嘌呤碱基

DNA图谱 / 问答 / 标签

氨甲酰磷酸可以合成尿素和嘌呤碱基吗?

可以。氨基甲酰磷酸在尿素循环的中间产物,由NH3,CO2,H2O合成。在嘌呤碱基合成过程中,氨基甲酰磷酸由谷氨酰胺和碳酸氢根合成

细胞中组成一个基因的嘌呤碱基与嘧啶碱基数量相等

A、真核生物的DNA主要位于染色体上,染色体是DNA和基因的主要载体,A正确; B、由于嘌呤和嘧啶进行碱基互补配对,故DNA分子上嘌呤与嘧啶的数量相等,B正确; C、一个DNA分子由基因片段和非基因片段组成,C错误; D、DNA复制后每条染色体含有2个DNA分子,故一条染色体上含1或2个DNA分子,D正确. 故选:C.

某生物的碱基组成是:嘌呤碱基60%,嘧啶碱基40%。它不可能是 [  

C

经测定某种生物发现嘌呤碱基和嘧啶碱基的含量比相等,则这种生物一定不是

币岛弟搞错了吧。这个题应该选AG,鸟嘌呤A,腺嘌呤、C,胞嘧啶、T,胸腺嘧啶、U,尿嘧啶A-T(U) G-C 所以在双链DNA中,嘌呤碱基和嘧啶碱基的含量比相等,反过来说,如果嘌呤碱基和嘧啶碱基的含量比相等,则这种生物中一定不会只含有单链的碱基。所以只能选A

某生物核酸的碱基组成是嘌呤碱基占58%,嘧啶碱基占42%,此生物不可能是( )a.噬

B 解析: 在DNA中,由于碱基互补配对,故嘌呤碱基等于嘧啶碱基,而在RNA内,各碱基数量不定。某生物核酸的碱基组成是嘌呤碱基占58%,嘧啶碱基占42%,说明该生物一定含有RNA,而噬菌体是DNA病毒,核酸只含有DNA。

高一生物 某生物核酸的碱基组成,嘌呤碱基占52%,嘧啶碱基占45%,此生物一定不是

A以DNA为遗传物质的生物,嘌吟碱碱基加嘧啶碱基之和为1。题中,嘌吟碱碱基加嘧啶碱基之和小于1,以RNA遗传物质。 因此该生物一定不是真核生物。另外,真核生物中是有RNA的,只是不以遗传物质的形式存在 希望你能采纳

"所有DNA分子中的嘌呤碱基总数都等于嘧啶碱基总数"这句话为什么不对

以下情况都不符合 1、基因突变 2、DNA上含有少量特殊嘌呤或嘧啶(非ATCG) 3、单链DNA分子 还有很多情况,上面句子的“所有”二字太绝对.

dna与rna中所含的嘌呤碱基完全相同

A、DNA和RNA都能携带遗传信息,A正确; B、DNA所含的碱基为A、C、G、T,而RNA所含的碱基为A、C、G、U,两者所含碱基类型不完全相同,B错误; C、DNA与RNA在细胞中的主要分布位置不同,DNA主要分布在细胞核中,RNA主要分布在细胞质中,C错误; D、DNA和RNA所含五碳糖不同,前者所含五碳糖是脱氧核糖,后者所含五碳糖是核糖,D错误. 故选:A.

某生物核酸的碱基组成,嘌呤碱基占52%,嘧啶碱基占48%,此生物一定不是(  )A.噬菌体B.大肠杆菌C.

A、噬菌体是DNA病毒,只含有DNA一种核酸,且DNA为双链结构,遵循碱基互补配对原则,因此其嘌呤碱基数目和嘧啶碱基数目相等,这与题干内容不符,A错误;B、大肠杆菌是原核生物,含有DNA和RNA两种核酸,且DNA中的嘌呤碱基数目和嘧啶碱基数目相等,而RNA中的嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,B正确;C、烟草是真核生物,含有DNA和RNA两种核酸,且DNA中的嘌呤碱基数目和嘧啶碱基数目相等,而RNA中的嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,C正确;D、烟草花叶病毒是RNA病毒,只含有RNA一种核酸,RNA为单链结构,其中嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,D正确.故选:A.

