- 不白九百
-
碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。
除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。
相关推荐
碱基有哪几种
碱基共有8种:鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)、尿嘧啶(U,RNA专有)、5-胞嘧啶甲基、5-羟甲基胞嘧啶(5-hmC)、5-胞嘧啶甲酰(5-formylcytosine)、5-胞嘧啶羧基(5-carboxylcytosine)。在最新的研究成果中,研究人员发现了第7种,和第8种DNA碱基:5-胞嘧啶甲酰(5-formylcytosine),5-胞嘧啶羧基(5-carboxylcytosine)。这两种碱基实际上都是由胞嘧啶经由张毅教授研究组一直研究的关键蛋白:Tet蛋白修饰后形成。扩展资料:碱基结构:在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。参考资料来源:百度百科——碱基2023-06-27 22:43:276
碱基是什么意思
碱基,在化学中本是“碱性基团”的简称。资料扩展:碱基,在生物化学中又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。核碱基间可以形成碱基对,且彼此堆叠,所以,它们是长链螺旋结构,例如核糖核酸(RNA)和脱氧核糖核酸(DNA)的重要组成部分。生物体中常见的碱基有5种,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。2019年又人工合成了4种碱基,美国科学家StevenA. Benner将这4个新成员分别命名为“Z”“P”“S”“B”,它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。它们也被称为主要或标准碱基。它们是组成遗传密码的基本单元,其中碱基A、G、C和T存在于DNA中,而A、G、C和U存在于RNA中。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的第5位碳原子上。2023-06-27 22:43:531
碱基是什么
碱基(base) 碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。 除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。[1]2023-06-27 22:44:162
碱基指的是什么
碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。碱基共有5种:胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。RNA中,尿嘧啶取代了胸腺嘧啶的位置,值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。2023-06-27 22:44:222
碱基的种类及其作用是什么?
碱基分为胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)五种。5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置,值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。扩展资料碱基的作用:1、组成DNADNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。在形成稳定螺旋结构的碱基对中共有4种不同碱基。嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则2、构成物质碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。参考资料来源:百度百科——碱基2023-06-27 22:44:292
碱基详细资料大全
碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。 除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 基本介绍 中文名 :碱基 性质 :嘌呤和嘧啶的衍生物 作用 :组成DNA、RNA 种类 :5种 构成物质 :ATP,GTP,CoA 原则 :互补原则 结构,新成员,种类,作用,组成DNA,构成物质,互补原则,计算规律,相关信息,医学套用,发展前景, 结构 在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。碱基共有5种:胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置,值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。 碱基置换类型及缺失和插入突变示意图 碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。 新成员 上世纪80年代初,由这四种“经典”DNA碱基组成的家族中迎来了第五名成员:甲基胞嘧啶(mC),其源于胞嘧啶。mC的出现引发了科学家们极大的关注,并获得了广泛的研究。上世纪90年代后期,mC被广泛看成是表观遗传机制的主要原因:它能够根据每个组织的生理需要,打开或关闭基因。而且,随着研究的进一步深入,科学家们现在知道,作为一种重要的表观遗传修饰,mC参与基因表达调控、X-染色体失活、基因组印记、转座子的长期沉默和癌症的发生。 近日,西班牙科学家在最新出版的《细胞》杂志上撰文指出,或许存在着第六种碱基——甲基腺嘌呤(mA),其主要作用是确定表观基因组的性质,并因此在细胞的生命过程中发挥重要作用。 