RNA

DNA图谱 / 问答 / 标签

结合最新研究进展讨论RNA的功能

核糖体RNA(rRNA):核糖体组分。 信使RNA(mRNA):蛋白质合成模板转运RNA(tRNA):转运氨基酸。 不均一核RNA(hnRNA):成熟mRNA的前体。小核RNA(snRNA):参与hnRNA的剪接、转运。 小胞浆RNA(scRNA/7SL-RNA):蛋白质内质网定位合成的信号识别体的组成成分。microRNA:平均每个microRNA调解人类的200种不同的mRNA,并且多个microRNA能够协调它们的活动以调节一些特殊的靶标基因。miRNA:主要功能是调节内源基因的表达,参与细胞周期的调控及个体发育过程。导引RNA(gRNA):mRNA编辑。RNA聚合酶(RNA P):tRNA加工。核仁小分子RNA(snoRNA):参与rRNA成熟加工(切割和修饰)。SRP-RNA:参与蛋白质的分泌。端粒mRNA:参与DNA端粒合成并影响细胞的寿命。tmRNA:参与破损mRNA蛋白质合成的终止。

为什么一个tRNA只能携带一种氨基酸!但是有些氨基酸可以对应多个tRNA,我不知道怎么记住.....

tmRNA的结构已经确定,只能运送和自己互补的。氨基酸一共有20种,61种密码子对应了最多61种tmRNA,所以,一种氨基酸可以由几种转运RNA运送。

一个氨基酸可以对应多个tRNA,但一个tRNA只能对应一个氨基酸?

是的。不同的氨基酸有的有多个遗传密码,这样的氨基酸就由多个tRNA转运。但每个tRNA都有特定的反密码子,只能转运一种氨基酸。

什么是非编码RNA

分类: 教育/科学 >> 科学技术 解析: 非编码RNA,指的是不被翻译成蛋白质的RNA,如tRNA, rRNA等,这些RNA不被翻译成蛋白质,但是参与蛋白质翻译过程。 此外还有snRNA,snoRNA等参与RNA剪接和RNA修饰, miRNA也是非编码RNA,是小的RNA分子与转录基因互补,介导基因沉默。 gRNA又称引导RNA,真核生物中参与RNA编辑的具有与mRNA互补序列的RNA;eRNA,从内元(introns)或非编码DNA转录的RNA分子,精细调控基因的转录和翻译效率; 信号识别颗粒RNA,细胞质中与含信号肽mRNA识别,决定分泌的RNA功能分子; pRNA,噬菌体RNA,fi29噬菌体中用6个同样的小RNA分子利用ATP参与DNA的包装; tmRNA,具有tRNA样和mRNA样复合的RNA,广泛存在细菌中,识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问题的核糖体的崩解; 最后就是mRNA中的非翻译区,含有核糖体识别元件如5"-UTR,3"-UTR等。内元(introns)也可看作非编码RNA。

一种tRNA可以携带多种氨基酸吗?详解

生命体遗传物质绝大部分是DNA,有少部分RNA病毒的遗传 是RNA。RNA分为mRNA,tRNA,rRNA。tRNA上的叫反密码子,是三联体的,而有相应的mRNA上的三联体密码子决定了tRNA上运送的氨基酸,所以每一种tRNA仅有一种氨基酸。但是tRNA上的碱基不是只有3个,是有很多的。

什么是外源性RNA?

外源性RNA,即tmRNA是存在于细菌的一类稳定的小RNA,tmRNA的功能:(1):将“滞留”在tmRNA上的核糖体解脱下来。(2):将一段信号肽加在有缺陷的蛋白质C末端,使其有效的水解。tRNA样区域的结构类似典型tRNA的四叶草结构,其折叠方式类似于tRNA。其结构的维持与D和T环之间的相互作用有关。虽然tRNA样区域没有密码子—反密码子复合体以供核糖体A位识别,有证据表明tmRNA自身或与其结合的蛋白质具有类似核糖体A位识别功能。tRNA样区域周围有高度保守的碱基序列。据认为对tmRNA的空间构像和功能有重要作用,同时tRNA样区域同其mRNA区域也存在着相互作用,两者之间的功能应该有相互联系。

细菌中的tmRNA是什么?有什么生物学作用?作用机理又是什么?

内容如下:tmRNA 全称Transfer-messenger RNA, 是一种兼具tRNA和mRNA性质的特殊RNA:tmRNA, from wikipedia。这种RNA主要帮助保证细菌蛋白质翻译的保真性,通过"ribosome rescue" 来回收停滞的核糖体。简单来讲,在基因表达的时候,核糖体有时候会因为各种各样的原因停在mRNA上,比如说缺失终止密码子等等。在这种情况下,细菌可以通过tmRNA来回收卡住的核糖体并且降解未翻译完的肽链。RNA简介:核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶),其中,U(尿嘧啶)取代了DNA中的T(胸腺嘧啶)。核糖核酸在体内的作用主要是引导蛋白质的合成。

核酸包括DNA和RNA两种?

核酸(nucleic acid)是重要的生物大分子,它的构件分子是核苷酸(nucleotide)。天然存在的核酸可分为: ╭ 脱氧核糖核酸(deoxyribonucleic acid,DNA) ╰ 核糖核酸(ribonucleic acid,RNA)DNA贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础。RNA中参与蛋白质合成的有三类: ╭ 转移RNA(transfer RNA,tRNA) ∣ 核糖体RNA(ribosomal RNA,rRNA) ╰ 信使RNA(messenger RNA,mRNA)20世纪末,发现许多新的具有特殊功能的RNA,几乎涉及细胞功能的各个方面。核苷酸可分为: ╭ 核糖核苷酸:是RNA的构件分子 ╰ 脱氧核糖核苷酸:是DNA构件分子。细胞内还有各种游离的核苷酸和核苷酸衍生物,它们具有重要的生理功能。核苷酸由: ╭ 核苷(nucleoside) ╰ 磷酸核苷由: ╭ 碱基(base) ╰ 戊糖碱基(base):构成核苷酸中的碱基是含氮杂环化合物,由嘧啶(pyrimidine)和嘌呤(purine)构成。核酸: ╭ 嘌呤碱 : ╭ 腺嘌呤 ∣ ╰ 鸟嘌呤 ╰ 嘧啶碱 : ╭ 胞嘧啶 ∣ 胸腺嘧啶 ╰ 尿嘧啶╭ DNA中含有腺嘌呤、鸟嘌呤和胞嘧啶,胸腺嘧啶主要存在于DNA中。∣╰ RNA中含有腺嘌呤、鸟嘌呤和胞嘧啶,尿嘧啶主要存在于RNA中。在某些tRNA分子中也有胸腺嘧啶,少数几种噬菌体的DNA含尿嘧啶而不是胸腺嘧啶。这五种碱基受介质pH的影响出现酮式、烯醇式互变异构体。在DNA和RNA中,尤其是tRNA中还有一些含量甚少的碱基,称为稀有碱基(rare bases)稀有碱基种类很多,大多数是甲基化碱基。tRNA中含稀有碱基高达10%。戊糖:核酸中有两种戊糖DNA中为D-2-脱氧核糖(D-2-deoxyribose),RNA中则为D-核糖(D-ribose)。在核苷酸中,为了与碱基中的碳原子编号相区别核糖或脱氧核糖中碳原子标以C-1",C-2"等。脱氧核糖与核糖两者的差别只在于脱氧核糖中与2"位碳原子连结的不是羟基而是氢,这一差别使DNA在化学上比RNA稳定得多。核苷:核苷是戊糖与碱基之间以糖苷键(glycosidic bond)相连接而成。戊糖中C-1"与嘧啶碱的N-1或者与嘌吟碱的N9相连接,戊糖与碱基间的连接键是N-C键,一般称为N-糖苷键。RNA中含有稀有碱基,并且还存在异构化的核苷。如在tRNA和rRNA中含有少量假尿嘧啶核苷(用ψ表示),在它的结构中戊糖的C-1不是与尿嘧啶的N-1相连接,而是与尿嘧啶C-5相连接。核苷酸:核苷中的戊糖5"碳原子上羟基被磷酸酯化形成核苷酸。核苷酸分为核糖核苷酸与脱氧核糖核苷酸两大类。依磷酸基团的多少,有一磷酸核苷、二磷酸核苷、三磷酸核苷。核苷酸在体内除构成核酸外,尚有一些游离核苷酸参与物质代谢、能量代谢与代谢调节,如三磷酸腺苷(ATP)是体内重要能量载体;三磷酸尿苷参与糖原的合成;三磷酸胞苷参与磷脂的合成;环腺苷酸(cAMP)和环鸟苷酸(cGMP)作为第二信使,在信号传递过程中起重要作用;核苷酸还参与某些生物活性物质的组成:如尼克酰胺腺嘌呤二核苷酸(NAD+),尼克酰胺腺嘌呤二核苷酸磷酸(NADP+)和黄素腺嘌呤二核苷酸(FAD)。核酸的分子结构:一、 核酸的一级结构核酸是由核苷酸聚合而成的生物大分子。组成DNA的脱氧核糖核苷酸主要是dAMP、dGMP、dCMP和dTMP,组成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。核酸中的核苷酸以3",5"磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5"末端与3"末端。5"末端含磷酸基团,3"末端含羟基。核酸链内的前一个核苷酸的3"羟基和下一个核苷酸的5"磷酸形成3",5"磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。

如何测量RNA的纯度和含量

1. 相关概念RNA质检参数OD260/OD280、OD260/OD230的意义。260、280、320、230nm下的吸光度分别代表了核酸、蛋白质、盐浓度和有机溶剂的值。A230: 测定其它碳源物质,如酚,糖类等。A260:核酸的吸收峰测,测RNA,DNA,引物等的浓度用的。A280:蛋白质的吸收峰。一般的,我们只看OD260/OD280(Ratio,R)在1.8~2.1范围内时,我们认为 RNA中蛋白的污染是可以容忍的,不过要注意,当用 Tris 作为缓冲液检测吸光度时,R 值可能会大于 2(一般应该是<2.2的)。当R < 1.8时,溶液中蛋白的污染比较明显,可以根据自己的需要决定这份RNA 的命运。当R > 2.2时,说明RNA已经水解成单核酸了。纯RNA的OD260/OD280的比值为2.0。2. RNA质量检验RNA样品的品质检测一般分为总量,纯度与完整性三大项。总量:微量分光光度计测260nm吸收值计算。纯度:微量分光光度计测260nm/230nm吸收值的比值,用于评估有机溶剂残留;260nm/280nm吸收值的比值,用于评估蛋白质污染比例。完整性:以Agilent Bioanalyzer进行毛细管电泳(capillary electrophoresis),并以软件的RIN(RNA Integrity Number)分数评估,10为RNA完整性最好,0为最差。l RNA纯度RNA在纯化过程中容易受到DNA、蛋白质及有机溶剂的影响,这些残存物将会影响以后的操作。光谱分析(NANODROP)利用物质对不同波长光的吸收度的不同,可以鉴别出溶液纯度及浓度。RNA溶液的A260/A280的比值是一种RNA纯度检测方法,比值范围一般为1.8-2.1。各项实验对RNA纯度要求不一,比如即使比值超出这个范围,RNA样品也一样可以用于一些普通实验中,如Northern杂交、RT-PCR、荧光定量PCR和RNA酶保护等实验。

核糖核酸(RNA)是核酸吗?

