中子星的密度是多少?中子星的速度是多少?
中子星是超大质量恒星在演化末期形成的一种高密度星体,密度在每立方厘米8000吨至20亿吨之间。这意味着,如果你能从中子星上取一汤匙物质,它的质量比地球上一座山峰的质量还高。中子星上的物质只是密度极大,而这种高密度物质是在超强的引力作用下形成的,在普通环境下很难创造这种物质。中子星上这种高密度物质不是由未知元素构成的,是由中子构成的。什么是元素?地球上的物质都是由原子构成的,原子由质子、中子和核外电子构成,其中质子和中子会结合成原子核。而我们就是以原子核中质子的数量来判定原子的种类的,不同的质子数对应着不同的元素类型。比如氢元素,它的原子核中就只含有一个质子。原子核中的中子数虽然不固定,但是也有规律可循。具有相同核内质子数或者核电荷数的一类原子被称作元素。由于核内中子数不同,同一类元素往往拥有好几种核素,比如氢元素就拥有氕氘氚三种核素,通常所说的氢就是指氕。同一元素下不同种类的核素互为同位素,氘和氚就是氢的同位素。1869,门捷列夫等科学家发现了元素周期律,并据此发明了元素周期表。整个元素周期表上共计118种元素,自然界中天然稳定存在的元素有90来种。其余的20多种元素由于具有放射性,在自然界中的丰度较低,都是通过核反应人工合成的。原子序数在82(铅)之后的元素大多具有放射性,而原子序数在92(铀)之后的元素都是人工合成的,这些元素由于半衰期较短,只能存在很短的时间,然后就会衰变(衰变是指放射性元素放射出粒子,转变成另一种元素的过程)成其它元素。其实很多稳定的元素也拥有放射性同位素。根据科学观测,宇宙中丰度最高的元素是氢和氦,它们占据宇宙中元素总量的90%以上。早期宇宙中基本上只有氢元素,元素周期表中的铁及之前的20多种元素基本上都是在恒星内部用核聚变的方式创造的,其余比铁重的元素基本上只能在恒星死亡的爆炸过程中形成。中子星上的物质处于中子态,并不是未知元素世界上并非所有物质都是由原子构成的。中子星是宇宙中一类致密的天体,它不是由原子构成的,而是由中子直接构成的。既然不存在原子结构,也就没有元素概念了。中子星是已知的密度仅次于黑洞的天体,半径通常在10~30公里左右。理论上还存在一种密度介于它们之间的夸克星。对于中子星,通常质量越大、引力越强,中子与中子间就结合得更紧密,半径也就越小。不过,中子星的质量存在上限和下限。当老年恒星的质量介于8~25倍太阳质量之间,该恒星在生命历程的最后阶段会以“超新星爆发”这种猛烈爆炸的形式结束一生,爆炸后余下的核心便是中子星。只有在这种极端条件下,才会形成中子星。在强大的压力下,原子核紧紧地挨在一起,中子星上的物质已经不能保持原子结构,这种状态下的物质被称作中子态。下图为中子星的推测结构说到中子星,就不得不说它的超高密度,中子星上一块方块糖大小的物质就能轻松压死你。地球的半径为6371千米,如果地球的密度变得和中子星一样,它的半径将变为22米,半径足足缩小了几十万倍。如此看来,中子星的密度和原子核的密度相当。物质为何能具有如此高的密度?在由这100多种元素组成的物质中,密度最高的物质是金属锇,密度为22.6克每立方厘米。金属锇是一种稳定的物质,元素周期表末尾的一些放射性元素构成的单质在理论上的密度比它更高,耐何存在时间极短,有的不到1秒就衰变了。其实,不管是什么物质,只要不断施压,密度都将变高。普通的物质只有在极强的压力作用下,才会变成中子态物质。