数列的极限

DNA图谱 / 问答 / 标签

夹逼定理求数列的极限究竟是怎么一

定义一.如果数列{Xn},{Yn}及{Zn}满足下列条件:(1)当n>N0时,其中N0∈N*,有Yn≤Xn≤Zn,(2){Yn}、{Zn}有相同的极限a,设-∞<a<+∞则,数列{Xn}的极限存在,且当 n→+∞,limXn =a。证明:因为limYn=a,limZn=a,所以根据数列极限的定义,对于任意给定的正数ε,存在正整数N1、N2,当n>N1时 ,有〡Yn-a∣﹤ε,当n>N2时,有∣Zn-a∣﹤ε,现在取N=max{No,N1,N2},则当n>N时,∣Yn-a∣<ε、∣Zn-a∣<ε同时成立,且Yn≤Xn≤Zn,即a-εlimXn=a[1]

如何用夹逼定理求数列的极限。

解答:1、证明数列 (1+1/n)^n 是单增数列(用二项式展开);2、证明数列 (1+1/n)^n 有界;3、记该数列极限为e;4、求 (1+1/n)^(n+1),(1+1/n)^(n-1) 的极限;5、将 (1+1/x)^x 用夹逼准则放在上面几个数列极限之间即可。N的相应性 一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。

求证:一个数列极限是1那它的k次方的数列的极限也是1

构造一个连续函数f(x)使得x=1,2,3...时,f(x)=a1,a2.a3.......,而我们知道函数G(t)=t^k是一个连续函数。从而对t趋近t0,我们有G(t)趋近G(t0),现在我们回到上面的问题上,我们知道n趋近无穷大时有f(x)趋近于1,我们令t=f(x)则可从上面的G函数得等到上题目的结论。(这是要函数与数列的关系做的,也就是海涅定理)下面再说一个直接的做法,我们先引进一个等式a^n-b^n=(a-b)(a^n-1+a^n-2b+……+ab^n-2+b^n-1)这样就可以用数列极限的定义来证明了,过程比较简单这里就不写了。

函数的极限和数列的极限有什么区别

1、从研究的对象看区别数列是离散型函数。 而函数极限研究的对象主要是具有(哪怕局部具有)连续性的函数。2、取值方面的区别数列中的下标n仅取正整数,而对函数而言其自变量x取值为实数。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。3、从因变量趋近方式看区别数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近;而函数没有跳跃趋近。关系虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。扩展资料数列极限和函数极限的性质1、常用的数列极限的性质:数列极限具有唯一性、有界性、保号性、保不等式性、迫敛性。2、常用的函数极限的性质:函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。参考资料来源:百度百科-函数极限参考资料来源:百度百科-数列极限

为什么说函数的极限可以用数列的极限来定义和表达呢?

这条是海涅归结定理,该定理将数列极限与函数极限之间的关系联系起来了。海涅定理_百度百科【数学分析】海涅定理(归结原则)

函数极限与数列的极限有什么区别?

形式上,数列是函数的一种特例,即自变量为正整数的函数。那么,数列极限在形式上也就是一种特殊的函数极限。但是,这两者是有本质区别的。首先,数列表达的是离散量,而函数表达的是连续量,进一步说,微积分研究的就是连续量的计算问题,也就是函数的微分和求导。第二,函数(连续量)对应的自变量是实数,数列(离散量)对应的是正整数。实数在微积分(严格的说是数学分析)中是用无限十进制小数来定义的,函数的极限必须用数列的极限来逼近才能得到,数学分析中很多定理和命题都是从数列极限得到的。这也是为什么学习微积分从极限开始(数学专业从实数理论开始),而极限却是以数列极限为先导的原因,可以认为,微积分是建立在数列极限的基础之上的。 (ps:这是我个人对微积分的理解,不妥之处希望高手指点)(再ps:全手打,希望采纳)

怎么由海涅归结原则求一个数列的极限

海涅定理的表述是:存在的充要条件是:对属于函数f(x)定义域的任意数列{an},且,an不等于a,则有。 先看左边,意思就是说“所有”离a很近的点,它们的像离b很近。而右边对应的提出,“任意”一列趋近于a的点列,它们的像是趋近于b。