DNA图谱 / 问答 / 标签

甲硫氨酸代谢障碍原因

遗传因素引起三种关键酶即甲烯四氢叶酸还原酶(MTHFR)、胱硫醚缩合酶(CBS)、甲硫氨酸合成酶(MS)缺乏或活性降低。先天性胱硫醚缩合酶缺陷症或胱氨酸尿症纯合子表现为CBS酶严重缺乏,患者常早年发生动脉粥样硬化,而且波及全身大、中、小动脉,病变弥漫且严重,多较早死亡。目前研究较多的主要是轻中度高同型半胱氨酸血症,发现编码MTHFR、CBS、MS酶的基因发生碱基突变或插入、缺失,引起相应的酶缺陷或活性下降。环境营养因素指代谢辅助因子如叶酸、维生素B6、B12缺乏,这些因子在同型半胱氨酸代谢反应中为必需因子,均可导致高同型半胱氨酸血症的发生。许多研究已经证实冠心病患者血浆同型半胱氨酸升高以及血清叶酸、维生素B6、B12水平下降。

活化后可提供活性甲基的氨基酸是?

构成天然蛋白质的氨基酸后,甲硫氨酸活化后可以作为嫁接的供体。

S-腺苷甲硫氨酸的基本信息

英文名: S-Adenosly-L-methionine别名: S-腺苷甲硫氨酸,思美泰,S-腺苷-L-蛋氨酸产品名称: S-腺苷蛋氨酸分子结构:分子式: C15H22N6O5S分子量: 398.44CAS 登录号: 29908-03-0含量: :≥98%特性: 白色精细粉末S-腺苷甲硫氨酸 S-adenoslymethionineS-腺苷甲硫氨酸 (S-adenosly-L-methionine,简称SAMe或Adomet),即S-腺苷-L-蛋氨酸,又名腺苷甲硫氨酸,它是甲硫氨酸(Methionine, Met)的活性形式,在动植物体内广泛存在,它是由底物L-甲硫氨酸和ATP经S-腺苷甲硫氨酸合成酶(S-Adenosly-L-Methionine Synthetase, EC 2.5.1.6)酶促合成的。甲硫键是高能键,另外其丙基胺部分也加入到多胺化合物中。当胆碱、肌酸及其它甲基化合物生成时它作为甲基供体而起作用。认为甲硫氨酸的分解也经过此物质。

甲硫氨酸在测SOD里有什么用处

该方法依据超氧物歧化酶抑制氮蓝四唑(NBT)在光下的还原作用来确定酶活性大小。在氧气中,还原的核黄素与氧反应产生O2-,O2-将无色(或微黄)的氮蓝四唑还原为蓝色,SOD通过催化O2-歧化反应,生成O2与H2O2,从而抑制蓝色形成。于是光还原反应后,反应液蓝色愈深,说明酶活性愈低,反之酶活性愈高。核黄素发生还原反应,需要体系中提供一定的电子供体,而甲硫氨酸就起到了这个电子供体作用,使得核黄素的光激发还原反应得以进行。

甲硫氨酸循环的介绍

甲硫氨酸循环methionine cycle:甲硫氨酸分子中含有S-甲基,通过各种转甲基作用可生成多种含甲基的生理活性物质,如肾上腺素、肉碱、胆碱及肌酸等。

甲硫氨酸葡萄糖

D

生物化学中,酶的活性中心内的必需基团可以是甲硫氨酸的甲基吗?

酶活性中心的必需基团有结合基团和催化基团,常见的有:组氨酸的咪唑基,丝氨酸的羟基,半胱氨酸的巯基,酸性氨基酸的羧基,碱性氨基酸的氨基。其中没有甲硫氨酸的甲基。

活性硫酸根中含有哪些氨基酸

活性硫酸根中含有蛋氨酸、半胱氨酸和胱氨酸。硫酸根的代谢中含硫氨基酸经氧化分解均可以产生硫酸根,半胱氨酸是体内硫酸根的主要来源。体内的含硫氨基酸有三种,即甲硫氨酸(蛋氨酸)、半胱氨酸和胱氨酸。

活性蛋氨酸是______;活性硫酸根是______。

【答案】:S-腺苷甲硫氨酸(SAM);PAPS(3"-磷酸腺苷-5"-磷酸硫酸)

什么是活性蛋氨酸

在蛋氨酸腺苷转移酶的催化下,蛋氨酸与ATP作用,生成S腺苷蛋氨酸(SAM)。SAM中的甲基十分活泼,称活性甲基,SAM称活性蛋氨酸。SAM在甲基转移酶的催化下,可将甲基转移给另一物质,使甲基化,SAM即变为S腺苷同型半胱氨酸。后者脱去腺苷、生成同型半胱氨酸。同型半胱氨酸由N5-甲基四氢叶酸供给甲基,生成蛋氨酸。此即蛋氨酸循环。体内有数十种物质合成需SAM提供甲基,如肾上腺素、肌酸、肉碱、胆碱等。因此,SAM是体内最重要的甲基供体。同型半胱氨酸由N5-甲基-四氢叶酸提供甲基再转变为甲硫氨酸,同时释出自由的四氢叶酸,反应由转甲基酶催化,辅酶是维生素B12。

甲硫氨酸片的药理作用

本品为氨基酸类药,是体内胆碱生物合成的甲基供体,能放出活性甲基,促进磷脂酰胆碱合成,磷脂酰胆碱与积存在肝内的脂肪作用,变为易于吸收的卵磷脂,故可防止肝脂肪蓄积;具有保肝、解毒的作用。能阻断自由基的连锁反应,保护抗氧化酶的活性,还可以增加胱甘肽氧化物的活性,增加机体抗氧化能力。

生物:什么是甲硫氨酸?

甲硫氨酸(英语:Methionine,又称蛋氨酸),对人而言是唯一的含硫必需氨基酸,有L型及D型两种,与生物体内各种含硫化合物(如:蛋白质)的代谢密切相关。是体内活性甲基和硫的主要来源。DL-蛋氨酸可利用化学法生产。蛋氨酸是强肝解毒剂、促进发育剂,当缺乏甲硫氨酸时,会引起食欲减退。甲硫氨酸广泛应用于营养补充与畜产饲料,由于甲硫氨酸容易被鸡吸收而转变为鸡肉蛋白,在鸡饲料中添加甲硫氨酸,可少耗饲料,并使鸡肉生长健全。目前甲硫氨酸主要有四类:固体甲硫氨酸、液态羟基甲硫氨酸(MHA)、液体甲硫氨酸钠和固体羟基甲硫氨酸钙,其中固体甲硫氨酸的市场最大。但在美国甲硫氨酸市场,液态羟基甲硫氨酸(MHA)为第一大。甲硫氨酸在人体中由mRNA上的起始密码子(含氮碱基序列AUG)经核糖体翻译后生成。

甲硫氨酸缩写

甲硫氨酸缩写是Met,甲硫氨酸是一种化学物质,是构成人体的必需氨基酸之一,分子式是C5H11O2NS,参与蛋白质合成。因其不能在体内自身生成,所以必须由外部获得。如果甲硫氨酸缺乏就会导致体内蛋白质合成受阻,造成机体损害。 甲硫氨酸作用用途 心肌保护 甲硫氨酸通过增加体内半胱氨酸和谷胱苷肽合成,增加谷胱苷肽过氧化物酶和超氧歧化酶活性,其甲基作用使内源性磷脂合成增加,从而稳定了溶酶体膜,减少了酸性磷酸酶的释放,保护了心肌细胞线粒体免受损害,对克山病造成的心肌损害尤为有用。 抗抑郁症 抑郁症患者血液中甲硫氨酸浓度显著降低补充外源性甲硫氨酸对抑郁症有治疗作用。 人体代谢 甲基化在体内生物合成与代谢中发挥着重要的作用。甲硫氨酸是体内最重要的甲基供体,很多含氮物质在生物合成时甲硫氨酸提供甲基如肌酸、松果素、肾上腺素、肉碱、肌碱、胆碱、甲基组胺、甲菸胺等。同样甲基化在蛋白质和核酸的修饰加工方面也极为重要。

什么是蛋氨酸?