此时已经不存在元素这个概念了。物质的密度之所以会变得如此之高,是因为原子具有可压缩性。原子内部拥有极其广阔的空间,原子的半径大约是原子核的半径的10万~100万倍,电子本身也非常小,而且原子核的质量占原子总质量的99%。下图为原子世界的尺度物质很难被压缩,是因为存在反抗压缩的这种力。物质通常是由原子构成的,构成原子的这些粒子都具有半奇数(如:1/2)自旋,被统称为费米子。原子核带正电,核外电子带负电,正好异性相吸。电子之所以没有掉进原子核,与量子力学中的泡利不相容原理有关,即在同一个量子态上不能有两个及以上的费米子。当电子受到压迫互相靠近时,除了库仑斥力,还有因泡利原理产生的抵抗力,这种抵抗压缩的力被称作电子简并压力。这种简并压力你可以理解为由电子的热运动而产生的电子气压。普通物质要想变成中子态,就需要克服这种简并压力。如此强的压力通常只存在于极端环境下。在原子结构没有破碎之前,施加极高的压力能够形成超固态物质,白矮星上的物质就处于超固态;继续施加压力,原子外的电子被压进原子核,然后与核内质子结合形成中子,中子态物质就这样诞生了。而要形成黑洞,就要克服中子简并压力。在这种情况下,那还有什么元素之分。宇宙中还存在未知元素吗?自从元素周期表诞生,就加快了人类寻找和创造新元素的步伐。算上自然存在的和人工制造的,目前已经发现了118种元素。宇宙中还存在未知的元素吗?元素周期表的尽头在哪里?这些问题,目前科学家们也没有明确的答案。元素的种类肯定是有限的,因为原子序数越往上,元素就变得越来越不稳定了。如果还存在第119号元素,那么它必然是放射性元素,而且半衰期极短,很不稳定。比如第118号元素,它的存在时间就不到1毫秒。下图为铀238的衰变过程自然界中有4种基本力(见下图),原子中的电子和原子核依靠电磁力进行粘合,而原子核中的质子和中子则依靠强力进行粘合。电磁力属于长程力,力的作用效果可以叠加,力的强度只会随着距离的增长而变弱。强力则不同,职能作用于10^-15米这个数量级的距离范围之内,靠得太近或者太远,力的作用效果几乎消失。因此,强核力只能束缚有限个质子。原子核中的质子都带正电,同性相斥。当质子数量过多,库伦斥力太强会造成原子核不稳定,从而产生阿尔法衰变。而中子不带电,就起到了一个增强强核力、稳定原子核的作用。但是当中子过多,也会存在贝塔衰变。正是这些条件,限制了元素的数量。根据核子物理的一个推测——稳定岛理论,当原子核中的质子或中子为某个特定数值时,原子核就特别稳定,这一数值被称之为幻数。幻数是原子核壳成结构的反映。如果这个推测正确,那么某些超铀元素的同位素将比其它同位素更稳定。根据这一理论,科学家们预测元素周期表总共有126种元素。
白矮星和中子星内部的哪种力抵消了自身引力的压缩?
白矮星和中子星之所以不能变成黑洞,说白了就是自身质量不够大。天体压缩,也只能到中子级,中子之间会密集靠拢,但之间还有斥力存在使其不能继续压缩。其实太阳也存在这种类似的斥力,最后才会形成高温日冕层。太阳上的粒子一样会被强大的力场约束挤压,粒子之间一定存在斥力。一旦太阳核爆把粒子抛射到一定距离,粒子内的斥力就会把多余能量释放出来。这里就存在高能粒子动量不守恒现象。因此释放出大量的能量,从而形成温度高达百万摄氏度的日冕层。详细参考《星际之门-空间飞行器超光速原理》
参宿四毁灭之后会变成黑洞还是变成中子星?