据每日科学网4日报导,西班牙Bellvitge生物医学研究所表观遗传学和癌症生物学计画负责人、巴塞隆纳大学遗传学教授曼奈·埃特雷在《细胞》杂志上发表文章,描述了第六种碱基——mA存在的可能性,他认为,这种碱基也帮助确定表观基因组,并因此在细胞生命过程中发挥着重要作用。 埃特雷在论文中表示:“早在数年前,我们就知道,在我们生物学上的远亲——细菌的基因组内就存在mA,主要作用保护其免受其他生物体遗传物质的入侵,但当时科学家们认为,这一现象只出现在原始细胞内。” 埃特雷继续解释说:“现在《细胞》杂志发表的三篇论文表明,藻类、蠕虫以及苍蝇都拥有mA,这些生物的细胞像人体细胞一样都是真核细胞,说明人体细胞内也可能拥有第六种碱基。研究表明,mA的主要功能是调控某些基因的表达,因此,构成了一种新的表观遗传标记。在我们所描述的这些基因组内,mA的浓度都很低,但随着拥有高灵敏度分析方法的发展,使得这项研究成为了可能。除此之外,mA可能也在干细胞和发育初期发挥重要作用。” 种类 近几年,有人将表观遗传学修饰——5-胞嘧啶甲基称为第5种碱基,5-羟甲基胞嘧啶(5-hmC)称为第6种碱基。在最新的研究成果中,研究人员发现了第7种,和第8种DNA碱基:5-胞嘧啶甲酰(5-formylcytosine),5-胞嘧啶羧基(5-carboxylcytosine)。这两种碱基实际上都是由胞嘧啶经由张毅教授研究组一直研究的关键蛋白:Tet蛋白修饰后形成。 作用 组成DNA DNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。在形成稳定螺旋结构的碱基对 *** 有4种不同碱基。根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、C(CYTOSINE 胞嘧啶)、G(GUANINE 鸟嘌呤),另有U(URACIL尿嘧啶)。DNA与RNA共有的碱基是腺嘌呤、胞嘧啶和鸟嘌呤。胸腺嘧啶存在于DNA中,而尿嘧啶则存在于RNA中。每种碱基分别与另一种碱基的化学性质完全互补,嘌呤是双环,嘧啶是单环,两个嘧啶之间空间太大,而嘌呤之间空间不够。这样A总与T配对,G总与C配对。这四种化学“字母”沿DNA骨架排列。“字母”(碱基)的一种独特顺序就构成一个“词”(基因)。每个基因有几百甚至几万个碱基对。 碱基 嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则 有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。 构成物质 碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。 互补原则 (the principle of complementary base-pairing)在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。 碱基 腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C。根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。 在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;2)将非模板链的T改为U即可。如:DNA:ATCGAATCG(将此为非模板链)TAGCTTAGC(将此为模板链)转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。) 计算规律 规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。 5种碱基 规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)。 规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)。 规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。即双链(A+T)%或(G+C)%=任意单链(A+T)%或(G+C)%=mRNA中(A+U)%或(G+C)%。 规律五:不同生物的DNA分子中,其互补配对的碱基之和的比值(A+T)/(G+C)不同,代表了每种生物DNA分子的特异性。 相关信息 碱基互补配对规律的计算的生物学知识基础是基因控制蛋白质的合成。由于基因控制蛋白质的合成过程是: 碱基配对 (1)微观领域———分子水平的复杂生理过程,学生没有感性知识为基础,学习感到非常抽象。 (2)涉及到多种碱基互补配对关系,DNA分子内部有A与T配对,C与G配对;DNA分子的模板链与生成的RNA之间有A与U配对,T与A配对,C与G配对。学习过程中,学生不易认识清楚。 (3)涉及许多数量关系(规律),在DNA双链中,①A等于T,G等于C,A+G/T+C等于A+G/T+C等1;②一条单链的A+G/T+C的值与另一条互补单链的A+G/T+C的值互为倒数。③一条单链的A+T/C+G的值,与另一条互补链的A+T/C+G的值相等;④在双链DNA及其转录的RNA之间有下列关系:一条链上的(A+T)等于另一条链上的(A+T)等于RNA分子中(A+U)等于12DNA双链中的(A+T)等,学生往往记不住。再加之转录、翻译是在不同场所进行的,学生分析问题时难以把二者联系起来。以上分析说明,关于碱基互补配对规律的计算既是教的一个难点,也是学的一个难点。教学中,如果能做到:①把复杂抽象的生理过程用简单直观的图示表现出来;②把在不同场所进行的生理过程放在一起思考;③把记忆复杂繁琐的公式(规律)转变成观察图示找出数量关系;④在计算时把表示数的符号注上脚标,以免混淆,就能轻轻松松闯过这一难关。 医学套用 DNA碱基序列决定其光敏性假设获证实。DNA分子在所有生命形态中扮演着遗传信息载体的角色,对紫外光的修改具有高度的抵抗性,但要理解其光稳定性的机制还存在一些令人费解的问题。一个重要方面是,构成DNA分子的4种碱基之间的相互作用。德国基尔大学的研究人员成功地证明,DNA链因其碱基序列而有不同的光敏感性。相关研究结果发刊登在《科学》杂志上。科学家们早就了解到,对包含在DNA中的遗传信息进行编码的个别碱基具有高度光稳定性,当它们吸收了来自紫外光辐射的能量时,这些能量会立刻再次释放。