  甲硫氨酸又名蛋氨酸  甲硫氨酸科技名词定义  中文名称:甲硫氨酸 英文名称:methionine;Met 定义:学名:2-氨基-4-甲巯基丁酸。一种含硫的非极性α氨基酸。L-甲硫氨酸是组成蛋白质的20种氨基酸中的一种,是哺乳动物的必需氨基酸和生酮氨基酸。其侧链易氧化成甲硫氨(亚)砜。符号:M。 所属学科:生物化学与分子生物学(一级学科);氨基酸、多肽与蛋白质(二级学科) 本内容由全国科学技术名词审定委员会审定公布  甲硫氨酸是构成人体的必需氨基酸之一,参与蛋白质合成。因其不能在体内自身生成,所以必须由外部获得。如果甲硫氨酸缺乏就会导致体内蛋白质合成受阻,造成机体损害。体内氧自由基造成的膜脂质过度氧化是导致机体多种损害的原因。脂质过氧化物会损害初级和次级溶酶体膜,使溶酶体内含有的作为水解的酸性磷酸酶释放出来,对细胞和浅粒体膜等重要的细胞器造成损害,甲硫氨酸通过多种途径抗击这些损害。  甲硫氨酸  甲硫氨酸又名蛋氨酸 分子式:C5H11O2NS 结构式:CH3-S-CH2-CH2-CH(NH2)COOH 分子量:149.21  编辑本段性状  白色薄片状结晶或结晶性粉末。有特殊气味。味微甜。熔点280~281℃ (分解)。10%水溶液的PH值5.6~6.1。无旋光性。对热及空气稳定。对强酸不稳定,可导致脱甲基作用。溶于水(3.3g/100ml,25℃ )、稀酸和稀碱。极难溶于乙醇,几乎不溶于乙醚。 是含硫必需氨基酸,与生物体内各种含硫化合物的代谢密切相关。当缺乏蛋氨酸时,会引起食欲减退、生长减缓或不增加体重、肾脏肿大和肝脏铁堆积等现象,最后导致肝坏死或纤维化。 蛋氨酸还可利用其所带的甲基,对有毒物或药物进行甲基化而起到解毒的作用。因此,蛋氨酸可用于防治慢性或急性肝炎、肝硬化等肝脏疾病,也可用于缓解砷、三氯甲烷、四氯化碳、苯、吡啶和喹啉等有害物质的毒性反应。 H3CSCH2CH2CH(NH2)COOH,为含硫α-氨基酸之一。是蛋白质的一种成分,卵白蛋白和酪蛋白中很多,天然得到的是L-型。是必需氨基酸之一,L型D型都有效。在生物体内先从ATP接受腺苷基变成S-腺苷酰甲硫氨酸(活性甲硫氨酸)再进行甲基转移。失去甲基的同型半胱氨酸经胱硫醚变成半胱氨酸。或直接脱去甲硫醇和氨,而间接地经同型半胱氨酸分解成α-酮酸。甲硫氨酸的生物合成是从O-乙酰同型丝氨酸等硫化物,或由半胱氨酸的逆途径生成同型半胱氨酸(至此仅在链孢霉上出现),再向同型半胱氨酸通过转移甲基而生成。这些甲基有由(1)N-最高正价化合物(例如甜菜碱),(2) S-最高正价化合物(例如硫代甜菜碱)直接转移的,有由(3)活性C1单位新产生的等。再者活性甲硫氨酸本身,也通过分解成同型半胱氨酸,成为肌酸、N-甲基烟酸、胆碱、甲基组氨酸等的甲基供体。活性甲硫氨酸经过脱羧、脱硫甲基反应也变成多胺。另一条合成途径是通过硫甲基转移给α-酮丁酸而生成甲硫氨酸。甲硫氨酸含的硫对碱是稳定的。溴化氰在甲硫氨酸残基处可将肽切断,因此多用于氨基酸排列的研究 甲硫氨酸为人体必需八种氨基酸之一。人体内不能合成,必须依靠外源补充。甲硫氨酸在人体内与ATP结合生成S-腺苷氨酸。  检查  酸度 取本品0.5g,加水50ml溶解后,依法测定(附录Ⅵ H),pH值应为5.6~6.1。溶液的透光度 取本品0.5g,加水20ml溶解后,照分光光度法(附录Ⅳ A),在430nm的波长处测定透光率,不得低于98.0%。氯化物 取本品0.30g,依法检查(附录Ⅷ A),与标准氯化钠溶液6.0ml制成的对照液比较,不得更浓(0.02%)。硫酸盐 取本品1.0g,依法检查(附录Ⅷ B),与标准硫酸钾溶液2.0ml制成的对照液比较,不得更浓(0.02%)。铵盐 取本品0.10g,依法检查(附录Ⅷ K),与标准氯化铵溶液2.0ml制成的对照液比较,不得更深(0.02%)。其他氨基酸 取本品,加水制成每1ml中含10mg的溶液,照薄层色谱法(附录Ⅴ B)试验,吸取上述溶液5μl,点于硅胶G薄层板上,以正丁醇-冰醋酸-水(4:1:5)为展开剂,展开后,晾干,在90℃干燥10分钟,喷以茚三酮的丙酮溶液(0.5→100),再在90℃加热10分钟,立即检视,应只显一个紫色斑点。干燥失重 取本品,在105℃干燥3小时,减失重量不得过0.2%(附录Ⅷ L)。炽灼残渣 不得过0.1%(附录Ⅷ N)。铁盐 取本品1.0g,依法检查(附录Ⅷ G),与标准铁溶液1.5ml制成的对照液比较,不得更深(0.0015%)。重金属 取本品0.50g,加水23ml溶解后,加醋酸盐缓冲液(PH3.5)2ml,依法检查(附录Ⅷ H 第一法),含重金属不得过百万分之十。砷盐 取本品2.0g,加水23ml溶解后,加盐酸5ml,依法检查(附录Ⅷ J 第一法),应符合规定(0.0001%)。热原 取本品,加氯化钠注射液制成每1ml中含20mg的溶液,依法检查(附录Ⅺ D),剂量按家兔体重每1kg注射10ml,应符合规定(供注射用)。  编辑本段含量测定  取本品约0.13g,精密称定,加无水甲酸3ml与冰醋酸50ml溶解后,照电位滴定法(附录Ⅶ A),用高氯酸滴定液(0.1mol/L)滴定,并将滴定的结果用空白试验校正。每1ml高氯酸滴定液(0.1mol/L)相当于14.92mg的C5H11NO2S。  编辑本段作用  抗肝硬变、脂肪肝及各种急性、慢性、病毒性、黄疸性肝 甲硫氨酸可以促进肝细胞膜磷脂甲基化,使膜流动性增强Na+、K+ -ATP酶汞作用强,可以减少肝细胞内胆汁的淤积,转硫基作用加强,从而增强了肝细胞内半胱氨酸、谷胱苷肽及牛磺酸的合成,减少了胆汁酸在肝内聚积,加强了解毒作用,有利于肝细胞恢复正常生理功能,促使黄疸消退和肝功能恢复。 抗各种原因引起的肝内胆汁淤积 病毒感染、妊娠和长期肠道外营养都有可能导致肝内胆汁淤积,甲硫氨酸通过生成牛磺酸与胆汁酸共价结合,增强酸溶解度,易于排除肝细胞外,同时通过肝细胞膜磷的甲基化,增强Na+、K+、-ATP酶活性促进胆汁外排。应用甲硫氨酸可以明显减少由胆汁淤积引起的皮肤瘙痒和肝功异常。 心肌保护作用 甲硫氨酸通过增加体内半胱氨酸和谷胱苷肽合成,增加谷胱苷肽过氧化物酶和超氧歧化酶活性,其甲基作用使内源性磷脂合成增加,从而稳定了溶酶体膜,减少了酸性磷酸酶的释放,保护了心肌细胞线粒体免受损害,对克山病造成的心计损害尤为有用。 抗抑郁症作用 抑郁症患者血液中甲硫氨酸浓度显著降低补充外源性甲硫氨酸对抑郁症有治疗作用。 降血压作用 甲硫氨酸通过转硫作用生成牛磺酸有明显的降压作用。 预防和治疗有毒金属非金属对人体的伤害 甲硫氨酸在体内转化成谷胱苷肽,是预防和治疗重金属铅镉汞对机体造成损害的重要物质。它与进入人体内的毒性金属结合,变成可溶性的物质随胆汁排除体外,发挥了防毒和驱毒作用。人体肺部沾染SiO2粉尘后,组织释放氧自由基增加造成脂质过氧化增加,造成肺脏进一步损害,甲硫氨酸转化成的半胱氨酸和谷胱苷肽可以阴断这一过程,保护肺部免受进一步损害。 甲基化在体内生物合成与代谢中发挥着重要的作用。甲硫氨酸是体内最重要的甲基供体,很多含氮物质在生物合成时甲硫氨酸提供甲基如肌酸、松果素、肾上腺素、肉碱、肌碱、胆碱、甲基组胺、甲菸胺等。同样甲基化在蛋白质和核酸的修饰加工方面也极为重要。 甲硫氨酸脑啡肽是近几年热门的研究课题,已知它具有多种生理活性。甲硫脑啡肽能够增强TNFa产生和NK细胞活性。增强介素IL-1、IL-2、IL-6的表达。能够减轻肝细胞损伤对淋巴细胞增强的抑制,参与了调整月经周期,同时甲硫脑啡肽与5-羟色胺以串联方式发挥中枢镇痛作用。

