不是实对称矩阵需要斯密特正交化,是转化为对角阵的转化矩阵需要斯密特正交化。斯密特正交化不是必须的,不过斯密特正交化后的矩阵具有独特的特点。实对称矩阵不同特征值对应的特征向量一定正交。所以如果把多重特征值对应的特征向量正交化后,所有的特征向量两两正交。如果再单位化。那么这些不同向量的内积为0,而自己与自己的内积为1。扩展资料:正交化是指将线性无关向量系转化为正交系的过程。设{xn}是内积空间H中有限个或可列个线性无关的向量,则必定有H中的规范正交系{en}使得对每个正整数n(当{xn}只含有m个向量,要求n≤m),xn是e1,e2,…,en的线性组合。这种把线性无关向量系进行正交化的过程,称为格拉姆-施密特正交化过程。参考资料来源:百度百科-格拉姆-施密特正交化过程