变性. 核酸变性后,一系列物理和化学性质也随之发生改变,如260nm区紫外吸收值升高,粘度下降,浮力密度升高,同时改变二级结构,有的可以失去部分或全部生物活性.DNA的加热变性一般在较窄的温度范围内发生,很像固体结晶物质在其熔点突然熔化的情况,因此通常把热变性温度称为“熔点”或解键温度,用Tm表示.对DNA而言,通常把DNA的双螺旋结构失去一半时的温度(或变性量达最大值的一半时的温度)称为该DNA的熔点或解链温度.在此温度可由紫外吸收(或其他特性)最大变化的半数值得到.DNA的Tm值一般在70℃~85℃.RNA变性时发生与DNA变性时类似的变化,但其变化程度不及DNA大,因为RNA分子中只有部分螺旋区. ②核酸的复性:变性DNA在适当条件下,又可使两条彼此分开的链重新缔合成为双螺旋结构,这个过程称为复性.DNA复性后,许多物理、化学性质又得到恢复,生物活性也可以得到部分恢复.DNA的片段越大,复性越慢;DNA的浓度越高,复性越快. DNA或RNA变性或降解时,其紫外吸收值增加,这种现象叫做增色效应,与增色效应相反的现象称为减色效应,变性核酸复性时则发生减色效应.它们是由堆积碱基的电子间相互作用的变化引起的.

核苷酸有哪些生物学功能

核苷酸类化合物具有重要的生物学功能,它们参与了生物体内几乎所有的生物化学反应过程。现概括为以下五个方面:① 核苷酸是合成生物大分子核糖核酸 (RNA)及脱氧核糖核酸(DNA)的前身物,RNA中主要有四种类型的核苷酸:AMP、GMP、CMP和UMP。合成前身物则是相应的三磷酸核苷 ATP、GTP、CTP和UTP。DNA中主要有四种类型脱氧核苷酸:dAMP、dGMP、dCMP和dTMP,合成前身物则是dATP、dGTP、dCTP和dUTP。② 三磷酸腺苷 (ATP)在细胞能量代谢上起着极其重要的作用。物质在氧化时产生的能量一部分贮存在ATP分子的高能磷酸键中。 ATP分子分解放能的反应可以与各种需要能量做功的生物学反应互相配合,发挥各种生理功能,如物质的合成代谢、肌肉的收缩、吸收及分泌、体温维持以及生物电活动等。因此可以认为 ATP是能量代谢转化的中心。③ ATP还可将高能磷酸键转移给UDP、CDP及GDP生成UTP 、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且 UDP还有携带转运葡萄糖的作用。④ 腺苷酸还是几种重要辅酶,如辅酶Ⅰ(烟酰胺腺嘌呤二核苷酸,(NAD+)、辅酶Ⅱ(磷酸烟酰胺腺嘌呤二核苷酸,NADP+)、黄素腺嘌呤二核苷酸(FAD)及辅酶A(CoA)的组成成分。NAD+及 FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与糖有氧氧化及脂肪酸氧化作用。⑤ 环核苷酸对于许多基本的生物学过程有一定的调节作用(见第二信使)。

简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,_位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则。DNA双螺旋结构:1952年,奥地利裔美国生物化学家查伽夫测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。扩展资料:DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件。不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。参考资料来源:百度百科——DNA双螺旋结构

简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则。DNA双螺旋结构:1952年,奥地利裔美国生物化学家查伽夫测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。扩展资料:DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件。不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。参考资料来源:百度百科——DNA双螺旋结构

DNA双螺旋结构的具有哪些生物学功能?为什么?

双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤总是与胸腺嘧啶配对、鸟膘呤总是与胞嘧啶配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。 它的成功测定,开创了现代生物学的新时代.具体的资料请到:http://baike.baidu.com/view/217753.htm

嘌呤,嘧啶名词解释分子生物学

嘌呤的解释[purine] 由嘧啶环与咪唑环并合而成的晶体碱C 5 H 4 N 4 ,从尿酸制得,是从尿酸 衍生 的一些化合物的母体(如尿囊素和阿脲) 详细解释 [英purine] 有机 化合物,无色 结晶 ,易溶于水,在人体内氧化而变成尿酸。 词语分解 嘌的解释 嘌 ā 〔嘌呤〕有机化合物,无色结晶,在人体内气化而成尿酸。 疾速:“匪风飘兮,匪车嘌兮”。 部首 :口; 呤的解释 呤 í 〔呤呤〕小声细语。 〔嘌呤〕见“ 嘌”。 部首:口。

生物学中的嘧啶和嘌呤的代码

DNA中 腺嘌呤A—胸腺嘧啶T 鸟嘌呤G—胞嘧啶CRNA中(不存在T) 腺嘌呤A—尿嘧啶U 鸟嘌呤G—胞嘧啶C

三股螺旋DNA和四股DNA结构上有何特点,并说明其主要的生物学功能?

三螺旋DNA不是DNA在自然态下的主要结构,而是在特定的条件下形成的. 它是由一条ODN通过与双链DNA形成Hoogsteen键或反Hoogsteen键,在其大沟处紧密缠绕而成.具体就是富含嘧啶的ODN与双链DNA的富含嘌呤的链以平行的方式键合,形成Hoogsteen键;富含嘌呤的ODN与双链DNA的富含嘌呤的链以反平行的方式键合,形成反Hoogsteen键.与双螺旋相类似,三螺旋DNA的组成结构基元是三碱基体.目前一般认为三碱基体有嘧啶-嘌呤-嘧啶型(Py-型)和嘌呤-嘌呤-嘧啶型(Pu—型)两种基本类型.这些三碱基体也具有专一性,具体体现在T、C+、G、A分别要接在AT、GC、GC和AT碱基对上.三碱基体的这四种主要类型如图1所示. Hoogsteen键或反Hoogsteen键的形成只是构筑三螺旋的必要条件;要想使三螺旋具备一定的生物学功能,实现它的实际应用,还必须保证它具有一定的稳定性,这正是本文所关注的.影响三螺旋DNA稳定性的因素可分为内部因素和外部因素两方面.内部因素主要是指链长、碱基序列组成、骨架本性等因素.这些因素主要是通过影响第三条链键合时碱基配合的强度、氢键相互作用的强度以及双链受体重排时的能量大小来影响所形成的三螺旋的稳定性的.许多研究表明,碱基错配对三螺旋稳定性的影响很大,这对于理解三螺旋结构在体内形成的专一性具有明显重要的意义.另外,不同位置的错误匹配对稳定性的影响也不同.比如,中心部位的错误匹配就要比靠近两端的错误匹配使螺旋更加不稳定[2].影响三链核酸稳定性的外界因素主要包括溶液的pH值、溶液中阳离子的浓度、配基结合作用力的大小等.需要指出的是,尽管已发现在生物体内和体外都可以形成三螺旋DNA结构,但研究各种外界因素特别是金属离子对三螺旋DNA稳定性的影响时大多是从化学的角度、在生物体外进行的;但在生物体外的研究对于指导三螺旋结构在生物体内的应用同样具有很重要的意义.