蛋氨酸是什么

蛋氨酸又称甲硫氨酸,是人体一种必需氨基酸。

甲硫氨酸和蛋氨酸是什么?

甲硫氨酸也称蛋氨酸,是构成人体的必需氨基酸之一,参与蛋白质合成。因其不能在体内自身生成,所以必须由外部获得。如果甲硫氨酸缺乏就会导致体内蛋白质合成受阻,造成机体损害。体内氧自由基造成的膜脂质过度氧化是导致机体多种损害的原因。甲硫氨酸脑啡肽具有多种生理活性。甲硫脑啡肽能够增强TNFa产生和NK细胞活性。增强介素IL-1、IL-2、IL-6的表达。能够减轻肝细胞损伤对淋巴细胞增强的抑制,参与了调整月经周期,同时甲硫脑啡肽与5-羟色胺以串联方式发挥中枢镇痛作用。扩展资料甲硫氨酸的作用1、蛋氨酸的形式及吸收作用。各种氨基酸在禽类体内吸收原理并不相同,蛋氨酸添加剂大多为多聚体混合物,在胰腺酯酶的作用下可水解为单体。液态羟基蛋氨酸全部在肠道吸收,其中主要在十二指肠中被吸收,也可在大肠被吸收。2、禽类生产中蛋氨酸的作用。 在禽类生产中,高于NRC标准额外添加蛋氨酸有促进家禽生长、改善肉鸡肉品质、提高机体免疫力和抗氧化功能等。研究表明:与其他氨基酸不足相比,蛋氨酸缺乏时对肌肉的生长抑制最为重要。3、蛋氨酸的毒性作用。蛋氨酸的过量添加可对机体产生毒性作用,会抑制动物生长,动物蛋白质合成障碍,造成脂质过氧化损伤,导致血管内膜损伤诱发动脉粥样硬化,并可以提高家禽腿病的发病率。参考资料来源:百度百科-甲硫氨酸

SAM为什么又叫活性甲硫氨酸

SAM又叫S腺苷蛋氨酸(蛋氨酸又叫甲硫氨酸),是甲基的活性供体,由蛋氨酸腺苷化得来的。

甲硫氨酸的基本信息

中文学名:甲硫氨酸或甲硫基丁氨酸 俗名蛋氨酸中文名称:DL-蛋氨酸中文别名:DL-甲硫氨酸;DL-2-氨基-4-甲硫基丁酸;混旋蛋氨酸英文名称:DL-Methionine英文别名:(±)-2-Amino-4-(methylmercapto)butyricacid;DL-2-Amino-4-(methylthio)butanoicacid单字母符号:M三字母符号:Met CAS号:59-51-8分子式:C5H11O2NS线性分子式:CH3SCH2CH2CH(NH2)COOH分子量:149.21MDL号:MFCD00063096Beilstein号:636185EC号:200-432-1密度:1.340g/cm3 沸点:186.8°C at 760 mmH类别:氨基酸类对应密码子:AUG对应反密码子:UAC甲硫氨酸,是含硫必需氨基酸,生物体必须将D-型在体内转化为L-型才能被机体利用。与生物体内各种含硫化合物的代谢密切相关。在生物体内先从ATP接受腺苷基变成S-腺苷酰甲硫氨酸(活性甲硫氨酸)再进行甲基转移。失去甲基的同型半胱氨酸经胱硫醚变成半胱氨酸。当缺乏蛋氨酸时,会引起食欲减退、生长减缓或不增加体重、肾脏肿大和肝脏铁堆积等现象,最后导致肝坏死或纤维化。蛋氨酸是α—氨基酸的一种,在它的分子中,含有一个碱性基团(—NH2)和一个酸性基团(—COOH),它是二性的。可以看出在强酸性溶液中它是以阳离子形式存在,而在强碱性溶液中,它是以阴离子形式存在的,在等电点处结晶出来,即当加酸或加碱至羧基和氨基的离子化程度相等时,溶液的pH值为它的等电点。蛋氨酸的等电点为5.74,由于它的这些性质,所以蛋氨酸虽然是有机物,但它具有无机物的某些属性,如它可以溶于水,但难溶于非极性物质,有相当高的熔点,其水溶液性质与具有高偶极矩的水溶液相似等等。又由于蛋氨酸的机构中有一个不对称的碳原子,所以它具有旋光性,且存在一对对映体。在较早的文献中,对不同的旋光性和不同的对映体均以d(右旋)、l(左旋)表示。将旋光性和对映体加以区分,对映体右旋构型记以“D”,左旋构型记以“L”,二者之间是实物与镜象的关系。又根据旋光方向不同,分左旋记以l(或“—”),右旋记以d(或“+”)本文所采用的符号与原文献相同。等量的右旋构型和左旋构型共同混合时,它们的旋光能力就相互抵消,不显示旋光性,这样的等量对映体的混合物称为外消旋体。记以“DL”。人工合成的蛋氨酸就是外消旋体。蛋氨酸的两个对映体(D和L)除了比旋光性大小相等方向相反外,具有相同的物理化学性质,但在对另一具有旋光性化合物反应时,左右旋体的反应速率常常不相同。但两个对映体与外消旋体的物理性质往往有区别,这是由于它的晶体结构与纯对映体不同,1:1的对映体化合物(DL)比每一个孤单的对映体在晶格中排列得更紧密一些,所以表现在熔点、溶解度和比重不相同。对于二个对映体(L或D)与外消旋体(DL—)的热力学(化学)性质根据法方文献介绍:左旋构型(L—)的ΔS可以用于外消旋体的ΔG的计算中。(ΔG=(ΔH-ΔS)但是外消旋体由根据热容扩展的低于90K的数据而得到的熵数据,对于L—构型大多数情况不适用。同时根据热力学的Kopp规则(固体化合物的热容约为构成元素的原子热容量总和),即左旋体(L)于外消旋体(DL—)的热容数据可用相同的方法估算。尽管这个规则是很粗糙的,但从文献发表的其它氨基酸的DL—热化学数据与其左旋构型(L)基本相同,或完全相同。因此只要左旋构型(L)的热力学数据可靠,在没有外消旋体的热力学和热化学数据的庆卡下,使用左旋构型数据可以做近似计算。

