双螺旋

DNA图谱 / 问答 / 标签

DNA双螺旋结构的建立有哪些科学家的功劳?

美国生物学家沃森 英国物理学家克里克为主富兰克林提供DNA分子衍射图谱奥地利生物化学家提供A=T C=G就是碱基互补配对原则

为什么DNA能形成双螺旋结构而RNA不能?

因为在RNA的2号碳位多了一个氧原子,如果形成双螺旋的话两条碳链的2号碳位突出来的氧原子会在双螺旋内部互相挤压导致双螺旋不稳定,形成解链。而DNA2号碳位脱氧(所以DNA叫脱氧核糖核苷酸),形成双螺旋的时候不存在空间结构的不稳定。任何生物的本能都是让本物种能够生存繁衍下去,从分子遗传学的角度讲就是让遗传物质能够稳定遗传至下一代,遗传物质的传递无非就是碱基序列的传递,碱基位置位于1号碳位上,这样形成双链时碱基就可以被包裹在双链内部,这样可以起到保护遗传物质稳定性的作用。而如上所述,RNA的双链结构不稳定,所以DNA绝大多数高等生物的遗产物质。但并不是说所有生物的遗传物质都是DNA,毕竟DNA要转录、翻译才能够表达,这其中涉及的过程和机制比较复杂,不是任何生物都用的起的,而RNA的表达则要简单一些,所以尽管RNA对遗传物质的保护不足,还是有生物把它作为遗传物质。有研究认为在生命发展初期,RNA表达的简单高效性是维持生命存在的保障,只是随着生命的发展,遗传物质也得到了进化,形成了DNA,也就是说RNA才是DNA的祖宗。

DNA除了双螺旋结构,还有其它结构形式吗?

有,DNA还有三链体(三螺旋)结构和超螺旋结构. 三链体(三螺旋)结构:DNA的一种特殊的结构,是由第三条核苷酸链通过胡斯坦碱基配对,与双螺旋DNA中的一条链以特殊的氢键相连形成的一种三股螺旋DNA结构.三股链均为同型聚嘌呤或聚嘧啶;第三个碱基以A或T与A≒T碱基对中的A配对;G或C与G≒C碱基对中的G配对,C必须质子化(C+),以提供与G的N7结合的氢键供体,并且它与G 配对只形成两个氢键. 超螺旋:DNA分子可以在双螺旋的基础上,进一步绕同一中心轴扭转,造成额外的螺旋;环状分子的额外螺旋可以形成超螺旋.超螺旋可以是右手螺旋(正超螺旋),也可以是左手螺旋(负超螺旋)

在三链DNA中,第三股链结合于双螺旋的大沟中,其碱其之间通过什么方式配对

嘧啶寡核苷酸与双螺旋的大沟结合,通过TA碱基对、胸腺嘧啶之间及CG碱基对质子化的胸腺嘧啶之间及CG碱基对和质子化的胸腺嘧啶之间形成Hoogsteen氢键. 含G和A或c和T的寡核苷酸也可以做为形成三股螺旋的第三股,RNA寡核苷酸也可以与DNA的双螺旋结合.

DNA双螺旋结构有什么基本特点呢?

1、由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。2、碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。3、大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。4、结构参数,螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。扩展资料:脱氧核糖核酸链在双螺旋基础上如绳索般扭转的现象与过程称为DNA超螺旋。当脱氧核糖核酸处于“松弛”状态时,双螺旋的两股通常会延着中轴,以每10.4个碱基对旋转一圈的方式扭转。但如果脱氧核糖核酸受到扭转,其两股的缠绕方式将变得更紧或更松。当脱氧核糖核酸扭转方向与双股螺旋的旋转方向相同时,称为正超螺旋,此时碱基将更加紧密地结合。反之若扭转方向与双股螺旋相反,则称为负超螺旋,碱基之间的结合度会降低。自然界中大多数的脱氧核糖核酸,会因为拓扑异构酶的作用,而形成轻微的负超螺旋状态。拓扑异构酶同时也在转录作用或DNA复制过程中,负责纾解脱氧核糖核酸链所受的扭转压力。参考资料:百度百科 DNA双螺旋结构

沃森和克里克提出DNA分子的双螺旋结构模型后还有什么成就

中心法则 1957年,克里克提出,在DNA与蛋白质之间,RNA 可能是中间体。1958年,他又提出,在作为模板的RNA 同把氨基酸携带到蛋白质肽链的合成之间可能存在着一个中间受体。根据这些推论,他发表了《论蛋白质的合成》一文,提出了著名的连接物假说,讨论了核酸中碱基顺序同蛋白质中氨基酸顺序之间的线性对应关系,并详细地阐述了中心法则〔1〕。克里克所设想的受体很快被证明为tRNA。 1961年,雅可布(F.Jacob)和莫诺(J.Monod)证明在DNA同蛋白质之间的中间体是mRNA。随着遗传密码的破译,到60年代基本上揭示了蛋白质的合成过程。这样,就得到了中心法则的最初的基本形式。 克里克在提出中心法则时,根据当时有限的资料,把中心法则的公式表述为“DNA→RNA→蛋白质”,并且认为中心法则的一个基本特征是遗传信息流是从核酸到蛋白质的单向信息传递,而且这种单向信息流是永远不可逆的。然而,通过1960到1970这10年的研究,坦明(H. Temin)和巴梯摩尔(D.Baltimore)等发现并证实了反转录酶的存在,使反转录现象得到了公认。这样,中心法则就得到了修正。 反转录酶的发现,曾使科学界震动不小。但克里克马上解释说,他并没有说过信息不能从核酸转移到核酸上,反转录同中心法则没有矛盾,只不过是把信息从一种形式的核酸转移到另一种形式的核酸上而已,而在这两种形式的核酸中,碱基配对的基本过程是一致的。然而,以后的发现愈来愈表明信息转移方式可能有其多样性,以致连克里克本人后来也承认,他最初表达遗传信息传递观念时,误解了“法则(Dogma )”一词,如果现在重新表达这一概念,应称之为“中心假说( Central Hypothesis)”,以清楚表明这一概念并非是确定不变的事实, 而只是一种暂时的假设。 科学的发展常常是出人意料的,中心法则更是如此。有人在离体实验中观察到,与核糖体相互作用的某些抗生素如链霉素和新霉素,能打乱核糖体对信使的选择,而接受单链DNA分子代替mRNA 。 然后由单链DNA指导,把它的核苷酸顺序译成多肽的氨基酸顺序。此外,还有人发现,细胞核里的DNA还可以直接转移到细胞质的核糖体上, 不需要通过RNA即可控制蛋白质的合成。这样,中心法则就得到新的修正。麻烦采纳,谢谢!

DNA双螺旋结构的特点及其生物学功能是什么?

以下是我自己根据我们书上所写的归纳的,希望对你有帮助:DNA双螺旋结构有如下几个特点:1、DNA是反向平行的互补双链结构,它的两条多聚核苷酸链在空间排布呈反向平行,碱基位于内侧,亲水的脱氧核糖基和磷酸基位于外侧,碱基间以A-T和G-C的方式互补配对;2、DNA双链是右手螺旋结构,DNA的两条多核苷酸链反向平行围绕同一中心轴互相缠绕,呈右手螺旋;3疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持。DNA的生物学功能:DNA是遗传物质,是遗传信息的载体。证据如下:1、DNA分布在染色体内,是染色体的主要成分,而染色体是直接与遗传有关的。2、体细胞DNA含量为生殖细胞DNA含量的两倍,且含量十分稳定。3、DNA在代谢上较稳定不受营养条件、年龄等因素的影响。4、作用于DNA的理化因素可引起遗传特性的改变,这一点已经由Avery在1953年用肺炎双球菌转化实验证明。

