嘧啶碱基

DNA图谱 / 问答 / 标签

嘌呤和嘧啶碱基是真核生物的主要能源吗

主要能源是ATP呀……嘌呤和嘧啶构成生物的主要遗传信息,嘌呤和嘧啶是细胞的遗传物质,跟供能没啥关系。

细胞中组成一个基因的嘌呤碱基与嘧啶碱基数量相等

A、真核生物的DNA主要位于染色体上,染色体是DNA和基因的主要载体,A正确; B、由于嘌呤和嘧啶进行碱基互补配对,故DNA分子上嘌呤与嘧啶的数量相等,B正确; C、一个DNA分子由基因片段和非基因片段组成,C错误; D、DNA复制后每条染色体含有2个DNA分子,故一条染色体上含1或2个DNA分子,D正确. 故选:C.

某生物的碱基组成是:嘌呤碱基60%,嘧啶碱基40%。它不可能是 [  

C

经测定某种生物发现嘌呤碱基和嘧啶碱基的含量比相等,则这种生物一定不是

币岛弟搞错了吧。这个题应该选AG,鸟嘌呤A,腺嘌呤、C,胞嘧啶、T,胸腺嘧啶、U,尿嘧啶A-T(U) G-C 所以在双链DNA中,嘌呤碱基和嘧啶碱基的含量比相等,反过来说,如果嘌呤碱基和嘧啶碱基的含量比相等,则这种生物中一定不会只含有单链的碱基。所以只能选A

嘧啶碱基降解不需要nad吗

嘧啶核苷酸在酶作用下生成磷酸、核糖及自由碱基,产生的嘧啶碱进一步分解。胞嘧啶脱氨基转变成尿嘧啶,尿嘧啶最终生成NH3、CO2及β-丙氨酸。胸腺嘧啶降解成β-氨基异丁酸。

某生物核酸的碱基组成是嘌呤碱基占58%,嘧啶碱基占42%,此生物不可能是( )a.噬

B 解析: 在DNA中,由于碱基互补配对,故嘌呤碱基等于嘧啶碱基,而在RNA内,各碱基数量不定。某生物核酸的碱基组成是嘌呤碱基占58%,嘧啶碱基占42%,说明该生物一定含有RNA,而噬菌体是DNA病毒,核酸只含有DNA。

高一生物 某生物核酸的碱基组成,嘌呤碱基占52%,嘧啶碱基占45%,此生物一定不是

A以DNA为遗传物质的生物,嘌吟碱碱基加嘧啶碱基之和为1。题中,嘌吟碱碱基加嘧啶碱基之和小于1,以RNA遗传物质。 因此该生物一定不是真核生物。另外,真核生物中是有RNA的,只是不以遗传物质的形式存在 希望你能采纳

嘌呤和嘧啶碱基是真核生物的主要能源吗?为什么

真核生物的主要能源是糖类(主要是单糖,比如葡萄糖),其次是脂类。嘌呤和嘧啶碱基主要参与核酸的组成。望对你有帮助!

嘧啶碱基环上各原子在同一平面上,对么?

是的,就这个样子,

嘌呤和嘧啶碱基合成的不同

嘌呤VS嘧啶器官:同 主要是肝细胞定位:细胞质VS细胞质+线粒体原料:同 Asp,Gln,一碳单位,CO2 异 甘氨酸,5"-磷酸核糖VSPRPP特点:在磷酸核糖分子上逐步加上小分子物质合成嘌呤核苷酸VS先合成嘧啶环,再与PRPP合成嘧啶核苷酸过程:先合成IMP,再转变成AMP和GMPVS 先合成乳清酸,再与磷酸核糖相连关键酶:同 PRPP合成酶异 PRPP酰胺转移酶 VS CPSII,天冬氨酸氨基甲酰磷酸转移酶

控制合成胰岛素《含51个氨基酸》的基因中,含有嘧啶碱基至少多少个?