嘌呤碱基 和 嘧啶碱基 分别以什么方式和 戊糖连接

戊糖的第一位C与嘧啶碱的第一位N或与嘌呤碱的第九位N相连接

某种生物碱基组成中嘧啶碱基与嘌呤碱基组成比例不同说明

嘌呤数目和嘧啶数目不等,说明这种核酸是RNA. 一定不是噬菌体,因为噬菌体只有DNA,而其他三种生物都既有DNA,又有RNA.

在DNA、RNA中,嘌呤碱基含量是否等于嘧啶碱基含量?

DNA是,RNA不是DNA中相等因为是两条链A=T C=GRNA中没关系因为就一条链(A:腺嘌呤,G:鸟嘌呤,C:胞嘧啶,T:胸腺嘧啶,另外RNA没有T,而是U尿嘧啶)

嘌呤碱基和芳香族氨基酸侧链生物降解的共同点

①都有脱氨基作用。②都有氧气和水参与反应。③不同的嘌呤生成同一中间物,然后共用一条代谢途径生成相同的代谢产物,不同的芳香族氨基酸也生成同意一中间物,然后共用一条代谢途径,最终生成相同的代谢产物。

真核生物体内嘌呤碱基和嘧啶碱基比1:1

嘌呤碱基和嘧啶碱基比1:1,对于双链DNA而言,是一定的,因为有碱基的互补配对。但是对于RNA而言,因为它是单链结构,无碱基互补配对原则,所以比例为1:1的情况很少,但在一定程度上有这种可能性。在真核生物体内既有DNA又有RNA,包括腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶和尿嘧啶。因此真核生物体内嘌呤碱基和嘧啶碱基比1:1,是不对的。 呵呵

用硝酸银鉴定嘌呤碱基时加浓氨水的目的

加浓氨水可以观察沉淀的生成和变化。用硝酸银鉴定嘌呤碱基属于核酸的定性分析【目的】1 .掌握测定核酸 的组成从而 定性分析 DNA 或 RNA 的方法。 2 .熟悉测定核酸的组成从而定性分析 DNA 或 RNA 的 原理。【原理】RNA 和 DNA 均可被硫酸水解生成含氮碱(嘌呤碱与嘧啶碱)、戊糖( RNA 中的核糖与 DNA 中的脱氧核糖)和磷酸。水解产物可用下列方法鉴定。 1 .嘌呤碱的鉴定原理嘌呤碱在弱碱性环境中能与硝酸银作用形成嘌呤银化合物。初为乳白色,稍放久为浅灰褐色絮状物。2 .核糖的鉴定原理核糖经浓盐酸或浓硫酸作用,脱水生成糠醛,后者能与 3 , 5- 二羟甲苯缩合形成鲜绿色化合物。该反应需三氯化铁作为催化剂。3 .脱氧核糖的鉴定原理脱氧核糖在浓酸中脱水生成 ω- 羟基 γ- 酮基戊醛,后者与二苯胺作用生成蓝色化合物。4 .磷酸的鉴定原理定磷试剂中的钼酸铵在酸性环境中以钼酸形式与样品中的磷酸反应生成磷钼酸。后者在还原剂氨基萘酚磺酸作用下形成蓝色的钼蓝。【器材】1 . 试管与滴管2 . PH 试纸3 . 沸水浴4 . 带有长玻璃管的胶塞【试剂】1 . 5% 硫酸2 . 5% 硝酸银溶液3 .浓氨水4 . 3,5- 二羟甲苯试剂取 FeCl 3 ·6H 2 O 1.0g 溶于 6ml 水中,加浓盐酸 100ml ,混匀,此为 A 液。另配制 6%3,5- 二羟甲苯乙醇溶液为 B 液。临用时用 A 液 100ml 加 B 液3.5ml 混合即可。5 .二苯胺试剂取二苯胺 1.0g 溶于 100ml 冰乙酸中,加浓硫酸 2.75ml 。此二苯胺试剂遇光易变绿色,故临用前配制,贮于棕色瓶中,置冰箱保存。6 .钼酸试剂取钼酸铵 2.5g 溶于 20ml 水中,加浓硫酸( A·R ) 8.5ml, 冷却后再加水至 100ml ,放冷处可保存 4 周左右。7 .氨基萘酚磺酸溶液取 15% 亚硫酸氢钠溶液 195ml 与 20% 亚硫酸钠溶液 5ml 混合,加氨基萘酚磺酸 0.5g ,在热水浴中搅拌使固体溶解(如不全溶,可滴加 20% 亚硫酸钠数滴,至多不超过 1ml 即可)。此溶液置冷处可保存 2-3 周,如颜色变黄需重新配置,临用前将上述溶液以蒸馏水稀释 10 倍应用。8 .核酸样品称取粗制核酸样品 10mg/ 每组。或者,取本教材实验九从动物组织中提取出的核酸作为本次实验的样品。【操作】1 .核酸的水解向加入 10mg 核酸样品的试管(或者,向有核酸沉淀的离心管)中加入 5% 硫酸 4ml ,用玻璃棒搅匀,再用带长玻璃管的塞子塞紧管口,于沸水浴中加热 15min ,既得核酸的水解液。2 .核酸的鉴定( 1 )嘌呤碱的鉴定:取小试管 2 支,分别标明测定与对照,按下表依次加入试剂,混匀,放置 15min ,观察嘌呤银沉淀的生成,并记录颜色。注:加氨水(约 2 ~ 3 滴)以中和酸,呈碱性即可,需用 PH 试纸测试。若加氨水过多,则生成银氨络离子 [ Ag(NH 3 ) 4 ] + ,使银离子减少,嘌呤银沉淀减少。( 2 )核糖的鉴定:取试管 2 支,分别标明测定与对照,按下表操作:将两管同时放入沸水浴加热 15min ,观察颜色变化并记录。(煮 3 ~ 5min ,即可先观察)( 3 )脱氧核糖的鉴定:取试管 2 支。分别标明测定与对照。按下表操作 :将两管同时放入沸水浴中加热 10min ,观察颜色变化并记录。( 4 )磷酸的鉴定:取试管 2 支,分别标明测定与对照,按下表操作:于室温放置 10min 后,观察颜色变化并记录。【注意事项】1 .为了安全,核酸水解时,避免将 长玻璃管的管口对准人 。2 .嘌呤碱的鉴定中氨水不能加的过多。