生物学上生命是什么

生命 泛指有机物和水构成的一个或多个细胞组成的一类具有稳定的物质和能量代谢现象(能够稳定地从外界获取物质和能量并将体内产生的废物和多余的热量排放到外界)、能回应刺激、能进行自我复制(繁殖)的半开放物质系统。 恩格斯在《反杜林论》中给生命下了一个定义:生命是蛋白体的存在形式。这个存在形式的基本因素在于和它周围外部自然界不断地新陈代谢,而且这种新陈代谢一旦停止,生命就随之停止,结果便是蛋白质的分解。 生命的生物学定义:生命是生物体所表现出来的自身繁殖、生长发育、新陈代谢、遗传变异以及对刺激产生反应等复合现象。 生命的分子生物学定义:生命是有核酸和蛋白质等物质组成的分子体系,它具有不断繁殖后代以及对外界产生反应的能力。

生活中有哪些领域用到了生物学知识

生活中有哪些领域用到了生物学知识, 生活中有哪些领域可以应用到机电知识 机电一体化技术的主要应用领域(一)数控机床的研究与设计数控机床及相应的数控技术经过40年的发展,在结构、功能、操作和控制精度上都有迅速提高,具体表现在:1、总线式、模块化、紧凑型的结构,即采用多CPU、多主总线的体系结构。2、开放性设计,即硬件体系结构和功能模块具有层次性、兼容性、符合接口标准,能最大限度地提高用户的使用效益。3、WOP技术和智能化。系统能提供面向车间的编程技术和实现二、三维加工过程的动态仿真,并引入在线诊断、模糊控制等智能机制。4、大容量存储器的应用和软件的模块化设计,不仅丰富了数控功能,同时也加强了CNC系统的控制功能。5、能实现多过程、多通道控制,即具有一台机床同时完成多个独立加工任务或控制多台和多种机床的能力,并将刀具破损检测、物料搬运、机械手等控制都集成到系统中去。6、系统的多级网络功能,加强了系统组合及构成复杂加工系统的能力。7、以单板、单片机作为控制机,加上专用芯片及模板组成结构紧凑的数控装置。(二)计算机集成制造系统(CIMS)CIMS的实现不是现有各分散系统的简单组合,而是全局动态最优综合。它打破原有部门之间的界线,以制造为基干来控制“物流”和“信息流”,实现从经营决策、产品开发、生产准备、生产实验到生产经营管理的有机结合。企业集成度的提高可以使各种生产要素之间的配置得到更好的优化,各种生产要素的潜力可以得到更大的发挥。 我们的生活中有哪些领域用到了生物学知识?生物学有哪些新进展?(资料全面一点,不要废话) 计算生物学最新进展 作者: 来源:上海分院 发布者: 刘斌 类别:新闻扫描 日期: 2005-08-31 今日/总浏览: 8/6352 东方科技论坛第60次学术研讨会于2005年7月2~3日在上海沪杏科技图书馆举行。本次论坛由上海生物信息技术研究中心与复旦大学生命科学学院共同承办,论坛主题为"计算生物学最新进展"。中科院上海生命科学研究院赵国屏研究员和新加坡国立大学计算科学系陈宇综教授共同主持了会议。 一、会议背景 随着人类基因组计划的实施和深入,生物学数据积累出现了前所未有的飞跃。不仅数据量呈指数级增长,而且,数据的本质出现了从生理生化数据向遗传信息飞跃以及进一步向遗传与结构功能相互关系信息的飞跃。这种科学数据的急速海量积累,在人类的科学研究历史中是空前的。如何从这些海量的生物学数据中提取有用的知识,成为了对当前生物学家、数学家、计算机专家等的巨大挑战。由此引出了一门新兴学科:计算生物学。计算生物学是指开发和应用数据分析及理论的方法、数学建模和计算机仿真技术,用于生物学研究的一门学科。计算生物学正在成为现代生物学研究的核心方法之一,它们的重要性和复杂性在当前生物学数据量的不断增长中日益得以显示,要回答的问题越是复杂就越显得尤为突出,使得计算生物学成为当今生命科学最具活力的新兴前沿学科之一。计算生物学运用大规模高效的理论模型和数值计算来识别基因组序列中代表蛋白质的编码区,破译隐藏在核酸序列中的遗传语言规律;直接从蛋白质序列预测蛋白质三维结构以及动力学特征,研究生物大分子结构与功能的关系、生物大分子之间相互作用以及生物大分子与配体的相互作用,促进蛋白质工程、蛋白质设计和计算机辅助药物设计的发展;同时,归纳、整理与基因组遗传语言信息释放及其调控相关的转录谱和蛋白质谱的数据,模拟生命体内的信息流过程,从而认识代谢、发育、分化、进化的规律,使从基因组科学新视角来探究人类健康和疾病各个方面,将人类基因组计划的成功转化为医学领域的进步成为可能。 运用计算生物学,科学家们有望鉴定基因和途径在健康和疾病中的角色,挖掘它们与环境因素之间的关系;发展、评价以及应用以基因组为基础的诊断方法来预测对疾病的易感性,预测药物反应,疾病的早期诊断标记,疾病在分子水平上的发展机制;应用基因组和代谢通路的知识,通过分子模拟等方法进行计算机辅助药物设计,缩短新药开发周期,从而开发有效的、新的疾病治疗方法;发展基于基因组的工具来改善大众的健康状况,从而促进人类基因组计划造福于人类。 当前,计算生物学在国际上受到高度重视。美国国立卫生研究院(National Institutes of Health,NIH)是世界上从事生命科学研究最重要的研究机构,它的年度预算占了美国 *** 科学投入的60%左右。在人类基因组计划的完成和后基因组时代的到来之际,NIH经过与来自美国学术机构、 *** 部门和私人团体的300多名生物医学权威人士长达一年多时间的一系列讨论,于2003年形成了一个通向生命科学未来的"中长期发展规划"--国立卫生研究院路线图(NIH Roadmap)。NIH路线图中启动了一个"生物信息学和计算生物学"计划,希望通过这个项目的实施而铺设一条通向生命科学未来的"信息高速公路"。该项目计划从2004年开始,建立数个"国立生物医学计算中心"(National Centers for Biomedical Computing),以便开发相关软件和数据管理工具。2003年,NIH下属的国家人类基因组研究所(The National Human Genome Research Institute,NHGRI)负责人在Nature上发表了题为"基因组学研究前景展望"的文章。文章中所述的基因组研究展望来自上百位科学家和社会公众,举行了十几场讨论会和无数的与个人之间的探讨,历经近两年的热烈讨论。文章将对基因组研究的展望分为三个主题和六个横切面,三个主题是:基因组学与生物学、基因组学与健康和基因组学与社会;六个横切面是:资源、技术发展、计算生物学、培训、伦理法律和社会应用,以及教育。六个重要横切面与所有三个主题相关,而计算生物学是重要要成分之一。 在国内,我国国家自然科学基金委员会将计算生物学作为重点资助的研究方向之一。对于将生物医药产业作为重点发展高科技产业的上海市,对计算生物学研究更是高度重视。2002年,中科院上海药物研究所与美国SGI计算机公司联合建立的计算生物学实验室在上海药物所揭牌成立。中科院和德国最大的研究机构-马克斯·普朗克学院合作,筹划在上海合作开展计算生物学研究,且于2004年6月在中科院上海生命科学研究院举行了计算生物学研究所成立筹备会。IBM是全球唯一一家能够将其专业研究技术应用于计算生物学、并行计算的公司。2002年,IBM与上海生物信息技术研究中心以及英国InforSense公司一起,合作建立了高性能的生物科学研究实验室,合作进行计算生物学方面的研究和开发。因而,在上海举行计算生物学学术研讨会,将促进我市和我国对计算生物学这一前沿研究领域的更好发展,并对我市生物医药学产业的发展起到积极的推动作用。 由于分子模拟和计算机辅助药物设计是当前计算生物学中的热点问题,又是计算生物学与生物医药产业结合最紧密的方向,计算生物学在这些方面取得的进展将直接推动生物医药产业的发展,因此,本次会议将生物大分子计算模拟,计算机辅助药物设计和计算生物学的发展及未来方向作为中心议题。 生活中有哪些地方用到了方位知识? 1,去什么地方看地图时 2,迷路的时候 3,开车的时候 4,告诉别人地点时, 看房子的朝向。装卫星天线。有些人看风水,看地图,看星座 (1)定向越野。它是利用地图和指北针导航的运动,在世界各地正吸引着越来越多人参与并为之狂热。它既是一种户外休闲、娱乐运动,又是一种竞技运动。参加定向运动除需要指北针和地图外,不需要特殊的设备,是一种较为经济的运动项目。 (2)迷路的时候也会用到方向的知识 生活中的生物学知识 我很喜欢仟佰盾,透气性好,很好的口罩,有淡淡的香味,在天猫旗舰店购买的。 生活中有哪些领域 生活领域是一个很大的概念,目前并没有非常权威的定义和划分,因为没有这个必要,只有在需要的时候,才冠以领域二字。对某一科目分类划分后,对应的各部分就叫作某某领域。也可以称高级的领域。 根据这一概念,我们可以将生活领域这一大概念分割成无数个小的生活领域,比如: 根据性质来分,我们有家庭生活、婚姻生活、休闲生活、宗教生活、政治生活、组织生活、学习生活,包括工作领域也应该归入到大的生活领域概念中; 根据范围来分,可以分为公共生活领域和私人生活领域; 根据年龄来分,可以分为幼儿生活领域、儿童生活领域、少年生活领域……老年生活领域等等; 还可以根据性别来划分,有男士专属和女士专属的生活领域,比如有女士专属的美容SPA等等; 这些领域的划分,可以让社会有针对性的提供服务,从而提高整体的生活质量,还可以带来商机。 上述是个人意见,仅供参考。 生活中有关化学知识的书有哪些? 教材就是 生活中哪些地方用到了编码知识? 比如说现在的这个这个网页