但令人惊讶的是,科学家们发现在包含有众多碱基的DNA中,这些机制变得失效或只是部分有效。因此,科学家们推断,紫外光激发的DNA分子的失活,必定由某种完全不同的、DNA特有的机制所取代。通过以各种方法测量具有不同碱基序列的DNA分子,德国的基尔大学理化研究所弗里德里希·泰姆普斯教授所领导的研究小组终于证实并阐明了该种假设。 碱基 泰姆普斯教授表示,DNA通过其复杂的双螺旋结构达成其高度的光稳定性。在单股DNA链中,碱基之间的相互作用是一个堆叠在另一个之上,而且在双螺旋中,两个互补单股的碱基对之间的氢键发挥了关键作用。通过观察到的不同互动作用,DNA在某种程度上自己达成了“太阳防护”。论文作者尼娜·施瓦尔博在合成DNA分子中的过程中研究了各种不同的碱基组合。利用飞秒脉冲雷射光谱学,她测量了每种组合所释放出来的特征能量。她发现,对某些碱基组合而言,这些萤光发射的“寿命”只有约100飞秒,但对其他组合而言,时间可长达数千倍。 对于该研究结果,尼娜评论道:“我们研究了光物理特性,发现不同的碱基组合具有广泛的萤光发射寿命差异,这将导致开发出一种利用雷射直接识别某些遗传序列的新诊断方法,而无须像现有方法那样以染料标记DNA。” 泰姆普斯解释说,在纳米电子学领域中,合成DNA已被证明能当作“纳米线”使用。基于这些分子不同的反应时间,有朝一日或许能使用雷射脉冲来“开关”特定分子。在某些情况下,甚至有可能用DNA制造出通过氢键的键合来工作的电晶体。 发展前景 涉及到RNA的试验,经常会要求对RNA分子进行固定化处理,这个过程通常由生物素进行标记,并辅以抗生物素蛋白作为支持物。人们可以将UMP、CMP之类的生物素化核苷酸单磷酸盐整合到RNA之中去,或者通过在转录反应中使用核苷酸单磷酸盐5"端衍生物类生物素,从而达到仅仅对RNA的5"端进行标注的目的。当然,人们也可以对纯化的RNA进行5"端或3"端的化学修饰。目前最简单的方法,就是在转录过程中对标记过程进行整合;但对于一些试验来说,对RNA进行特定位点的标记,比起对5"端进行标记或者为避免改变RNA的功能而仅仅使用单个标记物来说,似乎更为重要。 为达到上述目标,IchiroHirao及其在东京大学和RIKEN的合作伙伴对非天然碱基对进行了修饰,这些生物素化的碱基能被T7RNA聚合酶以特定位点的方式整合到RNA之中去。例如,2-氨基-6-(2-噻吩基)嘌呤(s)可以被整合到一个DNA模板之中去;接着,在一个标准化的转录反应中,已经被生物素化的2-氧-(1H)吡啶(y)在s补足位点被整合到了RNA转录过程中。这一方法很容易被一般性的试验室掌握,也可以通过引入T7RNA聚合酶的方式作为商业性的转录工具包加以套用。Hirao说:“除了那些包括像s和y或修饰性y底物这类非天然碱基的DNA模板外,这一工具包可在原始协定不加修改的情况下进行套用。” 在一篇新近出版的有关“核酸研究”的论文中,研究小组套用上述方法,在感测器上对一个反义的Raf-1RNA寡聚核苷酸适配子成功进行了生物素化和固定化的处理;这一寡聚核苷酸适配子准确地找到了它的目标靶点。 Hirao认为,这一由非天然碱基对组成的系统对于RNA技术将非常有用。如果这些非天然碱基对能和原核RNA聚合酶、真核RNA聚合酶一起发挥作用的话,这一系统的套用范围将大大扩展,甚至可以套用到体内试验。Hirao也计画将这一系统的套用扩展到复制、转录和翻译这些功能过程中。他说:“如果那些包含非天然碱基对的DNA片段能通过PCR手段进行扩增的话,这一系统作为工具进行使用的前景将更为广阔!”2023-06-27 22:44:411
什么是碱基定义是什么
碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。包括五种组成脱氧核苷酸及核糖核苷酸的嘧啶,腺嘌呤,鸟嘌呤,尿嘧啶以及5胞嘧啶甲基,5羟甲基胞嘧啶,5胞嘧啶甲酰,5胞嘧啶羧基等稀有碱基。 碱基通过互补原则,即鸟嘌呤与胞嘧啶配对,腺嘌呤与胸腺嘧啶配对或腺嘌呤与尿嘧啶配对,来组成脱氧核苷酸或核糖核苷酸。以此指导生物体的遗传信息的遗传及体内信息素的释放传递。 碱基还构成一些生命必须物质或是重要的辅酶,如三磷酸鸟苷,腺苷,乙酰辅酶等,对生命活动的作用非常大。2023-06-27 22:44:471
什么是碱基?定义是什么
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分.DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的. 除主要碱基外,核酸中也有一些含量很少的稀有碱基.稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物.tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%.嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收. DNA是由四种碱基组成的螺旋结构 DNA(脱氧核糖核酸)的结构出奇的简单.DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样.整个分子环绕自身中轴形成一个双螺旋. 在形成稳定螺旋结构的碱基对中共有4种不同碱基.根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、G(GUANINE 鸟嘌呤)、C(CYTOSINE 胞嘧啶).每种碱基分别与另一种碱基的化学性质完全互补,这样A总与T配对,G总与C配对.这四种化学"字母"沿DNA骨架排列."字母"(碱基)的一种独特顺序就构成一个"词"(基因).每个基因有几百甚至几万个碱基对. 碱基对 形成DNA、RNA单体以及编码遗传信息的化学结构.组成碱基对的碱基包括A、G、T、C、U.严格地说,碱基对是一对相互匹配的碱基(即A:T,G:C,A:U相互作用)被氢键连接起来.然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链).它还与核苷酸互换使用,尽管后者是由一个五碳 糖、磷酸和一个碱基组成.2023-06-27 22:44:541
碱基有哪四种?