甲硫氨酸的代谢分析

甲硫氨酸,为含硫α-氨基酸之一。是蛋白质的一种成分,卵白蛋白和酪蛋白中很多,天然得到的是L-型。是必需氨基酸之一,L型D型都有效。或直接脱去甲硫醇和氨,而间接地经同型半胱氨酸分解成α-酮酸。甲硫氨酸的生物合成是从O-乙酰同型丝氨酸等硫化物,或由半胱氨酸的逆途径生成同型半胱氨酸(至此仅在链孢霉上出现),再向同型半胱氨酸通过转移甲基而生成。这些甲基有由⑴N-最高正价化合物(例如甜菜碱),⑵ S-最高正价化合物(例如硫代甜菜碱)直接转移的,有由⑶活性C1单位新产生的等。再者活性甲硫氨酸本身,也通过分解成同型半胱氨酸,成为肌酸、N-甲基烟酸、胆碱、甲基组氨酸等的甲基供体。活性甲硫氨酸经过脱羧、脱硫甲基反应也变成多胺。另一条合成途径是通过硫甲基转移给α-酮丁酸而生成甲硫氨酸。甲硫氨酸含的硫对碱是稳定的。溴化氰在甲硫氨酸残基处可将肽切断,因此多用于氨基酸排列的研究。甲硫氨酸为人体必需八种氨基酸之一。人体内不能合成,必须依靠外源补充。甲硫氨酸在人体内与ATP结合生成S-腺苷氨酸。

氨基酸葡萄糖有什么功效?

氨基酸葡萄糖有以下功效:1、舒缓因关节炎引起的疼痛、僵硬和肿胀骨质疏松症使软骨耗损,最终导致碎裂剥落,关节少了软骨的缓冲,易产生痛苦的僵硬和发炎。而葡萄糖胺有助于修复受损软骨,刺激新软骨的生成,改善发炎症状,舒缓关节疼痛、僵硬及肿胀。2、强化软骨结构,预防关节功能失效随着身体老化,关节组织会严重磨损,葡萄糖胺可以保护并强化软骨结构,预防因关节老化而产生的关节功能失效。3、润滑关节及维持关节功能葡萄糖胺可制造蛋白多糖润滑关节,防止骨关节摩擦疼痛,使关节活动自如。氨基葡萄糖是一种天然氨基单糖的衍生物,是软骨基质中合成蛋白聚糖所必需的重要成分。蛋白聚糖可以通过抑制胶原纤维的拉伸力来使关节软骨具有吸收冲击力的功能。在关节退行性疾病的早期,聚集葡萄聚糖的生物合成是增加的;在疾病的后期,则相反。由此导致软骨的弹性不断减弱并逐渐出现关节炎的诸多症状。扩展资料:氨基葡萄糖,它是人体内合成的物质,是形成软骨细胞的重要营养素,是健康关节软骨的天然组织成份。随着年龄的增长,人体内的氨基葡萄糖的缺乏越来越严重,关节软骨不断退化和磨损。美国、欧洲和日本的大量医学研究表明:氨基葡萄糖可以帮助修复和维护软骨,并能刺激软骨细胞的生长。参考资料:百度百科氨基葡萄糖

氨基聚糖和蛋白聚糖具备的功能有哪些

  氨基聚糖(glycosaminoglycan,GAG)  GAG是由重复二糖单位构成的无分枝长链多糖。其二糖单位通常由氨基已糖(氨基葡萄糖或氨基半乳糖)和糖醛酸组成,但硫酸角质素中糖醛酸由半乳糖代替。  氨基聚糖依组成糖基、连接方式、硫酸化程度及位置的不同可分为六种,即:透明质酸、硫酸软骨素、硫酸皮肤素、硫酸乙酰肝素、肝素、硫酸角质素。  对于患有关节炎,风湿性关节炎患者有帮助,对骨头的愈合也有很大帮助。在原生肽鲜螺旋藻中含有,但是干品有没有现在还没具体结果。  蛋白聚糖(proteoglycan,PG)  是一类特殊的糖蛋白,由一条或多条糖胺聚糖和一个核心蛋白共价链接而成。蛋白聚糖除含糖胺聚糖链外,尚有一些N—或(和)O—链接的寡糖链。蛋白聚糖不仅分布于细胞外基质,也存在于细胞表面以及细胞内的分泌颗粒中。  蛋白质和糖胺聚糖用共价键连接所构成的复合糖,一般多糖含量多于蛋白蛋白聚糖的示意图质。它是结缔组织主要成分之一,由结缔组织特化细胞或纤维细胞和软骨细胞产生。其主要功能是作为结缔组织的纤维成分(胶原和弹性蛋白)埋置或被覆的基质,也可当作垫组织使关节滑润。

酪氨酸受体属于第二信使吗

酪氨酸受体属于第二信使。非受体酪氨酸蛋白激酶途径:酪氨酸受体本身具有TPK活性,配体主要是激素和细胞因子。当受体与配体结合后,可偶联并激活下游不同的非受体型TPK,传递调节信号称为第二信使。

二肽的氨基端包括哪些

由两个氨基酸分子缩合而成的化合物叫作二肽[1],广义上二肽包括链状二肽和环二肽。 例如丙谷二肽就是由L-丙氨酸和L-谷氨酸缩合而成的二肽;肌肽是由β-丙氨酸和L-组氨酸两种氨基酸组成的二肽。环(组氨酸-脯氨酸)二肽可由玉米蛋白水解得到,是由L-组氨酸和L-脯氨酸环合而成的环二肽。至少有一个氨基和一个羧基也可能有两个或者多个

β-氰基-L-丙氨酸的合成路线有哪些?