请问谁知道中心法则的内容和其生物学意义?

是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对中心法则的补充。RNA的自我复制和逆转录过程,在病毒单独存在时是不能进行的,只有寄生到寄主细胞中后才发生。逆转录酶在基因工程中是一种很重要的酶,它能以已知的mRNA为模板合成目的基因。在基因工程中是获得目的基因的重要手段。 遗传物质可以是DNA,也可以是RNA。细胞的遗传物质都是DNA,只有一些病毒的遗传物质是RNA。这种以RNA为遗传物质的病毒称为反转录病毒(retrovirus),在这种病毒的感染周期中,单链的RNA分子在反转录酶(reverse transcriptase)的作用下,可以反转录成单链的DNA,然后再以单链的DNA为模板生成双链DNA。双链DNA可以成为宿主细胞基因组的一部分,并同宿主细胞的基因组一起传递给子细胞。在反转录酶催化下,RNA分子产生与其序列互补的DNA分子,这种DNA分子称为互补DNA(complementary DNA),简写为cDNA,这个过程即为反转录(reverse transcription)。 由此可见,遗传信息并不一定是从DNA单向地流向RNA,RNA携带的遗传信息同样也可以流向DNA。但是DNA和RNA中包含的遗传信息只是单向地流向蛋白质,迄今为止还没有发现蛋白质的信息逆向地流向核酸。这种遗传信息的流向,就是克里克概括的中心法则(central dogma)的遗传学意义。 任何一种假设都要经受科学事实的检验。反转录酶的发现,使中心法则对关于遗传信息从DNA单向流入RNA做了修改,遗传信息是可以在DNA与RNA之间相互流动的。那么,对于DNA和RNA与蛋白质分子之间的信息流向是否只有核酸向蛋白质分子的单向流动,还是蛋白质分子的信息也可以流向核酸,中心法则仍然肯定前者。可是,病原体朊粒(Prion)的行为曾对中心法则提出了严重的挑战。 朊粒是一种蛋白质传染颗粒(proteinaceous infectious particle),它最初被认识到是羊的瘙痒病的病原体。这是一种慢性神经系统疾病,在200多年前就已发现。1935年法国研究人员通过接种发现这种病可在羊群中传染,意味着这种病原体是能在宿主动物体内自行复制的感染因子。朊粒同时又是人类的中枢神经系统退化性疾病如库鲁病(Kuru)和克—杰氏综合征(Creutzfeldt-Jacobdisease,CJD)的病原体,也可引起疯牛病即牛脑的海绵状病变(bovin spongiform encephalopathy,BSE)。以后的研究证明,这种朊粒不是病毒,而是不含核酸的蛋白质颗粒。一个不含DNA或RNA的蛋白质分子能在受感染的宿主细胞内产生与自身相同的分子,且实现相同的生物学功能,即引起相同的疾病,这意味着这种蛋白质分子也是负载和传递遗传信息的物质。这是从根本上动摇了遗传学的基础。 实验证明,朊粒确实是不含DNA和RNA的蛋白质颗粒,但它不是传递遗传信息的载体,也不能自我复制,而仍是由基因编码产生的一种正常蛋白质的异构体。 哺乳动物细胞里的基因编码产生一种糖蛋白PrP。人的PrP基因位于20号染色体短臂,PrP由253个氨基酸残基组成,在氨基端有22个氨基酸组成的信号 肽。在正常脑组织中的PrP称为PrPc,相对分子质量为33 000~35 000,对蛋白酶敏感。在病变脑组织中的PrP称为PrPsc,相对分子质量为27 000~30 000,是PrPc中的一段,蛋白酶对其不起作用。现在知道,PrPc和PrPsc是PrP的两种异构体,氨基酸组分和线性排列次序相同,但是三维构象不同。PrPc的结构中。螺旋占42%,β片层占30%;PrPsc则是。螺旋占30%,β片层占43%。PrPc的4条。螺旋可以排列成一个致密的球状结构,这个结构的随机涨落(stochastic fluctua—tion)会长成部分折叠的单体PrP*,这是一种中间体,即PrP*可以生成PrPc,也可以生成PrPsc。一般情况下,PrP*的含量极少,所以生成的PrPsc极少。可是外源的PrPsc可以促使PrP*变成PrPsc。PrPsc的不溶性使生成PrPsc过程成为不可逆转。PrPsc在神经细胞里大量沉积,引起神经细胞的病变,破坏了神经细胞功能。因此,PrPsc感染正常细胞后,可以促使细胞内生成更多的PrPsc,PrPsc逐渐积累,需要有一个时间过程才会引发疾病,这也就是这种神经退化性疾病有一个很长的潜伏期的原因。所以说,PrPsc进入宿主细胞并不是自我复制,而是将细胞内基因编码产生的PrPc变成PrPsc。由此可见,中心法则是正确的,至少在目前还是无需修正的。