控制合成胰岛素(含51个氨基酸)的基因中,(至少)有306个含N碱基,而DNA中嘌呤和嘧啶数是相等的,各占一半,

控制合成胰岛素(含51个氨基酸)的基因中,含有嘧啶碱基至少有 A306 B153 C102 D51 为什么不考虑终止密码

哎,这道题,我直接觉得出题的是个2,胰岛素是有51个AA,但人家是两条肽链以二硫键连接起来的,AB之间,本身还有一段切除的肽链,这题直接给学生一种错误的感觉,你从51个AA,推测基因的情况,这个是对的,是题目在混淆你(我觉得这是一道非常失败,而且老师没有生物常识,还自以为很高明,但提问方式确是不好反驳),题目本身就没有考虑基因的具体情况,你根本不用考虑什么终止密码子了, 因为本身就非常不准确。 你不用纠结这道题了, 因为题目本身很失败,高考题不会是这个2样。 复习高考还是要多看书,做一些高质量的题,而不是这种很没有意义的题目,历年各省真题是很有价值的,希望能帮到你。 不知道这类失败的模拟题还要横行多少年啊,我想当个老师还当不成呢,╮(╯▽╰)╭

下列物质中,哪种物质直接参与了核酸从头合成中嘧啶碱基的合成()

下列物质中,哪种物质直接参与了核酸从头合成中嘧啶碱基的合成() A.二氧化氮 B.谷氨酸 C.天冬氨酸 D.甘氨酸 E.丙氨酸 正确答案:C

控制合成胰岛素(含51个氨基酸)的基因中,含嘧啶碱基有多少

控制合成胰岛素(含51个氨基酸)的基因中,(至少)有306个含N碱基,而DNA中嘌呤和嘧啶数是相等的,各占一半,

DNA和RNA共有的嘧啶碱基是(  ) A. A B. U C. C D. T

DNA中含氮碱基分别是A、T、C、G,RNA中含氮碱基分别是A、U、C、G,则DNA和RNA共有的是A、C、G,其中嘧啶碱基是C. 故选:C.

我们来自外星吗?陨石中首次发现核酸主要成分嘧啶碱基

地球上的物种千千万万,但是这些物种最早起源于哪里呢?在众说纷纭当中,有一种说法叫做地球生命外来说,表示生命最初是由陨石等外来物质携带着打开生命之门的钥匙,经过漫长的太空漂流来到地球上的。在过往的研究当中,科学家们已经在一种碳质球粒陨石中检测到了嘌呤碱基的成分,这是组成DNA与RNA的重要化学成分之一,其中包括鸟嘌呤和腺嘌呤,不过除了嘌呤碱基以外,组成DNA与RNA还需要嘧啶碱基,但是此前科学家们只在陨石中监测出了尿嘧啶,还有胞嘧啶和胸腺嘧啶没有被发现,不过最近,这两样成分被来自日本的科学家找到了。 由日本北海道大学、日本海洋科学技术中心等团队的研究人员使用专门针对碱基进行优化的小规模量化的先进分析技术,分析了3颗富碳陨石:分别是默奇森陨石、默里陨石和塔吉什湖陨石。这些陨石中含有丰富的有机物,一直以来为科学家们提供了重要的研究样本,特别是默奇森陨石,美国宇航局戈达德太空飞行中心的天体生物学家丹尼尔·格拉文就曾说过:“我们并没有探测到生命本身,但所有的组成部分都在那里。没有默奇森,我就找不到工作”。 这一次,日本的研究人员不仅检测到了此前在陨石中发现的嘌呤碱基和尿嘧啶,还检测到了一直缺失的胞嘧啶、胸腺嘧啶以及它们的异构体。各种嘧啶碱基在陨石中的存在浓度达到了十亿分比,该浓度和科学家们模拟太阳系形成前条件的实验预测的结果差不多。他们认为,这些结果表明,这类化合物可能是在星际介质中经由光化学反应产生的,随后又在太阳系形成的过程中融入了小行星,小行星携带着这些化合物,最终以陨石的形式抵达地球,构建了地球上的早期生命。 这项研究又一次丰富了地球生命外来说这一假说,如果未来这一假说得到了证实,那么我们寻找地外文明的旅程或许其实也是人类的寻根之旅,当我们有朝一日找到了外星人,是不是会发现原来他们也在用DNA做遗传物质呢?这就需要时间来给我们答案了。

嘧啶碱基的介绍

嘧啶碱基 pyrimidine base,嘧啶核的各部分被取代的化合物。和嘌呤碱基一样,在生物体内以核酸、核苷酸、核苷等的成分而存在,游离态的比较少见。

"所有DNA分子中的嘌呤碱基总数都等于嘧啶碱基总数"这句话为什么不对

以下情况都不符合 1、基因突变 2、DNA上含有少量特殊嘌呤或嘧啶(非ATCG) 3、单链DNA分子 还有很多情况,上面句子的“所有”二字太绝对.