碱基有腺嘌呤,鸟嘌呤,胞嘧啶,胸腺嘧啶四种。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。它们也被称为主要或标准碱基。它们是组成遗传密码的基本单元,其中碱基A、G、C和T存在于DNA中,而A、G、C和U存在于RNA中。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的第5位碳原子上。扩展资料DNA和RNA分子中还含有核酸链形成后经过修饰形成的其它非主要碱基。这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。DNA中最常见的修饰碱基是5-甲基胞嘧啶(m5C)。RNA中有许多修饰的碱基,包括核苷类假尿苷(Ψ)、二氢尿苷(D)、肌苷(I)和7-甲基鸟苷(m7G)中含有的碱基 。次黄嘌呤和黄嘌呤是通过诱变剂处理产生的许多修饰碱基中的两种 ,它们都是通过脱氨作用(用羰基取代胺基)产生的。次黄嘌呤源于腺嘌呤,黄嘌呤源于鸟嘌呤。在典型的双螺旋DNA中,每个碱基对都含有一个嘌呤和一个嘧啶:A与T配对或C与G配对或Z配P或S配B,都是通过3个氢键相连。这些嘌呤-嘧啶间的配对现象被称为碱基互补,连接DNA两条链的碱基通常被比喻成梯子中的横档梯级。嘌呤和嘧啶间配对的部分原因是受到空间的限制,因为这种配对组合使得DNA螺旋成为一个具有恒定宽度的几何形状。 A-T和C-G配对在互补碱基的胺和羰基之间形成双或三氢键。参考资料来源:百度百科-碱基2023-06-27 22:45:044
生物:什么是碱基?
一类带碱性的有机化合物,是嘌呤和嘧啶的衍生物。DNA中的碱基主要有腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶;RNA中的碱基主要有腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。此外,DNA和RNA中都发现有许多稀有碱基,在转移核糖核酸中含量最高。2023-06-27 22:45:221
DNA分子中碱基种类有几种?
腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)。生物体中常见的碱基有5种,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U) 。2019年又人工合成了4种碱基,美国科学家StevenA. Benner将这4个新成员分别命名为“Z”“P”“S”“B”, 顾名思义,前5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。扩展资料:新碱基的原理新碱基的形状与天然碱基类似,但结合方式不同。随后,他们将合成碱基与天然碱基结合,得到了由8个碱基组成的DNA。实验表明,合成序列与天然DNA拥有相同属性:它们采用相同的方式可靠地配对;无论合成碱基的顺序如何,双螺旋结构都保持稳定;DNA可忠实地转录成RNA。这一成果首次系统性证明了合成碱基与天然碱基可彼此识别并结合,且形成的双螺旋能保持稳定。参考资料来源:人民网-含8个碱基的DNA首次合成参考资料来源:百度百科-碱基2023-06-27 22:45:581
dna的碱基有哪几种
dna的碱基有4种,分别是腺嘌吟、鸟嘌呤、胞嘧啶、胸腺嘧啶。碱基,在生物化学中又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。 脱氧核糖核酸,缩写为dna是生物细胞内含有的四种生物大分子之一核酸的一种。dna携带有合成rna和蛋白质所必需的遗传信息,是生物体发育和正常运作必不可少的生物大分子。2023-06-27 22:46:131
核苷酸有哪8种,碱基有哪几种?
核苷酸有组成DNA分子的腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胞嘧啶脱氧核苷酸、胸腺嘧啶脱氧核苷酸和组成RNA分子的腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸。组成DNA的碱基有四种:A、T、C、G;组成RNA的碱基也有四种:A、U、C、G。核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞的核及胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起着主要的作用。扩展资料:核苷酸是核酸的基本结构单位,人体内的核苷酸主要有机体细胞自身合成。核苷酸在体内的分布广泛。细胞中主要以5′-核苷酸形式存在。细胞中核糖核苷酸的浓度远远超过脱氧核糖核苷酸。不同类型细胞中的各种核苷酸含量差异很大,同一细胞中,各种核苷酸含量也有差异,核苷酸总量变化不大。嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化或进行其它的化学修饰而形成的衍生物。例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。参考资料来源:搜狗百科——碱基参考资料来源:搜狗百科——核苷酸2023-06-27 22:46:233
DNA中含有的碱基
DNA分子中碱基种类有:腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶四种。 碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。 DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2纳米。在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A腺嘌呤、T胸腺嘧啶、C胞嘧啶、G鸟嘌呤。2023-06-27 22:46:291
dna分子中的碱基组成是什么
DNA中的碱基有四种:腺瞟呤(A)、鸟瞟呤(G)、胸腺嘧啶(T)、胞嘧啶(C)。2023-06-27 22:46:361
碱基的化学成分
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。 构成这些物质的元素有碳、氢、氧、氮。2023-06-27 22:46:432
“碱基”和“碱基对”有什么区别?