相同点:这两类核苷酸都有一份五碳糖,一份碱基和一份磷酸组成。不同点:1、基本单位不同,DNA为脱氧核苷酸,RNA为核糖核苷酸。2、五碳糖分类不同,DNA的五碳糖为脱氧核糖,RNA的五碳糖为核糖。3、碱基对不同,DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶,RNA的为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶。扩展资料:组成结构:与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA,rRNA,mRNA。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。在病毒方面,很多病毒只以RNA作为其唯一的遗传信息载体。研究表明,不少RNA,如I、II型内含子,RNaseP,HDV,核糖体大亚基RNA等等有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶。在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA和小核RNA。hnRNA是mRNA的前体。snRNA参与hnRNA的剪接。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。参考资料来源:百度百科-脱氧核糖核酸参考资料来源:百度百科-核糖核酸

相比于基因敲除,RNA干扰的优势在哪里?

基因敲除是指利用各种手段使某个基因不再表达,常见的方法是在基因的转录区插入一段外源DNA序列,从而破坏该基因的表达;RNA干扰是指一类小RNA可以与目的基因配对结合,从而使正常的基因表达受到干扰;基因沉默是指位于有些基因座的基因其表达不活跃甚至不表达的现象。

基因敲除,rna干扰,基因沉默有什么关系

基因敲除是指利用各种手段使某个基因不再表达,常见的方法是在基因的转录区插入一段外源DNA序列,从而破坏该基因的表达;RNA干扰是指一类小RNA可以与目的基因配对结合,从而使正常的基因表达受到干扰;基因沉默是指位于有些基因座的基因其表达不活跃甚至不表达的现象。

基因工程中导入基因与导入mRNA相比优点是?

还是在于表达的稳定性。对于一段完整的DNA序列,通过转染的方式,基本可以很好的完成表达。但mRNA就存在以下问题。首先,合成mRNA很复杂,体外转录获得的RNA通常没有5‘帽3"尾等必要结构,再加上自身的二级结构等原因,往往造成翻译过程不通常或者失败,人工合成的RNA同样存在以上问题。另外,转入RNA会引起一系列不可预期的变化,远不及转入基因可控。最后,转入mRNA需求量大,mRNA的存在周期很短,基本只能有几个小时,而转基因的话基本上能持续几天,还有就是大量转入mRNA对细胞的毒性也很大,实验容易不顺利

非负矩阵分解(NMF)应用于scRNAseq的细胞分群

非负矩阵分解(Non-negative Matrix Factorization, NMF)的思想可以描述为,对于任意给定的一个非负矩阵V,NMF算法能够找到一个非负矩阵W和一个非负矩阵H,使得非负矩阵V≈W*H 成立 ,从而将一个非负的矩阵分解为左右两个非负矩阵的乘积。 利用矩阵分解来解决实际问题的分析方法很多,如PCA(主成分分析)、ICA(独立成分分析)、SVD(奇异值分解)等。在这些方法中,原始的大矩阵V被近似分解为低秩的V=WH形式。这些方法的共同特点是,即使输入的初始矩阵元素是全正的,传统的秩削减算法也不能保证原始数据的非负性,因子W和H中的元素往往含有负值元素。从数学和计算的观点看,分解结果中存在负值没有问题,但负值元素在实际问题中往往是没有意义的。NMF约束了原始矩阵V和分解矩阵W、H的非负性,这就意味着只能通过特征的相加来实现原始矩阵V的还原,最终导致的结果是:非负性会引发稀疏,非负性会使计算过程进入部分分解。 u26a0ufe0f这里使用pbmc数据集来演示NMF做细胞分群,实际上NMF在对 亚群细分 和 提取feature 时候效果更好,对亚群定义很有帮助。 重新进行标准化和归一化,注意设置 do.center = F ,这样就不会得到负值 在做nmf时, rank 值可以选的比目的预期的细胞类型/细胞状态稍微大一些的值,因为分解的一些因子会富集到线粒体核糖体等噪音,而不会落到一个具体的细胞亚群上面。(这里选了12) u26a0ufe0f:被非负矩阵分解出来的一些marker基因,一般是很有生物学意义的基因(因此适合于亚群细分和提取feature,便于细胞亚群注释) 注意: 如果细胞数比较多,在做NMF时,用于做非负矩阵分解的高变基因选择6000个左右比较合适,没有必要用全部基因来做。(这里演示用了2000个) NMF运行很慢,在做大群定义结果和Seurat相差也不大,因此做大群定义的时候没有必要使用NMF。

mRNA为什么可作为信号分子?

楼主可能是理解有误! “一个mRNA分子上结合多个核糖体,同时合成多条肽链”,在这里这多条肽链中的氨基酸序列是一样的,因为模板都是同一个mRNA。而楼主可能理解为那些含有多条肽链的蛋白质中的那多条肽链也是这么合成的,那就错了。

为什么上皮细胞与骨骼肌细胞RNA种类不同

上皮细胞和骨骼肌细胞已失去分裂能力,其细胞的遗传性息的主要传递方向是DNA--RNA--蛋白质.这句话对,这是因为这些细胞不再分裂,所以不能通过DNA的自我复制来传递遗传信息,遗传信息的载体主要是DNA(在少数情况下RNA也充当遗传信息载体),控制生物体性状的基因则是一系列DNA片段.一方面,DNA通过自我复制,在生物体的繁衍过程中传递遗传信息;另一方面,基因通过转录和翻译,使遗传信息在生物个体中得以表达,并使后代表现出与亲代相似的生物性状.在基因表达过程中,基因上的遗传信息首先通过转录从DNA传到RNA,然后再通过翻译从RNA传递到蛋白质.只有进行有丝分裂且持续分无论在无脊椎动物还是脊椎动物中,组成中枢神经系统(CNS)的大多数细胞都是由极性神经祖细胞不对称分裂而来.通过简要综述果蝇(Drosophila melanogaste)成神经母细胞(NB)不对称分裂机制,并与近年来在脊椎动物不对称细胞分裂上取得的研究成果相比较,尝试找出两个系统的相似性和相异性...裂的细胞才有细胞周期,如癌细胞、各种干细胞、皮肤生发层细胞、骨膜内成骨细胞、性腺内的精原细胞或卵原细胞等细胞有细胞周期

拟病毒、卫星病毒、卫星RNA的区别

拟病毒又称类类病毒、壳内类病毒,是一类包裹在真病毒粒中,有缺陷的类病毒(类病毒是只含RNA,专性寄生在活细胞内的分子病原体)。卫星病毒是基因组缺损,必须依赖某些形态较大的专一辅助病毒才能复制和表达的小型伴生病毒。卫星RNA是存在于某专一病毒粒(辅助病毒)的衣壳内,并完全依赖后者才能复制自己的小分子病原因子。拟病毒与卫星RNA的区别:拟病毒的基因组与辅助病毒的整合,且与其具有同源性,只有存在拟病毒,才能侵染宿主细胞。而卫星RNA则反之。至于卫星病毒,看它的定义,它本身就是一种病毒,是有缺陷的小型伴生病毒。其与拟病毒、卫星RNA的区别就很明显了。

组成DNA,RNA的五碳糖,碱基,核苷酸,磷酸种类分别是2,5,8,1,他们都是哪些

五碳糖:核糖,脱氧核糖碱基:包嘧啶,腺嘌呤,鸟嘌呤,胸腺嘧啶(DNA里才有),尿嘧啶(RNA里才有)核苷酸:(根据嘌呤或嘧啶还有五碳糖的不同)1.包嘧啶脱氧核糖核苷酸,2.腺嘌呤脱氧核糖核苷酸,3.鸟嘌呤脱氧核糖核苷酸,4.胸腺嘧啶脱氧核糖核苷酸,5包嘧啶核糖核苷酸,6腺嘌呤核糖核苷酸,7鸟嘌呤核糖核苷酸,8尿嘧啶核糖核苷酸.磷酸就是磷酸分子一种(核算根据五碳糖的不同分两种,DNA和RNA,单位都是核苷酸,核苷酸都是由五碳糖,碱基,磷酸组成的)还有什么不懂再问吧

DNA,RNA,蛋白质的基本单位、初步水解产物、水解的最终产物,代谢的最终产物分别是什么

DNA:脱氧核苷酸(初步水解、基本单位)终产物:含氮碱基、脱氧核糖、磷酸,RNA:核糖核苷酸(初步水解、基本单位)终产物:含氮碱基、核糖、磷酸,蛋白质:氨基酸,终产物:二氧化碳、水、尿素

RNA核酸碱基互补特点

RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA(转运RNA), rRNA(核糖体RNA), mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。

只存在rna的碱基是

尿嘧啶。只存在rna的碱基是尿嘧啶,碱基,又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。

通常既不见于dna又不见于rna的碱基是

通常既不出现在DNA分子中,又不出现在RNA分子中的碱基通常是一些稀有碱基,例如二氢尿嘧啶(D),假尿嘧啶Ψ,次黄嘌呤(I)。碱基,在化学中本是“碱性基团”的简称。有机物中大部分的碱性基团都含有氮原子,称为含氮碱基,氨基(-NH2)是最简单的含氮碱基。碱基,在生物化学中又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。核碱基间可以形成碱基对,且彼此堆叠,所以,它们是长链螺旋结构,例如核糖核酸(RNA)和脱氧核糖核酸(DNA)的重要组成部分。在典型的双螺旋DNA中。每个碱基对都含有一个嘌呤和一个嘧啶:A与T配对通过2个氢键相连,C与G配对或Z配P或S配B是通过3个氢键相连。这些嘌呤-嘧啶间的配对现象被称为碱基互补,连接DNA两条链的碱基通常被比喻成梯子中的横档梯级。嘌呤和嘧啶间配对的部分原因是受到空间的限制,因为这种配对组合使得DNA螺旋成为一个具有恒定宽度的几何形状。 A-T和C-G配对在互补碱基的胺和羰基之间形成双或三氢键。

rna分子中碱基类型不包括哪一个

组成RNA分子的碱基中不包括(D)A.尿嘧啶B.鸟嘌呤C.胞嘧啶D.胸腺嘧啶E.腺嘌呤一、尿嘧啶:1、尿嘧啶是RNA特有的碱基,相当于DNA中的胸腺嘧啶,在DNA的转录过程中DNA在细胞核内被解旋酶解旋,再与游离的碱基对配对形成一条单链的RNA链条。2、尿嘧啶是RNA特有的碱基,相当于DNA中的胸腺嘧啶,是形成RNA和维生素B3的基本构件之一,是组成RNA四种构成的碱基之一,在DNA的转录时取代DNA中的胸腺嘧啶,与腺嘌呤配对,将尿嘧啶甲基化即得胸腺嘧啶。二、鸟嘌呤:1、鸟嘌呤是一种有机化合物,为白色至淡黄色晶体粉末,对紫外线有强烈的吸收性,为鸟苷和鸟苷酸的组成成分。鸟2、嘌呤广泛存在于动植物界,是核酸的基本组分之一,鸟嘌呤是一种嘌呤衍生物,由具有共轭双键的稠合嘧啶咪唑环系统组成。三、胞嘧啶:1、胞嘧啶是一种有机物,是核酸中的主要碱基组成成分之一,胞嘧啶可由二巯基脲嘧啶,浓氨水和氯乙酸为原料合成制得。2、胞嘧啶核苷和胞嘧啶核苷酸均可作为升高白细胞的药物,胞嘧啶是精细化工农药和医药的重要中间体,特别在医药领域,应用非常广泛。四、腺嘌呤:1、维生素B4是组成DNA和RNA分子的四种核碱基的一种,其在体内主要以腺嘌呤核苷酸的形式存在,在体内代谢途径中参与形成多种重要的中间物质。2、维生素B4为核酸和辅酶的组成成分,参与体内DNA和RNA的合成,为维持生物体代谢功能的必要成分,其作用是在白细胞缺乏时能促进白细胞的增生。

rna病毒既然可以逆转录 为什么还说他的核酸碱基只有4种呢,我觉得是5种,求大神帮助

这个考察的是生物分类及遗传物质。我喜欢按照所有生物有无核膜和有无细胞结构,将其分为真核生物、原核生物、DNA 病毒和RAN 病毒,其中RAN 病毒是由RNA和蛋白质两部分组成,所以其只含有RAN 的四种碱基A U G C,不是5种。至于你说的逆转录,可以明确告诉你,目前,已知的,可以逆转录的,就艾滋病病毒一种,再者,逆转录是在宿主细胞内进行,对病毒自身遗传物质无影响。建议今后这种题目分类定为生物。