基本信息:中文名称β-氰基-L-丙氨酸英文名称3-cyano-L-alanine英文别名(S)-2-amino-3-cyanopropanoicacid;L-3-Cyanoalanine;AmbotzHAA5740;(2S)-2-amino-3-cyanopropanoicacid;L-Alanine,3-cyano;3-Cyano-L-alanine;CAS号6232-19-5合成路线:1.通过氰化四丁基铵合成β-氰基-L-丙氨酸,收率约71%;2.通过O-乙酰基-l-丝氨酸和氰化钠合成β-氰基-L-丙氨酸更多路线和参考文献可参考http://baike.molbase.cn/cidian/51333

为什么随着运动强度的增加丙氨酸的释放量也增加

β丙氨酸常见于食物中的非必要氨基酸,在火鸡和鸡肉中大量存在,是天然的来源。它本身的能量增强特性有限。然而当它进入肌细胞就成为肌肽合成的限速底物。在人体中肌肽主要存在于快速收缩骨骼肌中,他在高强度无氧运动期间的骨骼肌缓冲氢离子中发挥的作用,预计高达40%,从而促进了pH值的下降。有研究表明补充4周的β丙氨酸,每天4~6克,可引起骨骼肌被他比氨酸浓度平均增长64%。理论上来说,长期训练补充β丙氨酸,能提升骨骼肌的肌肽水平。从而提高肌肉缓冲能力,从而提高无氧运动能力。而事实上测试也表明了这一点,自行车运动员肌肽浓度和30秒无氧功率测试中最大冲刺的平均功率呈显著性的正增长,这一发现支持了该理论基态和肌肉缓冲能力的关系,骨骼肌肌肽水平和无氧运动表现呈正相关关系。β丙氨酸对力量有氧代谢能力和短恢复间歇的短时高强度运动的影响。与肌酸相比,β丙氨酸并不能提高最大肌力。也不能提高有氧代谢能力。但能够改善无氧阈值。这意味着改善无氧阈值可以在相对更高的强度下进行更长时间的运动。

游离氨基酸的测定

游离氨基酸的测定常用方法为法茚三酮显色。茚三酮反应是指在加热条件及弱酸环境下,氨基酸或肽与茚三酮反应生成紫蓝色化合物及相应的醛和二氧化碳的反应,与脯氨酸或羟脯氨酸反应生成(亮)黄色化合物。该反应可以对氨基酸进行定性或定量分析,可用于法医学上犯罪嫌疑人的指纹采集。此反应十分灵敏,根据反应所生成的蓝紫色的深浅,用分光光度计在570nm波长下进行比色就可测定样品中氨基酸的含量(在一定浓度范围内,显色溶液的吸光率与氨基酸的含量成正比),也可以在分离氨基酸时作为显色剂对氨基酸进行定性或定量分析。原理:氨基酸为水溶性物质,在pH为8.0的缓冲溶液中与茚三酮同时加热,可形成紫色络合物,在吸收波长570纳米处可检出光密度值,从而计算出游离氨基酸总量。该法已被列为国家标准(GB/T8314-87)。检测方法稳定可靠,重现性好,设备简单操作方便。游离氨基酸反应机理:除脯氨酸、羟脯氨酸和茚三酮反应生成黄色物质外,所有的α-氨基酸及一切蛋白质都能和茚三酮反应生成蓝紫色物质。该反应分两步进行,第一步是氨基酸被氧化,产生CO2、NH3和醛,而水合茚三酮被还原成还原型茚三酮;第二步是所生成之还原型茚三酮与另一个水合茚三酮分子和氨缩合生成有色物质。此反应的适宜pH为5—7,同一浓度的蛋白质或氨基酸在不同pH条件下的颜色深浅不同,酸度过大时甚至不显色。该反应十分灵敏,1:1500000浓度的氨基酸水溶液即能显示反应,因此是一种常用的氨基酸定量方法。但也有些物质对茚三酮也呈类似的阳性反应,如β-丙氨酸、氨和许多一级胺化合物等。所以定性或定量测定中,应严防干扰物存在。

请问一下什么叫α-氨基酸?

α-氨基酸 氨基酸(amino acid)既含氨基又含酸性基团的有机化合物。生物体中绝大多数是带羧基的氨基酸。α氨基酸是蛋白质的主要组分,是生物体中最重要的氨基酸。在各种生物体中还普遍存在着结构和功能很不相同的游离氨基酸。 蛋白质中的氨基酸 结构 蛋白质的基本结构由20种氨基酸组成。都是由一个氨基、一个羧基、一个氢原子和一个侧链基团(R)连接在同一个碳原子上构成,这个碳原子叫α-碳原子。20种氨基酸有不同结构的R基团。 最简单的氨基酸是甘氨酸,它的侧链基团是氢原子。其他含有脂肪族侧链基团的有丙氨酸、缬氨酸、亮氨酸、异亮氨酸和脯氨酸。脯氨酸含有的不是氨基而是亚氨基,理应称之为亚氨基酸,它的侧链基团连接在α-碳原子,也连接在氨基上,形成四氢吡咯酸的环形结构。 含有侧链芳香族基团的有苯丙氨酸、酪氨酸和色氨酸;含有侧链脂肪族羟基的有丝氨酸和苏氨酸。 在中性环境带有正电荷的有赖氨酸和精氨酸两种碱性氨基酸;组氨酸虽有弱碱性侧链的咪唑基因,但是否带正电荷取决于它的周围环境。谷氨酸和天冬氨酸是两种酸性氨基酸,通常以谷氨酸盐和天冬氨酸盐形式存在;谷氨酸的单钠盐就是味精。这两种氨基酸的侧链羧基为酰氨所代替时各成为谷氨酰胺和天冬酰胺,它们是中性氨基酸,在蛋白质生物合成过程中,有它们自己的遗传密码,并不是从谷氨酸或天冬氨酸转变过来的。 此外,还有带有硫原子的半胱氨酸和甲硫氨酸。前者有疏基,在蛋白质中能与另一个半胱氨酸的硫基氧化成二硫键。甲硫氨酸在生物体中含量甚少。 在蛋白质分子中,有不少氨基酸都经过酶的处理转变成它们的衍生物。如胶原中由脯氨酸变成的羟脯氨酸,肌球蛋白中由部分赖氨酸转变成的ε-N-甲基赖氨酸,凝血酶原中的γ-羧基谷氨酸等等。已发现的转变大约有100多种。 必需氨基酸 植物能自己合成它所需的全部氨基酸。有些氨基酸动物自身不能合成而必须从食物中获得,缺乏这些氨基酸会导致营养不良。这类氨基酸称必需氨基酸。对人体来说,必需氨基酸包括:缬氨酸、亮氨酸、异亮氨酸、苏氨酸、苯丙氨酸、色氨酸、赖氨酸和甲硫氨酸。有些氨基酸如精氨酸和组氨酸对成人是非必需的,但对婴儿必需在食物中加以补充,只是需注意适量。 α-氨基酸的立体结构 除甘氨酸外,α-氨基酸的α-碳原子上所连结的4个基团都不相同。此时4个基团的排列方式从三度空间看,有两种方式。这两种方式相互成镜子中的影子,而不可重叠,互成立体异构体,因此α-氨基酸有立体异构体存在。两种异构体分别称L型和D型。除甘氨酸无立体异构体外,存在于蛋白质中的氨基酸都是L型的。 氨基酸amino acid 是既含氨基(-NH2)又含羧基(-COOH)的有机化合物。氨基酸中还含有氨基的氢与分子中的其他部分发生取代而形成亚胺的环状化合物(亚氨基酸)。氨基与羧基结合在同一碳原子上的称为α-氨基酸。天然得到的氨基酸大部分是α-氨基酸(R-CHNH2-COOH),α-氨基酸相互间失水形成肽键连接(见图)的化合物为蛋白质或肽。由于氨基从α顺次向相邻的碳原子移动,因此被称之为β-,γ-,δ-氨基酸等,但并不存在于蛋白质中。在生物体内这些氨基酸仅以游离状态存在着(例如:β-丙氨酸,γ-氨基丁酸)。氨基酸是本世纪初由费歇尔等(E.Fisher etal.)阐明的。构成一般蛋白质的有23种(半胱氨酸和胱氨酸另计),立体构型均属L-型。这些氨基酸的简称详见“氨基酸合成”词目中。氨基酸根据氨基与羧基数分类为中性即一氨基一羧酸(如丙氨酸、亮氨酸等),酸性即一氨基二羧酸(如天冬氨酸、谷氨酸),碱性的即二氨基一羧酸(如赖氨酸)等。此外还把含有芳香环、羟基、巯基的氨基酸分别分类为芳香族氨基酸(如酪氨酸、苯丙氨酸、色氨酸)、含羟基氨基酸(如丝氨酸、苏氨酸)、含硫氨基酸(半胱氨酸、胱氨酸、甲硫氨酸)。在自然界中还发现许多非蛋白质组成成分的氨基酸,在植物中主要是以游离的或γ-谷氨酰衍生物的形态存在。 天然产的氨基酸的结构上都具有共同特点:即在羧基邻位α—碳原子上有一个氨基,因此称α—氨基酸。天然蛋白质是由不同的α—氨基酸,通过肽键结合而成的复杂高分子化合物,结构和组成十分复杂。