那要看恒星发生超新星爆炸前的质量,1.4倍太阳质量以下的恒星将成为白矮星,1.4被倍到3倍太阳质量之间的恒星会成为中子星,在3倍太阳质量以上的恒星最终的归宿是黑洞。体积的问题不好说,因为黑洞的大小是各有差异的----小到可以比月球更小,大到比太阳更大;中子星体积比较小,典型的中子星直径约十几公里,应该是三种星体中体积最小的;白矮星的大小和地球差不多。三种星体的密度分别为:白矮星是每立方厘米100万吨;中子星每立方厘米10亿吨;黑洞每立方厘米是150亿吨;所以,三种星体中黑洞的密度最大,中子星次之,白矮星最小。希望这个答案你能满意!
比中子星更加神秘,奇异夸克星真的存在吗?科学家该如何发现它?
大约再过50亿年,我们的太阳就会走到自己的末日,膨胀成一颗红巨星,最终以白矮星的命运结束自己的一生。 白矮星是宇宙中数量最多的致密星,因为绝大部分恒星都会以这种方式谢幕。 当死亡恒星的内核质量大于太阳的1.44倍时,才会变成另一种致密星——中子星。 白矮星内部绝大部分都是碳元素,此外还会有一小部分氧、氮、氢。而中子星的引力过于巨大,以至于电子都被压进了原子核,与质子结合成为中子。 因此,这种致密星几乎完全由中子构成,所以称为中子星。这么看来,中子星可以近似看作是一个只有中子、没有质子的特殊原子,而白矮星则可以看作是几乎完全由碳原子构成的一个巨大分子。 在中子星之上,还有黑洞,这要求死亡恒星的内核质量超过太阳的1.5-3倍。 在黑洞内部,连中子也不复存在,一切物质都彻底被吞噬到奇点内,损失除质量、角动量以及电荷之外的所有物质。 这是迄今为止人类已知的三种致密星,但是我们发现,这里还有缺失的一环! 按照白矮星近似于几乎只含有碳原子的分子、中子星可看作只有中子的原子的话,黑洞已经属于虚无。 可是,中子并非基本粒子,它仍然可以继续分割。 中子是由夸克组成的,分别是两个下夸克和一个上夸克 。那么问题来了:难道宇宙中就没有一种夸克星吗? 或许,宇宙中就存在这么一种神秘的天体,介于中子星与黑洞之间,那就是夸克星。 在关于中子星的标准模型中,中子星的核心应该是保持完整的,也就是说,它的内部应该也是充满了中子。不过,最近的一些研究认为,中子星的内部或许会发生分解,形成传说中的物质—— 夸克汤 。 由于夸克禁闭作用,我们几乎不可能分离出单个夸克来。 但是在宇宙大爆炸或者中子星内部这种恐怖的超高压、超高温环境下,夸克有可能会游离出来,这种状态就叫做夸克汤。 而在中子星内部,这种夸克汤就可能形成神秘的夸克星。它看起来和中子星有些相似,但比中子星还要更小。 如果这样的夸克星真的存在,那么它的内部会发生一些有趣的事情。我们知道,夸克一共有6种,而构成一切可见物质的质子和中子都是由上、下两种夸克组成的。而在夸克星内部,上夸克和下夸克会发生碰撞,从而产生另一种夸克—— 奇异夸克 。奇异夸克比上、下夸克更重,并且会形成一种非常诡异的核子—— 奇异夸克团 。 一个简单的奇异夸克团,是由一个上夸克、一个下夸克和一个奇异夸克组成。由于奇异夸克团密度远超过质子和中子,所以会将靠近自己的质子和中子撕裂,然后通过上述过程形成更多奇异夸克团。理论上来说,一个奇异夸克团一旦接触了普通物质,就会很快将其完全转变为奇异物质,小则是普通的奇异夸克团,大的就是奇异夸克星了。 这个理论听起来挺有趣的,可是很多科学家并不愿意接受。 首先,按照这个理论,所有的中子星内应该都有奇异夸克的存在,这就会导致中子星全都崩溃为夸克星。