在人体中嘌呤碱基代谢的终产物是尿酸么

对,氧化产物

为什么嘌呤碱基占58%,嘧啶碱基占42%的生物不可能是T4噬菌体?

因为噬菌体内只有DNA,嘌呤碱基占50%。嘧啶碱基占50%,这是肯定的。如果存在RNA或是DNA与RNA都有的生物,才可能嘌呤碱基占58%,嘧啶碱基占42%

RNA和DNA共有的两种嘌呤碱基是()

RNA和DNA共有的两种嘌呤碱基是() A.A/dAB.C/dCC.U/dUD.G/dG正确答案:A/dA;G/dG

腺嘌呤脱氧核苷酸只含这一种腺嘌呤碱基吗?

碱基不同,携带不同的碱基就是不同的脱氧核苷酸,一种脱氧核苷酸里只有一种碱基。

提取细胞核中全部核酸进行碱基分析可知嘌呤碱基数等于嘧啶碱基数 为啥错了

细胞核中全部核酸包括DNA和RNA两种,DNA是双链的,它的嘌呤碱基数等于嘧啶碱基数 ,RNA是单链,它的嘌呤碱基数不一定等于嘧啶碱基数 。希望我的回答对你能有所帮助。

嘌呤碱基从头合成的第一位来源于

嘌呤化合物合成并不是先形成游离的嘌呤,然后生成核苷酸,而是直接形成次黄嘌呤核苷酸(IMP),再由其合成AMP和GMP.

简述嘌呤碱基的最终代谢产物是什么?嘧啶碱基的最终代谢产物是什么?

9 煮熟的鸡蛋 温度,酸碱度等

嘌呤碱基与嘧啶碱基的结合保证了什么物质

嘌呤碱基与嘧啶碱基的结合保证了DNA分子空间结构的相对稳定。嘌呤碱基与嘧啶碱基的特性因素,结合起来会使结构稳定,结构稳定就会保证DNA分子空间结构的相对稳定。

真核生物体内嘌呤碱基和嘧啶碱基比1:1

嘌呤碱基和嘧啶碱基比1:1,对于双链DNA而言,是一定的,因为有碱基的互补配对。但是对于RNA而言,因为它是单链结构,无碱基互补配对原则,所以比例为1:1的情况很少,但在一定程度上有这种可能性。在真核生物体内既有DNA又有RNA,包括腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶和尿嘧啶。因此真核生物体内嘌呤碱基和嘧啶碱基比1:1,是不对的。呵呵