为什么DNA分子呈现双螺旋结构?麻烦讲详细点。

这个解释起来其实要数学和物理很好 不知道你要详细到什么地步的 所以……(以下内容摘自网络)PS.如果满意请采纳~谢谢~~ :)DNA为什么是双螺旋结构(撰文:夏烆光)内容提要:本文从力学的角度出发阐明:蛋白质分子为什么是螺旋式的结构?DNA为什么是双螺旋结构?核苷酸分子为什么只能有四种类型?以及它们的自我复制功能为什么是唯一的?反过来,从蛋白质分子和DNA分子的螺旋状结构中证明,微观粒子存在着螺旋式前进的运动规律。进而,证明广义时空相对论所给出的理论结果本身的正确性。一 引 言 1909年,丹麦植物学家约翰逊用“基因”一词取代了孟德尔的“遗传因子”。从此,基因便被看作是生物性状的决定者,或者说,被看成是生物遗传变异结构和功能的基本单位。1926年,美国遗传学家摩尔根发表了著名的《基因论》。他和其他学者用大量的实验证明,基因是组成“染色体”的“遗传单位”。基因在染色体上占有一定的位置和空间,并呈现为直线排列。这样一来,就使孟德尔关于“遗传因子”的假说,体现到具体的遗传物质——基因这一概念上。这个结论,为后来进一步研究基因的结构和功能奠定了最初的理论基础。尽管情况如此,但当时的人们并不知道“基因”究竟是一种什么样的物质。直到上个世纪40年代,当生物科学工作者弄清楚了“核酸”,特别是脱氧核糖核酸(简称DNA),乃是一切生物传宗接代的遗传物质时,“基因”这一概念才有了确切的生物学内涵。其间,1951年科学家们在实验室里获得了DNA的结晶体;1952年又获得了DNA的X射线衍射图谱。在此基础上,于1953年,年仅25岁的美国科学家詹姆斯?沃森与37岁的英国科学家西斯?克里克共同阐明了这个划时代的学术成果,——他们从DNA(脱氧核糖核酸)的X射线衍射图上解读了它的“双螺旋结构”。DNA双螺旋结构的发现,开创了分子生物学的新时代,它使生物大分子的研究跨入了一个崭新的研究阶段,并使遗传学的研究深入到了分子层次,从而迈出了解开“生命之谜”的重要一步。 应该承认,当时的两项科学成就对DNA“双螺旋结构”的发现起到了至关重要的作用。一是,美国加州大学森格尔教授发现了蛋白质分子的螺旋状结构;二是,X射线衍射技术在生物大分子结构研究中得到了实际的应用,从而有了观测分子内部结构的实验手段。正是在这样的科学背景和研究条件下,才促使沃森来到英国剑桥大学与克里克合作,致力于研究DNA的结构模式。他们通过对大量X射线衍射实验结果的分析与研究,提出了DNA的双螺旋结构模型。这项研究成果发表在1953年4月25日英国的《发现》杂志上。在随后的日子里,科学家们便围绕着DNA的结构和作用,陆续地展开了进一步的研究工作,取得了一系列的重大进展,并于1961年终于成功地破译了“遗传密码”,以雄辩的实验依据证实了DNA双螺旋结构这个结论的正确性。沃林、克里克、威尔金斯等三人,因此而共同分享了1962年诺贝尔医学生理学奖。(参见[1])二 核苷酸只有四种结构模型 基因(DNA)是自然界唯一能够自我复制的生物分子。正是由于DNA的这种精细准确的自我复制功能,为生物体将其祖先的生物特性传递给下一代提供了保证。现代生物学研究已经清楚地证明,NDA是由大量“核苷酸分子”组成的生物“大分子”。核苷酸分子有四种类型,它们按着不同的顺序排列,构成了含有各种遗传信息的生物基因(DNA)。基因是包含着特定遗传信息的脱氧核糖核酸片段。 实验证明,“大肠杆菌”是一个品系繁多的大家族,其中有成千上万种不同的类型。生物学的研究发现,一些品系的大肠杆菌,本身缺少指导合成某些特殊营养物质的基因,因此,它们必须从培养基中直接摄取营养物质才能生活,——这样的大肠杆菌,被生物学称之作“营养缺陷型”。例如,大肠杆菌K不能合成苏氨酸(T)和亮氨酸(L);而它的另一个品系则不具备合成生物素(B)和甲硫氨(M)的能力。实验表明,如果把这两种大肠杆菌中的任何一种单独放在缺少T、L、B、M的培养基上都不能生长。但是,当我们把这两种品系的大肠杆菌混合在一起,然后放到缺少TLBM这四种物质的培养基上,却奇迹般地长出了新菌落。这是为什么呢?简单地说:就是因为在大肠杆菌K的DNA中,缺少T、L两种基因,而只含有B和M两种另外的基因;同样,在另一个品系大肠杆菌的DNA中,虽然不具备B和M基因,但却含有前者所缺少的T、L两种基因。把这两种营养缺陷型的大肠杆菌放在一起,就等于把四种基因放在一起来进行培养。这样一来,前一品系细胞中的DNA,就有可能通过细胞膜进入后一品系的细胞中,使两种类型的DNA之间进行基因重组,从而形成含有T、L、B、M四种基因的新型大肠杆菌。 我们说,生物学的这一重大发现,仅仅证明DNA本身具有双螺旋结构,但是,这里并没有指出,形成这种双螺旋结构的物理原因是什么。作为深入的学术研究,完全有必要弄清以下问题:1、蛋白质分子为什么是螺旋状的结构?2、DNA分子为什么是双螺旋式的结构?3、核苷酸分子为什么只有四种类型?4、由核苷酸分子所构成的DNA分子,能够唯一自我复制生物分子的原因是什么?而本文将从力学的角度上,探索并尝试地回答这些新问题。三 蛋白质分子为什么是螺旋结构 这里,我们先来回答:蛋白质分子为什么是螺旋状的结构?为了回答这个问题,必须先来简单地介绍一下微观粒子的运动特征。根据《广义时空相对论》的理论结果知道,微观粒子的运动规律是:在不停“自旋”的同时,又绕着某个轴线、以一定的旋转频率和旋转半径不停地“公转”。加上粒子本身的直线运动,就自然地构成了一种螺旋式的前进运动。这里虽不是在讨论理论物理问题,但为使大家对这个结论确信无疑,还是需要简单地介绍一点广义时空相对论的相关理论。 诚如所知,在广义时空相对论中(参见[2],§21),我曾经指出:若曲线M(t)是给定参数t的方程,利用基本矢量τ,μ来表达二阶导数d2M/dt2,并注意到,如果参数t代表着时间,则二阶导数d2M/dt2就是M点运动的“相对加速度”。把等式 dM/dt =τds/dt (1)对参数t微分,就得出: d2M/dt2 =τd2s/dt2+(dτ/dt)·(ds/dt) (2)按照复合函数的微分法则,则有: dτ/dt =(dτ/ds)·(ds/dt)再将 dτ/ds = kμ (3)代入等式(2)中,便可以得出: d2M/dt2 =τd2s/dt2+μk(ds/dt)*2 (4)由此可见,相对加速度d2M/dt2可分成两项:一个是切向加速度矢量;另一个是法向加速度矢量。 下面,我们用运动时钟的读数t*来替换方程(4)。为此,需要把曲线的特别参数s写成如下的函数关系:s = s(t*)。这里,我们约定:一阶导数s"(t*)是站在动点M上的观测者,用运动时钟所得出地关于动点M的绝对速度。这个绝对速度可以是常数,——对应着没有外力作用的保守体系;也可以是时间坐标t*的函数,——对应着外力作用引起的绝对速度的变化。同时,我们还要约定:运动是匀加速的。由此而来,把上式对运动系的时间坐标t* 微分两次,便可以得出: ds = s"(t*)dt* (5)以及, d2s =[s"(t*)dt*]"dt*=s""(t*)dt*2 (6)令绝对速度υ= s"(t*)以及绝对加速度 η= s""(t*)于是,便可以得出: ds =υdt*;以及,d2s =ηdt*2 (7)由于这里是“纯量”之间的微分运算,所以不必考虑绝对速度和绝对加速度的方向。再者,由于这里只限于讨论“绝对加速度”为常数时的情况,因此,我们将(5)和(7)式同时代入(4)式,便可以得出: d2M/dt2 =(ηdt*2/dt2)τ+ k(υdt*/dt)2μ (8) 不难看出,上式等号右边的第一项代表了动点M的切向加速度,而第二项代表了它的法向加速度。等式左边的二阶导数d2M/dt2则是静止观测者、用静止的钟、所得出的动点M在曲线M(t)上运动的“相对加速度”。显然,这个“相对加速度”乃是“切向加速度”与“法向加速度”的矢量合成结果。 下面,我们来研究在均匀引力场中,物质的运动方程。为了简便起见,这里选择微观粒子沿着X轴方向的运动为运动的正方向。这里区分为两种运动状况来加以考虑。第一,粒子在自由空间中的曲线运动 按照广义时空相对论的观点:在相互作用传播速度有限性的前提下,运动系上的钟、与静止系上的钟,不可能绝对地同步地记录到一个运动事件的两种不同的时间坐标t*和t。因此,如果利用不同的参变数t和t* 来表示(4)式的话,则相应的数学形式也就有所不同。根据本文讨论的需要,我们直接按照广义时空相对论的理论结果,写出运动时钟的纯量读数t* 和静止时钟的纯量读数t之间的关系: dt* =ξdt,或 dt*/dt =ξ (9)其中, ξ= c/(c2 +υ2)1/2 (10) 对于自由空间中的匀速运动,(8)式中的η= 0,并且υ是常数,由此而来,(8)式右端的第一项等于0. 以及ξ是常数。于是,把(9)式代入(8)式便可以得出: d2M/dt2 = k[υ2c2/(c2 +υ2)]μ (11)再把关系式 V = υc/(c2 +υ2)1/2 (12)代入上式,则有: d2M/dt2 = kV2μ (13)我们用曲率半径ρ= 1/k代入上式,则有: d2M/dt2 = (V2/ρ)μ (14)这就是“匀速圆周运动”的基本公式。这一结果表明:在一个与外界没有任何联系的封闭的自由空间内,物体的绝对线速度υ和相对加速度都是常数,且其方向指向圆心。它的运动轨迹则是一个封闭的圆周。当体系本身具有恒定的初速度υ0时,它的运动轨迹就是一条等螺距的螺旋线。第二,粒子在均匀引力场(η= Const.)中的运动按照(9)式,则有: dt*2/dt2 =ξ2 = c2/(c2 +υ2) (15)在η等于常数的情况下,将(15)式代入(8)式,并引入相对加速度符号a(t) = d2M/dt2,得出: a(t)=τηc2/(c2+υ2)+μkc2υ2/(c2+υ2) (16)然后,再引入符号V2/ρ=ω公2ρ,以及ω自2 r =(ηV2/υ2), 其中,ω公为粒子的公转频率,ω自为粒子绕着质心“自旋”的角频率,r代表微观粒子本身的半径,则上式就可以改写成: a(t)=(ω自2 r)τ+ (ω公2ρ)μ (17)这就是在均匀外力作用下(η≠0),微观粒粒子的运动方程。不难理解,如果没有这种均匀外力的作用,微观粒子就不会具有自旋分量,即上式中的第一项。 在上式中,如果把第一项代表切线方向的相对加速度,第二项代表了主法线方向的相对加速度。而切线τ方向的相对加速度代表着微观粒子的“自旋”,而主法线μ方向的相对加速度代表着微观粒子的“公转”。这两种加速度的合成结果,导致微观粒子在前进运动的同时,伴随着自旋以及绕着前进方向为轴线的公转。其轨迹是一条螺旋线。不言而喻,所有化学元素的分子,例如氮(N)、氢(H)、碳(C)的分子等都是微观粒子,因此,它们一定会呈现螺旋式的运动状态。在这种运动状态的影响下,由碳水化合物所构成的蛋白质分子必然会出现螺旋状的结构。四 核苷酸的类型与双螺旋结构的原因 根据微分几何的理论结果,我们知道d2M/dt2 =τd2s/dt2 +μk(ds/dt)2 (18)以及d2M/ds2 = kμ (19) 现在,我们把上式的二阶导数d2M/ds2再对具有“内蕴意义”的参数“s”微分,就得出了它的三阶微分关系式。不过,这里并不是直接把二阶导数d2M/ds2 = kμ对特别参数“s”进行微分,而是把这个式子右端的矢量μ和曲率k的乘积进行微分。由于从这里出发会使问题大为简化,所以,我们的讨论将从对矢量μ的微分开始,然后所得出的不变式来表示三阶导数d3M/ds3、以及d3M/dt3。不过,这里不准备进行具体的分析与讨论,而是直接地引用微分几何的理论结果(参见[3],第69—72页),写出三阶微分邻域的不变式如下: dτ/ds = kμ;dμ/ds = - kτ+ζβ;dβ/ds = -ζμ (20) 其中,β是副法线方向上的单位矢量。它的方向垂直于由τ和μ相交后所构成的平面。上式中各公式的符号是选择了“右旋坐标系”时的情况。倘若是改为“左旋坐标系”,对于曲线M(t)的定向运动来说,在切矢量τ改变方向时,在切线单位矢量τ与主法线单位矢量μ确定的旋转方向下,公式(20)所确定的副法线单位矢量β将改变自己的正方向。所以,由方程(20)所确定的不变式“ζβ”也随之改变符号,即:由(+ζβ)变成了(-ζβ);为了保持曲线M(t)的不变式ζ的符号,必须在公式(20)中改变矢量“β”的符号。这样一来,在左旋的坐标系中,相伴三面形单位矢量导数的“基本关系式”可以写成下列的形式: dτ/ds = kμ;dμ/ds = - kτ-ζβ;dβ/ds = -ζμ (21)其中,“ζ”是曲线的“挠率”,而r = 1/ζ是曲线的“挠率半径”。其中,符号“ζβ”的“正”与“负”,代表着参数相同的两个粒子之间的“自旋方向”刚好相反。 下面,我们取dβ/ds = 0,——它代表着微观粒子的自旋轴的方向始终平行于粒子的前进方向,且β的数值不跟随着粒子的运动路程而变换。结果,上式就可以化成: dτ/ds = kμ;dμ/ds = - kτ-ζβ (22) 上式表明,刚体的任何运动都可以分为两个部分:一是远离坐标原点的平行移动;二是绕固定轴的转动。换言之,在每一个给定的瞬间,物体的运动都是由两个基本的运动所组成:第一,平移——此时物体在每一给定的时间内,它的各个部分都具有相同的运动速度。第二,转动——此时物体上的某一条直线固定不动,而物体的其它部分则绕着这个固定的直线旋转。而这种旋转可以分成两个部分,一个是绕着固定旋转轴的“公转”,另一个是绕着粒子质心的“自旋”。正如(17)式所示,第一项代表着粒子围绕着质心的“自旋”;而第二项代表着围绕前进方向的“公转”。 不难理解,在上述约定的前提条件下,当粒子在前进(dτ/ds>0)、或后退(dτ/ds<0)的过程中,相伴三面形T(M,τ,μ,β)的顶点M都同时包含着“平移”和“转动”两个方面。这里所包含的平移和转动,总共可以分成四种情况,分别由下列四个关系式来单独地确定:dτ/ds = kμ;dμ/ds = - kτ+ζβ; ………… ①dτ/ds = kμ;dμ/ds = - kτ-ζβ; ………… ② (23)dτ/ds = - kμ;dμ/ds = kτ-ζβ; ………… ③dτ/ds = - kμ;dμ/ds = kτ+ζβ; ………… ④ 在上述四个关系式中,曲线上的每个动点M联系着一个相伴三面形T(M,τ,μ,β),它是由曲线上对应点发出的“切矢量”、“主法线矢量”、“副法线矢量”所构成的“直角三面形”。这些关系式不仅给出了平移的“正方向”与它的“反方向”,而且给出了每种情况下的转动。单纯地就转动而言,这些公式一方面给出了“左旋公转”与“右旋公转”的情况;另一方面给出了顶点M围绕着自己的质心“左旋自旋”与“右旋自旋”的情况。当相伴三面形的顶点M移动时,动点M所描绘的运动轨迹就肯定是一条螺旋状的曲线。值得指出的是,在粒子构成的“自旋”中,η≠0是至关重要的。正是基于自旋的存在,所以才能出现以上四种独立的运动类型。这里,如果我们把η≠0看成是地球引力场的作用,那么,上式所代表的自旋一定与引力场的性质有关。 普遍的规律,对于两个基本相同的粒子来说,只有它们的自旋相反时,才能发生“耦合作用”而成对地出现。并且,只有自旋相反的粒子之间实现了耦合,其状态才是最稳定的状态。基于这一考虑,我们大胆地推测:核苷酸分子总是成对地耦合在一起。假如情况真地象我们推测的那样,再考虑到每个核苷酸分子的运动轨迹都是螺旋式的结构形状,那么,由这些成对存在着的核苷酸分子所构成的DNA分子,就必然具有双螺旋式的结构特征。另外,由于粒子的自旋运动来自于所在星球的引力特征,所以,地球上生物的DNA分子,在一定程度上受到了地球引力的影响。 为了形象的理解上述观点,我们不妨反过来思考,即从DNA分子的双螺旋结构中,反过来考虑微观粒子螺旋式的运动状态。广义时空相对论业已证明,只有这种螺旋式的运动状态,才能体现出微观粒子“波动性”与“粒子性”的对立统一。——即微观粒子的“波粒二象性”。如果不是这种运动状态,将难以解释微观粒子的“波粒二象性”。实际上,这种理解方法在物理学中被经常地运用。例如,在中学物理中,人们就是利用“铁粉”在磁场中的分布状况,来证实“磁力线”的存在。正如所知,磁力线本身是看不见的,所以人们只好通过铁粉在磁场中的分布状态,来间接地证明磁力线本身的分布状况。有了铁粉的分布状况,就间接证明了磁力线的形状。 再者,由于只有那些自旋相反的核苷酸分子才能够相互耦合而成对地出现,并且这些自旋相反的核苷酸分子的耦合结果只能具有以下四种可能,因此说,所有核苷酸分子只有T、L、B、M四种类型。为了明确,我们把(23)式中的四个式子间的可能耦合列成下表。耦合条件 公转方向相同 公转方向相反 自旋方向必须相反 ①—②,③—④ ①—③,②—④ 上表列出了核苷酸分子各种可能的耦合关系。从上表所列出的耦合关系可以看出,核苷酸分子的耦合情况只能是表中所列出的“四种组合”,即:①—②,③—④,①—③,②—④。在给定的、均匀的引力场中,这四种结构特征应该是唯一的。所以,地球上生物体的DNA分子只能有四种类型,并且这四种类型DNA分子的自我复制功能也是唯一的。进一步地考虑,生物体的遗传特征,在一定的程度上取决于所在星球上的引力特征。改变引力场,有可能改变DNA分子的形状。五 结 论 总之,通过上述讨论,回答了四个问题:一是蛋白质分子螺旋结构特征的力学原因。二是,核苷酸分子成对出现的力学原因;三是,由于核苷酸分子的成对出现,所以DNA分子必定是双螺旋结构;四是,由于同种核苷酸分子的耦合只能有四种情况,所以导致了DNA分子只能有四种类型,以及它们唯一的自我复制功能。再者,通过蛋白质分子的螺旋结构和DNA的双螺旋结构特征,反过来证明了微观粒子的运动形态的螺旋式特征。而且,只有这种螺旋式的运动特征,才能真正体现出微观粒子的波动性与粒子性的统一,进而证明广义时空相对论的正确性。参考文献:[1]《DNA双螺旋结构发现的前前后后》 作者:徐九武,科报网,《生命科学的里程碑》。[2]《广义时空相对论》夏烆光著,人民交通出版社,北京,2003年1月 第一版。[3]《微分几何教程》[苏] С.П.芬尼可夫 著,施祥林、徐家福 译,高等教育出版社,1954 年 7月第一版。

线粒体中DNA是不是双螺旋

完全正确,DNA都是双螺旋结构的!