而实际上我们观测到的中子星,体积都超过了理论上夸克星的极限。 另外,虽然说质子和中子是由上、下夸克组成的,但不代表它们内部就绝对不存在奇异夸克。量子涨落允许奇异夸克偶尔在极短的时间内出现一下,而我们从未见过这样的情况导致周围的一切都变成奇异物质,因为单个的奇异夸克是不稳定的。因此,如果奇异物质真的存在,那也只可能存在于巨大而且密度极高的天体内。 即便如此,科学家们仍然锲而不舍,希望在宇宙中找到答案。最近的一项研究,似乎发现了一些秘密。在这项研究中,科学家试图寻找一种叫做 奇异夸克矮星 的天体。根据他们的假设,这种天体质量和白矮星差不多,但因为它是由奇异物质构成的,所以要比白矮星小得多。 那么,他们该如何寻找这种神奇的天体呢? 研究人员指出:宇宙中的白矮星似乎都遵从一个 质量-半径函数 ,如果我们发现一些看似是白矮星却又不符合这个规律的,那就有可能是奇异夸克矮星。 目前来说,一颗天体的质量相对比较容易获得,而半径则比较复杂。好在,当我们知道一颗恒星的质量和表面的引力时,就可以很轻松地计算出它的半径——简单的万有引力公式就可以计算出来。因此,研究人员调用了蒙特利尔白矮星数据库内关于白矮星的数据来进行寻找。 在这个数据库中一共记录了超过5万颗白矮星的数据,其中4万颗同时有质量和引力的数据。这些数据相对来说并不难获得,通过引力透镜效应或者多普勒效应就可以计算出白矮星的质量,而表面的引力通过观测它产生的引力红移就可以计算出来。通过这些数据和上面提到的奇异矮星可能的性质,就可以寻找这种神秘的天体。 结果发现,绝大部分白矮星都遵从着质量-半径函数关系,但是其中也有8颗并不符合预测。 这8颗白矮星的质量相对更小一点,这意味着它们有可能就是研究团队一直在寻找的奇异矮星 。 当然,这也不意味着他们就已经找到了奇异矮星,毕竟我们要先排除观测数据的误差,还要确定是否白矮星还有些不了解的机制。 不管怎么说,这是一个好机会,值得深入研究。也许在宇宙中,就真的有奇异矮星这种神秘的天体甚至更加神奇的天体,等着我们去发现,并且届时将会让我们大吃一惊呢!
夸克星,密度比中子星还大几十倍!它会是高密度天体的极限吗?
如果让你说出宇宙中除了黑洞之外密度最高的天体,恐怕一般都会回答是 中子星 。的确,中子星让人类第一次见识了原子核级别的高密度物质(可以将中子星看成是一个巨大的原子核),每立方厘米的质量高达1亿到10亿吨,颠覆了人们的想象。然而,就没有比中子星密度更高的选手了吗?还真有一位候选者,它就是本文的主角: 夸克星 。 夸克星的名字十分霸气, 夸克是构成质子、中子等基本粒子的更小的物质单元 ,夸克星顾名思义就是由夸克组成的星体,比中子星体积更小,而密度甚至可以达到中子星的几倍甚至几十倍,绝对是个厉害的角色! 按照恒星演化规律,中小质量的恒星的寿命末期会变成白矮星,更大质量的恒星在超新星爆发后形成中子星,当恒星的质量再大,但又不足以形成黑洞时,中子也会被压碎,形成由夸克物质构成的“夸克星”。这听起来很合理,但夸克已经进入了量子色动力学的领域,具有一些奇特的性质,如 “渐近自由” 、 “夸克禁闭” 等,事情就没那么简单了。 今天,人马君就与大家一起探寻神秘的夸克星,了解一下这个传说中极端致密天体的前世今生。 关于夸克星的预言,还要从超新星能量之谜说起。 对于超新星爆发的机制,天文学家直至现在还没能给出一个圆满的解释 ,这可能会让大家感到很意外,说实话,人马君也很意外! 早在公元1054年,人类第一次记载了超新星。