某生物核酸的碱基组成,嘌呤碱基占52%,嘧啶碱基占48%,此生物一定不是(  )A.噬菌体B.大肠杆菌C.

A、噬菌体是DNA病毒,只含有DNA一种核酸,且DNA为双链结构,遵循碱基互补配对原则,因此其嘌呤碱基数目和嘧啶碱基数目相等,这与题干内容不符,A错误;B、大肠杆菌是原核生物,含有DNA和RNA两种核酸,且DNA中的嘌呤碱基数目和嘧啶碱基数目相等,而RNA中的嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,B正确;C、烟草是真核生物,含有DNA和RNA两种核酸,且DNA中的嘌呤碱基数目和嘧啶碱基数目相等,而RNA中的嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,C正确;D、烟草花叶病毒是RNA病毒,只含有RNA一种核酸,RNA为单链结构,其中嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,D正确.故选:A.

写出2种嘌呤和三种嘧啶碱基的名称和结构式.

A :腺嘌呤 G :鸟嘌呤 C:胞嘧啶 T:胸腺嘧啶 U:尿嘧啶 其中,AGCU构成了DNA,AGCU构成了RNA.

嘌呤碱基 和 嘧啶碱基 分别以什么方式和 戊糖连接

戊糖的第一位C与嘧啶碱的第一位N或与嘌呤碱的第九位N相连接

某种生物碱基组成中嘧啶碱基与嘌呤碱基组成比例不同说明

嘌呤数目和嘧啶数目不等,说明这种核酸是RNA. 一定不是噬菌体,因为噬菌体只有DNA,而其他三种生物都既有DNA,又有RNA.

在DNA、RNA中,嘌呤碱基含量是否等于嘧啶碱基含量?

DNA是,RNA不是DNA中相等因为是两条链A=T C=GRNA中没关系因为就一条链(A:腺嘌呤,G:鸟嘌呤,C:胞嘧啶,T:胸腺嘧啶,另外RNA没有T,而是U尿嘧啶)

真核生物体内嘌呤碱基和嘧啶碱基比1:1

嘌呤碱基和嘧啶碱基比1:1,对于双链DNA而言,是一定的,因为有碱基的互补配对。但是对于RNA而言,因为它是单链结构,无碱基互补配对原则,所以比例为1:1的情况很少,但在一定程度上有这种可能性。在真核生物体内既有DNA又有RNA,包括腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶和尿嘧啶。因此真核生物体内嘌呤碱基和嘧啶碱基比1:1,是不对的。 呵呵

为什么嘌呤碱基占58%,嘧啶碱基占42%的生物不可能是T4噬菌体?

因为噬菌体内只有DNA,嘌呤碱基占50%。嘧啶碱基占50%,这是肯定的。如果存在RNA或是DNA与RNA都有的生物,才可能嘌呤碱基占58%,嘧啶碱基占42%

提取细胞核中全部核酸进行碱基分析可知嘌呤碱基数等于嘧啶碱基数 为啥错了

细胞核中全部核酸包括DNA和RNA两种,DNA是双链的,它的嘌呤碱基数等于嘧啶碱基数 ,RNA是单链,它的嘌呤碱基数不一定等于嘧啶碱基数 。希望我的回答对你能有所帮助。

简述嘌呤碱基的最终代谢产物是什么?嘧啶碱基的最终代谢产物是什么?

9 煮熟的鸡蛋 温度,酸碱度等

嘌呤碱基与嘧啶碱基的结合保证了什么物质

嘌呤碱基与嘧啶碱基的结合保证了DNA分子空间结构的相对稳定。嘌呤碱基与嘧啶碱基的特性因素,结合起来会使结构稳定,结构稳定就会保证DNA分子空间结构的相对稳定。

真核生物体内嘌呤碱基和嘧啶碱基比1:1

嘌呤碱基和嘧啶碱基比1:1,对于双链DNA而言,是一定的,因为有碱基的互补配对。但是对于RNA而言,因为它是单链结构,无碱基互补配对原则,所以比例为1:1的情况很少,但在一定程度上有这种可能性。在真核生物体内既有DNA又有RNA,包括腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶和尿嘧啶。因此真核生物体内嘌呤碱基和嘧啶碱基比1:1,是不对的。呵呵

"所有DNA分子中的嘌呤碱基总数都等于嘧啶碱基总数"这句话为什么不对

以下情况都不符合1、基因突变2、DNA上含有少量特殊嘌呤或嘧啶(非ATCG)3、单链DNA分子还有很多情况,上面句子的“所有”二字太绝对。

不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是什么?