嘌呤碱基占总数的百分之50有哪些生物

哺乳动物、植物等双链DNA生物因为双链DNA碱基对是嘧啶对嘌呤,各占一半。

"所有DNA分子中的嘌呤碱基总数都等于嘧啶碱基总数"这句话为什么不对

以下情况都不符合1、基因突变2、DNA上含有少量特殊嘌呤或嘧啶(非ATCG)3、单链DNA分子还有很多情况,上面句子的“所有”二字太绝对。

在人体中,嘌呤碱基代谢的终产物是()

在人体中,嘌呤碱基代谢的终产物是() A. B.尿素 C.氨 D.尿酸 正确答案:D

不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是什么?

不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是1。因为在双链DNA分子中,按照碱基互补原则,一个嘌呤碱基与一个嘧啶碱基互不配对,所以嘌呤碱基总数等于嘧啶碱基总数,比值是1。

嘌呤碱基和嘧啶碱基的结构

腺嘌呤(adenine,简写:A) 鸟嘌呤(guanine,简写:G) 尿嘧啶(uracil,简写:U) 胞嘧啶(cytosine,简写:C) 胸腺嘧啶(thymine,简写:T)

不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是什么?

你好!不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是1。因为在双链DNA分子中,按照碱基互补原则,一个嘌呤碱基与一个嘧啶碱基互不配对,所以嘌呤碱基总数等于嘧啶碱基总数,比值是1。打字不易,采纳哦!

为什么细菌转化后嘌呤碱基总比例不变,如图?

因为A(腺嘌呤)和T(胸腺嘧啶配对),A的总数等于T,C(胞嘧啶)和G(鸟嘌呤)配对,C的总数等于G,因此嘌呤之和等于嘧啶之和,即A+G=C+T,因此A+G/C+T=1,无论如何转化,只要DNA还保持双链状态,这个式子就成立。

细胞中嘌呤碱基与嘧啶碱基数目一定相等吗?

A、表现型=基因型+外界环境,因此基因型相同的生物体表现型不一定相同,A错误; B、细胞类生物的遗传物质都是DNA,病毒的遗传物质是DNA或RNA,因此以RNA为遗传物质的生物一定是病毒,B正确; C、细胞含有DNA和RNA两种核酸,其中DNA中嘌呤碱基与嘧啶碱基数目一定相等,但RNA中嘌呤碱基与嘧啶碱基数目不一定相等,因此细胞中嘌呤碱基与嘧啶碱基数目也不一定相等,C错误; D、真核生物染色体上的基因不都是成对存在的,如性染色体非同源区段的基因不是成对存在的,D错误. 故选:B.

嘌呤碱基在体内的最终降解产物是?。

对于不同生物而言,由于含嘌呤碱基的代谢酶类不同,因而代谢产物也有所不同。鸟类、部分爬行动物、人类。猿等生物产生的嘌呤代谢最终产物是尿酸,大部分哺乳类动物以及部分昆虫产生尿囊素,两栖类及部分鱼类产生尿素,海洋无脊椎动物、植物等生物产生二氧化碳和氨气,硬骨鱼类产生尿囊酸。

为什么嘌呤碱基和嘧啶碱基总数各占全部碱基总数的50%

碱基互补配对原则 the principle of complementary base pairing   在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。   腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T, G≡C根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。因此,可推知多条用于碱基计算的规律。   规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。   规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)   规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)   规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。即双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%。   规律五:不同生物的DNA分子中,其互补配对的碱基之和的比值(A+T)/(G+C)不同,代表了每种生物DNA分子的特异性。