那时正是宋朝,司天监向皇帝汇报了“客星”的出现和消失。那次爆发形成了著名的蟹状星云和星云中央的中子星。 根据目前比较流行的II型超新星理论,在大质量恒星的生命末期,中心区域的氢燃料耗尽,开始了氦聚变,恒星随之膨胀为红超巨星。如果质量够大的话,星体核心不断合成更重的元素,并继续释放出能量。但当合成到铁和镍的时候,再通过聚变或α粒子吸收来合成更重的元素时,不仅不再释放能量,反而需要吸收能量来克服库仑斥力。 因此,在红超巨星的中心,就形成了一个铁(镍)核。当铁核质量达到钱德拉·塞卡极限(1.44倍太阳质量),由泡利不相容原理产生的电子简并压将无法抵抗引力,铁核变得不稳定。在引力的作用下,铁核迅速坍缩,直到强相互作用力(中子简并压)与引力达到平衡为止。 从这时起,理论与实际开始出现分歧。一开始,科学家认为 铁核坍缩过程产生了大量携带能量的中微子,与外壳物质相互作用,造成了超新星爆发 ,但计算表明,由于中微子与物质的作用非常微弱,这些中微子和能量不足以造成如此强烈的爆炸。后来,又提出了“反弹理论”:在铁核坍缩后, 外层物质随之以极高速度向下坠落,撞击在停止收缩的核心上,形成了反弹激波 ,激波向外传播,炸开了恒星外壳,形成了爆发。 反弹理论听起来很靠谱,然而详细分析表明,反弹激波会迅速衰减,根本无法把恒星炸成一朵大烟花。于是,科学家又提出了更进一步的理论:中微子加热理论,它将中微子与反弹理论结合,指出 核心坍缩释放的中微子会加热反弹激波后方的物质,形成“热泡”,推动激波向外传播 ,实现炸开恒星的“宏伟目标”。这一理论在计算模拟中实现了超新星爆发,但爆发的能量还是太小,与观测不符。 听了以上描述,您可能也了解了:到现在为止,还没有一个理论能很好的解释猛烈而常见的超新星爆发现象。这样的问题怎能不引起大人物的注意,于是,M理论之父、有弦理论界“教皇”之称的爱德华·威顿登场了。 在1970年代后期,科学界已经提出了夸克星的构想,即考虑恒星的质量够大时,在铁核坍缩后,即使是中子简并压也无法抵抗引力,核心会继续压缩,直到中子也被压破,成为自由夸克“气体”,而当夸克的简并压能够抵抗引力时,就形成了夸克星。 然而,在夸克的世界里,自由夸克“气体”是一个很讨厌的东西,于是,在如此强的压力之下,夸克们似乎向着另一个截然不同的方向发展了。 1984年,爱德华·威顿发表了一篇论文,提出了“奇异物质”的概念,以及由奇异物质构成的“奇异星” ,与自由夸克“气体”相比,这也许更接近夸克星的真实面目。 在威顿的设想中, 奇异物质由上、下和奇夸克组成,也就是u,d,s三种夸克 。而构成自然界中一般物质的质子、中子,都是由3个u和d夸克组成的。由于存在“夸克禁闭”(即 夸克之间的距离越远,相互作用力越大 ),导致不存在游离在外的夸克。而s夸克具有奇异量子数(在弱相互作用中不守恒),被称为奇异夸克。 前面说到,在超新星爆发时,恒星内部的铁核崩溃坍缩,最后由中子简并压抵抗住了引力,形成了中子星的雏形。由于中子是费米子,它必须在空间中占有体积,在中子星中,中子密度非常高,相互之间靠得很近,由此导致能量非常高(费米能),当高到一定程度时, 一个u夸克和一个能量极高的d夸克,可能发生弱相互作用过程,转化为一个u夸克和一个s夸克,而在一定条件下,s夸克也可以重新转化为d夸克。 当反应达到平衡时,u,d,s三种夸克的数量差不多,s夸克略少,形成了奇异物质,而中子星将成为奇异星,也就是夸克星。 