DNA双螺旋名词解释

DNA双螺旋结构:DNA双螺旋(DNAdoublehelix)是一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。

dna双螺旋结构有何重要生物学意义

DNA双螺旋结构的生物学意义:DNA双螺旋结构的发现,开启了分子生物学时代,使遗传的研究深入到分子层次,为生物工程的研究和应用开辟了广阔的前景。DNA双螺旋结构的特点:双螺旋结构是两条反向平行的脱氧多核苷酸链围绕同一中心轴盘曲形成的以右手螺旋为主的结构;磷酸与脱氧核糖交替形成链的骨架位于螺旋的外侧,碱基位于螺旋的内部,碱基平面与中心轴垂直。扩展资料DNA双螺旋结构的发现史:20世纪,英国女性X射线晶体学家富兰克林分辨出了DNA的两种构型,并成功地拍摄了它的X射线衍射照片。沃森和克里克未经富兰克林的许可使用了她的照片,还在《自然》杂志上发表一篇证实DNA双螺旋结构的文章。1953年,詹姆斯·杜威·沃森和弗朗西斯·克里克利用了未经富兰克林的授权,通过使用她的X射线晶体结构数据,4月25日在英国《自然》杂志发表了题为“核酸的分子结构-脱氧核糖核酸的一个结构模型”,成功在人类探索生科本质的征途上迈出了巨大的一步。参考资料来源:百度百科-DNA双螺旋结构

什么是DNA双螺旋结构?

【答案】:DNA的双螺旋结构模型是Watson和Crick于1953年提出的。该模型的建立对促进分子生物学及分子遗传学的发展具有划时代意义。对DNA本身的复制机制、对遗传信息的存储方式和遗传信息的表达、对生物遗传稳定性和变异性等规律的阐明起了非常重要的作用。其主要内容如下:(1)两条反向平行的多核苷酸链围绕同一中心轴相互缠绕;两条链都为右手螺旋。(2)脱氧核糖和磷酸交替连接,排列在双螺旋外侧,彼此通过3",5"-磷酸二酯键连接,构成DNA分子的基本骨架;碱基排列在双螺旋的内侧,碱基平面与纵轴垂直。(3)双螺旋的平均直径为2.0nm,相邻碱基平面之间垂直距离为0.34nm,每10个碱基对旋转一圈,碱基对之间的螺距为3.4nm。(4)在双螺旋的表面分别形成大沟和小沟。(5)两条链借助碱基之间的氢键和碱基堆积力牢固结合,维持DNA结构的稳定性。[考点]DNA的双螺旋结构。

简述DNA的双螺旋结构。

dna双螺旋结构的要点(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成.主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型.主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性.所谓双螺旋就是针对二条主链的形状而言的.(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连.同一平面的碱基在二条主链间形成碱基对.配对碱基总是a与t和g与c.碱基对以氢键维系,a与t间形成两个氢键.dna结构中的碱基对与chatgaff的发现正好相符.从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件.每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同.碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性.也就是说双螺旋结构在满足二条链碱基互补的前提下,dna的一级结构产并不受限制.这一特征能很好的阐明dna作为遗传信息载体在生物界的普遍意义.(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽.小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间.这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟.在大沟和小沟内的碱基对中的n和o原子朝向分子表面.(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm.dna双螺旋结构生物学意义1953年,沃森和克里克共同提出了dna分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.1953年,沃森和克里克共同提出了dna分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.dna双螺旋结构的提出开始,便开启了分子生物学时代.分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,"生命之谜"被打开,人们清楚地了解遗传信息的构成和传递的途径.在以后的近50年里,分子遗传学,分子免疫学,细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,dna重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景.在人类最终全面揭开生命奥秘的进程中,化学已经并将更进一步地为之提供理论指导和技术支持.

dna双螺旋结构的特点

两条DNA互补链反向平行;由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直。 DNA双螺旋结构的基本特点 1.由两条反向平行的脱氧核苷酸长链构成双螺旋结构。 2.磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧。 3.两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)。 由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。

简述DNA的双螺旋结构。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则维持DNA双螺旋结构稳定性的因素主要是上下层碱基对之间堆砌力和链间互补碱基之间的氢键。在双螺旋结构中碱基堆砌构成疏水性核心,而亲水性带负电荷的糖-磷酸基团处于外部,使双螺旋更加稳固;而氢键不仅是一种稳定双螺旋的力量,同时也为选择正确碱基配对提供了分辨能力希望能解决您的问题。

简述DNA的双螺旋结构。

DNA双螺旋的碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成DNA双螺旋核酸的骨架。碱基平面与假想的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补A〢T,G〣C,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的

为什么DNA分子呈现双螺旋结构

DNA分子呈现双螺旋结构的原因是双螺旋结构是进化的结果。双螺旋相比单链更稳定,可以保证遗传的稳定。DNA是脱氧核糖核酸,又称去氧核糖核苷酸,是染色体主要组成成分,同时也是主要遗传物质。DNA分子的双螺旋结构是相对稳定的。这是因为在DNA分子双螺旋结构的内侧,通过氢键形成的碱基对,使两条脱氧核苷酸长链稳固地并联起来。另外,碱基对之间纵向的相互作用力也进一步加固了DNA分子的稳定性。各个碱基对之间的这种纵向的相互作用力叫做碱基堆集力,它是芳香族碱基π电子间的相互作用引起的。现在普遍认为碱基堆集力是稳定DNA结构的最重要的因素。再有,双螺旋外侧负电荷的磷酸基团同带正电荷的阳离子之间形成的离子键,可以减少双链间的静电斥力,因而对DNA双螺旋结构也有一定的稳定作用。

是什么力维持了DNA的双螺旋结构?

dna双螺旋结构一般情况下比较稳定,维持其稳定的作用力主要有:①两条多核苷酸链间的互补碱基对之间的氢键作用.②螺旋中碱基对疏水的芳香环堆积所产生的疏水作用力和③上下相邻的芳香环的电子的相互作用即碱基堆积力.这是一种最主要的作用力.④磷酸基团的氧原子带负电荷,与细胞中的碱性组蛋白,亚精胺以及mg2+等阳离子化合物结合所形成的离子键,从而抵消负电荷之间的排斥作用.

阿尔法螺旋和DNA双螺旋结构的特点和区别

首先,你要知道α螺旋指的是蛋白质的空间结构,而DNA双螺旋是DNA分子的空间结构,是不同的两种生物大分子的空间结构 其次,蛋白质的二级结构中的α螺旋是一条钛链形成的空间结构,每个螺旋周期包含3.6个氨基酸残基,残基侧链伸向外侧,同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键.这种氢键大致与螺旋轴平行.而DNA双螺旋是两条DNA单链反向平行成螺旋状,每圈10个碱基;既然是两条链扭成的双螺旋,就存在这大沟小沟. 再次,蛋白质的α螺旋是形成蛋白质空间结构中的一个阶段,现有多肽链(一级结构)形成二级结构,α螺旋是二级结构中的一种类型,再由二级结构形成三级结构,或者有的蛋白质能形成四级结构才算是蛋白质的空间结构;DNA双螺旋就是它的空间结构了,只是双螺旋又分成不同的类型,如A B Z等等

dna分子的结构是(DNA双螺旋结构基本特点)

dna分子的结构是DNA分子属于双螺旋结构,由两条平行的链组成,两条链互相绕成螺旋状。每条链都由称为脱氧核糖的糖分子与磷酸在交替连接而成。DNA分子的结构DNA分子两条单链以双螺旋结构结成。单链是指由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。作用是:原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。DNA分子双螺旋结构的主要特点DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A一定与T配对;G一定与C配对。碱基之间的这种一一对应的关系,叫做碱基互补配对原则。。DNA双螺旋结构基本特点dna规则双螺旋结构的主要特点如下:dna分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。dna分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧。dna分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。DNA的构型DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段.DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸,通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序.每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖+一分子磷酸根.核酸的含氮碱基又可分为四类:腺嘌呤,胸腺嘧啶,胞嘧啶和鸟嘌呤.DNA的四种含氮碱基组成具有物种特异性.即四种含氮盐基的比例在同物种不同个体间是一致的,但在不同物种间则有差异.DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中A=T,C=G查哥夫法则.DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构.DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA.詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见.也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状.碱基对之间的距离是0.34nm,10个碱基对转一周,故旋转一周是3.4nm,这是β-DNA的结构,在生物体内自然生成的DNA几乎都是以β-DNA结构存在.DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构.如H-DNA或R-环等三级结构.DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间结构,也称为超螺旋结构.DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变.超螺旋式克服张力而形成的.当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态.如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态.但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋.核酸以反式作用存在这可看作是核酸的四级水平的结构.DNA的拓扑结构也是DNA存在的一种形式.DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构.超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变.DNA的高级结构是原核生物的DNA高级结构为超螺旋结构。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。自然界中主要是负超螺旋。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。扩展资料:在双螺旋结构中,每旋转一圈含有10个碱基对处于能量最低的状态,少于10个就会形成右手超螺旋,反之为左手超螺旋。前者称为负超螺旋,后者称为正超螺旋。这是一种三级构造。原核细胞中的DNA超螺旋是在DNA旋转酶作用下,由ATP提供能量形成的环状DNA负超螺旋,真核细胞中的DNA与组蛋白形成的核小体以正超螺旋结构存在。DNA超螺旋有两种存在形式:具绞旋线超螺旋以及螺管式超螺旋。具绞旋线是发生在当DNA从细胞中独立出来后形成的超螺旋状态,而螺管式则是当DNA处于染色质中维持的超螺旋状态。其中以螺管式缠绕的更加紧密,且需要蛋白质的辅助方能形成——染色质中组蛋白。参考资料来源:百度百科-原核生物百度百科-超螺旋简述DNA的结构1、dna结构是双链结构,DNA即脱氧核糖核酸。脱氧核糖核酸是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。2、细胞核是真核细胞内最大、最重要的细胞结构,是细胞遗传与代谢的调控中心,是真核细胞区别于原核细胞最显著的标志之一。,它主要由核膜、染色质、核仁、核基质等组成。更多关于dna结构是什么,进入:查看更多内容

dna双螺旋结构是哪一年发现的

dna双螺旋结构是哪一年发现的?1953年双螺旋被发现詹姆斯.杜威.沃森,一九二八年四月六日生于美国芝加哥,由于提出DNA的双螺旋结构而获得一九六二年诺贝尔生理学或医学奖,被称谓DNA之父.还有克里克于1916年6月8日出生在英国的北汉普顿.美国和英国~请采纳~

dna双螺旋结构的提出解决了哪些问题

DNA双螺旋结构解决以下生物学问题:①生物遗传问题;②遗传信息的构成;③遗传信息的传递途径;④基因是如何起作用的。

制作DNA双螺旋结构模型的依据是什么

依据DNA双螺旋结构的特点:(1)主链  由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以 右手方向 盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,(两条主链可用铁线在圆柱同上绕成 )(2)碱基对  碱基位于螺旋的 内则 ,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基 总是 A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键 (用牙签或其他小棒表示氢键,用卡纸剪成不同形状表示各种碱基)。 (3)结构参数  螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。(您可通过比例换算到合适尺寸 如3.4NM 在模型上用3.4CM 表示)

DNA为什么是双螺旋结构?有什么意义?

DNA是双螺旋结构原因:DNA的双螺旋结构巧妙,生物体需要各种能量物质,在不同阶段进行不同的活动。而这些东西全部都由基因指挥完成,这样就需要庞大的不同的基因完成不同的事,为了使一个细胞能够装的下这个更多的基因。DNA是双螺旋结构意义:双螺旋结构最能节省空间的螺旋结构,这种结构在长度和半径上都进行了压缩处理。而且高度的螺旋结构,也使得DNA的紧密,碱基几乎不暴露在外面,也使得基因受到更好的保护。双螺旋碱基配对的方式存在,使得一个点位基因发生突变的概率降低,只有两条链上的碱基发生突变基因才能突变。双螺旋结构的DNA是一种可能是最合理的存在方式。扩展资料:双螺旋模型不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对。这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。克里克从一开始就坚持要求在发表的论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话。参考资料来源:百度百科-DNA双螺旋结构

简述DNA的双螺旋结构。

(1)主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。(2)碱基对:碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。(3)大沟和小沟:小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。**************************************************************如果你对这个答案有什么疑问,请追问,另外如果你觉得我的回答对你有所帮助,请千万别忘记采纳哟!***************************************************************

dna双螺旋结构有何重要生物学意义

双螺旋结构是生物结构中常见的基本单元,双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。扩展资料结构特点:主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。参考资料来源:百度百科——双螺旋结构

DNA双螺旋结构的特点

名词解释:DNA双螺旋模型。

李老师为你解答:DNA双螺旋的碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假想的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋

科学家是依据什么判断DNA分子是双螺旋结构

在上世纪中叶(1950s)James Watson 和 Francis Crick提出了著名的DNA双螺旋以及双链间碱基配对的模型,根据这个模型,他们进一步提出了DNA复制的半保留模型(semiconservative model),虽然这个模型比当时并存的全保留模型(conservative 模型)看起来简单易行的多,但始终缺乏有说服力的数据。 最后在1957年,当时在Caltech作研究生的Matthew Meselson和作博士后的Franklin Stahl设计并实现了这组著名的,证明了DNA复制半保留机理的实验。  试验中,他们先将大肠杆菌细胞培养在用15NH4Cl作为唯一氮源的培养液里养很长时间(14代),使得细胞内所有的氮原子都以15N的形式存在(包括DNA分子里的氮原子)。这时再加入大大过量的14NH4Cl和各种14N的核苷酸分子,细菌从此开始摄入14N,因此所有既存的“老”DNA分子部分都应该是15N标记的, 而新生的DNA则应该是未标记的。接下来他们让细胞们继续高高兴兴地生长,而自己则在在不同时间提取出DNA分子,利用CsCl密度梯度离心分离,而当细胞分裂了一次的时候只有一个DNA带,这就否定了所谓的全保留机理,因为根据全保留机理,DNA复制应该通过完全复制一个“老”DNA双链分子而生成一个全新的DNA双链分子,那么当一次复制结束,应该一半DNA分子是全新(双链都完全只含14N), 另一半是“全老”(双链都完全只含15N)。这样一来应该在出现在离心管的不同位置,显示出两条黑带。  通过与全14N和全15N的DNA标样在离心管中沉积的位置对比,一次复制(分裂)时的这根DNA带的密度应当介于两者之间,也就是相当于一根链是14N,另一根链是15N。而经历过大约两次复制后的DNA样品(generation=1.9)在离心管中显示出强度相同的两条黑带,一条的密度和generation=1时候的一样,另一条则等同于完全是14N的DNA。这样的结果跟半保留机理推测的结果完美吻合  就这样,关于DNA复制机理的争论终于被Meselson和Stahl完美解决,而基因学和基因组学也得以在此后的五十年取得一系列重大突破。

Dna双螺旋 和 蛋白质阿尔法螺旋 的区别

区别可太大了。首先DNA双螺旋是两条链,有大沟和小沟(我指B型DNA双链分子),蛋白质就一条肽链形成阿尔法螺旋。其次形成的力就不一样。DNA靠的是氢键和碱基之间堆积力,蛋白质靠的是肽键和分子间氢键。还有角度和旋距都不同,具体的参数你可以参考一下生化书,这个没人能背得下来。

DNA双螺旋有几种类型,它们分别由哪些序列特征和存在条件?