科学研究|科研人员从三种陨石中发现 DNA 和 RNA 的关键成分

使用最先进的分析技术,研究人员已经在三种碳质陨石中(包括默奇森、默里和塔吉什湖陨石)中检测到不同的核碱基套件——包括经典碱基对(例如,腺嘌呤-尿嘧啶、鸟嘌呤-胞嘧啶、腺嘌呤-胸腺嘧啶)和一些非经典碱基对(例如,异鸟嘌呤-异胞嘧啶)和黄嘌呤-2,4-二氨基嘧啶) 近日, 发表在《 自然通讯》杂志 上的一篇研究文章报道,来自北海道大学的 Yasuhiro Oba 博士及其同事确定了科学家们未能发现的最后两个核碱基。 形成 DNA 和 RNA 需要两种化学结构单元或核碱基。 这些是嘧啶,包括胞嘧啶、尿嘧啶和胸腺嘧啶,以及嘌呤,例如鸟嘌呤和腺嘌呤。 到目前为止,在陨石中只发现了嘌呤核碱基和尿嘧啶。 然而,这次北海道大学的 Yasuhiro Oba 博士及其同事发现了先前研究未能发现的最后两个核碱基。 “我想知道为什么嘌呤和嘧啶是特殊的,因为它们在碳质陨石中没有显示出与氨基酸和碳氢化合物等其他有机化合物不同的结构多样性,”Oba 博士说。 “由于嘌呤和嘧啶可以在外星环境中合成,正如我们自己的研究所证明的那样,人们预计会在陨石中发现这些有机分子的广泛多样性。” 美国宇航局戈达德太空飞行中心的研究员丹尼·格拉文博士补充说:“我们现在有证据表明,当生命出现时,今天生命中使用的一整套核碱基本可以在地球上获得。” 新发现的一对核碱基,胞嘧啶和胸腺嘧啶,在之前的分析中一直难以捉摸,可能是因为它们的结构更精细,当科学家之前提取样品时,它们可能已经降解。 在早期的实验中,科学家们创造了一种“陨石茶”,将陨石颗粒放入热水浴中,让样品上的分子提取到溶液中,然后分析外星肉汤的分子组成。 “我们研究这些水提取物,因为它们含有好东西,古老的有机分子,它们可能是地球上生命起源的关键组成部分,”格拉文博士说。 由于这两个核碱基非常脆弱,研究作者最初对在样本中看到它们持怀疑态度。 但有两个因素可能促成了这一新发现:首先,他们使用冷水而不是热甲酸来提取化合物——甲酸非常活泼,可能会破坏之前样品中的这些脆弱分子。其次,采用了更敏感的分析,可以检测到更少量的这些分子。 这一发现并没有提供关于地球上的生命是从太空获得帮助还是仅在地球婴儿期的益生元汤中出现的确凿证据。 但是,除了样本中发现的其他分子之外,完成构成今天生命的一组核碱基,为试图了解生命起源的科学家们提供了更多在实验室中进行实验的化合物。 “这增加了越来越多的发现,现在已经发现陨石含有糖和碱,”美国宇航局戈达德太空飞行中心的研究员杰森·德沃金博士说。 “看到从太空制造生物学基本分子的进展令人兴奋。”

DNA或RNA核酸碱基互补特点

第一、在双链DNA中:①在数量上,两个互补的碱基相等,任意两个不互补的碱基之和恒等;②在碱基比率上,任意两个不互补的碱基之和占总碱基数的50%。 由DNA中互补的α、β两条链在结合时互补碱基间的一一对应关系有:Aα=Tβ,Tα=Aβ,Gα=Cβ,Cα=Gβ; 从而得A=T、G=C,进而得:A+G=C+T或(A+G)/(C+T)=1(嘌呤碱等于嘧啶碱,这是双链DNA的特点)。由于DNA单链中不同DNA分子碱基数量及排列的特异性,四种碱基不存在确定的数量关系,所以,一般A+T≠G+C。从上式进一步综合可得:A+G=C+T=A+C=G+T,A+T≠G+C;或(A+G)/(T+C)=(A+C)/(G+T)=1,(A+T)/(G+C)≠1。也即是;在双链DNA中,两互补的碱基数量相等,两不互补的碱基之和数量相等。在只存在四种碱基的情况下,由于两不互补碱基之和刚好占总碱基数的一半,所以,在碱基的百分比中,有: A+G=C+T=A+C=G+T=50% 即:两不互补的碱基之和占总碱基数的一半。已知一碱基含量就可由此式直接求出另一碱基的含量。 只有互补的双链DNA有此特点,单链DNA无此等量关系。同样,双链DNA中的任一单链也无此等量关系。例1(1993年高考题):在一个标准的双链DNA分子中,含有35%的腺嘌呤,它所含的胞嘧啶应该是( )。 A、15% B、30% C、35% D、70% 解:根据A+C=50%,从而选择A。另见1998年上海高考题:在含有四种碱基的DNA区段中,有腺嘌呤a个,占该区段全部碱基的比例为b,则……………………( C )A.b≤0.5 B.b≥0.5 C.胞嘧啶为a(1/2b-1)个 D.胞嘧啶为b(1/2b-1)个例2(1991年“三南”高考题):DNA分子的某——区段上有300个脱氧核糖和60个胞嘧啶,那么该区段胸腺嘧啶的数量是( )。A、90 B、120 B、180 D、240 解:根据T+C=50%,T=150-60=90,从而选择A。例3(90年版课本练习):某DNA分子的碱基中鸟嘌呤的分子数占22%,那么胸腺嘧啶的分子数占( )。 A、11% B、22% C、28% D、44% 解:根据G+T=50%,从而选择C。另见1999年广东高考题:已知一段双链DNA分子中,鸟嘌呤所占的比例为20%,由该DNA转录出来RNA,其胞嘧啶的比例是……………………( D )A.10% B.20% C.40% D.无法确定例4:假设一段mRNA上有60个碱基,其中A 15个,G25个,那么转录该mRNA的DNA分子区段中,C和T的个数共有( )。 A、15 B、25 C、40 D、60解:此题解法多种.但根据C+T=50%以及DNA单链转录的特点,可知DNA中两不互补的碱基之和恒等于DNA转录的mRNA的总碱基数,从而选择D选项,最为快捷。第二、在双链DNA中互补的α、β两条链之间存在两种关系:①任意两个不互补的碱基之和的比值在两条互补单链中呈倒数关系,即:(A+G)α/(C+T)α=(C+T)β/(A+G)β,(A+C)α/(G+T)α=(G+T)β/(A+C)β;②、两个互补碱基之和的比值在两条互补单链中呈恒等关系。由于Aα=Tβ,Gα=Cβ,所以:(A+G)α=(T+C)β;由于Tα=Aβ,Cα=Gβ,所以:(T+C)α=(A+G)β,故存在(A+G/T+C)α=(T+C/A+G)β。即单链中不互补碱基和的比值在两条互补链中呈倒数关系。同理可有:(A+C/G+T)α=(G+T/A+C)β,由于Aα=Tβ,Tα=Aβ,所以:(A+T) α=(A+T)β。同理可有:(G+C) α=(G+C) β,但一般Aα≠Aβ,Gα≠Gβ,Cα≠Cβ,Tα≠Tβ,从而有:(A+T/G+C)α=(A+T/G+C)β。例5(1991年高考题):DNA的一条单链中A+G/C+T=0.4,上述比例在其互补单链和整个DNA分子中分别是( )。 A、0.4和0.6 B、2.5和1.0 C、0.4和0.4 D、0.6和1.0解:根据以上规律可迅速选择B选项。例6(1992年高考及“三南”高考题):下列哪项对双链DNA分子的叙述是不正确的?( ) A、若一条链A和T的数目相等.则另条链A和T的数目也相等 B、若一条链G的数目为C的2倍,则另条链G的数目为C的0.5倍 C、若一条链的A∶T∶G∶C=1∶2∶3∶4,则另条链相应碱基比为2∶l∶4∶3 D、若一条链的G∶T=1∶2,则另条链的C∶A=2∶1解:由Aα=Tβ,Tα=Aβ,可推知选项A正确。由于碱基只有四种,所以单链中互补碱基的比A/T和G/C,可以看成是任意两不互补碱基和的比,在两条互补链中呈倒数关系,所以选项B和C也正确。故正确答案应选D。另外,根据互补碱基的恒等,也知选项D中的比应为相等,而不应呈倒数关系。另如2001年广东、河南高考题:下列关于双链DNA的叙述错误的是…………( C )A. 若一条链上A和T的数目相等,则另一条链上的A和T数目也相等B. 若一条链上A的数目大于T,则另一条链上的A的数目小于TC. 若一条链上的A∶T∶G∶C=1∶2∶3∶4,则另一条链也是A∶T∶G∶C=1∶2∶3∶4D. 若一条链上的A∶T∶G∶C=1∶2∶3∶4,则另一条链为A∶T∶G∶C=2∶1∶4∶3例7:某生物DNA分子上基因a的一条链中(C+T)/(G+A)=0.8,在基因b的一条链中(A+T)/(G+C)=1.25,那么和它们互补的链中相应的碱基的比例依次分别是( )。A、0.2、0.8 B、0.8、0.8C、1.25、1.25 D、1.25、0.8解:根据以上两规律,直选C项。第三,在DNA及其转录的RNA之间有下列关系:①、在碱基数量上,在DNA和RNA的单链内,互补碱基的和恒等,且等于双链DNA的一半;②、互补碱基和占各自总碱基的百分比在双链DNA、有意义链及其互补链中恒等,且等于RNA中与之配对碱基的和的百分比。由于DNA的单链转录,以及两互补链中任一碱基数量一般不等(如Aα≠Aβ),所以,就不能直接从DNA中某—碱基数量及百分比求出单链及RNA中某一碱基的数量百分比,以及反过来由RNA求DNA。但是,由DNA双链的互补碱基和的恒等关系,以及DNA转录时,DNA有意义链与RNA特定配对碱基之间的恒等关系,在数量上就有:(A+T)α=(A+T)β=(A+U)RNA=1/2(A+T)DNA;(G+C)α=(G+C)β=(G+C)RNA=1/2(G+C)DNA;且一般Aα≠Aβ≠ARNA,同理G、C等在DNA和RNA中也不相等。而且,由于有意义链碱基数量与它转录的RNA相等,等于双链DNA的一半。所以,单链中互补碱基和所占的百分比也等于双链中互补碱基和占双链的百分比。故如考虑互补碱基和占各自总碱基的百分比,则存在:(A+T)α=(A+T)β=(A+U)RNA=(A+T)DNA;(G+C)α=(G+C)β=(G+C)RNA=(G+C)DNA。利用此恒等式就可迅速解决有关转录过程中DNA和RNA的碱基计算,是解题的必经之路,也是捷径所在。例8:某一细菌的基因含有20%的A+T,那么它的信使RNA中G+C的含量是( ) A、20% B、40% C、60% D、80%解:由A+T=20%,得G+C=80%,由恒等式可迅速选择D项。例9:从真核细胞的mRNA分析得知.尿嘧啶占14.5%,腺嘌呤占7.5%,那么,用来转录此mRNA的双链DNA分子中鸟嘌呤与胞嘧啶之和占( )。 A、78% B、56% C、30% D、28%解:由A+U=22%,得G+C=78%.从而DNA中的G+C=78%,选A。例10:某转录下来的mRNA的碱基,其中U占16%,A占20%,则模板DNA(双链)中的鸟嘌呤占( )。 A、36% B、32% C、64% D、无法确定解:由A+U=36%,得DNA中的G+C=64%,从而G=32%,选B。例11:对从某种生物组织中提取的DNA进行分析,得知其分子中四种碱基的比例是:G与C之和占全部总碱基数的46%,其中一条链(称H链)的碱基中,28%是腺嘌呤,22%是胞嘧啶。问:与H链对应的链中,腺嘌呤占该链全部总碱基数的百分比是( )。 A、22% B、24% C、26% D、28%解法一:称H链的对应链为H"链。 ∵DNA中的G+C=46%, ∴(A+T)H"=(A+T)H=(A+T)DNA=54%, H"中的T与H中的A相等,TH"=28%, ∴A H"=(A+T) H"-T H"=54%一28%=26%。解法二:∵(G+C)DNA=46%, ∴(G+C) H"=(G+C)DNA=46%,TH"=28%, ∴AH"=1一(G+C+T) H"=1—46%一28%=26%解法三:∵(G+C)DNA=46%, ∴(G+C) H =46% ∴A H"=T H =l-(A+G+C) H =1-28%-46%=26% 。解法四:∵(A+C) H =28%+22%=50%∴(A+C) H"=(G+T) H =1-50%=50%∵(G+C) H =46%∴C H"=G H =(G+C) H -C H =46%-22%=24%∴A H"=(A+C) H"- C H"=50%-24%=26%所以选择C项。从以上结果看出,找不出DNA单链和双链之间互补碱基和的恒等关系,是无法计算出结果的。另外要注意,单链中A+C=50%,以及G+T=50%,这只是由已知条件产生的特殊情况,并不是恒等关系,这在前面已提及。某刊物及某些同学用此式作恒等规律,直接解题得到与正确答案相同的结果,并无任何依据,是错误的。例12:以上例中的H链为模板转录的mRNA中,A+U及A的百分率各为多少?若以H链的互补链为模板,这个比率又各为多少?解:根据恒等式:(A+U)RNA =(A+T)DNA =1-46%=54% mRNA中的A=(A+U)-U=(A+U)-A H =26%从结果看出:mRNA中的A等于H链的互补链的A,这是因为: H"链及mRNA都和H链是互补配对的,相同的碱基数量必相等。据此,若以H链的互补链为模板,则其mRNA中的A+U仍然等于54%,从而A=28%。例13(2002年广东河南高考题):在含有四种游离的脱氧核苷酸、酶和ATP的条件下,分别以不同生物的DNA为模板,合成新的DNA。问:(1)分别以不同生物的DNA为模板合成的各个新DNA之间,(A+C)∶(T+G)的比值是否相同?为什么?[(2)略](3)在一个新合成的DNA中,(A+T)∶(G+C)的比值是否与它的模板DNA任一单链的相同?解:由以上所述规律可知,(1)(2)两小题的答案均应为“相同”。例14(2006年上海高考生物题)在一个DNA分子中,腺嘌呤与胸腺嘧啶之和占全部碱基数目的54%,其中一条链中鸟嘌呤与胸腺嘧啶分别占该链碱基总数的22%和28%,则由该链转录的信使RNA中鸟嘌呤与胞嘧啶分别占碱基总数的---( )A.24%,22% B.22%,28% C.26%,24% D.23%,27%解:由以上规律得:GmRNA=CH=1-(A+G+T)H=1-(54%+22%)=24%,或GmRNA=CH=(G+C)H-GH=(1-54%)-22%=24%,或由CmRNA=GH=22%,直接选择A。例15(2006年高考理综全国卷II)已知病毒的核酸有双链DNA、单链DNA、双链RNA和单链RNA四种类型。现发现了一种新病毒,要确定其核酸属于上述哪一种类型,应该--------------------------------------( )A.分析碱基类型,确定碱基比率 B. 分析碱基类型,分析核糖类型C.分析蛋白质的氨基酸组成,分析碱基类型D. 分析蛋白质的氨基酸组成,分析核糖类型解:根据规律直接选择A。例16(2002年上海高考题)已知一段mRNA含有30个碱基,其中A和G有12个,转录该段mRNA的DNA分子中应有C和T的个数是------------( )A.12 B.24 C.18 D.30解:同例4类似,选择D。涉及“碱基互补配对原则”应用的高考试题还很多,在此就不赘述。从上述可见,借助碱基比率的规律性解题,既快速又准确。主要参考文献:罗绍书.碱基互补配对原则及推论在解题中的应用.《中学生物教学》1994年第4期.陕西师范大学杂志社