碱基::是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 碱基对::形成DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括A—腺嘌呤、G—鸟嘌呤、T—胸腺嘧啶、C—胞嘧啶、U—尿嘧啶。严格地说,碱基对是一对相互匹配的碱基(即A—T, G—C,A—U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。碱基对简称 bp(Base Pair,bp)对于双链核酸。对于单链核酸,kb指千碱基望采纳2023-06-27 22:46:521
核苷酸与碱基有什么区别
一、性质不同1、碱基:形成核苷的含氮化合物。2、核苷酸:由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。二、合成不同1、碱基合成:碱基是合成核苷、核苷酸和核酸的基本组成单位。2、核苷酸合成:核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位。三、功能不同1、碱基功能:(1)碱基大多是上述嘌呤或嘧啶碱基的不同部分甲基化或其他化学修饰形成的衍生物。(2)在医学上,有几种核苷类似物被用作抗癌和抗病毒药物。病毒聚合酶将这些化合物与非主要碱基结合。患者服用的核苷类似物进入体内,转化为核苷酸并在细胞中激活。2、核苷酸功能:(1)核苷酸在细胞能量代谢中起着极其重要的作用。(2)核苷酸还将高能磷酸键转移到UDP、CDP及GDP生成UTP、CTP及GTP。(3)核苷酸在许多基本的生物学过程中起着调节作用。所有生物体的基本组成部分在生物体的生长、发育、繁殖和遗传中起着主导作用。参考资料来源:搜狗百科-碱基参考资料来源:搜狗百科-核苷酸2023-06-27 22:47:012
DNA中碱基的计算有什么技巧?
解析:根据碱基互补原则,得出下列规律:1、DNA双链中的两条互补链碱基相等,任意两种不互补的碱基之和恒等,占碱基总数的50%。即是A+G=T+C=A+C=T+G=50%。2、在DNA双链中的一条单链的A+G/T+C的值与另一条互补链A+G/T+C的值互为倒数关系。3、DNA双链中,一条单链的A+T/G+C的值是另一条互补的A+T/G+C的值相等,也是与整个A+G/T+C的值相等。2023-06-27 22:47:221
怎样判断一个物质内含有几种碱基?
首先,要判断它所含的核酸有几种。如果是具有细胞结构的生物,那么它具有的核算就有DNA和RNA两种。那么,碱基就有A、G、C、T、U五种。如果,是不具有细胞结构的生物(病毒),那么它具有的碱基只有四种,要么是A、G、C、T,要么是A、G、C、UDNA病毒:A、G、C、T;RNA病毒:A、G、C、U2023-06-27 22:47:421
核酸 DNA RNA 含有的碱基种类分别
核糖核苷酸(RNA):腺嘌呤核糖核苷酸(A)、鸟嘌呤核糖核苷酸(G)、胞嘧啶核糖核苷酸(C)、尿嘧啶核糖核苷酸(U)脱氧核糖核苷酸(DNA):腺嘌呤脱氧核糖核苷酸(A)、鸟嘌呤脱氧核糖核苷酸(G)、胞嘧啶脱氧核糖核苷酸(C)、胸腺嘧啶脱氧核糖核苷酸(T)核酸一共有五种碱基ATGCU2023-06-27 22:47:481
组成的碱基,五碳糖,核苷酸各有哪几种
组成核酸的碱基有5种,即A、T、U、C、G,五碳糖有2种,核糖与脱氧核糖,核苷酸有8种,其中4种脱氧核糖核苷酸,4种核糖核苷酸,脱氧核糖核苷酸所含碱基为A、T、C、G,核糖核苷酸所含碱基为A、U、C、G2023-06-27 22:47:571
DNA碱基的计算
你考虑的有道理底数是4而不是2的原因是,每个碱基都可能有4种ATGC情况,所以不管如何,底数一定是4,也就是每个位置都有4种情况;指数是1000还是2000呢?其实也就是你考虑的,你考虑得很正确,因为题目上是每条链,DNA双螺旋结构两条链,所以每条链1000个这样一条1000个碱基的DNA链,每个碱基有4种可能,当然就是4^1000这么考虑底数是4,指数是1000,答案就是4^1000而4^2000是整个这条DNA链的碱基排列方式;2^2000则没有任何意义2023-06-27 22:48:062
碱基有哪四种?