DNA双螺旋有五种类型。1、由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。2、碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。3、大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。4、结构参数,螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。

dna分子的结构是(DNA双螺旋结构基本特点)

dna分子的结构是DNA分子属于双螺旋结构,由两条平行的链组成,两条链互相绕成螺旋状。每条链都由称为脱氧核糖的糖分子与磷酸在交替连接而成。DNA分子的结构DNA分子两条单链以双螺旋结构结成。单链是指由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。作用是:原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。DNA分子双螺旋结构的主要特点DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A一定与T配对;G一定与C配对。碱基之间的这种一一对应的关系,叫做碱基互补配对原则。。DNA双螺旋结构基本特点dna规则双螺旋结构的主要特点如下:dna分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。dna分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧。dna分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。DNA的构型DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段.DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸,通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序.每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖+一分子磷酸根.核酸的含氮碱基又可分为四类:腺嘌呤,胸腺嘧啶,胞嘧啶和鸟嘌呤.DNA的四种含氮碱基组成具有物种特异性.即四种含氮盐基的比例在同物种不同个体间是一致的,但在不同物种间则有差异.DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中A=T,C=G查哥夫法则.DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构.DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA.詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见.也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状.碱基对之间的距离是0.34nm,10个碱基对转一周,故旋转一周是3.4nm,这是β-DNA的结构,在生物体内自然生成的DNA几乎都是以β-DNA结构存在.DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构.如H-DNA或R-环等三级结构.DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间结构,也称为超螺旋结构.DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变.超螺旋式克服张力而形成的.当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态.如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态.但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋.核酸以反式作用存在这可看作是核酸的四级水平的结构.DNA的拓扑结构也是DNA存在的一种形式.DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构.超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变.DNA的高级结构是原核生物的DNA高级结构为超螺旋结构。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。自然界中主要是负超螺旋。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。扩展资料:在双螺旋结构中,每旋转一圈含有10个碱基对处于能量最低的状态,少于10个就会形成右手超螺旋,反之为左手超螺旋。前者称为负超螺旋,后者称为正超螺旋。这是一种三级构造。原核细胞中的DNA超螺旋是在DNA旋转酶作用下,由ATP提供能量形成的环状DNA负超螺旋,真核细胞中的DNA与组蛋白形成的核小体以正超螺旋结构存在。DNA超螺旋有两种存在形式:具绞旋线超螺旋以及螺管式超螺旋。具绞旋线是发生在当DNA从细胞中独立出来后形成的超螺旋状态,而螺管式则是当DNA处于染色质中维持的超螺旋状态。其中以螺管式缠绕的更加紧密,且需要蛋白质的辅助方能形成——染色质中组蛋白。参考资料来源:百度百科-原核生物百度百科-超螺旋简述DNA的结构1、dna结构是双链结构,DNA即脱氧核糖核酸。脱氧核糖核酸是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。2、细胞核是真核细胞内最大、最重要的细胞结构,是细胞遗传与代谢的调控中心,是真核细胞区别于原核细胞最显著的标志之一。,它主要由核膜、染色质、核仁、核基质等组成。更多关于dna结构是什么,进入:查看更多内容