谁能解释一下DNA转录为tRNA的过程

谁能解释一下DNA转录为tRNA的过程启动RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。DNA模板上的启动区域常含有TATAATG顺序,称普里布诺(Pribnow)盒或P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和DNA结合点的上游30核苷酸处,常以—30表示,bp为碱基对的简写)附近也含有TATA结构,称霍格内斯(Hogness)盒或TATA盒。第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。延伸σ亚基脱离酶分子,留下的核心酶与DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。随着转录不断延伸,DNA双链顺次地被打开,并接受新来的碱基配对,合成新的磷酸二酯键后,核心酶向前移去,已使用过的模板重新关闭起来,恢复原来的双链结构。一般合成的RNA链对DNA模板具有高度的忠实性。RNA合成的速度,原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。终止转录的终止包括停止延伸及释放RNA聚合酶和合成的RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子;RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(四个亚基构成的蛋白质)的帮助。真核生物DNA上也可能有转录终止的信号。已知真核DNA转录单元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔0~30bp之后又出现TTTT顺序(通常是3~5个T),这些结构可能与转录终止或者与3′端添加多聚A顺序有关。

为什么RNA合成的速度原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。?

转录过程 包括启动、延伸和终止。 启动 RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。DNA模板上的启动区域常含有TATAATG顺序,称普里布诺(Pribnow)盒或P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核 DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和 DNA结合点的上游30核苷酸处,常以—30表示,bp为碱基对的简写)附近也含有TATA结构,称霍格内斯(Hogness)盒或 TATA盒。第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。 延伸 σ亚基脱离酶分子,留下的核心酶与 DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。随着转录不断延伸,DNA双链顺次地被打开,并接受新来的碱基配对,合成新的磷酸二酯键后,核心酶向前移去,已使用过的模板重新关闭起来,恢复原来的双链结构。一般合成的 RNA链对DNA模板具有高度的忠实性。RNA合成的速度,原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。 终止 转录的终止包括停止延伸及释放 RNA聚合酶和合成的 RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子; RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(四个亚基构成的蛋白质)的帮助。真核生物 DNA上也可能有转录终止的信号。已知真核DNA转录单元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔 0~30bp之后又出现TTTT顺序(通常是3~5个T),这些结构可能与转录终止或者与3′端添加多聚A顺序有关。

核苷酸具有多种生物学功用,表现在作为核酸dna 和rna 合成的基本原料;体 内

核苷酸具有多种生物学功用,表现在作为核酸dna 和rna 合成的基本原料RNA的合成:RNA聚合酶进入DNA非编码区的酶切位点,解旋DNA使成为单链,核糖核苷酸由碱基互补配对法则形成RNA链(信使RNA)。RNA的加工过程主要是在细胞核内进行,也有少数反应是在胞质中进行。mRNA在细胞核内加工后运出到细胞质,tRNA的加工在细胞质内,rRNA也是在细胞质内加工,而且rRNA和tRNA是转录在同一个原初转录产物(也就是前体)内。核糖核酸(RNA)存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA是以DNA的一条链为模板,以碱基互补配对原则转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息传递过程中的桥梁。DNA的合成:首先螺旋酶与拓扑异构酶将双螺旋解开,接着一个DNA聚合酶负责合成前进股;另一个则与延迟股结合,制造一些不连续的冈崎片段,再由脱氧核糖核酸连接酶将其黏合。原核生物的DNA主要是在拟核中合成的,少部分在细胞质中也会合成(如细菌的质粒),真核生物的DNA主要是在细胞核中合成,线粒体中有少量合成。植物细胞细胞器:叶绿体中也能进行DNA的合成。脱氧核糖核酸(DNA)又称去氧核糖核酸,是一种分子,双链结构,由脱氧核糖核苷酸(成分为:脱氧核糖及四种含氮碱基)组成。可组成遗传指令,引导生物发育与生命机能运作。主要功能是长期性的资讯储存,其中包含的指令是建构细胞内其他的化合物如蛋白质与RNA所需。

DNA复制中,RNA转录和翻译中所用的所有酶以及酶的作用位置

DNA复制:DNA解旋酶、拓扑异构酶、DNA连接酶(细胞核) RNA转录:DNA解旋酶、转录酶、(细胞核) 翻译:氨基酸与tRNA结合需要氨酰tRNA合成酶;携带氨基酸的tRNA在核糖体上的位置移动需要肽基转移酶;氨基酸脱水缩合形成多肽链需要核糖体(即核酶,主要是rRNA催化生成多肽链);翻译过程还需要多种辅助因子的参与(细胞质)

RNA是由DNA合成的吗

rna的合成:rna聚合酶进入dna非编码区的酶切位点,解旋dna使成为单链,核糖核苷酸由碱基互补配对法则形成rna链(信使rna)。rna的加工过程主要是在细胞核内进行,也有少数反应是在胞质中进行。mrna在细胞核内加工后运出到细胞质,trna的加工在细胞质内,rrna也是在细胞质内加工,而且rrna和trna是转录在同一个原初转录产物(也就是前体)内。核糖核酸(rna)存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。rna由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。rna是以dna的一条链为模板,以碱基互补配对原则转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息传递过程中的桥梁。dna的合成:首先螺旋酶与拓扑异构酶将双螺旋解开,接着一个dna聚合酶负责合成前进股;另一个则与延迟股结合,制造一些不连续的冈崎片段,再由脱氧核糖核酸连接酶将其黏合。原核生物的dna主要是在拟核中合成的,少部分在细胞质中也会合成(如细菌的质粒),真核生物的dna主要是在细胞核中合成,线粒体中有少量合成。植物细胞细胞器:叶绿体中也能进行dna的合成。脱氧核糖核酸(dna)又称去氧核糖核酸,是一种分子,双链结构,由脱氧核糖核苷酸(成分为:脱氧核糖及四种含氮碱基)组成。可组成遗传指令,引导生物发育与生命机能运作。主要功能是长期性的资讯储存,其中包含的指令是建构细胞内其他的化合物如蛋白质与rna所需。

DNA转录的时候,RNA聚合酶在DNA链上移动的时候需不需要拓扑异构酶

不需要,拓扑异构酶是指通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来更正DNA连环数的酶。RNA转录需要的是解螺旋酶.但如果模板具有超螺旋结构,则需要拓扑异构酶解开超螺旋.