分子生物学的中心法则包括哪些内容

1、从DNA流向DNA(DNA自我复制);2、从DNA流向RNA,进而流向蛋白质(转录和翻译);3、从RNA流向RNA(RNA自我复制);4、从RNA流向DNA(逆转录)注:其中前两条是中心法则的主要体现,后两条是中心法则的完善和补充。扩展资料:作用中心法则是现代生物学中最重要最基本的规律之一, 其在探索生命现象的本质及普遍规律方面起了巨大的作用,极大地推动了现代生物学的发展,是现代生物学的理论基石,并为生物学基础理论的统一指明了方向,在生物科学发展过程中占有重要地位。遗传物质可以是DNA,也可以是RNA。细胞的遗传物质都是DNA,只有一些病毒的遗传物质是RNA。这种以RNA为遗传物质的病毒称为反转录病毒(retrovirus),在这种病毒的感染周期中,单链的RNA分子在反转录酶(reverse transcriptase)的作用下,可以反转录成单链的DNA,然后再以单链的DNA为模板生成双链DNA。双链DNA可以成为宿主细胞基因组的一部分,并同宿主细胞的基因组一起传递给子细胞。在反转录酶催化下,RNA分子产生与其序列互补的DNA分子,这种DNA分子称为互补DNA(complementary DNA),简写为cDNA,这个过程即为逆转录(reverse transcription)。参考资料:百度百科-中心法则

什么是中心法则?在生物学上有什么意义?

中心法则讲的是DNA RNA 和蛋白质之间的关系DNA复制---->DNA-->RNA--->蛋白质,这是最初的中心法则,不过现在有RNA--->DNA了 意义:①高度概括遗传物质的作用原理 ②提出分子遗传学研究课题

DNA双螺旋结构的特点及其生物学功能是什么?

以下是我自己根据我们书上所写的归纳的,希望对你有帮助:DNA双螺旋结构有如下几个特点:1、DNA是反向平行的互补双链结构,它的两条多聚核苷酸链在空间排布呈反向平行,碱基位于内侧,亲水的脱氧核糖基和磷酸基位于外侧,碱基间以A-T和G-C的方式互补配对;2、DNA双链是右手螺旋结构,DNA的两条多核苷酸链反向平行围绕同一中心轴互相缠绕,呈右手螺旋;3疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持。DNA的生物学功能:DNA是遗传物质,是遗传信息的载体。证据如下:1、DNA分布在染色体内,是染色体的主要成分,而染色体是直接与遗传有关的。2、体细胞DNA含量为生殖细胞DNA含量的两倍,且含量十分稳定。3、DNA在代谢上较稳定不受营养条件、年龄等因素的影响。4、作用于DNA的理化因素可引起遗传特性的改变,这一点已经由Avery在1953年用肺炎双球菌转化实验证明。

dna双螺旋结构有何重要生物学意义

DNA双螺旋结构的生物学意义:DNA双螺旋结构的发现,开启了分子生物学时代,使遗传的研究深入到分子层次,为生物工程的研究和应用开辟了广阔的前景。DNA双螺旋结构的特点:双螺旋结构是两条反向平行的脱氧多核苷酸链围绕同一中心轴盘曲形成的以右手螺旋为主的结构;磷酸与脱氧核糖交替形成链的骨架位于螺旋的外侧,碱基位于螺旋的内部,碱基平面与中心轴垂直。扩展资料DNA双螺旋结构的发现史:20世纪,英国女性X射线晶体学家富兰克林分辨出了DNA的两种构型,并成功地拍摄了它的X射线衍射照片。沃森和克里克未经富兰克林的许可使用了她的照片,还在《自然》杂志上发表一篇证实DNA双螺旋结构的文章。1953年,詹姆斯·杜威·沃森和弗朗西斯·克里克利用了未经富兰克林的授权,通过使用她的X射线晶体结构数据,4月25日在英国《自然》杂志发表了题为“核酸的分子结构-脱氧核糖核酸的一个结构模型”,成功在人类探索生科本质的征途上迈出了巨大的一步。参考资料来源:百度百科-DNA双螺旋结构

dna双螺旋结构有何重要生物学意义

双螺旋结构是生物结构中常见的基本单元,双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。扩展资料结构特点:主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。参考资料来源:百度百科——双螺旋结构

生物学中,脱氧核糖核苷酸里的胸腺嘧啶,腺嘌呤,鸟嘌呤,胞嘧啶,尿嘧啶的作用是什么?

首先呢,脱氧核糖核苷酸里没有尿嘧啶,反而可能有你高中阶段不会接触的碱基(譬如次黄嘌呤I,部分低等生物的胞嘧啶之类还能搞甲基化等修饰)排除那个什么I,4种碱基对应4种脱氧核糖核苷酸,通过不同的排列组合,得到相应的蛋白质编码。同时在形成双链的过程中,互补的两个碱基能以氢键相连,结构更为稳定,甚至还有一定的纠错功能。所以他保证了生物密码子的唯一和遗传传递过程的准确性。