这个要看是DNA还是RNA在DNA里面的四种碱基是:胞嘧啶(C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)在RNA里面则是::胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、尿嘧啶(U,RNA专有)2023-06-27 22:48:152
碱基什么
一类带碱性的有机化合物,是嘌呤和嘧啶的衍生物。DNA中的碱基主要有腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶;RNA中的碱基主要有腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。此外,DNA和RNA中都发现有许多稀有碱基,在转移核糖核酸中含量最高。2023-06-27 22:48:303
核酸,核苷酸,碱基之间有什么关系和联系???
核酸有两种:脱氧核糖核酸(脱氧核甘酸)‘也就是DNA"、核糖核酸‘也就是RNA"。核甘酸就是核酸的组成单位,就像蛋白质是由氨基酸组成的一样,DNA的组成单位是脱氧(核糖)核甘酸,RNA的组成单位是核糖核甘酸。碱基就是核甘酸上的一个基团,就像是氨基酸上的羟基或者是羧基,和这是一个道理。2023-06-27 22:48:402
基因中的碱基是什么?
DNA是双螺旋结构,即两条反向平行的多核苷酸链相互缠绕形成一个右旋的双螺旋结构。每对螺旋由10对碱基组成,碱基按A-T,C-G互补配对,彼此以氢键相联。通过修改碱基,人类获取了编辑基因的能力,合成生物学开始发展。通过设计改造微生物进行定向发酵,使细胞工厂可以高效生产目标产品。现在我们看到的植物天然产物、食品、生物可降解材料等多类产品,都可以用细胞工厂发酵生产。例如,通过最新的合成生物技术,华熙生物已可以做到每升提取液提取73g透明质酸, 效率提升近4倍。2023-06-27 22:48:461
硝基,羧基,羟基,碱基有什么分别?
碱基无氧,其他都有;硝基在硝基化合物中,羧基在酸中,羟基在醇、酚、酸中,碱基在DNA、RNA中2023-06-27 22:49:101
碱基有?
fhhbgg2023-06-27 22:49:171
核苷酸有哪8种,碱基有哪几种
核苷酸有组成DNA分子的腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胞嘧啶脱氧核苷酸、胸腺嘧啶脱氧核苷酸和组成RNA分子的腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸。组成DNA的碱基有四种:A、T、C、G;组成RNA的碱基也有四种:A、U、C、G。2023-06-27 22:49:441
五种碱基的字母代称分别是?
生物体中常见的碱基有5种,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U) 。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。它们也被称为主要或标准碱基。它们是组成遗传密码的基本单元,其中碱基A、G、C和T存在于DNA中,而A、G、C和U存在于RNA中。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的第5位碳原子上。扩展资料:一、新的碱基甲基胞嘧啶(mC):源于C,是表观遗传机制的主要原因。作为一种重要的表观遗传修饰,mC参与基因表达调控、X-染色体失活、基因组印记、转座子的长期沉默和癌症的发生。甲基腺嘌呤(mA),其主要作用是确定表观基因组的性质,并因此在细胞的生命过程中发挥重要作用。藻类、蠕虫以及苍蝇都拥有mA。mA的主要功能是调控某些基因的表达,因此,构成了一种新的表观遗传标记。新发现的碱基还有:5-胞嘧啶甲基、5-羟甲基胞嘧啶(5-hmC)、5-胞嘧啶甲酰(5-formylcytosine)和5-胞嘧啶羧基(5-carboxylcytosine)二、碱基配对在典型的双螺旋DNA中,每个碱基对都含有一个嘌呤和一个嘧啶:A与T配对或C与G配对。这些嘌呤-嘧啶间的配对现象被称为碱基互补,连接DNA两条链的碱基通常被比喻成梯子中的横档梯级。嘌呤和嘧啶间配对的部分原因是受到空间的限制,因为这种配对组合使得DNA螺旋成为一个具有恒定宽度的几何形状。 A-T和C-G配对在互补碱基的胺和羰基之间形成双或三氢键。参考资料来源:百度百科-碱基2023-06-27 22:49:554
组成核酸的碱基共有几种?
核酸是由核苷酸构成核苷酸分成脱氧核糖核苷酸和核糖核苷酸两种其中脱氧核糖核苷酸里含atcg四种碱基核糖核苷酸含aucg四种碱基所以一共有5种碱基2023-06-27 22:50:131
碱基共有哪几种
碱基有很多种,在遗传学里只讨论DNA和RNA上供6种碱基。DNA里:A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、C(CYTOSINE 胞嘧啶)、G(GUANINE 鸟嘌呤)。RNA里:A(ADENINE 腺嘌呤)、U(URACIL,尿嘧啶)、C(CYTOSINE 胞嘧啶)、G(GUANINE 鸟嘌呤)。2023-06-27 22:50:211
生物:什么是碱基?