为什么DNA分子呈现双螺旋结构

  这个解释起来其实要数学和物理很好 不知道你要详细到什么地步的 所以……(以下内容摘自网络)PS.如果满意请采纳~谢谢~~ :)DNA为什么是双螺旋结构(撰文:夏烆光)内容提要:本文从力学的角度出发阐明:蛋白质分子为什么是螺旋式的结构?DNA为什么是双螺旋结构?核苷酸分子为什么只能有四种类型?以及它们的自我复制功能为什么是唯一的?反过来,从蛋白质分子和DNA分子的螺旋状结构中证明,微观粒子存在着螺旋式前进的运动规律.进而,证明广义时空相对论所给出的理论结果本身的正确性.一 引 言1909年,丹麦植物学家约翰逊用“基因”一词取代了孟德尔的“遗传因子”.从此,基因便被看作是生物性状的决定者,或者说,被看成是生物遗传变异结构和功能的基本单位.1926年,美国遗传学家摩尔根发表了著名的《基因论》.他和其他学者用大量的实验证明,基因是组成“染色体”的“遗传单位”.基因在染色体上占有一定的位置和空间,并呈现为直线排列.这样一来,就使孟德尔关于“遗传因子”的假说,体现到具体的遗传物质——基因这一概念上.这个结论,为后来进一步研究基因的结构和功能奠定了最初的理论基础.尽管情况如此,但当时的人们并不知道“基因”究竟是一种什么样的物质.直到上个世纪40年代,当生物科学工作者弄清楚了“核酸”,特别是脱氧核糖核酸(简称DNA),乃是一切生物传宗接代的遗传物质时,“基因”这一概念才有了确切的生物学内涵.其间,1951年科学家们在实验室里获得了DNA的结晶体;1952年又获得了DNA的X射线衍射图谱.在此基础上,于1953年,年仅25岁的美国科学家詹姆斯?沃森与37岁的英国科学家西斯?克里克共同阐明了这个划时代的学术成果,——他们从DNA(脱氧核糖核酸)的X射线衍射图上解读了它的“双螺旋结构”.DNA双螺旋结构的发现,开创了分子生物学的新时代,它使生物大分子的研究跨入了一个崭新的研究阶段,并使遗传学的研究深入到了分子层次,从而迈出了解开“生命之谜”的重要一步.应该承认,当时的两项科学成就对DNA“双螺旋结构”的发现起到了至关重要的作用.一是,美国加州大学森格尔教授发现了蛋白质分子的螺旋状结构;二是,X射线衍射技术在生物大分子结构研究中得到了实际的应用,从而有了观测分子内部结构的实验手段.正是在这样的科学背景和研究条件下,才促使沃森来到英国剑桥大学与克里克合作,致力于研究DNA的结构模式.他们通过对大量X射线衍射实验结果的分析与研究,提出了DNA的双螺旋结构模型.这项研究成果发表在1953年4月25日英国的《发现》杂志上.在随后的日子里,科学家们便围绕着DNA的结构和作用,陆续地展开了进一步的研究工作,取得了一系列的重大进展,并于1961年终于成功地破译了“遗传密码”,以雄辩的实验依据证实了DNA双螺旋结构这个结论的正确性.沃林、克里克、威尔金斯等三人,因此而共同分享了1962年诺贝尔医学生理学奖.(参见[1])二 核苷酸只有四种结构模型基因(DNA)是自然界唯一能够自我复制的生物分子.正是由于DNA的这种精细准确的自我复制功能,为生物体将其祖先的生物特性传递给下一代提供了保证.现代生物学研究已经清楚地证明,NDA是由大量“核苷酸分子”组成的生物“大分子”.核苷酸分子有四种类型,它们按着不同的顺序排列,构成了含有各种遗传信息的生物基因(DNA).基因是包含着特定遗传信息的脱氧核糖核酸片段.实验证明,“大肠杆菌”是一个品系繁多的大家族,其中有成千上万种不同的类型.生物学的研究发现,一些品系的大肠杆菌,本身缺少指导合成某些特殊营养物质的基因,因此,它们必须从培养基中直接摄取营养物质才能生活,——这样的大肠杆菌,被生物学称之作“营养缺陷型”.例如,大肠杆菌K不能合成苏氨酸(T)和亮氨酸(L);而它的另一个品系则不具备合成生物素(B)和甲硫氨(M)的能力.实验表明,如果把这两种大肠杆菌中的任何一种单独放在缺少T、L、B、M的培养基上都不能生长.但是,当我们把这两种品系的大肠杆菌混合在一起,然后放到缺少TLBM这四种物质的培养基上,却奇迹般地长出了新菌落.这是为什么呢?简单地说:就是因为在大肠杆菌K的DNA中,缺少T、L两种基因,而只含有B和M两种另外的基因;同样,在另一个品系大肠杆菌的DNA中,虽然不具备B和M基因,但却含有前者所缺少的T、L两种基因.把这两种营养缺陷型的大肠杆菌放在一起,就等于把四种基因放在一起来进行培养.这样一来,前一品系细胞中的DNA,就有可能通过细胞膜进入后一品系的细胞中,使两种类型的DNA之间进行基因重组,从而形成含有T、L、B、M四种基因的新型大肠杆菌.我们说,生物学的这一重大发现,仅仅证明DNA本身具有双螺旋结构,但是,这里并没有指出,形成这种双螺旋结构的物理原因是什么.作为深入的学术研究,完全有必要弄清以下问题:1、蛋白质分子为什么是螺旋状的结构?2、DNA分子为什么是双螺旋式的结构?3、核苷酸分子为什么只有四种类型?4、由核苷酸分子所构成的DNA分子,能够唯一自我复制生物分子的原因是什么?而本文将从力学的角度上,探索并尝试地回答这些新问题.三 蛋白质分子为什么是螺旋结构这里,我们先来回答:蛋白质分子为什么是螺旋状的结构?为了回答这个问题,必须先来简单地介绍一下微观粒子的运动特征.根据《广义时空相对论》的理论结果知道,微观粒子的运动规律是:在不停“自旋”的同时,又绕着某个轴线、以一定的旋转频率和旋转半径不停地“公转”.加上粒子本身的直线运动,就自然地构成了一种螺旋式的前进运动.这里虽不是在讨论理论物理问题,但为使大家对这个结论确信无疑,还是需要简单地介绍一点广义时空相对论的相关理论.诚如所知,在广义时空相对论中(参见[2],§21),我曾经指出:若曲线M(t)是给定参数t的方程,利用基本矢量τ,μ来表达二阶导数d2M/dt2,并注意到,如果参数t代表着时间,则二阶导数d2M/dt2就是M点运动的“相对加速度”.把等式dM/dt =τds/dt (1)对参数t微分,就得出:d2M/dt2 =τd2s/dt2+(dτ/dt)·(ds/dt) (2)按照复合函数的微分法则,则有:dτ/dt =(dτ/ds)·(ds/dt)再将dτ/ds = kμ (3)代入等式(2)中,便可以得出:d2M/dt2 =τd2s/dt2+μk(ds/dt)*2 (4)由此可见,相对加速度d2M/dt2可分成两项:一个是切向加速度矢量;另一个是法向加速度矢量.下面,我们用运动时钟的读数t*来替换方程(4).为此,需要把曲线的特别参数s写成如下的函数关系:s = s(t*).这里,我们约定:一阶导数s"(t*)是站在动点M上的观测者,用运动时钟所得出地关于动点M的绝对速度.这个绝对速度可以是常数,——对应着没有外力作用的保守体系;也可以是时间坐标t*的函数,——对应着外力作用引起的绝对速度的变化.同时,我们还要约定:运动是匀加速的.由此而来,把上式对运动系的时间坐标t* 微分两次,便可以得出:ds = s"(t*)dt* (5)以及,d2s =[s"(t*)dt*]"dt*=s""(t*)dt*2 (6)令绝对速度υ= s"(t*)以及绝对加速度η= s""(t*)于是,便可以得出:ds =υdt*;以及,d2s =ηdt*2 (7)由于这里是“纯量”之间的微分运算,所以不必考虑绝对速度和绝对加速度的方向.再者,由于这里只限于讨论“绝对加速度”为常数时的情况,因此,我们将(5)和(7)式同时代入(4)式,便可以得出:d2M/dt2 =(ηdt*2/dt2)τ+ k(υdt*/dt)2μ (8)不难看出,上式等号右边的第一项代表了动点M的切向加速度,而第二项代表了它的法向加速度.等式左边的二阶导数d2M/dt2则是静止观测者、用静止的钟、所得出的动点M在曲线M(t)上运动的“相对加速度”.显然,这个“相对加速度”乃是“切向加速度”与“法向加速度”的矢量合成结果.下面,我们来研究在均匀引力场中,物质的运动方程.为了简便起见,这里选择微观粒子沿着X轴方向的运动为运动的正方向.这里区分为两种运动状况来加以考虑.第一,粒子在自由空间中的曲线运动按照广义时空相对论的观点:在相互作用传播速度有限性的前提下,运动系上的钟、与静止系上的钟,不可能绝对地同步地记录到一个运动事件的两种不同的时间坐标t*和t.因此,如果利用不同的参变数t和t* 来表示(4)式的话,则相应的数学形式也就有所不同.根据本文讨论的需要,我们直接按照广义时空相对论的理论结果,写出运动时钟的纯量读数t* 和静止时钟的纯量读数t之间的关系:dt* =ξdt,或 dt*/dt =ξ (9)其中,ξ= c/(c2 +υ2)1/2 (10)对于自由空间中的匀速运动,(8)式中的η= 0,并且υ是常数,由此而来,(8)式右端的第一项等于0. 以及ξ是常数.于是,把(9)式代入(8)式便可以得出:d2M/dt2 = k[υ2c2/(c2 +υ2)]μ (11)再把关系式V = υc/(c2 +υ2)1/2 (12)代入上式,则有:d2M/dt2 = kV2μ (13)我们用曲率半径ρ= 1/k代入上式,则有:d2M/dt2 = (V2/ρ)μ (14)这就是“匀速圆周运动”的基本公式.这一结果表明:在一个与外界没有任何联系的封闭的自由空间内,物体的绝对线速度υ和相对加速度都是常数,且其方向指向圆心.它的运动轨迹则是一个封闭的圆周.当体系本身具有恒定的初速度υ0时,它的运动轨迹就是一条等螺距的螺旋线.第二,粒子在均匀引力场(η= Const.)中的运动按照(9)式,则有:dt*2/dt2 =ξ2 = c2/(c2 +υ2) (15)在η等于常数的情况下,将(15)式代入(8)式,并引入相对加速度符号a(t) = d2M/dt2,得出:a(t)=τηc2/(c2+υ2)+μkc2υ2/(c2+υ2) (16)然后,再引入符号V2/ρ=ω公2ρ,以及ω自2 r =(ηV2/υ2), 其中,ω公为粒子的公转频率,ω自为粒子绕着质心“自旋”的角频率,r代表微观粒子本身的半径,则上式就可以改写成:a(t)=(ω自2 r)τ+ (ω公2ρ)μ (17)这就是在均匀外力作用下(η≠0),微观粒粒子的运动方程.不难理解,如果没有这种均匀外力的作用,微观粒子就不会具有自旋分量,即上式中的第一项.在上式中,如果把第一项代表切线方向的相对加速度,第二项代表了主法线方向的相对加速度.而切线τ方向的相对加速度代表着微观粒子的“自旋”,而主法线μ方向的相对加速度代表着微观粒子的“公转”.这两种加速度的合成结果,导致微观粒子在前进运动的同时,伴随着自旋以及绕着前进方向为轴线的公转.其轨迹是一条螺旋线.不言而喻,所有化学元素的分子,例如氮(N)、氢(H)、碳(C)的分子等都是微观粒子,因此,它们一定会呈现螺旋式的运动状态.在这种运动状态的影响下,由碳水化合物所构成的蛋白质分子必然会出现螺旋状的结构.四 核苷酸的类型与双螺旋结构的原因根据微分几何的理论结果,我们知道d2M/dt2 =τd2s/dt2 +μk(ds/dt)2 (18)以及d2M/ds2 = kμ (19)现在,我们把上式的二阶导数d2M/ds2再对具有“内蕴意义”的参数“s”微分,就得出了它的三阶微分关系式.不过,这里并不是直接把二阶导数d2M/ds2 = kμ对特别参数“s”进行微分,而是把这个式子右端的矢量μ和曲率k的乘积进行微分.由于从这里出发会使问题大为简化,所以,我们的讨论将从对矢量μ的微分开始,然后所得出的不变式来表示三阶导数d3M/ds3、以及d3M/dt3.不过,这里不准备进行具体的分析与讨论,而是直接地引用微分几何的理论结果(参见[3],第69—72页),写出三阶微分邻域的不变式如下:dτ/ds = kμ;dμ/ds = - kτ+ζβ;dβ/ds = -ζμ (20)其中,β是副法线方向上的单位矢量.它的方向垂直于由τ和μ相交后所构成的平面.上式中各公式的符号是选择了“右旋坐标系”时的情况.倘若是改为“左旋坐标系”,对于曲线M(t)的定向运动来说,在切矢量τ改变方向时,在切线单位矢量τ与主法线单位矢量μ确定的旋转方向下,公式(20)所确定的副法线单位矢量β将改变自己的正方向.所以,由方程(20)所确定的不变式“ζβ”也随之改变符号,即:由(+ζβ)变成了(-ζβ);为了保持曲线M(t)的不变式ζ的符号,必须在公式(20)中改变矢量“β”的符号.这样一来,在左旋的坐标系中,相伴三面形单位矢量导数的“基本关系式”可以写成下列的形式:dτ/ds = kμ;dμ/ds = - kτ-ζβ;dβ/ds = -ζμ (21)其中,“ζ”是曲线的“挠率”,而r = 1/ζ是曲线的“挠率半径”.其中,符号“ζβ”的“正”与“负”,代表着参数相同的两个粒子之间的“自旋方向”刚好相反.下面,我们取dβ/ds = 0,——它代表着微观粒子的自旋轴的方向始终平行于粒子的前进方向,且β的数值不跟随着粒子的运动路程而变换.结果,上式就可以化成:dτ/ds = kμ;dμ/ds = - kτ-ζβ (22)上式表明,刚体的任何运动都可以分为两个部分:一是远离坐标原点的平行移动;二是绕固定轴的转动.换言之,在每一个给定的瞬间,物体的运动都是由两个基本的运动所组成:第一,平移——此时物体在每一给定的时间内,它的各个部分都具有相同的运动速度.第二,转动——此时物体上的某一条直线固定不动,而物体的其它部分则绕着这个固定的直线旋转.而这种旋转可以分成两个部分,一个是绕着固定旋转轴的“公转”,另一个是绕着粒子质心的“自旋”.正如(17)式所示,第一项代表着粒子围绕着质心的“自旋”;而第二项代表着围绕前进方向的“公转”.不难理解,在上述约定的前提条件下,当粒子在前进(dτ/ds>0)、或后退(dτ/ds<0)的过程中,相伴三面形T(M,τ,μ,β)的顶点M都同时包含着“平移”和“转动”两个方面.这里所包含的平移和转动,总共可以分成四种情况,分别由下列四个关系式来单独地确定:dτ/ds = kμ;dμ/ds = - kτ+ζβ; ………… ①dτ/ds = kμ;dμ/ds = - kτ-ζβ; ………… ② (23)dτ/ds = - kμ;dμ/ds = kτ-ζβ; ………… ③dτ/ds = - kμ;dμ/ds = kτ+ζβ; ………… ④在上述四个关系式中,曲线上的每个动点M联系着一个相伴三面形T(M,τ,μ,β),它是由曲线上对应点发出的“切矢量”、“主法线矢量”、“副法线矢量”所构成的“直角三面形”.这些关系式不仅给出了平移的“正方向”与它的“反方向”,而且给出了每种情况下的转动.单纯地就转动而言,这些公式一方面给出了“左旋公转”与“右旋公转”的情况;另一方面给出了顶点M围绕着自己的质心“左旋自旋”与“右旋自旋”的情况.当相伴三面形的顶点M移动时,动点M所描绘的运动轨迹就肯定是一条螺旋状的曲线.值得指出的是,在粒子构成的“自旋”中,η≠0是至关重要的.正是基于自旋的存在,所以才能出现以上四种独立的运动类型.这里,如果我们把η≠0看成是地球引力场的作用,那么,上式所代表的自旋一定与引力场的性质有关.普遍的规律,对于两个基本相同的粒子来说,只有它们的自旋相反时,才能发生“耦合作用”而成对地出现.并且,只有自旋相反的粒子之间实现了耦合,其状态才是最稳定的状态.基于这一考虑,我们大胆地推测:核苷酸分子总是成对地耦合在一起.假如情况真地象我们推测的那样,再考虑到每个核苷酸分子的运动轨迹都是螺旋式的结构形状,那么,由这些成对存在着的核苷酸分子所构成的DNA分子,就必然具有双螺旋式的结构特征.另外,由于粒子的自旋运动来自于所在星球的引力特征,以,地球上生物的DNA分子,在一定程度上受到了地球引力的影响.为了形象的理解上述观点,我们不妨反过来思考,即从DNA分子的双螺旋结构中,反过来考虑微观粒子螺旋式的运动状态.广义时空相对论业已证明,只有这种螺旋式的运动状态,才能体现出微观粒子“波动性”与“粒子性”的对立统一.——即微观粒子的“波粒二象性”.如果不是这种运动状态,将难以解释微观粒子的“波粒二象性”.实际上,这种理解方法在物理学中被经常地运用.例如,在中学物理中,人们就是利用“铁粉”在磁场中的分布状况,来证实“磁力线”的存在.正如所知,磁力线本身是看不见的,所以人们只好通过铁粉在磁场中的分布状态,来间接地证明磁力线本身的分布状况.有了铁粉的分布状况,就间接证明了磁力线的形状.再者,由于只有那些自旋相反的核苷酸分子才能够相互耦合而成对地出现,并且这些自旋相反的核苷酸分子的耦合结果只能具有以下四种可能,因此说,所有核苷酸分子只有T、L、B、M四种类型.为了明确,我们把(23)式中的四个式子间的可能耦合列成下表.耦合条件 公转方向相同 公转方向相反 自旋方向必须相反 ①—②,③—④①—③,②—④ 上表列出了核苷酸分子各种可能的耦合关系.从上表所列出的耦合关系可以看出,核苷酸分子的耦合情况只能是表中所列出的“四种组合”,即:①—②,③—④,①—③,②—④.在给定的、均匀的引力场中,这四种结构特征应该是唯一的.所以,地球上生物体的DNA分子只能有四种类型,并且这四种类型DNA分子的自我复制功能也是唯一的.进一步地考虑,生物体的遗传特征,在一定的程度上取决于所在星球上的引力特征.改变引力场,有可能改变DNA分子的形状.五 结 论总之,通过上述讨论,回答了四个问题:一是蛋白质分子螺旋结构特征的力学原因.二是,核苷酸分子成对出现的力学原因;三是,由于核苷酸分子的成对出现,所以DNA分子必定是双螺旋结构;四是,由于同种核苷酸分子的耦合只能有四种情况,所以导致了DNA分子只能有四种类型,以及它们唯一的自我复制功能.再者,通过蛋白质分子的螺旋结构和DNA的双螺旋结构特征,反过来证明了微观粒子的运动形态的螺旋式特征.而且,只有这种螺旋式的运动特征,才能真正体现出微观粒子的波动性与粒子性的统一,进而证明广义时空相对论的正确性.参考文献:[1]《DNA双螺旋结构发现的前前后后》 作者:徐九武,科报网,《生命科学的里程碑》.[2]《广义时空相对论》夏烆光著,人民交通出版社,北京,2003年1月 第一版.[3]《微分几何教程》[苏] С.П.芬尼可夫 著,施祥林、徐家福 译,高等教育出版社,1954年 7月第一版.

DNA的双螺旋结构是由沃森和()共同提出的。

DNA的双螺旋结构是由沃森和()共同提出的。 A.富兰克林 B.克里克 C.孟德尔 D.鲍林 正确答案:B

dna的双螺旋结构在几几年提出

1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径.

阿尔法螺旋和DNA双螺旋结构的特点和区别

首先,你要知道α螺旋指的是蛋白质的空间结构,而DNA双螺旋是DNA分子的空间结构,是不同的两种生物大分子的空间结构其次,蛋白质的二级结构中的α螺旋是一条钛链形成的空间结构,每个螺旋周期包含3.6个氨基酸残基,残基侧链伸向外侧,同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键。这种氢键大致与螺旋轴平行。而DNA双螺旋是两条DNA单链反向平行成螺旋状,每圈10个碱基;既然是两条链扭成的双螺旋,就存在这大沟小沟。再次,蛋白质的α螺旋是形成蛋白质空间结构中的一个阶段,现有多肽链(一级结构)形成二级结构,α螺旋是二级结构中的一种类型,再由二级结构形成三级结构,或者有的蛋白质能形成四级结构才算是蛋白质的空间结构;DNA双螺旋就是它的空间结构了,只是双螺旋又分成不同的类型,如A B Z等等

DNA双螺旋结构有什么基本特点呢

1、由脱氧核糖和磷酸基通过酯键交替连接而成。 主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。 主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。 2、碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。 同一平面的碱基在二条主链间形成碱基对。 配对碱基总是A与T和G与C。 碱基对以氢键维系,A与T间形成两个氢键,G与C间形成三个氢键。 DNA结构中的碱基对与Chatgaff的发现正好相符。 3、大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。 小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。 这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。 在大沟和小沟内的碱基对中的N和O原子朝向分子表面。 4、结构参数,螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。 扩展资料: 脱氧核糖核酸链在双螺旋基础上如绳索般扭转的现象与过程称为DNA超螺旋。 当脱氧核糖核酸处于“松弛”状态时,双螺旋的两股通常会延着中轴,以每10.4个碱基对旋转一圈的方式扭转。 但如果脱氧核糖核酸受到扭转,其两股的缠绕方式将变得更紧或更松。 当脱氧核糖核酸扭转方向与双股螺旋的旋转方向相同时,称为正超螺旋,此时碱基将更加紧密地结合。 反之若扭转方向与双股螺旋相反,则称为负超螺旋,碱基之间的结合度会降低。 自然界中大多数的脱氧核糖核酸,会因为拓扑异构酶的作用,而形成轻微的负超螺旋状态。 拓扑异构酶同时也在转录作用或DNA复制过程中,负责纾解脱氧核糖核酸链所受的扭转压力。

何为DNA与RNA形成的双螺旋结构

在身体合成蛋白质时DNA的螺旋回解旋这时细胞中的RAN会和DNA形成螺旋结构形成信使RNA然后在经过其他的过程合成蛋白质其实DNA与RNA形成双螺旋结构是特殊的情况

制作DNA双螺旋结构模型的依据是什么

依据DNA双螺旋结构的特点:(1)主链  由脱氧核糖和磷酸基通过酯键交替连接而成.主链有二条,它们似“麻花状”绕一共同轴心以 右手方向 盘旋, 相互平行而走向相反形成双螺旋构型.主链处于螺旋的外则,(两条主链可...