诺贝尔生物学奖的历届得主

历届诺贝尔生理学或医学奖得主1901-1921u25aa 埃米尔·阿道夫·冯·贝林 ( 1901) u25aa 罗纳德·罗斯 ( 1902) u25aa 尼尔斯·吕贝里·芬森 ( 1903) u25aa 伊万·巴甫洛夫 ( 1904) u25aa 罗伯特·科赫 ( 1905) u25aa 卡米洛·高尔基 ( 1906) u25aa 圣地亚哥·拉蒙-卡哈尔 ( 1906) u25aa 夏尔·路易·阿方斯·拉韦朗 ( 1907) u25aa 伊拉·伊里奇·梅契尼科夫 ( 1908) u25aa 保罗·埃尔利希 ( 1908) u25aa 埃米尔·特奥多尔·科赫尔 ( 1909) u25aa 阿尔布雷希特·科塞尔 ( 1910) u25aa 阿尔瓦·古尔斯特兰德 ( 1911) u25aa 亚历克西·卡雷尔 ( 1912) u25aa 夏尔·罗贝尔·里歇 ( 1913) u25aa 罗伯特·巴拉尼 ( 1914) u25aa 朱尔·博尔代 ( 1919) u25aa 奥古斯特·克罗 ( 1920) 1922-1931u25aa 阿奇博尔德u2022维维安u2022希尔 ( 1922) u25aa 奥托·迈尔霍夫 ( 1922) u25aa 弗雷德里克·格兰特·班廷 ( 1923) u25aa 约翰·麦克劳德 ( 1923) u25aa 威廉·埃因托芬 ( 1924) u25aa 约翰尼斯·菲比格 ( 1926) u25aa 朱利叶斯·瓦格纳-尧雷格 ( 1927) u25aa 查尔斯·尼柯尔 ( 1928) u25aa 克里斯蒂安·艾克曼 ( 1929) u25aa 弗雷德里克·霍普金斯 ( 1929) u25aa 卡尔·兰德斯坦纳 ( 1930) u25aa 奥托·海因里希·瓦尔堡 ( 1931) 1932-1941u25aa 查尔斯·斯科特·谢灵顿 ( 1932) u25aa 托马斯·亨特·摩尔根 ( 1933) u25aa 乔治·惠普尔 ( 1934) u25aa 乔治·理查兹·迈诺特 ( 1934) u25aa 威廉·莫菲 ( 1934) u25aa 汉斯·斯佩曼 ( 1935) u25aa 亨利·哈利特·戴尔 ( 1936) u25aa 奥托·勒维 ( 1936) u25aa 圣捷尔吉·阿尔伯特 ( 1937) u25aa 柯奈尔·海门斯 u25aa 格哈德·多马克 ( 1939) 1942-1951u25aa 亨利克·达姆 ( 1943) u25aa 爱德华·阿德尔伯特·多伊西 ( 1943) u25aa 约瑟夫·厄尔兰格 ( 1944) u25aa 赫伯特·斯潘塞·加塞 ( 1944) u25aa 亚历山大·弗莱明 ( 1945) u25aa 恩斯特·伯利斯·柴恩 ( 1945) u25aa 弗洛里 ( 1945) u25aa 赫尔曼·约瑟夫·马勒 ( 1946) u25aa 卡尔·斐迪南·科里 ( 1947) u25aa 格蒂·特蕾莎·科里 ( 1947) u25aa 贝尔纳多·阿尔韦托·奥赛 ( 1947) u25aa 保罗·赫尔曼·穆勒 ( 1948) u25aa 赫斯 ( 1949) u25aa 安东尼奥·埃加斯·莫尼斯 ( 1949) u25aa 菲利普·肖瓦特·亨奇 ( 1950) u25aa 塔德乌什·赖希施泰因 ( 1950) u25aa 马克斯·泰累尔 ( 1951) 1952-1961u25aa 赛尔曼·A·瓦克斯曼 ( 1952) u25aa 汉斯·阿道夫·克雷布斯 ( 1953) u25aa 弗里茨·阿尔贝特·李普曼 ( 1953) u25aa 约翰·富兰克林·恩德斯 ( 1954) u25aa 弗雷德里克·查普曼·罗宾斯 ( 1954) u25aa 托马斯·哈克尔·韦勒 ( 1954) u25aa 胡戈·特奥雷尔 ( 1955) u25aa 安德烈·弗雷德里克·考南德 ( 1956) u25aa 沃纳·福斯曼 ( 1956) u25aa 迪金森·伍德拉夫·理查兹 ( 1956) u25aa 达尼埃尔·博韦 ( 1957) u25aa 乔治·韦尔斯·比德尔 ( 1958) u25aa 爱德华·劳里·塔特姆 ( 1958) u25aa 乔舒亚·莱德伯格 ( 1958) u25aa 阿瑟·科恩伯格 ( 1959) u25aa 塞韦罗·奥乔亚 ( 1959) u25aa 弗兰克·麦克法兰·伯内特 ( 1960) u25aa 彼得·梅达沃 ( 1960) u25aa 盖欧尔格·冯·贝凯希 ( 1961) 1962-1971u25aa 弗朗西斯·哈里·康普顿·克里克( 1962) u25aa 詹姆斯·杜威·沃森 ( 1962) u25aa 莫里斯·威尔金斯 ( 1962) u25aa 约翰·卡鲁·埃克尔斯 ( 1963) u25aa 霍奇金 ( 1963) u25aa 安德鲁·赫胥黎 ( 1963) u25aa 康拉德·布洛赫 ( 1964) u25aa 费奥多尔·吕嫩 ( 1964) u25aa 方斯华·贾克柏 ( 1965) u25aa 安德列·利沃夫 ( 1965) u25aa 贾克·莫诺 ( 1965) u25aa 裴顿·劳斯 ( 1966) u25aa 查尔斯·布兰顿·哈金斯 ( 1966) u25aa 格拉尼特 ( 1967) u25aa 霍尔登·凯弗·哈特兰 ( 1967) u25aa 乔治·沃尔德 ( 1967) u25aa 罗伯特·W·霍利 ( 1968) u25aa 哈尔·葛宾·科拉纳 ( 1968) u25aa 马歇尔·沃伦·尼伦伯格 ( 1968) u25aa 马克斯·德尔布吕克 ( 1969) u25aa 阿弗雷德·赫希 ( 1969) u25aa 萨尔瓦多·卢瑞亚 ( 1969) u25aa 朱利叶斯·阿克塞尔罗德 ( 1970) u25aa 乌尔夫·冯·奥伊勒 ( 1970) u25aa 伯纳德·卡茨 ( 1970) u25aa 埃鲁·威尔布尔·苏德兰 ( 1971) 1972-1981u25aa 杰拉尔德·埃德尔曼 ( 1972) u25aa 罗德尼·罗伯特·波特 ( 1972) u25aa 卡尔·冯·弗利 ( 1973) u25aa 康拉德·洛伦茨 ( 1973) u25aa 尼可拉斯·丁伯根 ( 1973) u25aa 阿尔伯特·克劳德 ( 1974) u25aa 克里斯汀·德·迪夫 ( 1974) u25aa 帕拉德 ( 1974) u25aa 戴维·巴尔的摩 ( 1975) u25aa 罗纳托·杜尔贝科 ( 1975) u25aa 霍华德·马丁·特明 ( 1975) u25aa 巴鲁克·塞缪尔·布隆伯格 ( 1976) u25aa 丹尼尔·卡尔顿·盖杜谢克 ( 1976) u25aa 罗歇·吉耶曼 ( 1977) u25aa 安德鲁-维克托-沙利 ( 1977) u25aa 罗莎琳·萨斯曼·耶洛 ( 1977) u25aa 沃纳·亚伯 ( 1978) u25aa 丹尼尔·那森斯 ( 1978) u25aa 汉弥尔顿·史密斯 ( 1978) u25aa 阿兰·麦克莱德·科马克 ( 1979) u25aa 高弗雷·豪斯费尔德 ( 1979) u25aa 巴茹·贝纳塞拉夫 ( 1980) u25aa 让·多塞 ( 1980) u25aa 乔治·斯内尔 ( 1980) u25aa 罗杰·斯佩里 ( 1981) u25aa 大卫·休伯尔 ( 1981) u25aa 托斯坦·维厄瑟尔 ( 1981) 1982-1991u25aa 苏恩·伯格斯特龙 ( 1982) u25aa 本格特·萨米尔松 ( 1982) u25aa 约翰·罗伯特·范恩 ( 1982) u25aa 巴巴拉·麦克林托克 ( 1983) u25aa 尼尔斯·杰尼 ( 1984) u25aa 乔治斯·克勒 ( 1984) u25aa 色萨·米尔斯坦 ( 1984) u25aa 麦可·布朗 ( 1985) u25aa 戈尔茨坦 ( 1985) u25aa 斯坦利·科恩 ( 1986) u25aa 丽塔·列维-蒙塔尔奇尼 ( 1986) u25aa 利根川进 ( 1987) u25aa 詹姆士·W·布拉克 ( 1988) u25aa 格特鲁德·B·埃利恩 ( 1988) u25aa 乔治·希青斯 ( 1988) u25aa 毕晓普 ( 1989) u25aa 哈罗德·瓦慕斯 ( 1989) u25aa 约瑟夫·默里 ( 1990) u25aa 唐纳尔·托马斯 ( 1990) u25aa 厄温·内尔 ( 1991) u25aa 伯特·萨克曼 ( 1991) 1992-2001u25aa 埃德蒙·费希尔 ( 1992) u25aa 埃德温·克雷布斯 ( 1992) u25aa 理察·罗伯茨 ( 1993) u25aa 菲利普·夏普 ( 1993) u25aa 艾尔佛列·古曼·吉尔曼 ( 1994) u25aa 马丁·罗德贝尔 ( 1994) u25aa 爱德华·路易斯 ( 1995) u25aa 克里斯汀·纽斯林-沃尔哈德 ( 1995) u25aa 威斯乔斯 ( 1995) u25aa 彼得·杜赫提 ( 1996) u25aa 罗夫·辛克纳吉 ( 1996) u25aa 史坦利·布鲁希纳 ( 1997) u25aa 罗伯·佛契哥特 ( 1998) u25aa 路易斯·路伊格纳洛 ( 1998) u25aa 费瑞·慕拉德 ( 1998) u25aa 古特·布洛伯尔 ( 1999) u25aa 阿尔维德·卡尔森 ( 2000) u25aa 保罗·格林加德 ( 2000) u25aa 艾瑞克·坎德尔 ( 2000) u25aa 利兰·哈特韦尔 ( 2001) u25aa 蒂姆·亨特 ( 2001) u25aa 保罗·纳斯 ( 2001) 2002至今u25aa 悉尼·布伦纳 ( 2002) u25aa H·罗伯特·霍维茨 ( 2002) u25aa 约翰·E·苏尔斯顿 ( 2002) u25aa 彼得·曼斯菲尔德 ( 2003) u25aa 理查德·阿克塞尔 ( 2004) u25aa 琳达·巴克 ( 2004) u25aa 巴里·马歇尔 ( 2005) u25aa 罗宾·沃伦 ( 2005) u25aa 安德鲁·法尔 ( 2006) u25aa 克雷格·梅洛 ( 2006) u25aa 马里奥·卡佩奇 ( 2007) u25aa 马丁·约翰·埃文斯 ( 2007) u25aa 奥利弗·史密斯 ( 2007) u25aa 哈拉尔德·楚尔·豪森 ( 2008) u25aa 弗朗索瓦丝·巴尔·西诺西 ( 2008) u25aa 吕克·蒙塔尼 ( 2008) u25aa 伊丽莎白·布莱克本 ( 2009) u25aa 卡罗尔·格雷德 ( 2009) u25aa 杰克·绍斯塔克 ( 2009) u25aa 罗伯特·杰弗里·爱德华兹 ( 2010) u25aa 布鲁斯·巴特勒 ( 2011) u25aa 朱尔斯·霍夫曼 ( 2011) u25aa 拉尔夫·斯坦曼 ( 2011) u25aa 山中伸弥 ( 2012) u25aa 约翰·伯特兰·格登 ( 2012) u25aa 詹姆斯-E.罗斯 ( 2013) u25aa 兰迪·谢克曼 ( 2013) u25aa 托马斯·苏德霍夫 ( 2013)