威顿在1984年论文中指出, 以奇异物质形式存在的夸克物质,其能量水平应该比中子星物质更低,也就比中子星物质更稳定。 理论上,中子物质最终都应该转化为奇异夸克物质,但这一过程可能比宇宙的寿命更长久。 理论计算表明,在超新星爆发前那一刻,中子物质一旦开始向奇异夸克物质转化,速度可以用迅雷不及掩耳来形容。当达到合适的条件时(例如引力压缩),中子物质通过强相互作用先转化为由u、d两种夸克组成的正常夸克物质,也就是所谓的自由夸克气体,但它存在的时间甚至小于1微秒,随后便通过弱相互作用转化为u、d、s三种夸克组成的奇异夸克物质。 一旦中子星的中心形成了奇异夸克物质,整个星体会在很短时间内全部转变为奇异星 ,对于这一过程,科学家提出了爆轰和扩散两种形式,转变的时间从不足1秒到几十秒不等。 由于奇异夸克物质的能量低于中子物质,在转变过程中,将以中微子的形式释放出大量能量,可以加热外层物质,推动激波前进,终于让计算中的超新星“成功”爆发了! 夸克星的物质形态与正常世界里完全不同,具有很多奇怪的现象。由于夸克禁闭被突破,整个夸克星实际上形成了一个巨大的基本粒子,如同一个中子或一个质子一样,这与中子星截然不同。 而 夸克物质被束缚在一起,靠的却并不是巨大的引力,而是整体的夸克禁闭 ,因此奇异夸克物质不一定要形成大的夸克星,也能以小块的形式存在,而最小的奇异夸克物质就是著名的H双重子,由2个u,2个d和2个s夸克组成。 据分析, 夸克物质有着极高的黏性 ,由于三种夸克可以在不同的密度条件下可以相互转化,任何振动都会被迅速抑制,因此会像糯米粘糕一下,很黏牙! 如果一个夸克星由纯夸克物质构成的话,由于夸克之间的作用距离非常短,短到不足1飞米(10^-15米),它的 表面将异常光滑 ,没有任何细小的起伏,只在外表包着一层薄薄的电子。 而如果夸克星吸积了来自其它地方的正常的原子核物质,会在外面形成一个核物质壳,这个壳与夸克物质之间有一个几百飞米的间隙,间隙中的电场和电子阻止了核物质落在夸克物质上。如果吸积的物质越来越多,核物质壳的厚度越来越大,内侧的原子核和电子密度越来越大,最终将电子压入原子核,形成中子物质。由于中子不受间隙电场影响,可以向下落在夸克星上,使夸克星的体积变大。此时核物质壳的厚度就不会再增加了。 下面来探讨一下大家关心的夸克星的密度问题。由于物质形态的不同,奇异夸克星和中子星的质量与半径的关系差别相当大,下面的曲线可以直观的表现出这种差异。 可见,夸克星的半径随着着质量的增大而增大,而中子星的半径随着质量增大而减小,且一般不会小于10公里。 当质量比较小时,同样质量的夸克星的半径可能仅为中子星的几分之一,也就是说密度将比中子星大几十倍 ,达到每立方厘米20亿吨左右,非常惊人。像人马君这么大的一块奇异夸克物质,重量可以达到160万亿吨,已经不能用“重于泰山”来形容了,因为这比1000个泰山还要重! 而质量比较大时,夸克星与中子星的大小可以重叠 ,也就是说,一些大质量的中子星和夸克星的密度是差不多的,这也是有时难以区分夸克星和中子星的原因。 自从夸克星的概念被提出以来,天文学家寻找夸克星的努力就从未停歇,但是迄今为止,还从未找到能证明夸克星存在的确凿证据,这是因为夸克星与中子星外在的特征实在太像:直径都很小,都有高速的自转,都有很强的磁场,甚至都会有规律的发出电磁脉冲……如果说有区别,那就是夸克星的直径会比中子星小,如果一个致密星的直径小于8公里,那很可能就是夸克星。