不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是1。因为在双链DNA分子中,按照碱基互补原则,一个嘌呤碱基与一个嘧啶碱基互不配对,所以嘌呤碱基总数等于嘧啶碱基总数,比值是1。

嘌呤碱基和嘧啶碱基的结构

腺嘌呤(adenine,简写:A) 鸟嘌呤(guanine,简写:G) 尿嘧啶(uracil,简写:U) 胞嘧啶(cytosine,简写:C) 胸腺嘧啶(thymine,简写:T)

不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是什么?

你好!不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是1。因为在双链DNA分子中,按照碱基互补原则,一个嘌呤碱基与一个嘧啶碱基互不配对,所以嘌呤碱基总数等于嘧啶碱基总数,比值是1。打字不易,采纳哦!

细胞中嘌呤碱基与嘧啶碱基数目一定相等吗?

A、表现型=基因型+外界环境,因此基因型相同的生物体表现型不一定相同,A错误; B、细胞类生物的遗传物质都是DNA,病毒的遗传物质是DNA或RNA,因此以RNA为遗传物质的生物一定是病毒,B正确; C、细胞含有DNA和RNA两种核酸,其中DNA中嘌呤碱基与嘧啶碱基数目一定相等,但RNA中嘌呤碱基与嘧啶碱基数目不一定相等,因此细胞中嘌呤碱基与嘧啶碱基数目也不一定相等,C错误; D、真核生物染色体上的基因不都是成对存在的,如性染色体非同源区段的基因不是成对存在的,D错误. 故选:B.

为什么嘌呤碱基和嘧啶碱基总数各占全部碱基总数的50%

碱基互补配对原则 the principle of complementary base pairing   在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。   腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T, G≡C根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。因此,可推知多条用于碱基计算的规律。   规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。   规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)   规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)   规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。即双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%。   规律五:不同生物的DNA分子中,其互补配对的碱基之和的比值(A+T)/(G+C)不同,代表了每种生物DNA分子的特异性。

嘌呤碱基和嘧啶碱基代谢过程有何区别与联系

嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳性嘧啶与核酸形成D N A和R N A的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(C y t o s i n e),胸腺嘧啶(T h y m i n e),尿嘧啶(U r a c i l)。l m a g e:C y T o s i n e c h e m i c a l s t r u c t u r e.p n g|胞嘧啶l m a g e:T h y m i n e c h e m i c a l s t r u c t u r e.p n g|胸脲嘧啶l m a g e: U r a c i l c h e m i c a l s t r u c t u r e.p n g|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结会。杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。

嘌呤碱基、嘧啶碱基、核苷、核苷酸和多聚核苷酸链在分子结构上的关系怎样?

核苷,核苷酸,核酸三者在分子结构上的关系是“核苷酸是核苷的磷酸酯,是组成核酸的基本单元”,核酸也叫多聚核苷酸,核糖体的核糖核酸,简称rRNA。核苷酸Nucleotide是一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸

4.嘌呤碱基、嘧啶碱基、核苷、核苷酸和多聚核苷酸链在分子结构上的关系怎样?

搜索登录首页教育/科学理工学科化学生物化学嘌呤和嘧啶的结构关系如何2***全部答案2***2013-04-04 14:40:28 嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。嘧啶与核酸形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。 chemicalg|胞嘧啶chemicalg|胸腺嘧啶chemicalg|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。 杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。 嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。 2、重要的能源物质三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。3、重要的信使分子环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。 4、作为某些活性基因的载体S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。5、参与组成某些辅酶腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。 人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。 嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。 嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。 鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。 研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。

嘧啶碱基的元素来源包括?

同位素示踪嘧啶核苷酸的从头合成过程证明,构成嘧啶环的N1、C4、C5及C6均由天冬氨酸提供,C3来源于CO2,N3来源于谷氨酰胺.

细胞核中的嘌呤碱基和嘧啶碱基是否相同

碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。