DNA复制时,前导链的引物是DNA,后随链的引物是RNA,这句话对吗?我觉得都是RNA吧!

这句话不对,都是 RNA 。前导链和后随链并没有本质上的差别,仅仅是因为后者为了保持复制时3`——5`的措施罢了,即先合成冈崎片段,然后再拼接。

体内常见的 合成酶 有哪些?DNA/RNA聚合酶是合成酶吗?

合成酶(synthetase)又称为连接酶(ligase),属于酶学分类中的第六大酶类。合成酶类(ligase)催化两分子底物合成为一分子化合物,同时偶联有ATP的磷酸键断裂释能的酶类。例如,谷氨酰胺合成酶、DNA连接酶、氨基酸:tRNA连接酶以及依赖生物素的羧化酶等。

体内常见的 合成酶 有哪些?DNA/RNA聚合酶是合成酶吗?

合成酶(synthetase)又称为连接酶(ligase),DNA连接酶属于合成酶,DNA聚合酶不是合成酶,DNA聚合酶是多功能酶。真核生物里常见的连接酶(合成酶)有DNA连接酶Ⅰ。DNA连接酶II,DNA连接酶III。原核生物里常见的有T4连接酶。

rna转录过程

RNA转录分为四个阶段:1.模板的识别RNA聚合酶在σ亚基引导下识别并结合到启动子上,然后DNA双链被局部解开,形成的解链区称为转录泡。解链仅发生在与RNA聚合酶结合的部位。2.转录的起始在转录的起始阶段酶继续结合在启动子上,首先合成RNA链最初2~9个核苷酸。随后σ亚基即脱离核心酶,后者也就离开启动子,起始阶段至此结束。3.转录的延伸在延伸阶段,随着酶沿DNA分子向前移动,解链区也跟着移动,新生RNA链得以不断生长,并与DNA模板链在解链区形成RNA-DNA杂交体,其后DNA恢复双螺旋结构, RNA链被置换出来。4.转录的终止最后,RNA聚合酶在Nus A因子(亚基)帮助下识别转录终止信号,停止RNA链的生长,酶与RNA链离开模板, DNA恢复双螺旋结构。

dna转录得到哪几种rna

一个DNA分子上有多个基因,不同基因转录形成的mRNA不同,并且每个基因可以发生多次转录,因此一个DNA分子经过转录可以形成多个多种mRNA分子. 故选:C.

一个基因是否是完全转录成一个mRNA?

基因不一定完全转录成mRNA,在真核生物中基因转录成的片段是由内含子和外显子转录出来的,这是的RNA并不是mRNA,而要通过一定的加工去掉内含子转录片段后才是能翻译成多肽的RNA,即mRNA.基因不是从起始密码开始的,而是从非编码区开始经过编码区再到非编码区转录也不是从起始密码开始的(高三要学),是在其实密码前面那段非编码区上有个起始子,从那里就开始了。但mRNA上的密码子一定是从起始密码子到终止密码子。

基因只能转录一种信使RNA吗

  基因不是只能转录一种信使RNA,基因是可以转录出多种信使RNA的,由此才有了多种多样的蛋白质结构。如果基因只能转录出一种信使RNA,那么整个基因表达的结果只能产生一种蛋白质。   基因转录:是在细胞核和细胞质内进行的。它是指以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。基因转录有正调控和负调控之分。

转录产生几种rna

一个基因转录后只能形成1种RNA,特定的基因转录只能形成特定的一种RNA. 转录就是遗传信息从基因转移到RNA形成前体RNA再经修饰形成mRNA(信使RNA),同一基因转录无论多少次也只有mRNA,再下去才有其他的tRNA和rRNA

DNA转录为mrna的基本过程

高一的?   就是DNA的转录过程,课本上应该有的.DNA解开双链螺旋(在生物体内是解旋酶的作用),在RNA聚合酶的作用下核糖核苷酸中的碱基与DNA上的碱基互补,然后核糖核苷酸之间形成磷酸二酯键,连成一条mRNA长链,转录结束后DNA单链与mRNA脱离,mRNA形成,然后在有关酶(这个酶一般不会讲的)的作用下DNA恢复螺旋(可能是DNA解螺旋时DNA并不是完全打开螺旋,打开的只是一部分,就是要转录的基因的那一部分),其他的高二你们还会讲起始子终止子什么的,在基因工程的选修那里有,现在酶必要知道太多.

转录时是不是所有的基因都转录成mRNA

转录时是不是所有的基因都转录成mRNA基因不一定完全转录成mRNA,在真核生物中基因转录成的片段是由内含子和外显子转录出来的,这是的RNA并不是mRNA,而要通过一定的加工去掉内含子转录片段后才是能翻译成多肽的RNA,即mRNA.基因不是从起始密码开始的,而是从非编码区开始经过编码区再到非编码区转录也不是从起始密码开始的(高三要学),是在其实密码前面那段非编码区上有个起始子,从那里就开始了.但mRNA上的密码子一定是从起始密码子到终止密码子.

核酸酶的作用仅仅是作用于使DNA复制时的RNA引物吗?

核酸酶是用于降解核酸的。作用于RNA的内切酶主要有:牛胰核糖核酸酶(RNase)核糖核酸酶T1(RNaseT1)核糖核酸酶U2(RNaseU2)多头绒孢菌核糖核酸酶1作用于DNA的内切酶主要有:牛胰脱氧核糖核酸酶(DNaseI)牛脾脱氧核糖核酸酶(DNaseII)另外存在一些限制性内切酶(来自于细菌,用于基因工程)。同时作用于RNA和DNA的外切酶:牛脾磷酸二酯酶(SPDase)蛇毒磷酸二酯酶(VPDase)作用于核算分子末端单酯键的:磷酸单酯酶(PMase)而DNA复制时引物合成的酶是引发酶,主要是一种聚合酶。原核生物大肠杆菌是一种RNA聚合酶。真核生物DNA聚合酶α(polα)可以合成引物。合成引物还有其他很多蛋白参与至少有6种。共同构成引发体(primosome)。

RNA类酶都有哪些?

种类数量比较少,而且不常见,比如端粒酶,在细胞中负责端粒的延长的一种酶,是基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端.端粒酶,核酶,RNA聚合酶,逆转录酶。核酶,主要指一类具有催化功能的RNA,亦称RNA催化剂.自然界中已发现多种核酶,目前主要有四种核酶能用于反式切割靶RNA:四膜虫自身剪接内含子、大肠杆菌RNase P,锤头状核酶和发夹状核酶。rRNA,是核糖体上的酶。拓展资料:核酸分解的第一步是水解核苷酸之间的磷酸二酯键,在高等动植物中都有作用于磷酸二酯键的核酸酶。不同来源的核酸酶,其专一性、作用方式都有所不同。有些核酸酶只能作用于RNA,称为核糖核酸酶(RNase)。参考资料:核糖核酸梅--百度百科

充分还原核糖核酸酶(RNase)需要加哪些试剂

β-巯基乙醇,用于使S-S还原为-SH;尿素,用于使氢键破坏。

核酸酶的作用仅仅是作用于使DNA复制时的RNA引物吗?

核酸酶是用于降解核酸的。作用于RNA的内切酶主要有: 牛胰核糖核酸酶(RNase)核糖核酸酶T1(RNaseT1) 核糖核酸酶U2(RNaseU2) 多头绒孢菌核糖核酸酶1作用于DNA的内切酶主要有: 牛胰脱氧核糖核酸酶(DNaseI)牛脾脱氧核糖核酸酶 (DNaseII) 另外存在一些限制性内切酶(来自于细菌,用于基因工程)。同时作用于RNA和DNA的外切酶: 牛脾磷酸二酯酶(SPDase) 蛇毒磷酸二酯酶(VPDase)作用于核算分子末端单酯键的:磷酸单酯酶(PMase) 而DNA复制时引物合成的酶是引发酶,主要是一种聚合酶。原核生物大肠杆菌是一种RNA聚合酶。真核生物DNA聚合酶α(polα)可以合成引物。合成引物还有其他很多蛋白参与至少有6种。共同构成引发体(primosome)。

核糖核酸酶是蛋白质还是RNA?

蛋白质。“核糖核酸酶”就是RNase注意和“核酶”ribozyme 的区别,核酶是RNA。看上去两者好像一回事,那是因为中文翻译造成的,英文你一看就知道两个不一样。

rna酶有那些

核糖核酸酶包括,核糖核酸酶A,核糖核酸酶T1,核糖核酸酶H。RNA酶可以改变宿主细胞的新陈代谢,进而抑制病毒的合成,药用油膏可用于治疗外伤及关节疼痛,体外能抑制流感病毒的增殖。核糖核酸酶,白色粉末。为具有球蛋白性状的一种蛋白质。溶于水、50%丙酮。此酶最适宜温度为60℃,85℃以上失去作用,最适宜的pH值为7.6。是催化核糖核酸水解的一种核酸内切酶,可使胞嘧啶核酸解聚。对胸腺核酸则无作用。用于生化研究。扩展资料RNase A可以从DNA:RNA杂交体中去除未杂交的RNA区。在RNA:DNA或RNA:RNA杂交体中,若存在单碱基错配时,利用RNase识别并进行切割,最后通过琼脂糖凝胶电泳分析切割产物的大小,即可确定错配的位置。利用单链RNA探针与待测的RNA样品进行杂交形成RNA:RNA双链分子,利用RNA酶的专一性降解未杂交的单链RNA,保护双链不受降解,最后经凝胶电泳来确定目的RNA的长度。降解DNA制备物中的RNA分子。去除DNA:RNA杂交体中未杂交的RNA区。参考资料来源:百度百科-RNA酶

RNA酶在核酸分离纯化中的作用

这种酶容易对核酸实验造成污染,所以再实验中会竭力避免。RNA酶即核糖核酸酶,核糖核酸酶能催化核糖核酸(RNA)的降解,现已能人工合成。核糖核酸酶能改变宿主细胞新陈代谢,抑制病毒合成,在体外能抑制流感病毒增殖,在鸡胚内能抑制痘苗、疱疹病毒形成。临床用核糖核酸酶每天肌注180毫克,对治疗流行性脑炎有益。

为什么DNA聚合酶需要单链结合蛋白和RNA聚合酶不需要

这个问得好……我觉得主要是因为,RNA的转录量很多,而且RNA酶是没有修复功能的,而复制有。前者错误几率比后者大得多。DNA复制要求十分精细,而转录因为量很大,所以可以弥补。我想降解可能也是和这个类似。

如何分离分子量相同的单链DNA和单链RNA

果单链的dna与rna分子量相同,那么他们的链长肯定不同,所带电荷也不同。这样,琼脂糖凝胶电泳就能将其分离。然后提取出来就行了方法2将其分为两份,一份用dna酶充分消化,一份用rma酶充分消化,得到的不就是一份rna,一份dna吗?这是分离方法,希望我的回答对您有所帮助

为什么DNA聚合酶需要单链结合蛋白和RNA聚合酶不需要

这个问得好……我觉得主要是因为,RNA的转录量很多,而且RNA酶是没有修复功能的,而复制有。前者错误几率比后者大得多。DNA复制要求十分精细,而转录因为量很大,所以可以弥补。我想降解可能也是和这个类似。

双链rna有什么用?单链dna又有什么用?