碱基(base)碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 结构在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。 碱基置换类型及缺失和插入突变示意图[2]碱基共有5种:胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。作用 组成DNADNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。 碱基在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、C(CYTOSINE 胞嘧啶)、G(GUANINE 鸟嘌呤),另有U(URACIL尿嘧啶)。DNA与RNA共有的碱基是腺嘌呤、胞嘧啶和鸟嘌呤。胸腺嘧啶存在于DNA中,而尿嘧啶则存在于RNA中。每种碱基分别与另一种碱基的化学性质完全互补,嘌呤是双环,嘧啶是单环,两个嘧啶之间空间太大,而嘌呤之间空间不够。这样A总与T配对,G总与C配对。这四种化学“字母”沿DNA骨架排列。“字母”(碱基)的一种独特顺序就构成一个“词”(基因)。每个基因有几百甚至几万个碱基对。嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。构成物质碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。互补原则(the principle of complementary base-pairing) 碱基在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C。根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;2)将非模板链的T改为U即可。如:DNA:ATCGAATCG(将此为非模板链)TAGCTTAGC(将此为模板链)转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。)2023-06-27 22:50:302
“基因”和“碱基”有什么关系?
脱氧核苷酸(核苷酸的一种)是DNA的基本组成单位 。碱基是核苷酸的组成部分。 一、【基因】带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。组成简单生命最少要265到350个基因。涉及到了基因工作组的量,人类的基因工作组与果蝇的基本相似。【主要特征】1、基因——有遗传效应的DNA片段,是控制生物性状的基本遗传单位。人们对基因的认识是不断发展的。19世纪60年代,遗传学家孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理的产物。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。2、20世纪50年代以后,随着分子遗传学的发展,尤其是沃森和克里克提出双螺旋结构以后,人们才真正认识了基因的本质,即基因是具有遗传效应的DNA片断。研究结果还表明,每条染色体只含有1~2个DNA分子。每个DNA分子上有多个基因,每个基因含有成百上千个脱氧核苷酸。由于不同基因的脱氧核苷酸的排列顺序(碱基序列)不同,因此,不同的基因就含有不同的遗传信息。1994年中科院曾邦哲提出系统遗传学概念与原理,探讨猫之为猫、虎之为虎的基因逻辑与语言,提出基因之间相互关系与基因组逻辑结构及其程序化表达的发生研究。二、【碱基】1、指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。2、除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。【种类】表观遗传学修饰--5-胞嘧啶甲基称为第5种碱基,5-羟甲基胞嘧啶称为第6种碱基。在最新的研究成果中,研究人员发现了第7种,和第8种DNA碱基:5-胞嘧啶甲酰、5-胞嘧啶羧基。这两种碱基实际上都是由胞嘧啶经由张毅教授研究组一直研究的关键蛋白:Tet蛋白修饰后形成 。2023-06-27 22:50:402
碱基是什么?
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水,在约260纳米的紫外光区有较强的吸收。2023-06-27 22:51:011
碱基指的是什么?
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水,在约260纳米的紫外光区有较强的吸收。2023-06-27 22:51:102
碱基是什么 碱基介绍
1、碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。 2、DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水,在约260纳米的紫外光区有较强的吸收。2023-06-27 22:51:161
碱基有哪几种
碱基共有8种:鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)、尿嘧啶(U,RNA专有)、5-胞嘧啶甲基、5-羟甲基胞嘧啶(5-hmC)、5-胞嘧啶甲酰(5-formylcytosine)、5-胞嘧啶羧基(5-carboxylcytosine)。在最新的研究成果中,研究人员发现了第7种,和第8种DNA碱基:5-胞嘧啶甲酰(5-formylcytosine),5-胞嘧啶羧基(5-carboxylcytosine)。这两种碱基实际上都是由胞嘧啶经由张毅教授研究组一直研究的关键蛋白:Tet蛋白修饰后形成。扩展资料:碱基结构:在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。参考资料来源:百度百科——碱基2023-06-27 22:51:251
碱基种类有哪些?
生物体中常见的碱基有5种:分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)。人工合成的碱基有4种:美国科学家StevenA. Benner将这4个新成员分别命名为“Z”“P”“S”“B”(顾名思义,前5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R)。新发现的碱基:甲基胞嘧啶(mC)、甲基腺嘌呤(mA)5-胞嘧啶甲基、5-羟甲基胞嘧啶(5-hmC)、5-胞嘧啶甲酰(5-formylcytosine)和5-胞嘧啶羧基(5-carboxylcytosine)。碱基相关介绍:碱基,在化学中本是“碱性基团”的简称。有机物中大部分的碱性基团都含有氮原子,称为含氮碱基,氨基(-NH2)是最简单的含氮碱基。碱基,在生物化学中又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。核碱基间可以形成碱基对,且彼此堆叠,所以,它们是长链螺旋结构,例如核糖核酸(RNA)和脱氧核糖核酸(DNA)的重要组成部分。内容参考:百度百科-碱基2023-06-27 22:51:392
碱基分为哪几种?