维生素B5的命名为:(R)-N-(2,4-二羟基-3,3-二甲基-1-氧代丁基)-β-丙氨酸。

泛酸称作维生素B5。由泛解酸和b-Ala 组成。有旋光性,仅D型([a]=+37.5°)有生物活性。消旋泛酸具有吸湿性和静电吸附性;纯游离泛酸是一种淡黄色粘稠的油状物,具酸性,易溶于水和乙醇,不溶于苯和氯仿。泛酸在酸、碱、光及热等条件下都不稳定[1]。具制造抗体功能,在维护头发、皮肤及血液健康方面亦扮演重要角色。

α-氨基酸的关于氨基酸

氨基酸是既含氨基(-NH2)又含羧基(-COOH)的有机化合物。氨基酸中还含有氨基的氢与分子中的其他部分发生取代而形成亚胺的环状化合物(亚氨基酸)。氨基与羧基结合在同一碳原子上的称为α-氨基酸。天然得到的氨基酸大部分是α-氨基酸(R-CHNH2-COOH),α-氨基酸相互间失水形成肽键连接(见图)的化合物为蛋白质或肽。由于氨基从α顺次向相邻的碳原子移动,因此被称之为β-,γ-,δ-氨基酸等,但并不存在于蛋白质中。在生物体内这些氨基酸仅以游离状态存在着(例如:β-丙氨酸,γ-氨基丁酸)。在各种生物体中还普遍存在着结构和功能很不相同的游离氨基酸。氨基酸是本世纪初由费歇尔等(E.Fisher etal.)阐明的。构成一般蛋白质的有23种(半胱氨酸和胱氨酸另计),立体构型均属L-型。这些氨基酸的简称详见“氨基酸合成”词目中。氨基酸根据氨基与羧基数分类为中性即一氨基一羧酸(如丙氨酸、亮氨酸等),酸性即一氨基二羧酸(如天冬氨酸、谷氨酸),碱性的即二氨基一羧酸(如赖氨酸)等。此外还把含有芳香环、羟基、巯基的氨基酸分别分类为芳香族氨基酸(如酪氨酸、苯丙氨酸、色氨酸)、含羟基氨基酸(如丝氨酸、苏氨酸)、含硫氨基酸(半胱氨酸、胱氨酸、甲硫氨酸)。在自然界中还发现许多非蛋白质组成成分的氨基酸,在植物中主要是以游离的或γ-谷氨酰衍生物的形态存在。天然产的氨基酸的结构上都具有共同特点:即在羧基邻位α—碳原子上有一个氨基,因此称α—氨基酸。天然蛋白质是由不同的α—氨基酸,通过肽键结合而成的复杂高分子化合物,结构和组成十分复杂。

人体中还存在哪些不参与机体蛋白质合成,但对机体代谢具有重要影响的氨基酸吗

生物体内还存在着许多不参与蛋白质组成的氨基酸,称非蛋白质氨基酸。β-丙氨酸是维生素泛酸的组成部分。泛酸在人体中具制造抗体功能,在维护头发、皮肤及血液健康方面亦扮演重要角色。γ-氨基丁酸是谷氨酸脱去羧基后的产物,是典型的神经递质。还有如鸟氨酸、瓜氨酸等是重要的代谢中间产物,它们是精氨酸合成和尿素循环中的重要中间产物。

丙氨酸是多种元素组成的化合物这句话对吗?

丙氨酸是由四种元素组成的化合物,是构成蛋白质的基本单位,其化学式是C3H7NO2,有α-丙氨酸和β-丙氨酸两种同分异构体。

淀粉和丙氨酸哪个是有机高分子

丙氨酸——构成蛋白质的基本单位,是组成人体蛋白质的21种氨基酸之一。它的分子式是C3H7O2N,有α-丙氨酸和β-丙氨酸两种同分异构体。从分子式来看,相对分子质量:89.09,而高分子的分子量要求10000-1000000,显然不是有机高分子。淀粉——是葡萄糖的高聚体,通式是(C6H10O5)n,平均分子量在50000以上,显然淀粉是有机高分子(由C、H、O组成,分子量大)。

丙酮酸是不是只可以变成丙氨酸?

不是,因为丙酮酸可以转化为乙酰辅酶A进入TCA(三羧酸循环),在TCA过程中的几种物质,如草酰乙酸又可以转化为天冬氨酸等。诸如此类在TCA的“副反应”能产生10-12中不同的氨基酸呢实际的反应不仅仅是简单的转氨基作用一种所以答案给的是:氨基酸更为准确!

丙氨酸钾和二氧化碳反应

丙氨酸彻底氧化分解生成二氧化碳和水的反应过程:丙氨酸脱氨生成丙酮酸,丙酮酸氧化脱羧生成乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化生成CO2和H2O。丙氨酸是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。它的分子式是C3H7NO2,有α-丙氨酸和β-丙氨酸两种同分异构体。 二氧化碳可以引起中毒。如果患者在浓度比较高的二氧化碳环境中存留,就会出现急性二氧化碳中毒,可以表现为突发性头痛、头晕、心悸、心慌、胸闷、恶心、呕吐、气短、昏迷,病情严重患者可能会短时间内出现呼吸中枢麻痹,甚至有生命危险。

丙氨酸有毒吗?

  没毒。丙氨酸是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。它的分子式是C3H7NO2,有α-丙氨酸和β-丙氨酸两种同分异构体。

α氨基酸和β氨基酸怎么区分?