诺贝尔生物学奖的历届得主

历年诺贝尔生理学医学奖获奖名单 时间 得主 国家 得奖原因 1901年 埃米尔·阿道夫·冯·贝林 德国 “对血清疗法的研究,特别是在治疗白喉应用上的贡献” 1902年 罗纳德·罗斯 英国 “研究显示了疟疾如何进入生物体” 1903年 尼尔斯·吕贝里·芬森 丹麦 “在用集中的光辐射治疗寻常狼疮方面的贡献” 1904年 伊万·巴甫洛夫 俄罗斯 “在消化的生理学研究上转化和扩增” 1905年 罗伯特·科赫 德国 “对结核病的相关研究和发现” 1906年 卡米洛·高尔基 意大利 “在神经系统结构研究上的工作” 圣地亚哥·拉蒙-卡哈尔 西班牙 1907年 夏尔·路易·阿方斯·拉韦朗 法国 “对原生动物在致病中的作用的研究” 1908年 伊拉·伊里奇·梅契尼科夫 俄罗斯 “在免疫性研究上的工作” 保罗·埃尔利希 德国 1909年 埃米尔·特奥多尔·科赫尔 瑞士 “对甲状腺的生理学、病理学以及外科学上的研究” 1910年 阿尔布雷希特·科塞尔 德国 “对包括细胞核物质在内的蛋白质的研究” 1911年 阿尔瓦·古尔斯特兰德 瑞典 “在眼睛屈光学研究上的工作” 1912年 亚历克西·卡雷尔 法国 “在血管结构以及血管和器官移植研究上的工作” 1913年 夏尔·罗贝尔·里歇 法国 “在过敏反应研究上的工作” 1914年 罗伯特·巴拉尼 奥地利 “在前庭器官的生理学与病理学研究上的工作” 1919年 朱尔·博尔代 比利时 “免疫性方面的发现” 1920年 奥古斯特·克罗 丹麦 “发现毛细血管运动的调节机理” 1922年 阿奇博尔德·希尔 英国 “在肌肉产生热量上的发现” 奥托·迈尔霍夫 德国 “发现肌肉中氧的消耗和乳酸代谢之间的固定关系” 1923年 弗雷德里克·格兰特·班廷 加拿大 “发现胰岛素” 约翰·麦克劳德 加拿大 1924年 威廉·埃因托芬 荷兰 “发明心电图装置” 1926年 约翰尼斯·菲比格 丹麦 “发现鼠癌” 1927年 朱利叶斯·瓦格纳-尧雷格 奥地利 “发现在治疗麻痹性痴呆过程中疟疾接种疗法的治疗价值” 1928年 查尔斯·尼柯尔 法国 “在斑疹伤寒研究上的工作” 1929年 克里斯蒂安·艾克曼 荷兰 “发现抗神经炎的维生素” 弗雷德里克·霍普金斯爵士 英国 “发现刺激生长的维生素” 1930年 卡尔·兰德施泰纳 奥地利 “发现人类的血型” 1931年 奥托·海因里希·瓦尔堡 德国 “发现呼吸酶的性质和作用方式” 1932年 查尔斯·斯科特·谢灵顿爵士 英国 “发现神经元的相关功能” 埃德加·阿德里安 英国 1933年 托马斯·亨特·摩尔根 美国 “发现遗传中染色体所起的作用” 1934年 乔治·惠普尔 美国 “发现贫血的肝脏治疗法” 乔治·迈诺特 美国 威廉·莫菲 美国 1935年 汉斯·斯佩曼 德国 “发现胚胎发育中的组织者效应” 1936年 亨利·哈利特·戴尔爵士 英国 “神经冲动的化学传递的相关发现” 奥托·勒维 奥地利 1937年 圣捷尔吉·阿尔伯特 匈牙利 “维生素C和延胡索酸的催化作用” 1938年 海门斯 比利时 “发现窦和主动脉机制在呼吸调节中所起的作用” 1939年 格哈德·多马克 德国 “发现百浪多息(一种磺胺类药物)的抗菌效果” 1943年 亨利克·达姆 丹麦 “发现维生素K” 爱德华·阿德尔伯特·多伊西 美国 “发现维生素K的化学性质” 1944年 约瑟夫·厄尔兰格 美国 “发现单神经纤维的高度分化功能” 赫伯特·斯潘塞·加塞 美国 1945年 亚历山大·弗莱明爵士 英国 “发现青霉素及其对各种传染病的疗效” 恩斯特·伯利斯·柴恩 英国 霍华德·弗洛里爵士 澳大利亚 1946年 赫尔曼·约瑟夫·马勒 美国 “发现用X射线辐射的方法能够产生突变” 1947年 卡尔·斐迪南·科里 美国 “发现糖原的催化转化原因” 格蒂·特蕾莎·科里 美国 贝尔纳多·奥赛 阿根廷 “发现垂体前叶激素在糖代谢中的作用” 1948年 保罗·赫尔曼·穆勒 瑞士 “发现DDT是一种高效杀死多类节肢动物的接触性毒药” 1949年 瓦尔特·鲁道夫·赫斯 瑞士 “发现间脑的功能性组织对内脏活动的调节功能” 安东尼奥·埃加斯·莫尼斯 葡萄牙 “发现前脑叶白质切除术对特定重性精神病患者的治疗效果” 1950年 菲利普·肖瓦特·亨奇 美国 “发现肾上腺皮质激素及其结构和生物效应” 爱德华·卡尔文·肯德尔 美国 塔德乌什·赖希施泰因 瑞士 1951年 马克斯·泰累尔 南非 “黄热病及其治疗方法上的发现” 1952年 赛尔曼·A·瓦克斯曼 美国 “发现链霉素,第一个有效对抗结核病的抗生素” 1953年 汉斯·阿道夫·克雷布斯 英国 “发现柠檬酸循环” 弗里茨·阿尔贝特·李普曼 美国 “发现辅酶A及其对中间代谢的重要性” 1954年 约翰·富兰克林·恩德斯 美国 “发现脊髓灰质炎病毒在各种组织培养基中的生长能力” 弗雷德里克·查普曼·罗宾斯 美国 托马斯·哈克尔·韦勒 美国 1955年 阿克塞尔·胡戈·特奥多尔·特奥雷尔 瑞典 “发现氧化酶的性质和作用方式” 1956年 安德烈·弗雷德里克·考南德 美国 “心脏导管术及其在循环系统的病理变化方面的发现” 沃纳·福斯曼 德国 迪金森·伍德拉夫·理查兹 美国 1957年 达尼埃尔·博韦 意大利 “发现抑制血管系统和骨骼肌的作用” 1958年 乔治·韦尔斯·比德尔 美国 “发现基因功能受到特定化学过程的调控” 爱德华·劳里·塔特姆 美国 乔舒亚·莱德伯格 美国 “发现细菌遗传物质的基因重组和组织” 1959年 阿瑟·科恩伯格 美国 “发现核糖核酸和脱氧核糖核酸的生物合成机制” 塞韦罗·奥乔亚 美国 1960年 弗兰克·麦克法兰·伯内特爵士 澳大利亚 “发现获得性免疫耐受” 彼得·梅达沃 英国 1961年 盖欧尔格·冯·贝凯希 美国 “发现耳蜗内刺激的物理机理” 1962年 佛朗西斯·克里克 英国 “发现核酸的分子结构及其对生物中信息传递的重要性” 詹姆斯·杜威·沃森 美国 莫里斯·威尔金斯 英国 1963年 约翰·卡鲁·埃克尔斯爵士 澳大利亚 “发现在神经细胞膜的外围和中心部位的离子机理” 艾伦·劳埃德·霍奇金 英国 安德鲁·赫胥黎 英国 1964年 康拉德·布洛赫 美国 “发现胆固醇和脂肪酸的代谢机理和调控作用” 费奥多尔·吕嫩 德国 1965年 方斯华·贾克柏 法国 “在酶和病毒合成的遗传控制中的发现” 安德列·利沃夫 法国 贾克·莫诺 法国 1966年 裴顿·劳斯 美国 “发现诱导肿瘤的病毒” 查尔斯·布兰顿·哈金斯 美国 “发现前列腺癌的激素疗法” 1967年 拉格纳·格拉尼特 瑞典 “发现眼睛的初级生理及化学视觉过程” 霍尔登·凯弗·哈特兰 美国 乔治·沃尔德 美国 1968年 罗伯特·W·霍利 美国 “破解遗传密码并阐释其在蛋白质合成中的作用” 哈尔·葛宾·科拉纳 美国 马歇尔·沃伦·尼伦伯格 美国 1969年 马克斯·德尔布吕克 美国 “发现病毒的复制机理和遗传结构” 阿弗雷德·赫希 美国 萨尔瓦多·卢瑞亚 美国 1970年 朱利叶斯·阿克塞尔罗德 美国 “发现神经末梢中的体液性传递物质及其贮存、释放和抑制机理” 乌尔夫·冯·奥伊勒 瑞典 伯纳德·卡茨爵士 英国 1971年 埃鲁·威尔布尔·苏德兰 美国 “发现激素的作用机理” 1972年 杰拉尔德·埃德尔曼 美国 “发现抗体的化学结构” 罗德尼·罗伯特·波特 英国 1973年 卡尔·冯·弗利 德国 “发现个体与社会性行为模式的组织和引发” 康拉德·洛伦兹 奥地利 尼可拉斯·庭伯根 英国 1974年 阿尔伯特·克劳德 比利时 “细胞的结构和功能组织方面的发现” 克里斯汀·德·迪夫 比利时 乔治·埃米尔·帕拉德 美国 1975年 戴维·巴尔的摩 美国 “发现肿瘤病毒和细胞的遗传物质之间的相互作用” 罗纳托·杜尔贝科 美国 霍华德·马丁·特明 美国 1976年 巴鲁克·塞缪尔·布隆伯格 美国 “发现传染病产生和传播的新机理” 丹尼尔·卡尔顿·盖杜谢克 美国 1977年 罗歇·吉耶曼 美国 “发现大脑分泌的肽类激素” 安德鲁·沙利 美国 罗莎琳·萨斯曼·耶洛 美国 “开发肽类激素的放射免疫分析法” 1978年 沃纳·亚伯 瑞士 “发现限制性内切酶及其在分子遗传学方面的应用” 丹尼尔·那森斯 美国 汉弥尔顿·史密斯 美国 1979年 阿兰·麦克莱德·科马克 美国 “开发计算机辅助的断层扫描技术” 高弗雷·豪斯费尔德 英国 1980年 巴茹·贝纳塞拉夫 美国 “发现调节免疫反应的细胞表面受体的遗传结构” 让·多塞 法国 乔治·斯内尔 美国 1981年 罗杰·斯佩里 美国 “发现大脑半球的功能性分工” 大卫·休伯尔 美国 “发现视觉系统的信息加工” 托斯坦·维厄瑟尔 瑞典 1982年 苏恩·伯格斯特龙 瑞典 “发现前列腺素及其相关的生物活性物质” 本格特·萨米尔松 瑞典 约翰·范恩 英国 1983年 巴巴拉·麦克林托克 美国 “发现可移动的遗传元素” 1984年 尼尔斯·杰尼 丹麦 “发现单克隆抗体产生的原理” 乔治斯·克勒 德国 色萨·米尔斯坦 英国 1985年 麦可·布朗 美国 “在胆固醇代谢的调控方面的发现” 约瑟夫·里欧纳德·戈尔茨坦 美国 1986年 斯坦利·科恩 美国 “发现生长因子” 丽塔·列维-蒙塔尔奇尼 意大利 1987年 利根川进 日本 “发现抗体多样性产生的遗传学原理” 1988年 詹姆士·W·布拉克爵士 英国 “发现药物治疗的重要原理” 格特鲁德·B·埃利恩 美国 乔治·希青斯 美国 1989年 迈克尔·毕晓普 美国 “发现逆转录病毒致癌基因的细胞来源” 哈罗德·瓦慕斯 美国 1990年 约瑟夫·默里 美国 “发明应用于人类疾病治疗的器官和细胞移植术” 唐纳尔·托马斯 美国 1991年 厄温·内尔 德国 “发现细胞中单离子通道的功能” 伯特·萨克曼 德国 1992年 埃德蒙·费希尔 美国 “发现的可逆的蛋白质磷酸化作用是一种生物调节机制” 埃德温·克雷布斯 美国 1993年 理察·罗伯茨 英国 “发现断裂基因” 菲利普·夏普 美国 1994年 艾尔佛列·古曼·吉尔曼 美国 “发现G蛋白及其在细胞中的信号转导作用” 马丁·罗德贝尔 美国 1995年 爱德华·路易斯 美国 “发现早期胚胎发育中的遗传调控机理” 克里斯汀·纽斯林-沃尔哈德 德国 艾瑞克·威斯乔斯 美国 1996年 彼得·杜赫提 澳大利亚 “发现细胞介导的免疫防御特性” 罗夫·辛克纳吉 瑞士 1997年 史坦利·布鲁希纳 美国 “发现朊病毒——传染的一种新的生物学原理” 1998年 罗伯·佛契哥特 美国 “发现在心血管系统中起信号分子作用的一氧化氮” 路易斯·路伊格纳洛 美国 费瑞·慕拉德 美国 1999年 古特·布洛伯尔 美国 “发现蛋白质具有内在信号以控制其在细胞内的传递和定位” 2000年 阿尔维德·卡尔森 瑞典 “发现神经系统中的信号传导” 保罗·格林加德 美国 艾瑞克·坎德尔 美国 2001年 利兰·哈特韦尔 美国 “发现细胞周期的关键调节因子” 蒂姆·亨特 英国 保罗·纳斯爵士 英国 2002年 悉尼·布伦纳 英国 “发现器官发育和细胞程序性死亡的遗传调控机理” H·罗伯特·霍维茨 美国 约翰·E·苏尔斯顿 美国 2003年 保罗·劳特伯 美国 “在核磁共振成像方面的发现” 彼得·曼斯菲尔德爵士 英国 2004年 理查德·阿克塞尔 美国 “发现嗅觉受体和嗅觉系统的组织方式” 琳达·巴克 美国 2005年 巴里·马歇尔 澳大利亚 “发现幽门螺杆菌及其在胃炎和胃溃疡中所起的作用” 罗宾·沃伦 澳大利亚 2006年 安德鲁·法厄 美国 “发现了RNA干扰——双链RNA引发的沉默现象” 克雷格·梅洛 美国 2007年 马里奥·卡佩奇 美国 “在利用胚胎干细胞引入特异性基因修饰的原理上的发现” 马丁·埃文斯爵士 英国 奥利弗·史密斯 美国 2008年 哈拉尔德·楚尔·豪森 德国 “发现了导致子宫颈癌的人乳头状瘤病毒” 弗朗索瓦丝·巴尔-西诺西 法国 “发现人类免疫缺陷病毒(即艾滋病病毒)” 吕克·蒙塔尼 法国 2009年 伊丽莎白·布莱克本 澳大利亚 “发现端粒和端粒酶如何保护染色体” 卡罗尔·格雷德 美国 杰克·绍斯塔克 英国 2010年 罗伯特·杰弗里·爱德华兹 英国 “因为在试管婴儿方面的研究获奖” 2011年 布鲁斯·巴特勒 美国 他们对于先天免疫机制激活的发现 朱尔斯·霍尔曼 法国 拉尔夫 ·斯坦曼 美国 他发现树突细胞和其在获得性免疫中的作用 2012年 约翰·格登爵士 英国 “发现成熟细胞可被重写成多功能细胞” 山中伸弥 日本 2013年 詹姆斯·E·罗斯曼 美国 发现了细胞囊泡交通的运行与调节机制。 兰迪-W.谢克曼 美国 托马斯-C.苏德霍夫 德国 2014年  约翰·欧基夫(John O"Keefe)美国、英国国籍构成大脑定位系统的细胞的发现梅-布里特·莫泽(May-Britt Moser) 挪威爱德华·莫索尔(Edvard I. Moser)挪威

