数列极限

DNA图谱 / 问答 / 标签

函数极限与数列极限的关系是什么?

关系虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。区别1、从研究的对象看区别:数列是离散型函数。 而函数极限研究的对象主要是具有(哪怕局部具有)连续性的函数。2、取值方面的区别:数列中的下标n仅取正整数,而对函数而言其自变量x取值为实数。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。3、从因变量趋近方式看区别:数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近;而函数没有跳跃趋近。扩展资料函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。参考资料百度百科——海涅定理百度百科——函数极限

数列极限与函数极限的区别与联系是什么?

数列极限与函数极限的联系是:虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。两者之间的区别:1、从研究的对象看区别:数列极限是函数极限的一种特殊情况,数列是离散型函数。而函数极限研究的对象主要是具有(哪怕局部具有)连续性的函数。2、取值方面的区别:数列中的下标n仅取正整数,而对函数而言其自变量x取值为实数。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。3、从因变量趋近方式看区别:数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近。而函数没有跳跃趋近。函数极限的几种趋近形式:x趋于正无穷大;x趋于负无穷大;x趋于无穷大;x左趋近于x0;x右趋近于x0;x趋近于x0,并且是连续增大。而函数极限只是n趋于正无穷大一种,而且是离散的增大。

归结原则反映了数列极限与函数极限的什么关系?

归结原则反映了数列极限与函数极限的关系,把函数集线归结为数列极限的问题来处理。海涅定理是沟通函源数极限和数列极限之间的桥梁。根据海涅定理,求函数极限则可化为求数列极限,同样求数列极限也可转化为求函数极限。因此,函数极限的所有性质都可以用序列极限的性质来证明。根据海涅定理的必要和重要条件,也可以判断一个函数的极限是否存在。因此,海涅定理在求解序列极限或函数极限时起着重要的作用。海涅定理根据海涅定理的充要条件,还可以判断函数极限是否存在。因此,海涅定理在求解序列极限或函数极限时起着重要的作用。海涅定理是由德国数学家海涅提出的。利用海涅定理,人们可以把函数的极限问题转化为级数问题,所以人们又称其为泛化原理。序列的极限和函数的极限是独立定义的,但它们是相互联系的。海涅定理深刻地揭示了变量变异的整体与局部、连续与离散之间的关系,从而在序列极限与函数极限之间架起了沟通的桥梁。

求证:一个数列极限是1那它的k次方的数列的极限也是1

构造一个连续函数f(x)使得x=1,2,3...时,f(x)=a1,a2.a3.......,而我们知道函数G(t)=t^k是一个连续函数。从而对t趋近t0,我们有G(t)趋近G(t0),现在我们回到上面的问题上,我们知道n趋近无穷大时有f(x)趋近于1,我们令t=f(x)则可从上面的G函数得等到上题目的结论。(这是要函数与数列的关系做的,也就是海涅定理)下面再说一个直接的做法,我们先引进一个等式a^n-b^n=(a-b)(a^n-1+a^n-2b+……+ab^n-2+b^n-1)这样就可以用数列极限的定义来证明了,过程比较简单这里就不写了。

函数极限与数列极限有关系吗?

关系虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。区别1、从研究的对象看区别:数列是离散型函数。 而函数极限研究的对象主要是具有(哪怕局部具有)连续性的函数。2、取值方面的区别:数列中的下标n仅取正整数,而对函数而言其自变量x取值为实数。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。3、从因变量趋近方式看区别:数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近;而函数没有跳跃趋近。扩展资料函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。参考资料百度百科——海涅定理百度百科——函数极限

高分求利用海涅定理和数列极限证明函数的性质(在线等!)

见图。