氨基酸肯定含有-COOH和-NH2这样看R-CH-COOH|NH2这样叫做a氨基酸R-CH-CH2-COOH|NH2叫做β氨基酸就是看氨基连在和羧基相连的碳链的第几个C上

游离氨基酸有多少种

  游离氨基酸-游离氨基酸  是既含氨基(-NH2)又含羧基(-COOH)的有机化合物。氨基酸中还含有氨基的氢与分子中的其他部分发生取代而形成亚胺的环状化合物(亚氨基酸)。氨基与羧基结合在同一碳原子上的称为α-氨基酸。天然得到的氨基酸大部分是α-氨基酸(R-CHNH2-COOH),α-氨基酸相互间失水形成肽键连接(见图)的化合物为蛋白质或肽。由于氨基从α顺次向相邻的碳原子移动,因此被称之为β-,γ-,δ-氨基酸等,但并不存在于蛋白质中。在生物体内这些氨基酸仅以游离状态存在着(例如:β-丙氨酸,γ-氨基丁酸)。氨基酸是本世纪初由费歇尔等(E.Fisheretal.)阐明的。构成一般蛋白质的有23种(半胱氨酸和胱氨酸另计),立体构型均属L-型。这些氨基酸的简称详见“氨基酸合成”词目中。氨基酸根据氨基与羧基数分类为中性即一氨基一羧酸(如丙氨酸、亮氨酸等),酸性即一氨基二羧酸(如天冬氨酸、谷氨酸),碱性的即二氨基一羧酸(如赖氨酸)等。此外还把含有芳香环、羟基、巯基的氨基酸分别分类为芳香族氨基酸(如酪氨酸、苯丙氨酸、色氨酸)、含羟基氨基酸(如丝氨酸、苏氨酸)、含硫氨基酸(半胱氨酸、胱氨酸、甲硫氨酸)。在自然界中还发现许多非蛋白质组成成分的氨基酸,在植物中主要是以游离的或γ-谷氨酰衍生物的形态存在。  天然的氨基酸现已经发现的有300多种,其中人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(人体无法自身合成)。另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的。  游离氨基酸也只是氨基酸家族中的一种!!

丙氨酸的结构简式是什么

丙氨酸(α-氨基丙酸)的结构简式CH3—CH(NH2)—COOH

什么是氨基酸,什么是α-氨基酸?

1、α-氨基酸:羧酸分子中的α氢原子被氨基所代替直接形成的有机化合物,α-氨基酸是指氨基连在羧酸的α位。α-氨基酸的立体结构除甘氨酸外,α-氨基酸的α-碳原子上所连结的4个基团都不相同。此时4个基团的排列方式从三度空间看,有两种方式。这两种方式相互成镜子中的影子,而不可重叠,互成立体异构体,因此α-氨基酸有立体异构体存在。两种异构体分别称L型和D型。除甘氨酸无立体异构体外,存在于蛋白质中的氨基酸都是L型的。2、β-氨基酸指氨基结合在β位碳原子上的氨基酸。唯一常见的天然存在的β-氨基酸是β-丙氨酸,虽然β-丙氨酸常常作为生物活性大分子的组成组分,但β-肽一般不出现在自然界中。扩展资料α-氨基酸的种类:最简单的氨基酸是甘氨酸,它的侧链基团是氢原子。其他含有脂肪族侧链基团的有丙氨酸、缬氨酸、亮氨酸、异亮氨酸和脯氨酸。脯氨酸含有的不是氨基而是亚氨基,理应称之为亚氨基酸,它的侧链基团连接在α-碳原子,也连接在氨基上,形成四氢吡咯酸的环形结构。含有侧链芳香族基团的有苯丙氨酸、酪氨酸和色氨酸;含有侧链脂肪族羟基的有丝氨酸和苏氨酸。在中性环境带有正电荷的有赖氨酸和精氨酸两种碱性氨基酸。参考资料来源:百度百科-α-氨基酸参考资料来源:百度百科-β-氨基酸

β-氨基丙酸的生产方法

丙烯腈与氨在二苯胺和叔丁醇溶液中反应,生成β-氨基丙腈,再进行碱解即得。在干燥的高压釜中依次加入丙烯腈、二苯胺、叔丁醇,搅拌5min,加入液氨,控制温度100-109℃,压力约1MPa,保温搅拌4h。冷至10℃以下,压力降为常压时停止搅拌。于65-70℃/(8.0-14.7kPa),减压回收叔丁醇,得粗品β-氨基丙腈,粗品再减压蒸馏,收集66-105℃/(1.33-4.0kPa)馏分,得β-氨基丙腈。碱解操作在反应罐进行,先投入液碱,控制温度90-95℃-搅拌下缓缓滴加β-氨基丙腈,加毕,保温1h。减压蒸发半小时驱除反应液内的氨,加适量水,滴加盐酸至pH7-7.2。过滤,除去少量不溶杂质。滤液减压浓缩至有大量固体析出,趁热出料,冷至10℃以下,过滤,真空干燥,得β-丙氨酸。该法每吨产品消耗β-氨基丙腈982kg,碱解阶段收率90%。2.由琥珀酰亚胺降解(霍氏反应)而得将碱性次氯酸钠溶液(含次氯酸钠14%,氢氧化钠8%,碳酸钠30%)和冰投入反应罐,搅拌下加入琥珀酰亚胺,在18-25℃反应0.5h。升温至40-50℃反应1h。加盐酸调节至pH4-5,减压浓缩。浓缩液冷却后,加3倍量的95%乙醇使无机盐析出,过滤,再重复1次。然后将滤液加4倍量蒸馏水稀释,回流1h。加活性炭脱色,过滤,滤液通过交换树脂交换。所得交换液加活性炭脱色,过滤,滤液减压浓缩,冷却结晶,过滤,用蒸馏水重结晶1次,β-氨基丙酸。3.β-氨基丙腈法由β-氨基丙腈经水解、酸析而得。上游原料  次氯酸钠 3-氨基丙腈 丁二酰亚胺 交换树脂 二苯胺 活性炭(脱色)下游产品N-叔丁氧羰基-Β-丙氨酸 3-马来酰亚胺基丙酸 泛酸钙单水合物 Β-丙氨酸叔丁酯盐酸盐 N-异丙基-Β-丙氨酸乙酯 苯并呋喃硫酰氯 泛酸钙 2-[2-(4-氟苯基)-2-氧代-1-苯基乙基]-4-甲基-3-氧代-N-苯基戊酰胺 L-丙氨酸 五肽胃泌素 5-氯-1H-吲唑-3-乙酸 分散兰148 帕米膦酸 N-羟乙基-N-羟烷基-Β-氨基丙酸 N-叔丁氧羰基-4-哌啶酮 N-异丙基-N-氯化硫-Β-丙氨酸乙酯包 装:25KG硬纸板桶装,内衬两层聚乙烯薄膜。贮 藏:远离火种、热源,密封储存,放至阴凉、干燥的环境,防潮。* β-AlanineSynonyms:β-Alanine;beta-Alanine;3-Aminopropanoic acidFormula:C3H7NO2Structure:Molecular Weight:89.09CAS RN:107-95-9Physical and Chemical Properties:White or slight yellow crystal powder;Melting point:197-202℃;density:1.437Specifications:Purity (%)≥98.5%Applications:The main applications are used as the material for fodder additive,the surfactant and the medicine intermediates.Package:25kgs net in carton drum.Store:Keep away from fire and heat source;hermetically deposit;keep in shady,cool and dry condition;protect against the tide.