不管是双链RNA还是单链DNA,都是自然界内常见的物质. 一般的RNA都有二级结构.自身可以形成部分的双链区,比如,16S RNA的二级结构图. 在自然界中,也有细胞内自己产生的RNA,可以与mRNA等部分序列互补成双链RNA,调控转录和翻译,比如,miRNA. 还有一些双链RNA的病毒,常见于植物RNA病毒. 单链DNA在DNA转录或复制活跃时,结合单链结合蛋白,会形成部分的单链结构.单链DNA病毒也常见于动物病毒或噬菌体. 在自然界中,微生物有时也会形成单股的DNA,以便于DNA转移,比如F质粒转移. 除此之外,三链DNA也很常见哦~

如何分离分子量相同的单链DNA和单链RNA

甲醛变性凝胶电泳并不能区分相相同大小的ssDNA和ssRNA.因为二者长度一致,在凝胶中泳动速率也一致。目前有可分离ssRNA和ssDNA的技术,我只是看过一个设想,但没有后续的实验报道。即使用纯化的SSB蛋白(就是单链DNA结合蛋白,其体内功能是DNA复制时结合解旋酶解开而成的单链DNA,防止复性)作为亲和柱固相,亲和层析DNA/RNA溶液,由于SSB能够特异性的结合ssDNA,因此能够分离ssDNA和ssRNA。此外,如果不要求得率的话,直接用RNaseI处理即可获得ssDNA。

简述原核生物DNA复制,RNA转录及蛋白质翻译的详细过程。

以原核生物DNA复制过程予以简要说明 1.DNA双螺旋的解旋   DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程   (1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)  ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质.原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应.ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环.所以,ssbDNA蛋白只保持单链的存在,不起解旋作用.(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA.这种解链酶分解ATP的活性依赖于单链DNA的存在.如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动.复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的.故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA.

DNA和RNA有什么相同点

DNA和RNA相同点:1、元素相同,组成元素认为都是CHONP。2、成分相同,都含有五碳糖、磷酸。DNA和RNA不同点:1、分布不同,即DNA主要在细胞核内,RNA主要在细胞质中。2、数量不同,DNA是由两条脱氧核苷酸链组成,RNA只有一条核糖核苷酸链组成。3、它们的核糖不同,前者是脱氧核糖,后者是核糖。4、DNA是双螺旋结构,RNA是单螺旋结构的。5、结构上看,DNA是双螺旋结构,即双链,RNA则一般为单链。6、碱基的不同,前者为A、T、C、G,后者为A、U、C、G。扩展资料:所有DNA功能都取决于其与特定蛋白质的相互作用。这些相互作用可以是非特异性的,也可以是极其特异性的。还有许多可以结合DNA的酶,其中,在DNA转录和复制中复制DNA序列的聚合酶特别重要。在碱性氨基酸残基上所发生的化学修饰有甲基化、磷酸化与乙酰化等,这些化学作用可使DNA与组织蛋白之间的作用强度发生变化,进而使DNA与转录因子接触的难易度改变,影响转录作用的速率。其他位于染色体内的非专一性DNA结合蛋白,还包括一种能优先与DNA结合,并使其扭曲的高移动性群蛋白。这类蛋白质可以改变核小体的排列方式,产生更复杂的染色质结构。

锌指蛋白为何可与DNA、RNA结合?

锌指zinc finger 指的只是一个空间结构。每个蛋白的氨基酸序列不同,所以能结合的DNA或者RNA的部位也不一样。这是转录因子结合DNA的基础。这句话应该理解为:大部分的转录因子(DNA结合蛋白)都含有锌指。在于DNA结合的时候,确实是α-螺旋能镶嵌于DNA的大沟中。但是并不是说含有锌指的蛋白都能结合DNA或者RNA。有一大类蛋白(受体蛋白)也含有这个结构,但是不结合DNA。

tRNA反密码子怎样看顺序,如图,是从左开始读UGG还是从右开始读GGU

应该读成GGU .mRNA 上的称为 三联体密码(从5"到 3") 跟tRNA 结合进行翻译时,是反向平行的,所以规定,读 反密码子从3"到5"。即读成GGU.

DNA三联体GCT互补于tRNA的反密码子是

答案是D首先a就给排除了,RNA不可能有t。DNA上的三联体与mRNA上的三联体(密码子)互补,而mRNA上的三联体与tRNA上的三联体(反密码子)互补。通过这个关系就知道DNA上的三联体与tRNA上相同。只是t改成了ugct-cga-gcuDNA-mRNA-tRNA这道题好像有歧义啊。如果是DNA指导tRNA合成的话,就得选b了

mRNA是什么?

mRNA:蛋白质生物合成的模板,决定多肽链中氨基酸的排列顺序;mRNA中每三个相邻的核苷酸组成三联体,代表一个氨基酸;此三联体就称为密码子(codon);共有64种不同的密码子; 从mRNA 5uf0a2端起始密码子到3uf0a2端终止密码子之间的核苷酸序列,各个三联体密码连续排列编码一个蛋白质多肽链;起始:mRNA和起始氨基酰-tRNA分别与核蛋白体结合而形成翻译起始复合物延长:根据mRNA密码序列的指导,依次添加氨基酸从N端向C端延伸肽链,直到合成终止的过程 ;需要延长因子和GTP的参与;终止:当mRNA上终止密码出现后,多肽链合成停止;肽链从肽酰-tRNA中释出;mRNA、核蛋白体等分离;这些过程称为肽链合成终止;原核生物:mRNA起始部位是一段富含嘌呤的特殊序列(Shine-Dalgarno顺序)简称SD序列,可与核糖体小亚基辨认结合(核糖体结合位点 RBS),形成30S起始复合物;真核生物:mRNA具有帽子结构,需一种特殊的帽子结合蛋白(CBP)以识别此结构大体就是这些,希望可以帮到你~

tRNA反密码子怎样看顺序,如图,是从左开始读UGG还是从右开始读GGU?

读成GGU。mRNA上的称为三联体密码(从5"到3")跟tRNA结合进行翻译时,是反向平行的,所以规定,读反密码子从3"到5"。即读成GGU。mRNA 上的称为 三联体密码(从5"到 3") 跟tRNA 结合进行翻译时,是反向平行的,因此 对应于三联体密码(mRNA)的反密码子跟它是互补的;一般规定,读 反密码子的时候,按照mRNA的方向读(为了不搞乱了密码子表的含义),那么对于反密码子就是从3"到 5"了。RNA链经过折叠看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有3个碱基。每个tRNA(transfer RNA)的这3个碱基可以与mRNA上的密码子互补配对,因而叫反密码子。 tRNA分子二级结构的反密码环中部的三个相邻核苷酸组成反密码子。它们与结合在核糖体上的mRNA中的核苷酸(密码子)根据碱基配对原则互补成对,因此在蛋白质合成过程中,携带特定氨基酸的tRNA凭借自身的反密码子识别mRNA上的密码子,把所携带的氨基酸掺入到多肽链的一定位置上。以上内容参考:百度百科-反密码子

请问mRNA的概念和生物学意义是什么?

mRNA:蛋白质生物合成的模板,决定多肽链中氨基酸的排列顺序;mRNA中每三个相邻的核苷酸组成三联体,代表一个氨基酸;此三联体就称为密码子(codon);共有64种不同的密码子; 从mRNA 5uf0a2端起始密码子到3uf0a2端终止密码子之间的核苷酸序列,各个三联体密码连续排列编码一个蛋白质多肽链;起始:mRNA和起始氨基酰-tRNA分别与核蛋白体结合而形成翻译起始复合物延长:根据mRNA密码序列的指导,依次添加氨基酸从N端向C端延伸肽链,直到合成终止的过程 ;需要延长因子和GTP的参与;终止:当mRNA上终止密码出现后,多肽链合成停止;肽链从肽酰-tRNA中释出;mRNA、核蛋白体等分离;这些过程称为肽链合成终止;原核生物:mRNA起始部位是一段富含嘌呤的特殊序列(Shine-Dalgarno顺序)简称SD序列,可与核糖体小亚基辨认结合(核糖体结合位点 RBS),形成30S起始复合物;真核生物:mRNA具有帽子结构,需一种特殊的帽子结合蛋白(CBP)以识别此结构大体就是这些,希望可以帮到你~

mRNA在蛋白质合成中的意义

mRNA:蛋白质生物合成的模板,决定多肽链中氨基酸的排列顺序;mRNA中每三个相邻的核苷酸组成三联体,代表一个氨基酸;此三联体就称为密码子(codon);共有64种不同的密码子; 从mRNA 5uf0a2端起始密码子到3uf0a2端终止密码子之间的核苷酸序列,各个三联体密码连续排列编码一个蛋白质多肽链;起始:mRNA和起始氨基酰-tRNA分别与核蛋白体结合而形成翻译起始复合物延长:根据mRNA密码序列的指导,依次添加氨基酸从N端向C端延伸肽链,直到合成终止的过程 ;需要延长因子和GTP的参与;终止:当mRNA上终止密码出现后,多肽链合成停止;肽链从肽酰-tRNA中释出;mRNA、核蛋白体等分离;这些过程称为肽链合成终止;原核生物:mRNA起始部位是一段富含嘌呤的特殊序列(Shine-Dalgarno顺序)简称SD序列,可与核糖体小亚基辨认结合(核糖体结合位点 RBS),形成30S起始复合物;真核生物:mRNA具有帽子结构,需一种特殊的帽子结合蛋白(CBP)以识别此结构大体就是这些,希望可以帮到你~

“蛋白质翻译过程中终止肽链合成的信使核糖核酸(mRNA)的三联体碱基序列”是什么意思?

就是遗传密码中的蛋白质合成的终止密码。终止密码有3个,分别是UAA,UAG,UGA。指的就是这三组密码。

什么是密码子?它是在DNA上还是在RNA上?

密码子位于RNA上,是三个连续的碱基对,与指定的蛋白质合成有关

每个mrna上含有多少种密码子

mRNA上含有64种密码子构成RNA的碱基有四种,每三个碱基的开始两个决定一个氨基酸。从理论上分析碱基的组合有4的3次方=64种,64种碱基的组合即64种密码子。怎样决定20种氨基酸呢?仔细分析20种氨基酸的密码子表,就可以发现,同一种氨基酸可以由几个不同的密码子来决定,起始密码子为AUG(甲硫氨酸) , 另外还有UAA、UAG、UGA三个密码子不能决定任何氨基酸,是蛋白质合成的终止密码子。1994年版曾邦哲著《结构论》中对密码子和氨基酸的组合数学计算公式为:C1/4+2C2/4+C3/4=20氨基酸,C1/4+6(C2/4+C3/4)=64密码子。(另有算法4*4*4=64,一个密码子里面三个碱基每个位置有4种可能)

真核生物的RNA转录有何特点?

真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同(图3-27). ⒈真核生物RNA的转录是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的.所以,RNA转录后首先必须从核内运输到细胞质内,才能指导蛋白质的合成. ⒉真核生物一个mRNA分子一般只含有一个基因,原核生物的一个mRNA分子通常含有多个基因,而除少数较低等真核生物外,一个mRNA分子一般只含有一个基因,编码一条多态链. ⒊真核生物RNA聚合酶较多 在原核生物中只有一种RNA聚合酶,催化所有RNA的合成,而在真核生物中则有RNA聚合酶Ⅰ、RNA聚合酶Ⅱ和RNA聚合酶Ⅲ三种不同酶,分别催化不同种类型RNA的合成.三种RNA聚合酶都是由10个以上亚基组成的复合酶.RNA聚合酶Ⅰ存在于细胞核内,催化合成除5SrRNA以外的所有rRNA的合成;RNA聚合酶Ⅱ催化合成mRNA前体,即不均一核RNA(hnRNA)的合成;RNA聚合酶Ⅲ催化tRNA和小核RNA的合成. ⒋真核生物RNA聚合酶不能独立转录RNA .原核生物中RNA聚合酶可以直接起始转录合成RNA ,真核生物则不能.在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录.另外,RNA聚合酶对转录启动子的识别,也比原核生物更加复杂,如对RNA聚合酶Ⅱ来说,至少有三个DNA的保守序列与其转录的起始有关,第一个称为TATA框(TATA box),具有共有序列TATAAAA,其位置在转录起始点的上游约为25个核苷酸处,它的作用可能与原核生物中的-10共有序列相似,与转录起始位置的确定有关.第二个共有序列称为CCAAT框(CCAAT box),具有共有序列GGAACCTCT,位于转录起始位置上游约为50-500个核苷酸处.如果该序列缺失会极大地降低生物的活体转录水平.第三个区域一般称为增强子(enhancer),其位置可以在转录起始位置的上游,也可以在下游或者在基因之内.它虽不直接与转录复合体结合,但可以显著提高转录效率.