嘌呤碱基第六位碳原子上的取代基是

氨基。根据查询嘌呤碱基的简介得知,第六位碳原子上的取代基是氨基,嘌呤碱是构成核苷酸的五种碱基,嘌呤分为鸟嘌呤与腺嘌呤,由嘧啶环与咪唑环合并而成。

核酸分子中的嘌呤碱基主要有

核酸(nucleic acid)与蛋白质是最重要的生物大分子。核酸有两类,即脱氧核糖核酸(Deoxyribonucleic acid,DNA)和核糖核酸(Ribonucleic acid,RNA)。核酸是遗传信息的载体,遗传信息位于DNA上,可通过DNA复制将遗传信息传给子代;还可通过转录形成RNA,再通过翻译产生蛋白质,表达相关性状。此外,有部分核酸可作为或参与构成具有生物活性的酶分子或其他分子机器。核酸一、核酸的化学结构核酸是多聚核苷酸,由戊糖、磷酸基团及碱基构成。其中含氮碱基总是连在戊糖的1"碳上,磷酸基团连接在5"碳和相邻戊糖的3"碳上,核苷酸通过磷酸二酯键相连接。核糖连接磷酸的碳的位置体现了核苷酸的3"-5"还是5"-3"走向。戊糖2"上是否脱氧决定了其为核糖核酸还是脱氧核糖核酸。核酸的结构碱基不同,产生的核酸也不同。核酸包含两类,一类是嘧啶(pyrimidine),一类是嘌呤(purine)。嘧啶有C、U、T三种;嘌呤有A、G两种。嘧啶和嘌呤环都很接近平面,但稍有绕折,嘧啶碱以单环结构为特征,嘌呤碱以双环结构为特征。通过不同位点的氨基化、脱氨基、甲基化形成不同的嘧啶和嘌呤。碱基之间的关系二、DNA高级结构B型DNA是DNA的最常见结构。配对碱基间氢键和堆积力是双螺旋结构维持稳定的原因。值得一提的是DNA双螺旋结构是反向平行互补的,而不是交叉缠绕成麻花状。DNA双螺旋结构(在生物体内DNA的形态如左侧所示,右侧是错误的形态)DNA在磷酸骨架距离较近的一侧形成小沟,而对侧形成大沟。大、小沟中分别有很多功能基团暴露在侧,在引发甲基化作用、结合转录因子等DNA与蛋白质相互作用中起到了关键作用。DNA的大沟和小沟由于-OH攻击磷酸基团,在5"端由于镁离子把磷酸的电子往外拉,导致电子分布极化,使得亲核反应更容易进行;在3"端,P被原有的O紧密包围,电子分布均匀,亲核反应难以进行。故DNA复制只能从5"到3"。从5"到3"的DNA复制,出处@吴思涵真核生物在DNA复制过程中在复制远点处氢键迅速断裂与再生,导致两条DNA链不断解链与聚合,形成瞬间的单泡状结构的过程称为DNA的呼吸作用。呼吸作用令在启动子中的TATAbox中发生的碱基对氢键的熔断,使得RNA聚合酶得以进入双螺旋链中打开DNA链形成开放式转录起始复合物。

嘌呤碱基的介绍

嘌呤碱基是一种碱基化合物。是生物体中核酸(DNA,RNA)和一些小分子的核苷酸重要组成部分。在生物学中常见的有:鸟嘌呤(G),腺嘌呤(A)。

嘌呤碱基和嘧啶碱基代谢过程有何区别与联系

嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳性嘧啶与核酸形成D N A和R N A的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(C y t o s i n e),胸腺嘧啶(T h y m i n e),尿嘧啶(U r a c i l)。l m a g e:C y T o s i n e c h e m i c a l s t r u c t u r e.p n g|胞嘧啶l m a g e:T h y m i n e c h e m i c a l s t r u c t u r e.p n g|胸脲嘧啶l m a g e: U r a c i l c h e m i c a l s t r u c t u r e.p n g|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结会。杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。

嘌呤碱基、嘧啶碱基、核苷、核苷酸和多聚核苷酸链在分子结构上的关系怎样?

核苷,核苷酸,核酸三者在分子结构上的关系是“核苷酸是核苷的磷酸酯,是组成核酸的基本单元”,核酸也叫多聚核苷酸,核糖体的核糖核酸,简称rRNA。核苷酸Nucleotide是一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸

4.嘌呤碱基、嘧啶碱基、核苷、核苷酸和多聚核苷酸链在分子结构上的关系怎样?

搜索登录首页教育/科学理工学科化学生物化学嘌呤和嘧啶的结构关系如何2***全部答案2***2013-04-04 14:40:28 嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。嘧啶与核酸形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。 chemicalg|胞嘧啶chemicalg|胸腺嘧啶chemicalg|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。 杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。 嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。 2、重要的能源物质三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。3、重要的信使分子环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。 4、作为某些活性基因的载体S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。5、参与组成某些辅酶腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。 人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。 嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。 嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。 鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。 研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。

细胞核中的嘌呤碱基和嘧啶碱基是否相同

碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。