碱基分为胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)五种。5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置,值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。扩展资料碱基的作用:1、组成DNADNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。在形成稳定螺旋结构的碱基对中共有4种不同碱基。嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则2、构成物质碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。参考资料来源:百度百科——碱基2023-06-27 22:51:581
什么是碱基定义是什么
碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。包括五种组成脱氧核苷酸及核糖核苷酸的嘧啶,腺嘌呤,鸟嘌呤,尿嘧啶以及5胞嘧啶甲基,5羟甲基胞嘧啶,5胞嘧啶甲酰,5胞嘧啶羧基等稀有碱基。 碱基通过互补原则,即鸟嘌呤与胞嘧啶配对,腺嘌呤与胸腺嘧啶配对或腺嘌呤与尿嘧啶配对,来组成脱氧核苷酸或核糖核苷酸。以此指导生物体的遗传信息的遗传及体内信息素的释放传递。 碱基还构成一些生命必须物质或是重要的辅酶,如三磷酸鸟苷,腺苷,乙酰辅酶等,对生命活动的作用非常大。2023-06-27 22:52:101
什么是碱基?定义是什么
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。DNA是由四种碱基组成的螺旋结构DNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。 在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、G(GUANINE 鸟嘌呤)、C(CYTOSINE 胞嘧啶)。每种碱基分别与另一种碱基的化学性质完全互补,这样A总与T配对,G总与C配对。这四种化学"字母"沿DNA骨架排列。"字母"(碱基)的一种独特顺序就构成一个"词"(基因)。每个基因有几百甚至几万个碱基对。碱基对 形成DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T, G:C,A:U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳 糖、磷酸和一个碱基组成。2023-06-27 22:52:172
碱基有哪几种类型?
碱基分为胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)五种。5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置,值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。扩展资料碱基的作用:1、组成DNADNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。在形成稳定螺旋结构的碱基对中共有4种不同碱基。嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则2、构成物质碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。参考资料来源:百度百科——碱基2023-06-27 22:52:361
碱基有哪些?有什么作用?
碱基分为胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)五种。5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置,值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。扩展资料碱基的作用:1、组成DNADNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。在形成稳定螺旋结构的碱基对中共有4种不同碱基。嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则2、构成物质碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。参考资料来源:百度百科——碱基2023-06-27 22:52:481
什么是碱基定义是什么
碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。包括五种组成脱氧核苷酸及核糖核苷酸的嘧啶,腺嘌呤,鸟嘌呤,尿嘧啶以及5胞嘧啶甲基,5羟甲基胞嘧啶,5胞嘧啶甲酰,5胞嘧啶羧基等稀有碱基。 碱基通过互补原则,即鸟嘌呤与胞嘧啶配对,腺嘌呤与胸腺嘧啶配对或腺嘌呤与尿嘧啶配对,来组成脱氧核苷酸或核糖核苷酸。以此指导生物体的遗传信息的遗传及体内信息素的释放传递。 碱基还构成一些生命必须物质或是重要的辅酶,如三磷酸鸟苷,腺苷,乙酰辅酶等,对生命活动的作用非常大。2023-06-27 22:53:001
碱基a是什么
生物体中常见的碱基有5种,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U) ,2019年又人工合成了4种碱基,美国科学家StevenA. Benner将这4个新成员分别命名为“Z”“P”“S”“B”,顾名思义,前5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。它们也被称为主要或标准碱基。它们是组成遗传密码的基本单元,其中碱基A、G、C和T存在于DNA中,而A、G、C和U存在于RNA中。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的第5位碳原子上。碱基在化学中本是“碱性基团”的简称。有机物中大部分的碱性基团都含有N(氮)原子,称为含氮碱基,氨基(-NH2)是最简单的含氮碱基。碱基,在生物化学中又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。核碱基间可以形成碱基对,且彼此堆叠,所以,它们是长链螺旋结构,例如核糖核酸(RNA)和脱氧核糖核酸(DNA)的重要组成部分。2023-06-27 22:53:061
碱基对有几种
碱基对有A-T、T-A、C-G、G-C4种。 碱基在化学中本是“碱性基团”的简称。有机物中大部分的碱性基团都含有N(氮)原子,称为含氮碱基,氨基(-NH2)是最简单的含氮碱基。 碱基,在生物化学中又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。2023-06-27 22:53:131
碱基有几种?
碱基分为胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)五种。5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置,值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。扩展资料碱基的作用:1、组成DNADNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。在形成稳定螺旋结构的碱基对中共有4种不同碱基。嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则2、构成物质碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。参考资料来源:百度百科——碱基2023-06-27 22:53:361
DNA碱基中的A,T.C,G分别是什么意思?
A,T.C,G指的是碱基的种类的简称A:指的是腺嘌呤T:指的是胸腺嘧啶C:指的是胞嘧啶G:指的是鸟嘌呤PS:另外高中常见碱基还有一种叫U:尿嘧啶 这种碱基只存在于RNA中,是区分DNA与RNA的标志2023-06-27 22:53:501