DNA分子的双螺旋结构有哪些主要特点

(1)DNA分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构.(2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧.(3)DNA分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则.

DNA双螺旋结构

简单说,手性就像左右手一样,呈实物与镜像的关系,但不能重叠。可能是由于右手性的结构空间位阻小吧

dna双螺旋结构中的碱基对不包括

dna双螺旋结构中的碱基对不包括什么的解决方法如下:DNA分子中碱基种类有:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)四种.在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。碱基共有5种:胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置,值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。

DNA双螺旋结构的特点及其生物学功能是什么?

以下是我自己根据我们书上所写的归纳的,希望对你有帮助:DNA双螺旋结构有如下几个特点:1、DNA是反向平行的互补双链结构,它的两条多聚核苷酸链在空间排布呈反向平行,碱基位于内侧,亲水的脱氧核糖基和磷酸基位于外侧,碱基间以A-T和G-C的方式互补配对;2、DNA双链是右手螺旋结构,DNA的两条多核苷酸链反向平行围绕同一中心轴互相缠绕,呈右手螺旋;3疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持。DNA的生物学功能:DNA是遗传物质,是遗传信息的载体。证据如下:1、DNA分布在染色体内,是染色体的主要成分,而染色体是直接与遗传有关的。2、体细胞DNA含量为生殖细胞DNA含量的两倍,且含量十分稳定。3、DNA在代谢上较稳定不受营养条件、年龄等因素的影响。4、作用于DNA的理化因素可引起遗传特性的改变,这一点已经由Avery在1953年用肺炎双球菌转化实验证明。

dna双螺旋稳定的因素是哪些

维持DNA双螺旋结构稳定性的主要因素包括两条DNA链之间碱基配对形成的氢键和碱基堆积力。DNA分子的稳定性主要由三种化学键维持:互补碱基之间的氢键、碱基之间的碱基堆集力、磷酸残基上的负电荷可与介质中的阳离子之间形成离子键。DNA分子基本单位:DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。DNA分子结构特点:1、稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。2、多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。3、特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。

dna双螺旋结构

DNA双螺旋结构包括三点:1、由两条反向平行的脱氧核苷酸长链构成双螺旋结构。2、磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧。3、两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)。脱氧核糖核酸又称去氧核糖核酸,是一种生物大分子,可组成遗传指令,引导生物发育与生命机能运作。主要功能是信息储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与核糖核酸所需。带有蛋白质编码的DNA片段称为基因。真核生物的核内DNA是双螺旋的,由两条反相平行的DNA组成,碱基按A,T;CG配对。DNA是有脱氧核糖核苷酸组成的。DNA分子是长而相互缠绕的双链结构,整个模型像一个双螺旋而上升的楼梯,梯子两边的“扶手”是有磷酸和脱氧核糖相间连接而成的,中间的“踏板”是分别连在两边脱氧核糖分子上的两个碱基。脱氧核糖,碱基和磷酸组成了DNA分子的基本单位——脱氧核苷酸。由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。

DNA双螺旋结构的基本内容

DNA双螺旋结构的特点(1)主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。(2)碱基对(basepair)碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键,G与C间形成三个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。(3)大沟和小沟大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。(4)结构参数螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。

dna双螺旋结构

DNA是一反向平行的互补双链结构在DNA双链结构中,亲水的脱氧核糖基和磷酸基骨架位于双键的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合。A=T,G≡C,这种碱基之间的配对关系叫碱基互补。对应的碱基处于同一平面,称碱基平面,碱基平面之间靠范德华力形成碱基堆积力(纵向的力)。反向平行:一条链5"→3"另一条链3"→5"DNA双链所形成的螺旋直径为2nm。螺旋每旋转一周包含了10对碱基,每个碱基的旋转角度为360o。螺距为3.4nm,每个碱基平面之间的距离为0.34nm。双螺旋结构上有两条凹沟,深的称大沟,浅的称小沟。*双螺旋结构的稳定横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以碱基堆积力更为重要。DNA是遗传物质,是遗传信息的载体。即作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。

双螺旋结构的形态结构特点是什么?

1两条平行的多核苷酸链,以相反的方向(即一条由5‘—3",另一条由3‘—5")围绕同一个(想像的)中心轴,以右手旋转方式构成一个双螺旋。2疏水的嘌呤和嘧啶碱基平面层叠于螺旋的内侧,亲水的磷酸基和脱氧核糖以磷酸二酯键相连形成的骨架位于螺旋的外侧。3内侧碱基成平面状,碱基平面与中心轴相垂直,脱氧核糖的平面与碱基平面几乎成直角。每个平面上有两个碱基(每条链各一个)形成碱基对。相邻碱基平面在螺旋轴之间的距离为0.34nm,旋转夹角为36度。每十对核苷酸绕中心旋转一圈,故螺旋的螺距为3.4nm.4双螺旋的直径为2nm.沿螺旋的中心轴形成的大沟和小沟交替出现。DNA双螺旋之间形成的沟为大沟,两条DNA链之间的沟为小沟。5两条链被碱基对之间形成的氢键稳定地维系在一起。双螺旋中,碱基总是腺嘌呤与胸腺嘧啶配对,鸟嘌呤与胞嘧啶配对。

简述dna双螺旋结构的特点

简述dna双螺旋结构的特点为:两条链方向相反、相互平行、主链是磷酸戊糖链,处于螺旋外侧. 碱基在螺旋内侧并配对存在,A与T配对的G与C配对,A与T之间二个氢键相连(A-T),G与C之间三 个氢键。DNA双螺旋的碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二酯键相连,形成核酸的骨架。碱基平面与假想的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补A〢T,G〣C,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。

dna的双螺旋结构是怎么形成的?

呵呵,我就简单给你解释下,你问的东西,是大学的课本内容喽。(注:以下均为个人归纳)1、DNA的三螺旋和四螺旋,是分别只DNA有3条和4条核苷酸链组成。也就是说DNA按核苷酸链数可分:单链,双链,三链,四链。(均是由同样4种脱氧核苷酸形成)单链DNA不用碱基配对;双链DNA碱基配对你是知道的;三链DNA是3条核苷酸链彼此互相碱基相连,从横截面上看,像三角形的3个顶点;四链DNA也就是4条核苷酸链由碱基相连,截面是矩形的4个顶点。三链和四链的碱基氢键形成原理远超出你的知识范围,就不解释了;并且这两种情况很少见的,你可以忽略,仅作了解。2、超螺旋DNA是指,线性DNA经过多次缠绕浓缩,形成的浓缩体。(你可以想象下,就像多次扭麻花的)而至于为何是叫“超螺旋”,你只要记住这个名词就OK,因为这个涉及到DNA “缠绕浓缩”的具体过程:是通过酶往DNA中引入负超螺旋形成的。超螺旋DNA只是DNA的一种存在形式,并无分类。倒是,我们一般会把DNA分为:超螺旋DNA、开环DNA(开环DNA是指双链只断裂一条链的环状双链DNA)、单链DNA。3、双螺旋结构中,每圈螺旋,在一条链上有10个碱基。双链上共有20个碱基。4、不是碱基控制DNA的旋转,DNA更不是旋转的,DNA的螺旋构象是决定于它的环境和分子间作用力。在通常情况下,是双螺旋的。在特殊情况下,不是螺旋状(有“之”字状的)。 上面的回答,我是以你是高中生基础解释的。如果你有更多的知识基础,或还有疑问,请发追问。

dna的双螺旋结构是什么 dna的双螺旋结构简述

1、 DNA双螺旋(外文名DNA double helix)指的是一种核酸的构象,在该构象中,两条反向平行的多核苷酸链相互缠绕形成一个右手的双螺旋结构。 2、1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。

简述DNA的双螺旋结构。

dna双螺旋结构的要点(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成.主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型.主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性.所谓双螺旋就是针对二条主链的形状而言的.(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连.同一平面的碱基在二条主链间形成碱基对.配对碱基总是a与t和g与c.碱基对以氢键维系,a与t间形成两个氢键.dna结构中的碱基对与chatgaff的发现正好相符.从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件.每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同.碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性.也就是说双螺旋结构在满足二条链碱基互补的前提下,dna的一级结构产并不受限制.这一特征能很好的阐明dna作为遗传信息载体在生物界的普遍意义.(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽.小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间.这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟.在大沟和小沟内的碱基对中的n和o原子朝向分子表面.(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm.dna双螺旋结构生物学意义1953年,沃森和克里克共同提出了dna分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.1953年,沃森和克里克共同提出了dna分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.dna双螺旋结构的提出开始,便开启了分子生物学时代.分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,"生命之谜"被打开,人们清楚地了解遗传信息的构成和传递的途径.在以后的近50年里,分子遗传学,分子免疫学,细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,dna重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景.在人类最终全面揭开生命奥秘的进程中,化学已经并将更进一步地为之提供理论指导和技术支持.

DNA双螺旋结构的特点及其生物学功能是什么?

以下是我自己根据我们书上所写的归纳的,希望对你有帮助:DNA双螺旋结构有如下几个特点:1、DNA是反向平行的互补双链结构,它的两条多聚核苷酸链在空间排布呈反向平行,碱基位于内侧,亲水的脱氧核糖基和磷酸基位于外侧,碱基间以A-T和G-C的方式互补配对;2、DNA双链是右手螺旋结构,DNA的两条多核苷酸链反向平行围绕同一中心轴互相缠绕,呈右手螺旋;3疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持。DNA的生物学功能:DNA是遗传物质,是遗传信息的载体。证据如下:1、DNA分布在染色体内,是染色体的主要成分,而染色体是直接与遗传有关的。2、体细胞DNA含量为生殖细胞DNA含量的两倍,且含量十分稳定。3、DNA在代谢上较稳定不受营养条件、年龄等因素的影响。4、作用于DNA的理化因素可引起遗传特性的改变,这一点已经由Avery在1953年用肺炎双球菌转化实验证明。

DNA双螺旋结构有什么基本特点?

DNA双螺旋结构包括三点:1. 由两条反向平行的脱氧核苷酸长链构成双螺旋结构。2. 磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧。3. 两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)。脱氧核糖核酸又称去氧核糖核酸,是一种生物大分子,可组成遗传指令,引导生物发育与生命机能运作。主要功能是信息储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与核糖核酸所需。带有蛋白质编码的DNA片段称为基因。

简述DNA的双螺旋结构。

DNA双螺旋结构特点:①两条DNA互补链反向平行。②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为10个碱基对,螺距为3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36◦的夹角。③DNA双螺旋的表面存在一个大沟(major groove)和一个小沟(minor groove),蛋白质分子通过这两个沟与碱基相识别。④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起。根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A与T相配对,形成2个氢键;G与C相配对,形成3个氢键。因此G与C之间的连接较为稳定。⑤DNA双螺旋结构比较稳定。维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力(stacking force)。

简述DNA双螺旋结构模型要点

DNA双螺旋结构模型的要点:1、由两条碱基互补的、反向平行排列的脱氧多核苷酸单链组成,碱基互补的方式是A与T,C与G对应;2、两条互补链围绕一“主轴”向右盘旋形成双螺旋结构;DNA分子结构3、DNA分子结构由4种碱基(A、T、G、C)的排列顺序决定储存遗传信息;4、DNA分子结构双螺旋的表面形成两条凹槽,一面宽而深,称之深沟;另一面狭而浅,称之浅沟。与特定功能的蛋白质(酶)识别和调控相关。DNA链5、DNA链碱基排列顺序的组合方式无限,形成多种不同的DNA分子。扩展资料:DNA双螺旋结构的发现者富兰克林(Rosalind Elsie Franklin)于1952年5月获得一张非常清晰的B型DNA衍射照片(照片51号)。1953年1月,沃森访问国王学院时看到了这张照片,立刻领悟了双螺旋模型的关键。他在回忆录《双螺旋》中写道:“在看到图片的瞬间,我目瞪口呆、心跳加速,图片上占主要位置的黑色十字映像只能从螺旋结构中产生”。参考资料来源:百度百科-DNA双螺旋结构

DNA双螺旋结构有什么基本特点呢?