关于基因增强子描述错误的是() A 增强子可提高该基因mRNA 的翻译效率 B 增强子序列与DNA

A描述错误;增强子定义是能使和他连锁的基因转录频率明显增加的DNA序列;增强子是顺式作用元件自然是可以和DNA结合蛋白结合的,以甾体激素受体的“锌指结构”为例~

eRNA文献阅读

文献题目:Enhancer-derived RNA: A Primer 发表时间:2017 Enhancer-derived RNAs(eRNAs)是一类从转录增强子区域由RNA pol II转录出来的RNAs,是基因组中一类顺式元件。在最近的研究中,越来越多的证据表明在转录调控过程中eRNA的产生和增强子活性之间有关。另外,eRNA也可作为鉴定增强子的标志。这篇综述主要讲eRNA的发现以及特征。 新一代测序(NGS)技术的爆炸性增长使得我们可以研究基因组水平上的转录活性。NGS不仅使从编码序列中详尽地分类转录本成为可能,也有促进了许多不作为蛋白质合成模板的RNA的发现。在过去的十年中,许多研究表明,包括小RNAs (miRNAs)和长非编码RNA (lncRNAs)在内的几类非编码RNA (ncRNAs)发挥着不同的生物学作用,如转录后调控mRNA的稳定性,以及染色质活性的表观调控。这些研究极大地丰富了我们对基因组的构成的理解以及功能调控。 在非编码RNA家族中,一个较晚出现、与传统“成员”不同的是增强子衍生RNA (enhancer-derived RNAs, eRNAs),它们在增强子位点被转录(图1)。与其他顺式调控元件(CREs)一样(比如启动子和绝缘子),增强子包含不同转录因子(TFs)的结合位点(长度在6 bp到20 bp之间的DNA motif序列)。通过与几个TFs结合,每个增强子充当成核位点形成大的多蛋白复合物,从而激活基因转录。最近的研究表明,人类基因组中含有几百万个增强子,这些增强子可以在不同的发育阶段、不同的组织和细胞类型中被激活。 增强子和TFs是基因调控的主要调控者,而其他能够化学修饰DNA和组蛋白的因子正逐渐被加入基因调控的体系,其中许多因子通过调节染色质的可接近性,从而直接与TFs和增强子相互作用。到目前为止,一些能够添加/去除甲基、乙酰基和磷酸基团到DNA和组蛋白尾部上的酶,被认为是关键的基因调节因子。一般认为这些因子的参与会影响额外的调控水平,从而提高基因表达模式的特异性。然而,这么多的因子在不同程度的叠加功能,是如何被整合到单一的转录调控过程中的,在概念上认知基因调控仍然是一个阻碍。而意外的发现eRNAs也产生了一个问题:它们是否参与基因的调控机制。 尽管处于活性状态的增强子的转录在90年代初就有报道,但2010年的两篇报道使eRNAs受到关注。在这两项研究中,高通量测序被用于鉴定刺激依赖性增强子,出人意料地揭示了RNA聚合酶II (RNAPII)介导的双向eRNAs转录,通常为0.5-2 kb长度(图1B)。此外,eRNAs的表达水平与顺式调控活性相关(即依赖于环境,增强子刺激附近基因的mRNA合成),表明增强子功能与eRNA的产生密切相关。通过对哺乳动物基因组联盟(Mammalian genome, FANTOM) 和DNA元件百科全书(ENCODE)中功能元件的系统特征功能注释,增强子合成的RNA很快在大多数人类细胞系和组织中得到证实。 由于eRNAs的丰度比基因转录本低19 - 34倍,相比于常规RNA-seq, NGS需要更高的覆盖率来准确定位增强子的转录位置。在首次报道的eRNA合成研究中,增强子的转录本在测序实验中被检测到,使用的是总RNA,而不是polyA+的 RNA,虽然在后来的研究中发现部分eRNAs与其他lncRNA类似,也存在polyA。 eRNAs不像mRNA那么稳定。因此,需要开发一个更准确的捕获eRNAs的方法,如GRO-seq和PRO-seq。另外一种比较灵敏的检测eRNAs的方法是对基因表达的cap分析(CAGE)测序。这种方法被FANTOM联盟来分析大量的人组织和细胞系的转录本,其中有43,011个增强子元件被转录成eRNA。 为了帮助富集eRNAs,使用染色质免疫沉淀(ChIP)可以把组蛋白variants(如H2AZ)或修饰蛋白(如H3K27ac和H3K4me1)用抗体拉下来,进行eRNA检测实验。另一种增强eRNA检测的方法,叫BruUV-seq,使用紫外线介导的转录阻断DNA损伤,然后用Bru标记,对新生RNA进行深度测序。 此外,像其他RNA转录本一样,eRNAs可以用互补RNA原位杂交探针(标记有生物素或者荧光素)进行可视化。当同时使用两个或两个以上RNA探针检测eRNA和附近编码蛋白质转录本的时候,增强子的转录活性与其基因调节功能之间的动态关系也可以被研究。 虽然这些方法都提供了客观的方法来验证eRNAs的特征,但增强子只在特定的组织和细胞中有活性。因此,在原则上,活性增强子的转录只会在空间和时间上受到限制。因此,分析eRNA动态表达模式,是最能揭示在特定背景下增强子的功能活性的。 尽管eRNA合成和增强子活性之间有很强的关联性,但是尚不清楚这两者之间联系的机制。一方面,有研究认为eRNAs可能作为转录激活因子发挥作用;另一方面,eRNAs可能只是一个假的转录的结果,因为RNAPII被招募到临近的增强子上。注意,后者不是一个简单的假设,因为根据ENCODE的发现,大约80%的人类基因组是能够被转录的,但不到50%的基因组已知包含CREs和编码序列。这提示大约30%的基因组的转录活性可以发生在非编码基因或CREs上。 为了支持eRNAs在增强子活性中的作用,一篇文章使用RNA干扰(RNAi)来抑制人类细胞系中的几个eRNAs,发现了eRNAs在转录激活中起作用的证据。此外,其他研究表明eRNAs可以与 Mediator和其复合物相互作用,建立染色质loop,这对增强子和启动子之间的相互作用至关重要。然而有研究表明,抑制eRNA的方法是使用传统RNAi技术,这是eRNA大部分位于核内,RNAi在核内的作用不像在细胞质内的作用有效。 一个更严格的研究eRNA功能的方法,是通过在其转录起始位点附近插入一个多腺苷酸化片段来干扰其合成,从而使转录提前终止。在最近的研究中,该方法应用于调节cdkn1b表达的增强子的位点。值得注意的是,虽然这个增强子的转录被降低了90%,但其靶基因cdkn1b的转录基本上是完整的。这表明,这个eRNA是基因转录过程中的惰性副产物。然而,由于使用这种方法来截断eRNA产物还没有大规模的运用,尚不清楚有多少eRNAs对增强子活性也是可有可无的。 自从人类基因组计划的完成,一个主要的科学重点是开发有效的手段精确地绘制出数百万CREs在每个细胞类型和不同发育阶段中,不同的基因表达模式的调控。目前,全局增强子mapping方法主要依赖于与增强子激活相关的三个参数:(1)TF结合,(2)增强子位点的组蛋白修饰,(3)可接近的“开放”的染色质。这里值得注意的是,“开放”染色质是那些在增强子激活过程中的状态,而不是它的原因或结果。无论eRNAs是否有助于增强子的功能,高通量eRNA检测可以帮助我们定位global增强子。 事实上,数千个增强子通过分析非编码序列的转录本被发现,与组蛋白chip-seq生成的增强子map有很好的重叠。增强子活性和在某一染色质区域的eRNAs表达水平之间的高度关联性,使研究能够以eRNAs作为替代去研究短发夹或小分子(如JQ1)抑制转录因子的调控作用。在这些研究中,一对一的比较eRNAs和蛋白质编码转录本提供了一个直接建立增强子与其附近基因之间联系的机制。 随着高通量测序的成本迅速降低,随着时间的推移,精确测定eRNAs的方法变得更加可行。鉴于RNA-seq通常用于鉴定细胞和组织的基因组特性,使用eRNAs来预测增强子的活性可以避免额外的实验来确定增强子。这比其他增强mapping技术(如ChIP-seq, dnas -seq和ATAC-seq分析)都有优势。因此,eRNA分析在标本有限的情况下(例如在临床中)就会特别有用。例如,He et al.等人最近在非髓样甲状腺癌(NMTC)中,发现在染色体4q32 (4q32A > C)上的超罕见单核苷酸突变。有趣的是,该区域的eRNAs表达水平在NMTC肿瘤中显著下调,这提示其可作为NMTC肿瘤标记的增强子活性。eRNA测量可用于验证导致疾病的突变。在另一项研究中,雄激素受体调节的eRNAs (AR-eRNAs)被用于监测去势耐药前列腺癌(CRPC)对第二代抗雄激素化合物enzalutamide的应答,从而发现了许多有助于因enzalutamide耐药而抑制CRPC生长的基因位点。 对于eRNAs的生物学功能,特别是关于它们与增强子活性的关系,仍然缺乏广泛的共识。这并不完全出乎意料,因为eRNA只是在6年前才为人们所知。对于这个比较年轻的ncRNA成员今后会有更多的研究以形成一个成熟的结论。在这个方向上,一个值得注意的领域是发展在细胞中操作eRNAs的新工具,这对于功能研究和开发eRNA作为治疗靶点都是至关重要的。一个潜在的有用的方法是锁定核酸(LNA)技术,可以更高效率的靶向细胞核内的eRNA,这比传统的RNAi技术更有用。此外,最近开发的(CRISPR)/CRISPR-associated protein 9 (Cas9)技术使得进行大规模基因组编辑实验成为可能。系统地操控eRNA的合成,例如,通过靶向在增强子位点插入转录终止信号,会更全面的了解eRNA在顺式调控增强子活性的作用。 到目前为止,一些研究已经暗示了eRNAs在Mediator和其复合体中的作用,而后两者介导染色质形成loop。在未来,对eRNAs结合蛋白的深入分析可能有助于阐明在转录调控过程中eRNAs在哪里以及如何参与复杂的相互作用网络。这可能需要开发一系列的方法来系统的鉴定eRNA相互作用蛋白。 最后,随着破译正常组织和疾病组织的表观基因组的需求日益增长,需要更加灵敏和更加全面的方法来描述各种细胞环境中的增强子。值得注意的是,在过去的十年里,有大量关于疾病相关的遗传变异(例如,单核苷酸多态性和拷贝数变异)和突变的记录,而大部分都位于潜在的增强子元件上。由于eRNAs是一种有效的活性增强子标记,对其进行靶向测序和生物信息学分析会加速对人类疾病中这些遗传变异和突变的功能注释。