但要测定这么小的星体的直径相当的难,只能在有吸积盘的情况下,通过测定吸积盘内圈直径来估计。 还有一种方法:由于夸克星更加致密,同时还具有极强的体黏滞性,因此可以承受更高的旋转速度,如果一个致密星的旋转周期达到了亚毫秒级,那它也很可能是夸克星。 目前比较公认的夸克星候选者当属 RX J1856.5-3754 和 3C58 , 这二位在钱德拉X射线望远镜下的成像是这样的: RX J1856.5-3754是距离我们只有400光年的一颗致密星,根据钱德拉望远镜的观测数据分析,它的表面温度为70万度,直径可能不到12公里,比一般的中子星要小得多,很可能是一颗奇异夸克星。 而3C58则是一个在公元1181年就被中国和日本观测到的超新星爆发的残骸,距离我们一万光年,虽然这是一颗很年轻的致密星,但其温度却已经低于100万度,如此快的冷却速度,在中子星理论中是无法解释的,因此也认为可能是夸克星。 除了上面两个之外,夸克星的候选者还有很多,但它们都没有得到确切的证明。同时,最小的奇异夸克物质单元——H双重子也从未被实验发现。对夸克星的探寻,依然是天文学界的一个热门议题。 夸克星虽然还没有找到,好奇的人们已经在思考更激进的理论了: 在夸克星和黑洞之间,还会不会存在更加致密的天体呢? 俗话说,人有多大胆,地有多大产,只要脑洞大开,创新点总会有的!人们已经提出了许多密度比夸克星还高的假想天体,例如以下这几个疯狂的想法: 先子星 :虽然在实验中,夸克和轻子是没法再分了,但科学界曾经假设过一种更小的物质单元——先子,并假定夸克和轻子都是用先子构成的。如果先子存在的话,如果引力增大以至于夸克也被压碎的话,有可能形成以先子简并压来抵挡引力的先子星。假如先子星存在,它的密度将达到每立方厘米100万亿吨,人马君已伙呆! 电弱星 :如果先子不存在的话,别急,还有一根稻草可用:夸克也会“燃烧”,它可能会通过电弱燃烧转化为轻子,并释放出能量,这些能量可以暂时抵挡一下过分巨大的引力,从而维持住星体而不变成黑洞。据说,一颗苹果大小的电弱星的质量相当于两个地球!但是随着夸克的消耗,电弱星注定是不会长久的,大概只能存在一千万年左右。 量子真空星 :量子力学认为真空并不是空的,而是有虚粒子不断出现和湮灭,当引力将物质压缩到极致时,真空被极化,产生了斥力,形成了量子真空星。它的性质已经很接近黑洞,甚至用现有观测技术很难将其与黑洞区分开来。 普朗克星 :一种观点认为黑洞并不存在,因为根据量子力学,物质的尺度不可能小于普朗克长度,引力把物质压缩到1个普朗克密度之后,就达到了密度的极限,将无法再压缩,从而形成了普朗克星,它甚至像黑洞一样有事件视界。普朗克星是不稳定的,会立即发生反弹,但由于引力越强的地方时间流逝得越慢,在外面的观测者看来,普朗克星的寿命与黑洞一样长。 这么看,普朗克星如果存在的话,应该是终极的致密星了! 啰里啰唆的说了这么多,大家对夸克星应该有一些了解了吧?其实,包括夸克星在内的多种致密星,还仍然只是理论上的猜想,这些猜想未必就一定成立,也许哪一天会被实验或新的更靠谱的理论证伪。但 这些假说代表了人类对未知的探寻,不管最终能不能成立,都具有开创性的意义。 另一方面,人马君深深的感受到,微观和宏观是统一的,如果我们搞不清楚微观的机理,也就无法解释宏观的现象,这也许就是科学家们孜孜不倦的追求“大统一理论”的原因吧! #中子星##夸克##黑洞#
中微子要5光年厚铅板才能挡住,如果想要挡住中子星应该怎样?