1、由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。2、碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。3、大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。4、结构参数,螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。扩展资料:脱氧核糖核酸链在双螺旋基础上如绳索般扭转的现象与过程称为DNA超螺旋。当脱氧核糖核酸处于“松弛”状态时,双螺旋的两股通常会延着中轴,以每10.4个碱基对旋转一圈的方式扭转。但如果脱氧核糖核酸受到扭转,其两股的缠绕方式将变得更紧或更松。当脱氧核糖核酸扭转方向与双股螺旋的旋转方向相同时,称为正超螺旋,此时碱基将更加紧密地结合。反之若扭转方向与双股螺旋相反,则称为负超螺旋,碱基之间的结合度会降低。自然界中大多数的脱氧核糖核酸,会因为拓扑异构酶的作用,而形成轻微的负超螺旋状态。拓扑异构酶同时也在转录作用或DNA复制过程中,负责纾解脱氧核糖核酸链所受的扭转压力。参考资料:百度百科 DNA双螺旋结构

简述DNA的双螺旋结构。

结构特点折叠主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状"绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。dna外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。折叠dna双螺旋结构的多样性折叠碱基对(basepair)碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是a与t和g与c。碱基对以氢键维系,a与t间形成两个氢键,g与c间形成三个氢键。dna结构中的碱基对与chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。也就是说双螺旋结构在满足二条链碱基互补的前提下,dna的一级结构产并不受限制。这一特征能很好的阐明dna作为遗传信息载体在生物界的普遍意义。折叠大沟和小沟大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的n和o原子朝向分子表面。折叠结构参数螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。

dna双螺旋结构是怎样的,意义是什么

  DNA双螺旋结构:  1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。  2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。  3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则。  意义:  双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。

dna分子是什么结构的双螺旋

DNA分子由两条平行的链组成,两条链互相绕成螺旋状,称为双螺旋。每条链都由称为脱氧核糖的糖分子与磷酸在交替连接而成。下面我为大家详细盘点一下相关信息,供大家参考。 DNA双螺旋结构的主要特点是什么 1.由两条反向平行的脱氧核苷酸长链构成双螺旋结构。 2.磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧。 3.两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)。 由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。

双螺旋结构有哪几种稳定因素?

1.由两条反向平行的脱氧核苷酸长链构成右手螺旋结构,螺旋直径2nm;螺旋周期包含10对碱基。2.磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧,碱基平面与螺旋轴垂直,螺距3.4nm;相邻碱基对平面的间距0.34nm。3.两条 DNA 链依靠彼此碱基之间形成的氢键而结合在一起,碱基对之间遵循碱基互补配对规律,A与T相配对,形成2个氢键,G与C相配对,形成3个氢键。4.疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持5.DNA 双螺旋的表面存在一个大沟和一个小沟,蛋白质分子通过这两个沟与碱基相识别。

简述DNA的双螺旋结构。

DNA双螺旋结构的提出开始便开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。

简述DNA双螺旋结构模型的基本要点?

.DNA双螺旋结构特征 (1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。 所谓双螺旋就是针对二条主链的形状而言的。 (2)碱基对(base pair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键。 DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求, 而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。 每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。 也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。 (3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对, 从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。 在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。 (4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。

DNA双螺旋结构的特点及其生物学功能是什么?

以下是我自己根据我们书上所写的归纳的,希望对你有帮助:DNA双螺旋结构有如下几个特点:1、DNA是反向平行的互补双链结构,它的两条多聚核苷酸链在空间排布呈反向平行,碱基位于内侧,亲水的脱氧核糖基和磷酸基位于外侧,碱基间以A-T和G-C的方式互补配对;2、DNA双链是右手螺旋结构,DNA的两条多核苷酸链反向平行围绕同一中心轴互相缠绕,呈右手螺旋;3疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持。DNA的生物学功能:DNA是遗传物质,是遗传信息的载体。证据如下:1、DNA分布在染色体内,是染色体的主要成分,而染色体是直接与遗传有关的。2、体细胞DNA含量为生殖细胞DNA含量的两倍,且含量十分稳定。3、DNA在代谢上较稳定不受营养条件、年龄等因素的影响。4、作用于DNA的理化因素可引起遗传特性的改变,这一点已经由Avery在1953年用肺炎双球菌转化实验证明。

DNA双螺旋的发现

1953年4月25日,克里克和沃森在英国杂志《自然》上公开了他们的DNA模型。经过在剑桥大学的深入学习后,两人将DNA的结构描述为双螺旋,在双螺旋的两部分之间,由四种化学物质组成的碱基对扁平环连结着。他们谦逊地暗示说,遗传物质可能就是通过它来复制的。这一设想的意味是令人震惊的:DNA恰恰就是传承生命的遗传模板。1953年沃森和克里克提出著名的DNA双螺旋结构模型,他们构造出一个右手性的双螺旋结构。当碱基排列呈现这种结构时分子能量处于最低状态。沃森后来撰写的《双螺旋:发现DNA结构的故事》(科学出版社1984年出版过中文译本)中,有多张DNA结构图,全部是右手性的。这种双螺旋展示的是DNA分子的二级结构。那么在DNA的二级结构中是否只有右手性呢?回答是否定的。虽然多数DNA分子是右手性的,如A-DNA、B-DNA(活性最高的构象)和C-DNA都是右手性的,但1979年Rich提出一种局部上具有左手性的Z-DNA结构。左手螺旋并非只是双螺旋的补充,它在自然界是存在的,左手螺旋大概与病变有一定关系,而且左手螺旋与右手螺旋是会发生互变的。21世纪是信息时代或者生命信息的时代,仅北京就有多处立起了DNA双螺旋的建筑雕塑,其中北京大学后湖北大生命科学院的一个研究所门前立有一个巨大的双螺旋模型。人们容易把它想象为DNA模型,其实是不对的,因为雕塑是左旋的,整体具有左手性。就算Z-DNA可以有左手性,也只能是局部的。因此,雕塑造形整体为一左手性的双螺旋是不恰当的,至少用它暗示DNA的一般结构是错误的。科学家首次直接拍摄到DNA双螺旋结构意大利热那亚大学(UniversitàdegliStudidiGenova)的纳米材料系负责人恩佐-迪-法布里奇奥和他的研究团队成功拍摄到了之前只能通过X射线结晶衍射技术间接观察到的双螺旋结构照片。该研究发表于最新一期《Nano Letters》上。DNA的脆弱性意味着电子能量能够摧毁这种单链,因此这种螺旋结构只能够通过DNA“绳索”进行观察,这些细小的遗传物质绳索是由几条缠绕的绳索组成的。电子束能够辨认出这种DNA绳索。研究人员称,借助改善后的样本处理方法和更好的图像分辨率,我们能够直接观察到DNA的单一碱基。能够直接拍摄DNA的能力意味着不能通过衍射技术观察到的详细信息很快将能够有助于科学研究。遗传学家也将能够使用这项技术来观察DNA与其它物质之间的交互作用。

DNA分子双螺旋结构的主要特点是什么?

反向平行,遵循碱基互补配对原则

所有生物的DNA都是双螺旋结构

a.两条反平行的多核苷酸链绕同一中心轴相缠绕,形成右手双股螺旋,一条5"→3",另一条3"→5"b.嘌呤与嘧啶碱位于双螺旋的内侧,磷酸与脱氧核糖在外侧。磷酸与脱氧核糖彼此通过3/、5/-磷酸二酯键相连接,构成dna分子的骨架。宽1.2nm宽0.6nm大沟小沟深0.85nm深0.75nmc.螺旋平均直径2nm每圈螺旋含10个核苷酸碱基堆积距离:0.34nm螺距:3.4nmd.两条核苷酸链,依靠彼此碱基间形成的氢链结合在一起。碱基平面垂直于螺旋轴。a=t、g=c碱基互补原则具有极重要的生物学意义,dna的复制、转录、反转录等的分子基础都是碱基互补

dna双螺旋结构特点(DNA双螺旋结构特点及其生物学意义)

dna双螺旋结构有什么基本特点dna规则双螺旋结构的主要特点如下:dna分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。dna分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧。dna分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。DNA双螺旋结构有什么基本特点?DNA双螺旋结构包括三点:1.由两条反向平行的脱氧核苷酸长链构成双螺旋结构。2.磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧。3.两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律。脱氧核糖核酸又称去氧核糖核酸,是一种生物大分子,可组成遗传指令,引导生物发育与生命机能运作。主要功能是信息储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与核糖核酸所需。带有蛋白质编码的DNA片段称为基因。DNA双螺旋结构的特点dna双螺旋结构特点:①两条dna互补链反向平行。②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为10个碱基对,螺距为3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36?的夹角。③dna双螺旋的表面存在一个大沟和一个小沟,蛋白质分子通过这两个沟与碱基相识别。④两条dna链依靠彼此碱基之间形成的氢键而结合在一起。根据碱基结构特征,只能形成嘌呤与嘧啶配对,即a与t相配对,形成2个氢键;g与c相配对,形成3个氢键。因此g与c之间的连接较为稳定。⑤dna双螺旋结构比较稳定。维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力。注:。~如果你认可我的回答,请点击‘采纳为满意回答"按钮。~~手机提问的朋友在客户端右上角评价点‘满意"即可。~你的采纳是我前进的动力~~DNA双螺旋结构的特点及其生物学功能是什么?以下是我自己根据我们书上所写的归纳的,希望对你有帮助:DNA双螺旋结构有如下几个特点:1、DNA是反向平行的互补双链结构,它的两条多聚核苷酸链在空间排布呈反向平行,碱基位于内侧,亲水的脱氧核糖基和磷酸基位于外侧,碱基间以A-T和G-C的方式互补配对;2、DNA双链是右手螺旋结构,DNA的两条多核苷酸链反向平行围绕同一中心轴互相缠绕,呈右手螺旋;3疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持。DNA的生物学功能:DNA是遗传物质,是遗传信息的载体。证据如下:1、DNA分布在染色体内,是染色体的主要成分,而染色体是直接与遗传有关的。2、体细胞DNA含量为生殖细胞DNA含量的两倍,且含量十分稳定。3、DNA在代谢上较稳定不受营养条件、年龄等因素的影响。4、作用于DNA的理化因素可引起遗传特性的改变,这一点已经由Avery在1953年用肺炎双球菌转化实验证明。

简述DNA的双螺旋结构。

dna双螺旋结构的要点(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成.主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型.主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性.所谓双螺旋就是针对二条主链的形状而言的.(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连.同一平面的碱基在二条主链间形成碱基对.配对碱基总是a与t和g与c.碱基对以氢键维系,a与t间形成两个氢键.dna结构中的碱基对与chatgaff的发现正好相符.从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件.每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同.碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性.也就是说双螺旋结构在满足二条链碱基互补的前提下,dna的一级结构产并不受限制.这一特征能很好的阐明dna作为遗传信息载体在生物界的普遍意义.(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽.小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间.这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟.在大沟和小沟内的碱基对中的n和o原子朝向分子表面.(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm.dna双螺旋结构生物学意义1953年,沃森和克里克共同提出了dna分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.1953年,沃森和克里克共同提出了dna分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.dna双螺旋结构的提出开始,便开启了分子生物学时代.分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,"生命之谜"被打开,人们清楚地了解遗传信息的构成和传递的途径.在以后的近50年里,分子遗传学,分子免疫学,细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,dna重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景.在人类最终全面揭开生命奥秘的进程中,化学已经并将更进一步地为之提供理论指导和技术支持.

简述DNA的双螺旋结构。

DNA双螺旋结构的要点  (1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成.主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型.主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性.所谓双螺旋就是针对二条主链的形状而言的.  (2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连.同一平面的碱基在二条主链间形成碱基对.配对碱基总是A与T和G与C.碱基对以氢键维系,A与T间形成两个氢键.DNA结构中的碱基对与Chatgaff的发现正好相符.从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件.每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同.碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性.也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制.这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义.  (3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽.小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间.这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟.在大沟和小沟内的碱基对中的N和O原子朝向分子表面.  (4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm.DNA双螺旋结构生物学意义  1953年,沃森和克里克共同提出了DNA分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.  1953年,沃森和克里克共同提出了DNA分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.  DNA双螺旋结构的提出开始,便开启了分子生物学时代.分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,"生命之谜"被打开,人们清楚地了解遗传信息的构成和传递的途径.在以后的近50年里,分子遗传学,分子免疫学,细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景.在人类最终全面揭开生命奥秘的进程中,化学已经并将更进一步地为之提供理论指导和技术支持.

论述DNA双螺旋结构

我来说说吧,不知阁下是高中生还是大学生,如果是高中生的话,看生物必修2就解决了,课本上说的很清楚,如果是大学生的话,就可以进一步了解:1.dna双螺旋结构特征(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是a与t和g与c。碱基对以氢键维系,a与t间形成两个氢键。dna结构中的碱基对与chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。也就是说双螺旋结构在满足二条链碱基互补的前提下,dna的一级结构产并不受限制。这一特征能很好的阐明dna作为遗传信息载体在生物界的普遍意义。(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的n和o原子朝向分子表面。(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。

DNA双螺旋结构有什么基本特点?

DNA双螺旋结构包括三点:1. 由两条反向平行的脱氧核苷酸长链构成双螺旋结构。2. 磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧。3. 两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)。脱氧核糖核酸又称去氧核糖核酸,是一种生物大分子,可组成遗传指令,引导生物发育与生命机能运作。主要功能是信息储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与核糖核酸所需。带有蛋白质编码的DNA片段称为基因。

dna双螺旋结构是怎样的,意义是什么

  DNA双螺旋结构:  1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。  2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。  3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则。  意义:  双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。

DNA双螺旋结构的特点及其生物学功能是什么?

以下是我自己根据我们书上所写的归纳的,希望对你有帮助:DNA双螺旋结构有如下几个特点:1、DNA是反向平行的互补双链结构,它的两条多聚核苷酸链在空间排布呈反向平行,碱基位于内侧,亲水的脱氧核糖基和磷酸基位于外侧,碱基间以A-T和G-C的方式互补配对;2、DNA双链是右手螺旋结构,DNA的两条多核苷酸链反向平行围绕同一中心轴互相缠绕,呈右手螺旋;3疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持。DNA的生物学功能:DNA是遗传物质,是遗传信息的载体。证据如下:1、DNA分布在染色体内,是染色体的主要成分,而染色体是直接与遗传有关的。2、体细胞DNA含量为生殖细胞DNA含量的两倍,且含量十分稳定。3、DNA在代谢上较稳定不受营养条件、年龄等因素的影响。4、作用于DNA的理化因素可引起遗传特性的改变,这一点已经由Avery在1953年用肺炎双球菌转化实验证明。

为什么DNA双螺旋结构具有特殊稳定性?