2017年1月自学考试《细胞生物学》知识点:组蛋白

组蛋白的分类及功能   组蛋白是构成真核生物染色体的基本结构蛋白,富含带正电荷的Arg和Lys等碱性氨基酸,等电点一般在pH IO以上,属碱性蛋白质,可以和酸性的DNA紧密结合,而且一般不要求特殊的核苷酸序列。用聚丙烯酰胺凝胶电泳可以区分5种不同的组蛋白:H1,H2A,H2B,H3和 H4。   种组蛋白在功能上分为两组   (1)核小体组蛋白,包括H2A,H2B,H3和H4。这4种组蛋白有相互作用形成复合体的趋势,它们通过c端的疏水氨基酸互相结合,而N端带正电荷的氨基酸则向四面伸出以便与DNA分子结厶 从而帮助DNA卷曲形成核小体的稳定结构。这4种组蛋白没有种属及组织特异性,在进化上十分保守,特别是H3和H4是所有已知蛋白质中最为保守的。   (2)琍组蛋白。其分子较大。球形中心在进化上保守,而N端和c端两个“臂”的氨基酸变异较大,所以Hl在进化上不如核小体组蛋白那么保守。在构成核小体时Hl起连接作用,它赋予染色质以极性。Hl有一定的种属和组织特异性。   非组蛋白的特性   (1)非组蛋白具有多样性:   非组蛋白占染色质蛋白的60%~70%,不同组织细胞中其种类和数量都不相同,代谢周转快。   (2)识别DNA具有特异性:   能识别特异的DNA序列,识别信息来源于DNA核苷酸序列本身,识别位点存在于DNA双螺旋的大沟部分,识别与结合靠氢键和离子键。在不同的基因组之间,这些非组蛋白所识别的DNA序列在进化上是保守的。   (3)具有功能多样性:   包括基因表达的调控和染色质高级结构的形成。如帮助DNA分子折叠,以形成不同的结构域;协助启动DNA复制,控制基因转录,调节基因表达。

简述真核生物染色体上组蛋白的种类,组蛋白修饰的种类及其生物学意义

组蛋白的种类:H1 H2A H2B H3 H4组蛋白修饰的种类:在细胞周期特定时间可发生甲基化、乙酰化、磷酸化和ADP核糖基化等。H3、H4修饰作用较普遍,H2B有乙酰化作用、H1有磷酸化作用。组蛋白修饰的生物学意义:一是改变染色体的结构,直接影响转录活性;二是核小体表面发生改变,使其他调控蛋白易于和染色质相互接触,从而间接影响转录活性。

简述组蛋白都有哪些类型的修饰,其功能分别是什么,具有什么生物学意义

组蛋白修饰是指组蛋白在相关酶作用下发生甲基化、乙酰化、磷酸化、腺苷酸化、泛素化、ADP核糖基化等修饰的过程。这些修饰都会影响基因的转录活性。一般甲基化与染色体的失活有关。乙酰化一般代表染色质的活性状态,有的组蛋白要先去甲基化,再乙酰化活化。磷酸化(如H1的)一般与细胞周期的状态有关,不能磷酸化,染色体不能进行复制。

【细胞生物学】组蛋白的主要功能

您好组蛋白(histones),是真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白的甲基化修饰主要是由一类含有SET结构域的蛋白来执行的,组蛋白甲基化修饰参与异染色质形成、基因印记、X染色体失活和转录调控等多种主要生理功能,组蛋白的修饰作用是表观遗传学研究的一个重要领域。希望我的回答能帮助到您
 首页 上一页  1 2 3 4 5 6 7  下一页  尾页