我们肉眼的感光细胞,也只对380~780纳米的电磁波频谱有反应。其实我们肉眼所看到的光,和手机的5G信号、4G信号发出来的电磁波是同一种东西。在整个电磁波的频谱中,可见光只占了一小段,剩下的绝大多数电磁波我们肉眼没有办法看到。所以“存在就是被感知”这句话,在某种意义上是非常有哲理的。牛顿说力是物体与物体之间的互作用,这种互作用在宏观效果上与“反应”是等价的。一个美女去相亲,候选队伍长达5光年,这个美女要相亲成功,有两个前提:第一,队伍里存在一个她想要的人;她恰好能够进入彼此能够相互发现的距离。在物理学的世界里,“想要的”被称为互作用;“彼此能够发现的距离”被称为散射半径,又称为康普顿散射半径。中微子被5光年厚的铅板挡住,就是因为要参与某种互作用,同时进入了这种作用的康普顿散射半径。四大互作用力:万有引力、强互作用、弱互作用以及电磁力。中微子只参与弱互作用和万有引力。根据广义相对论,万有引力是质量对于空间的弯曲效应,而且量子力学仍然没有在标准模型下完成对引力的统一,所以本文仍然只讨论中微子参与弱互作用的情况。中子变成质子,或者质子变成中子,被称为衰变,这个过程就会产生中微子或者反中微子。因为太阳内部的核反应会大量的复制这个过程,所以太阳是地球上的中微子最大来源。中子衰变为质子,会产生电子和反中微子;质子衰变为中子,会产生正电子和中微子。如果中微子撞击到质子上,质子会变成中子,并且放出一个正电子,正电子会和电子反应发生湮灭成为高能光子,产生一道闪光。我们知道氢原子核实际上就是一个质子,所以水里面含有大量的质子,我们就可以通过这个原理来探测中微子。日本的超级神冈探测器里面有5万加仑的超纯水;中国最大的中微子探测器位于广东江门,为了屏蔽干扰,深入地下700多米,装有几万吨超纯水。中子和质子只有在原子核中才有,而原子核所占原子的体积非常小。所以中微子穿过原子的时候,碰到原子核的概率极小,而且这种碰撞要产生反应,必须进入彼此的散射半径。有的时候我们又把散射半径称为反应截面,这个反应截面实际上是不固定的,它和能量的大小有关系,能量越大散射半径越大。我们知道两束手电筒的光,可以彼此相互穿过,但是两处水流碰在一起就要产生水花。其实如果光的能量足够高,碰在一起也会产生碰光花四射的效果。这好像去相亲的美女性冷淡,能量很低,相亲的人能量也很低,所以彼此靠得很近,也不一定有什么反应。如果像韦小宝这种能量很高的,看见美女就猛扑上去,离得很远也会起反应。正是因为如此,我们要挡住中微子,需要光年厚度级别的铅。其实,电子也是可以挡住中微子的。电子和中微子碰撞电子会变成中微子,中微子会变成电子,所以感觉不到中微子数量的减少。原子和原子核的尺寸之比大概是5万到10万。光年级别的铅除以5万到10万,就是原子核的厚度,这个厚度也会超过1亿公里。那么中子星的大小不过10公里,中微子能不能穿过中子星呢?如果按照中微子能够穿透上亿公里的铅原子核,是可以穿透中子星的,其实这需要一定条件。中微子是否能够穿透中子星,取决于中子星的温度。因为温度越高,粒子携带的能量越大,散射半径越大。一旦中子星冷却到高度简并态,中子星对自身热产生的中微子和能量低于几兆电子伏的任何其他中微子都是透明的。但是,刚刚诞生的中子星内部非常的炙热,就好像神龙教主中了我爱一条柴、奇淫合欢散追着韦小宝乱跑,任何一个路人都不放过。这个时候中微子是很难穿透中子星的。
什么是中子星?什么是白矮星?什么是红巨星?宇宙中都有哪些奇特的星球??
白矮星就去类似太阳的恒星,但他是进化失败的,无法自己发光发热