转载手性之谜——向左向右 手性的定义 现在该可以四平八稳地谈谈手性了。 手性(chirality,=handedness)一词源于希腊词“手”χειρ (cheir),指左手与右手的差异特征。手性及手性物质只有两类:左手性和右手性。有时为了对比,另外加上一种无手性(no chirality)作参照,可称它为“中性手性”。左手性用learus或者L表示,右手性用dexter或者D表示,中性手性用M表示。 手性可用对称性来说明。植物中常见到旋转对称性(有时叫辐射对称性,不准确),指的是存在旋转对称轴,如东北石竹、矮牵牛、黄瓜的花一般都具有五次旋转对称性,花每旋转2π/5=360°/5=72°,自身就重合一次。又如鸢尾科植物常具有3次旋转对称性。此外,还有平移对称性、伸缩对称性等等,但手性所体现的对称性与这些都不同。左手(性)与右手(性)单*平移和旋转不可能使两者全完重合,必须使镜像操作才能重合,所以手性对称性也叫镜像反射对称性。简单说,镜子中的东西在手性上与原物正好相反。正因为这一点,镜子用于展现实物并不算完美。我不知道别人是否有这样的经验,我一开始按照镜中图像操作工具常常把左右搞反,适应一会才成。 我原是学地质学的,上大学第一学年就要学《结晶学及矿物学》,用的是武汉地质学院潘兆橹主编的教材。1984年,矿物学专家曹老师在北大俄文楼给我们上课,通常用三轮车从北大12楼(现已拆掉)运来一车木制模型。课上讲晶体对称性时,大家反复摆弄大大小小的模型。课上学得晶体有47种单形,其中有5种单形(名字都颇专业,三方偏方面体、四方偏方面体、六方偏方面体、五角三四面体和五角三八面体)都有“对应体”,即同时有左形和右形之分。这里不可能专门解释,你只需知道,现代地质学从一开始就要接触手性概念。 在化学中,组成相同但空间结构上互成镜像(对映体)的分子叫手性分子。 手性分子的性质有时差不多,有时差别极大,对人而言甚至一种有利一种有害。化学式为C17H20O的努特卡酮两种对映体的柚香竟然相差750倍之多(据宋心琦的文章,见《国外科技动态》2001年11期),当然这不是全由那种物质的结构决定的,因为对人的嗅觉起作用的受体也是由手性分子构成的,手性匹配才能产生可感受到的嗅觉。一些昆虫激素也有手性选择性,某种手性的只能吸引雄性,其对应体则只能吸引雌性。在药品当中,药品名称相同但手性构型不同时,药性也不同。如四米唑的左旋体是驱蠕虫药,而右旋体是抗抑郁药;甲状腺素钠的左旋体是甲状腺激素,而右旋体是降血脂药等等(据苑可、戴立信,《科技术语研究》2002年2期)。颇有争议的“反应停”(thalidomide)作为人工合成药,是两种对映体的混合物。有人指出其中一种对应体有治疗作用,而另一种可能有害。于是后来的制药工业和患者对药物的分子手性都很敏感。 手性所能描述的事物极其多样,大至星系旋臂、行星自转、大气气旋,小到矿物晶体、有机分子、安培电流、弱相互作用的宇称不守恒等等。在植物学中,手性也是一个重要形态特征,左右对称的形态(如枫叶、兜兰,但不是绝对对称,绝对的对称只能在数学中找到)及攀缓和缠绕植物的茎蔓旋向,都涉及到手性。对于螺旋,两种手性的命名是相对的,原则上可以任意定义其中一种,则另一种正好与它相反。事实上,历史上人们的确给出了不同的定义。20世纪60年代《知识就是力量》杂志译出的苏联的文章,对左右手性的称呼与现在流行的叫法正好相反。定义无所谓正确与错误,关键要说清楚。 关于螺旋的手性,我们的定义是:伸出一只手,让大姆指指向螺旋的轴向(不必计较哪是生长方向),另外4个指头握拳,于是由手掌到4个指尖有一“前进”方向,如果螺旋前进方向(不要求是生长方向,但要求与大姆指方向一致)正好与伸出的左手相符,则此螺旋为左手性的,如果与右手相符则为右手性的。说起来很费劲,但看一下图形,立即就明白了。这与电磁学中的安培定则(Ampére rule)差不多,安培定则说明了两种情况:1)载流直导线的电流方向与感生磁场方向。让右手大姆指指向电流方向,四指的前进方向则为磁场方向。2)载流螺线管里的电流方向与螺线管的感生磁场方向。让右手四指由手掌向手指指向电流方向,则大姆指指向感生磁场的北极。电磁学右手定则(这时一般称Fleming rule)还用于表示电场、磁场与运动方向三者的一般在系,在闭合运动导线切割磁力线产生感生电流的例子中,伸出右手,让右手手掌面对磁北极,大姆指指向导线运动方向,则四指指向感生电流的方向。这都是中学物理的内容,在此复习一下。 植物手性也可以采用如下定义:在生长或者运动的一端,从垂直轴向观看,若螺旋是顺时针的,则为左手性;若螺旋是反时针的,则为右手性。这两个定义等价,但第二个定义远没有第一个定义方便实用,而且容易自己弄混。左手性的螺旋叫左螺旋;右手性的螺旋叫右螺旋。在气象学中,定义也是一样的。在北半球,低压区能够形成左手性的气旋,高压区能形成右手性的气旋。南半球正好相反。 对于我后脑袋上的“旋”,相对于我自己的身体,它是向左手方向旋转的。从我的头顶上观看,头发是反时针旋转的。这人“旋”符合右手定则,应当算右手性! 库克(T.A.Cook)在《生命的曲线》中所用的手性定义与我们的定义等价,但陈述得极其繁琐,实在不敢恭维。《生命的曲线》整本书差不多都在讨论旋转与手性,用的都是这样的约定。 但是正如库克所说的,“不过,在这里我要对植物学家专用的某种术语提出强烈的异议。他们把绳索的左旋螺线称为‘右旋"的说法,是因为这种绳索是惯用右手的人编织而成的。那么把金银花称为‘左旋",理由是什么呢?”的确,我也觉得一些植物书上暗示的定义十分别扭。我们同意库克的用法,在这种用法中金银花是左旋的,即具有左手性。 那么植物界是如何定义手性的呢?陈荣道编著的《怎样画植物》(中国林业出版社第二版,2002年)中说:“由左向右旋转缠绕的叫做左旋缠绕茎,如牵牛花、紫藤、旋花。从右向左缠绕的叫右旋缠绕茎,如啤酒花、五味子等。”(第144页)这个定义本身是不清楚的,什么叫“由左向右”和“由右向左”?这就像某大师千里之外预测火箭发射前向左偏15cm一样,毫无意义,因为它可免于被证伪,在一个方向看偏左,在另外一个方向看就可以偏右。植物也一样,必须指定了生长方向,左与右的概念才明确,否则左就是右,右就是左。但所举的例子是近似清楚的,因啤酒花和五味子的手性一样,按我们的定义是左手性,按他说的是右手性。根据所举的例子,我们可以猜到他们的定义与数理科学的定义正好是相反的,也与我们的定义相反。我们习惯上称牵牛花等为右旋的,啤酒花等为左旋的,详见下文。之所以说“近似”清楚,是因为紫藤的手性较复杂,由下文可知,紫藤属的植物既有左手性的,也有右手性的。 数理学界对手性的用法可从欧阳钟灿和刘寄星写的《从肥皂泡到液晶生物膜》(湖南教育出版社“科学家谈物理”丛书之一,1994年)得到印证。该书写道:“地球上所发现的生物氨基酸分子多见于左旋,一切天然的蛋白质都由左旋型氨基酸组成。而由这些左旋分子组成的蛋白质和遗传物质DNA却多数都有右手螺旋结构。一些生物,如螺旋形细菌、蔓生植物向上盘绕以及海螺等均以右旋占绝大多数。”(第127-128页)该书还用图形明确示意了所说的左旋与右旋的含义。可以明确地说,这与我们的理解完全一致。 在化学中,手性分子的识别是通过其光学特征进行的。不同手性的分子具有不同的光学活性。能使平面偏振光按顺时针方向旋转的对映体称右旋体,记作(+)或者D,反之称作左旋体,记作(-)或者L。当等量的对映体分子混合在一起时,不再引起平面偏振光的旋转,液体无旋光性,称外消旋体,记作(±)或者DL。 1953年沃森和克里克提出著名的DNA双螺旋结构模型,他们构造出一个右手性的双螺旋结构。当碱基排列呈现这种结构时分子能量处于最低状态。沃森后来撰写的《双螺旋:发现DNA结构的故事》(科学出版社1984年出版过中译本)中,有多张DNA结构图,全部是右手性的。这种双螺旋展示的是DNA分子的二级结构。那么在DNA的二级结构中是否只有右手性呢?回答是否定的。虽然多数DNA分子是右手性的,如A-DNA、B-DNA(活性最高的构象)和C-DNA都是右手性的,但1979年Rich提出一种局部上具有左手性的Z-DNA结构。现在证明,这种左手性的Z-DNA结构只是右手性双螺旋结构模型的一种补充。21世纪是信息时代或者生命信息的时代,仅北京就有多处立起了DNA双螺旋的建筑雕塑,其中北京大学后湖北大生命科学院的一个研究所门前立有一个巨大的双螺旋模型。人们容易把它想象为DNA模型,其实是不对的,因为雕塑是左旋的,整体具有左手性。就算Z-DNA可以有左手性,也只能是局部的。因此,雕塑造形整体为一左手性的双螺旋是不恰当的,至少用它暗示DNA的一般结构是错误的。 从天文学到地球科学,从化学到生物学,几乎处处都有手性显身影。2001年诺贝尔化学奖就授予分子手性催化的主要贡献者。1968年诺尔斯(W.S.Knowles)用过渡金属元素制造出含手性配体的络合物,以它为催化剂,生产出有手性的产物。后来日本名古屋大学的野依良治开发出更有效的催化剂。1980美国的夏普莱斯(B.Sharpless)发现了氧化反应的手性催化剂,极大推动了手性药物的化学合成。到2000年,全球的手性药物销售额已达1230亿美元,占药物总销售额的三分之一。1998年全球畅销的500种药物中,单一对映体销售的手性药物占一半以上。 2002年6月13日英国《自然》发表加拿大科学家杰森(L.Jesson)和巴雷特(S.Barrett)研究某植物花柱手性的论文,指出两个等位基因中的一个控制花柱的左右,其中向右是显性的。有人评价这一工作具有重要意义。

dna双螺旋稳定的因素是

维持DNA双螺旋结构稳定性的主要因素包括两条DNA链之间碱基配对形成的氢键和碱基堆积力。DNA分子的稳定性主要由三种化学键维持:互补碱基之间的氢键、碱基之间的碱基堆集力、磷酸残基上的负电荷可与介质中的阳离子之间形成离子键。DNA分子基本单位:DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。DNA分子结构特点:1、稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。2、多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。3、特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。

为什么DNA呈双螺旋形,这样的好处是什么

DNA分子呈现双螺旋结构的原因是双螺旋结构是进化的结果。双螺旋相比单链更稳定,可以保证遗传的稳定。DNA是脱氧核糖核酸,又称去氧核糖核苷酸,是染色体主要组成成分,同时也是主要遗传物质。DNA分子的双螺旋结构是相对稳定的。这是因为在DNA分子双螺旋结构的内侧,通过氢键形成的碱基对,使两条脱氧核苷酸长链稳固地并联起来。另外,碱基对之间纵向的相互作用力也进一步加固了DNA分子的稳定性。各个碱基对之间的这种纵向的相互作用力叫做碱基堆集力,它是芳香族碱基π电子间的相互作用引起的。现在普遍认为碱基堆集力是稳定DNA结构的最重要的因素。再有,双螺旋外侧负电荷的磷酸基团同带正电荷的阳离子之间形成的离子键,可以减少双链间的静电斥力,因而对DNA双螺旋结构也有一定的稳定作用。

简述DNA的双螺旋结构。

DNA双螺旋结构的提出开始便开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。

DNA双螺旋的结构特点

DNA双螺旋结构特点:①两条DNA互补链反向平行。②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为10个碱基对,螺距为3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36◦的夹角。③DNA双螺旋的表面存在一个大沟(major groove)和一个小沟(minor groove),蛋白质分子通过这两个沟与碱基相识别。④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起。根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A与T相配对,形成2个氢键;G与C相配对,形成3个氢键。因此G与C之间的连接较为稳定。⑤DNA双螺旋结构比较稳定。维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力(stacking force)。 注:(摘自百度文库)。~如果你认可我的回答,请点击‘采纳为满意回答"按钮。~~手机提问的朋友在客户端右上角评价点‘满意"即可。~你的采纳是我前进的动力~~

DNA双螺旋结构的特点及其生物学功能是什么

DNA是一反向平行的互补双链结构在DNA双链结构中,亲水的脱氧核糖基和磷酸基骨架位于双键的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合。A=T,G≡C,这种碱基之间的配对关系叫碱基互补。对应的碱基处于同一平面,称碱基平面,碱基平面之间靠范德华力形成碱基堆积力(纵向的力)。反向平行:一条链5"→3"另一条链3"→5"DNA双链所形成的螺旋直径为2nm。螺旋每旋转一周包含了10对碱基,每个碱基的旋转角度为360o。螺距为3.4nm,每个碱基平面之间的距离为0.34nm。双螺旋结构上有两条凹沟,深的称大沟,浅的称小沟。*双螺旋结构的稳定横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以碱基堆积力更为重要。DNA是遗传物质,是遗传信息的载体。即作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。
 首页 上一页  1 2 3 4  下一页  尾页