IncRNA介绍

长链非编码RNA((long non-coding RNA, lncRNA)是一类长度大于200bp的非编码RNA,无蛋白质编码功能,物种间保守性差,具有较强的组织特异性和时空特异性。目前确定功能的lncRNA较少。lncRNA在表观遗传水平、转录水平和转录后水平调控基因表达发挥作用,并广泛参与机体几乎所有生理和病理过程,与临床上许多肿瘤及非肿瘤疾病关系密切。 1)反义lncRNA(antisense lncRNA),由邻近的编码基因反方向转录,与其他蛋白质编码基因存在重叠区域(如共享外显子); 2)基因内lncRNA(intronic lncRNA),起始于蛋白质编码基因的内含子,但与其无重叠区域,由相对邻近的蛋白质编码基因从任意方向转录; 3)异质性lncRNA(divergent lncRNA),由邻近的蛋白质编码基因的启动子反方向转录,转录启动时常伴随相邻蛋白质编码基因转录起始位点数百bp的转录; 4)基因间lncRNA(intergenic lncRNA),由蛋白质编码基因及那些不共享启动子、外显子或内含子的蛋白质编码基因共转录而来; 5)增强子式lncRNA(enhancer lncRNA),由增强子转录,可长距离或短距离介导调控转录lncRNA自身的增强子与基因组内其它转录因子间的相互作用。 1)基因表达调控 2)调节组蛋白修饰与染色质重塑 3)调节组蛋白修饰与染色质重塑 参考: 1) http://html.rhhz.net/ZGSWGCZZ/html/20160908.htm#zz 2) http://www.ajsmmu.cn/ajsmmu/ch/reader/create_pdf.aspx?file_no=20100539&flag=1&year_id=2011&quarter_id=7

为什么慢病毒抑制基因表达后mrna明显下降,但是蛋白表达却没有变化

a、dna的甲基化和组蛋白的乙酰化不一定引起基因沉默,a错误;b、增强子是通过启动子来增加转录的,有效的增强子可以位于基因的5′端,也可位于基因的3′端,有的还可位于基因的内含子中,所以增强子不一定位于所有基因的上游,b正确;c、转录因子是一群能与基因5′端上游特定序列专一性结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子,c错误;d、细胞的分化是基因选择性表达,所以通常不发生重编程,d错误.

三种RNA聚合酶性质及功能,启动子、增强子的功能及特点。

RNA聚合酶I 合成45S的rRNA前体(35S在酵母),成熟体的28S,18S和5.8S rRNAs,形成核糖体RNA的主要部分。RNA聚合酶II mRNA合成的前体和大多数snRNA的和小分子RNA。这是研究最多的类型,由于对启动子的转录和转录因子的范围所需的控制层次较高。RNA聚合酶Ⅲ合成的tRNA,5S rRNA基因和其他小分子RNA在细胞核和细胞质中。RNA聚合酶IV在植物体内合成的siRNA。RNA聚合酶V合成的siRNA在植物中的异染色质形成siRNA。启动子:DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域,在许多情况下,还包括促进这一过程的调节蛋白的结合位点。增强子:增强基因启动子工作效率的顺式作用序列,能够在相对于启动子的任何方向和任何位置(上游或下游)上都发挥作用。

小白求助 shRNA序列和基因的CDS是什么关系

CDS是Coding sequence,蛋白编码序列.ORF是open reading frame,开放阅读框.⑴开放阅读框是不被终止子打断的一段核酸序列,可能包含编码蛋白的碱基序列;不是所有开放阅读框都能被表达出蛋白产物,或者能表达出占有优势...进行CDS分析,首先要有一段氨基酸序列(基因序列要转换成氨基酸序列),在NCBI首页上第二排链接里点BLAST,进入BLAST页面,在BLAST页面最下方的Specialized BLAST里的第三个链接(Find conserved domains in your sequence (cds))就是CDS分析,输入你的氨基酸序列,就会显示相应的结果。

miRNA和siRNA

MicroRNA(miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(~21-23个核苷酸)。成熟的miRNA结合到与其互补的mRNA的位点通过碱基配对调控基因表达。与靶mRNA不完全互补的miRNA在蛋白质翻译水平上抑制其表达(哺乳动物中比较普遍)。然而,最近也有证据表明,这些miRNA也有可能影响mRNA的稳定性。使用这种机制的miRNA结合位点通常在mRNA的3"端非翻译区。如果miRNA与靶位点完全互补(或者几乎完全互补),那么这些miRNA的结合往往引起靶mRNA的降解(在植物中比较常见)。通过这种机制作用的miRNAs的结合位点通常都在mRNA的编码区或开放阅读框中。每个miRNA可以有多个靶基因,而几个miRNAs也可以调节同一个基因。这种复杂的调节网络既可以通过一个miRNA来调控多个基因的表达,也可以通过几个miRNAs的组合来精细调控某个基因的表达。SmallinterferingRNA(siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAaseⅢ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。siRNA在RNA沉寂通道中起中心作用,是对特定信使RNA(mRNA)进行降解的指导要素。siRNA是RNAi途径中的中间产物,是RNAi发挥效应所必需的因子。

开放阅读框是DNA序列 还是mRNA?

开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。是DNA序列。

基因、染色体、蛋白质、DNA、RNA 之间的关系是什么?

染色体包含DNA,蛋白质(组分包含关系),基因(区域包含关系);DNA包含基因;蛋白质,DNA,RNA互不包含,各为一体。染色体(Chromosome )是细胞核中遗传物质(基因)的载体,在显微镜下呈圆柱状或杆状,主要由脱氧核糖核酸和蛋白质组成,在细胞发生有丝分裂时期容易被碱性染料(例如龙胆紫和醋酸洋红)着色,因此而得名 。染色体是细胞核中载有遗传信息(基因)的物质,在显微镜下呈圆柱状或杆状,主要由DNA和蛋白质组成,在细胞发生有丝分裂时期容易被碱性染料(例如龙胆紫和醋酸洋红)着色,因此而得名。在无性繁殖物种中,生物体内所有细胞的染色体数目都一样;而在有性繁殖大部分物种中,生物体的体细胞染色体成对分布,含有两个染色体组,称为二倍体。染色体研究是临床遗传学研究的基础。测序结果表明X染色体包涵多达1100种基因。但另人吃惊的是,与之相关的疾病也有百余种,如X染色体易碎症、血友病、孤独症、肥胖肌肉萎缩病和白血病等。看来这条染色体决不容小视!X染色体对应的另一半就是Y染色体。人类Y染色体的测序工作也已经完成,并且发现它并没有人们之前想象的那样脆弱。Y染色体上有一个“睾丸”决定基因则对性别决定至关重要。已经知道的与Y染色体有关的疾病有十几种。参考资料染色体.染色体[引用时间2017-12-20]

RNAfree枪头和离心管与普通的有什么区别?

应该是RNase free,就是无RNA酶的,提RNA,反转录等实验用的,如果没有用RNase free的管和枪头可能造成RNA被降解,也可以用DEPC水泡普通的枪头和管。生物离心管介绍同步骤下离心的目的不一样。开始时DNA溶解在缓冲液里,这时离心后取上清,弃杂质沉淀。后来加盐和冰乙醇后,DNA还有部分RNA将沉淀,这时离心后要弃上清而收集核酸沉淀.足够多的离心有助于提高纯度,但会损失一些DNA。搅拌和离心的目的是为了将噬菌体蛋白质外壳同侵入大肠杆菌的噬菌体DNA分开,以便对放射性元素跟踪测试。离心会使质量较轻的噬菌体颗粒进入上清液,而被感染的细菌则形成沉淀,但这必须保证是在菌体裂解之前进行。噬菌体侵染细菌的速度很快,在37度的条件下大约40分钟就可以产生100到300个子代噬菌体。从感染到释放前的这段时间叫潜伏期,大约经历20到30分钟。短时间的保温可获得足够数量的子代噬菌体,但又必须避免超出潜伏期,所以离心要在“短时间”保温后及时进行。噬菌体侵染大肠杆菌实验中,搅拌、离心的目的是把噬菌体和细菌分离开。用同位素示踪法可验证光合作用产生的氧来自水。蔗糖为非还原性糖,不能和斐林试剂发生反应。酵母菌有氧呼吸和无氧呼吸均产生二氧化碳,故不能根据是否产生CO2。

RNAfree枪头和离心管与普通的有什么区别?

应该是RNase free,就是无RNA酶的,提RNA,反转录等实验用的,如果没有用RNase free的管和枪头可能造成RNA被降解,也可以用DEPC水泡普通的枪头和管。生物离心管介绍同步骤下离心的目的不一样。开始时DNA溶解在缓冲液里,这时离心后取上清,弃杂质沉淀。后来加盐和冰乙醇后,DNA还有部分RNA将沉淀,这时离心后要弃上清而收集核酸沉淀.足够多的离心有助于提高纯度,但会损失一些DNA。搅拌和离心的目的是为了将噬菌体蛋白质外壳同侵入大肠杆菌的噬菌体DNA分开,以便对放射性元素跟踪测试。离心会使质量较轻的噬菌体颗粒进入上清液,而被感染的细菌则形成沉淀,但这必须保证是在菌体裂解之前进行。噬菌体侵染细菌的速度很快,在37度的条件下大约40分钟就可以产生100到300个子代噬菌体。从感染到释放前的这段时间叫潜伏期,大约经历20到30分钟。短时间的保温可获得足够数量的子代噬菌体,但又必须避免超出潜伏期,所以离心要在“短时间”保温后及时进行。噬菌体侵染大肠杆菌实验中,搅拌、离心的目的是把噬菌体和细菌分离开。用同位素示踪法可验证光合作用产生的氧来自水。蔗糖为非还原性糖,不能和斐林试剂发生反应。酵母菌有氧呼吸和无氧呼吸均产生二氧化碳,故不能根据是否产生CO2。

DNA连接酶跟DNA聚合酶跟RNA聚合酶有啥区别跟联系?详细点

DNA连接酶只能修补DNA双链中有一个小缺口的单链,也就是说,这个缺口的对面,DNA是完整的,不是断裂的。如果两条链在同一个地方断裂就是2条DNA了,这时连接酶没作用,当然,如果DNA上有不止一个小缺口,只要DNA双链还完整,DNA连接酶就可以进行修补。DNA聚合酶在DNA复制中期延长作用,根据另一条链按碱基互补不断延长DNA,而DNA复制中所出现的引物水解后留下的缺口,就由DNA连接酶来修补。RNA聚合酶和DNA聚合酶差不多,就是连接核糖核苷酸形成磷酸二酯键.在DNA复制中(合成引物)和转录中起作用。

DNA 连接酶 RNA连接酶 有什么区别与相同点 什么是DNA聚合酶

dna聚合酶只能将单个核苷酸加到已有的核酸片段的3′末端的羟基上,形成磷酸二酯键;而dna连接酶是在两个dna片段之间形成磷酸二酯键,不是在单个核苷酸与dna片段之间形成磷酸二酯键dna聚合酶是以一条dna链为模板,将单个核苷酸通过磷酸二酯键形成一条与模板链互补的dna链;而dna连接酶是将dna双链上的两个缺口同时连接起来。因此dna连接酶不需要模板二者虽然都是由蛋白质构成的酶,但组成和性质各不相同
 首页 上一页  1 2 3 4 5 6 7 8 9 10 11  下一页  尾页