丙氨酸的两种对映体怎么画

双色染画。丙氨酸,化学式为C3H7NO2,分子量为89.09,是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。有α-丙氨酸和β-丙氨酸两种同分异构体。α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。多从发酵法和天然产物中提取。

构成人体蛋白质分子的氨基酸是哪种

氨基酸(amino acid)既含氨基又含酸性基团的有机化合物。生物体中绝大多数是带羧基的氨基酸。α氨基酸是蛋白质的主要组分,是生物体中最重要的氨基酸。在各种生物体中还普遍存在着结构和功能很不相同的游离氨基酸。目录α-氨基酸的定义氨基酸带电荷氨基酸经过酶的处理后必需氨基酸α-氨基酸的立体结构氨基酸amino acid编辑本段α-氨基酸的定义  -COOH和-NH2连接在同一碳原子上  α-氨基酸是指氨基连在羧酸的α位。定义:羧酸分子中的α氢原子被氨基所代替直接形成的有机化合物  R…-C(β位)-C(α位)-COOH  天然蛋白质水解得到的都是α-氨基酸。  蛋白质中的氨基酸 结构  蛋白质的基本结构由20种氨基酸组成。都是由一个氨基、一个羧基、一个氢原子和一个侧链基团(R)连接在同一个碳原子上构成,这个碳原子叫α-碳原子。20种氨基酸有不同结构的R基团。  所有人体内蛋白质组成的氨基酸都是α-氨基酸。  最简单的氨基酸是甘氨酸,它的侧链基团是氢原子。  其他含有脂肪族侧链基团的有丙氨酸、缬氨酸、亮氨酸、异亮氨酸和脯氨酸。  脯氨酸含有的不是氨基而是亚氨基,理应称之为亚氨基酸,它的侧链基团连接在α-碳原子,也连接在氨基上,形成四氢吡咯酸的环形结构。  含有侧链芳香族基团的有苯丙氨酸、酪氨酸和色氨酸;  含有侧链脂肪族羟基的有丝氨酸和苏氨酸。编辑本段氨基酸带电荷  在中性环境带有正电荷的有赖氨酸和精氨酸两种碱性氨基酸;  组氨酸虽有弱碱性侧链的咪唑基因,但是否带正电荷取决于它的周围环境。 氨基酸分子谷氨酸和天冬氨酸是两种酸性氨基酸,通常以谷氨酸盐和天冬氨酸盐形式存在;谷氨酸的单钠盐就是味精。这两种氨基酸的侧链羧基为酰氨所代替时各成为谷氨酰胺和天冬酰胺,它们是中性氨基酸,在蛋白质生物合成过程中,有它们自己的遗传密码,并不是从谷氨酸或天冬氨酸转变过来的。   此外,还有带有硫原子的半胱氨酸和甲硫氨酸。前者有巯基,在蛋白质中能与另一个半胱氨酸的硫基氧化成二硫键。  甲硫氨酸在生物体中含量甚少。编辑本段氨基酸经过酶的处理后  在蛋白质分子中,有不少氨基酸都经过酶的处理转变成它们的衍生物。  如胶原中由脯氨酸变成的羟脯氨酸,肌球蛋白中由部分赖氨酸转变成的ε-N-甲基赖氨酸,凝血酶原中的γ-羧基谷氨酸等等。已发现的转变大约有100多种。编辑本段必需氨基酸  植物能自己合成它所需的全部氨基酸  有些氨基酸动物自身不能合成而必须从食物中获得,缺乏这些氨基酸会导致营养不良。这类氨基酸称必需氨基酸。对人体来说,必需氨基酸包括:缬氨酸、亮氨酸、异亮氨酸、苏氨酸、苯丙氨酸、色氨酸、赖氨酸和甲硫氨酸。  有些氨基酸如精氨酸和组氨酸对成人是非必需的,但对婴儿使用时,必需在食物中加以补充,只是要注意适量。   编辑本段α-氨基酸的立体结构  α-氨基酸的立体结构除甘氨酸外,α-氨基酸的α-碳原子上所连结的4个基团都不相同。此时4个基团的排列方式从三度空间看,有两种方式。这两种方式相互成镜子中的影子,而不可重叠,互成立体异构体,因此α-氨基酸有立体异构体存在。两种异构体分别称L型和D型。除甘氨酸无立体异构体外,存在于蛋白质中的氨基酸都是L型的。 α-氨基酸结构编辑本段氨基酸amino acid  是既含氨基(-NH2)又含羧基(-COOH)的有机化合物。氨基酸中还含有氨基的氢与分子中的其他部分发生取代而形成亚胺的环状化合物(亚氨基酸)。氨基与羧基结合在同一碳原子上的称为α-氨基酸。天然得到的氨基酸大部分是α-氨基酸(R-CHNH2-COOH),α-氨基酸相互间失水形成肽键连接(见图)的化合物为蛋白质或肽。由于氨基从α顺次向相邻的碳原子移动,因此被称之为β-,γ-,δ-氨基酸等,但并不存在于蛋白质中。在生物体内这些氨基酸仅以游离状态存在着(例如:β-丙氨酸,γ-氨基丁酸)。氨基酸是本世纪初由费歇尔等(E.Fisher etal.)阐明的。构成一般蛋白质的有23种(半胱氨酸和胱氨酸另计),立体构型均属L-型。这些氨基酸的简称详见“氨基酸合成”词目中。  氨基酸根据氨基与羧基数分类为中性即一氨基一羧酸(如丙氨酸、亮氨酸等),酸性即一氨基二羧酸(如天冬氨酸、谷氨酸),碱性的即二氨基一羧酸(如赖氨酸)等。  此外还把含有芳香环、羟基、巯基的氨基酸分别分类为芳香族氨基酸(如酪氨酸、苯丙氨酸、色氨酸)、含羟基氨基酸(如丝氨酸、苏氨酸)、含硫氨基酸(半胱氨酸、胱氨酸、甲硫氨酸)。  在自然界中还发现许多非蛋白质组成成分的氨基酸,在植物中主要是以游离的或γ-谷氨酰衍生物的形态存在。  天然产的氨基酸的结构上都具有共同特点:即在羧基邻位α—碳原子上有一个氨基,因此称α—氨基酸。  天然蛋白质是由不同的α—氨基酸,通过肽键结合而成的复杂高分子化合物,结构和组成十分复杂。所有人体内构成蛋白质 的氨基酸都是α-氨基酸

丙氨酸彻底氧化分解产生的多少摩尔ATP

15ATP。丙氨酸在线粒体中通过联合脱氨作用转化为丙酮酸并产生一分子NADH,丙酮酸到乙酰辅酶A产生一分子NADH,后进入TCA循环彻底氧化产生10ATP,合计15ATP。1分子乙酰-CoA含2个C原子,一次TCA循环将2个C变成CO2同时生成1GTP(=1ATP)1FADH2,3NADH;经过呼吸链11FADH2=1*1.5=1.5ATP,4NADH=4*2.5=10ATP,所以共产生1.5+10+1=12.5ATP扩展资料:β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。由于氨基酸在同一pH环境中,各类氨基酸的带电状态不同,即它们具有不同的等电点(PI),这是电泳法和色谱法分离氨基酸的原理。参考资料来源:百度百科-丙氨酸

丙氨酸是酸性还是碱性

丙氨酸既是酸性又是碱性,因为丙氨酸中的-COOH呈酸性,-NH2呈碱性。丙氨酸,化学式为C3H7NO2,分子量为89.09,是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一,有α-丙氨酸和β-丙氨酸两种同分异构体。由于氨基酸在同一pH环境中,各类氨基酸的带电状态不同,即它们具有不同的等电点(PI),这是电泳法和色谱法分离氨基酸的原理。配制方法:取无水冰醋酸(按含水量计算,每1g水加醋酐5.22mL)750mL,加入高氯酸(70~72%)8.5mL,摇匀,放冷,加无水冰醋酸适量使成1000mL,摇匀,放置24小时。若所测供试品易乙酰化,则须用水分测定法测定本液的含水量,再用水和醋酐调节至本液的含水量为0.01%~0.2%。以上内容参考:百度百科——丙氨酸

丙氨酸可以生产什么?

丙氨酸(alanine)分子式:C3H7NO2相对分子质量:89.063英文名称:Alanine;3-Aminopropanoic丙氨酸有α-丙氨酸和β-丙氨酸两种同分异构体。 α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。目前多从发酵法和天然产物中提取。 β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。

20种游离氨基酸

  游离氨基酸-游离氨基酸   是既含氨基(-NH2)又含羧基(-COOH)的有机化合物.氨基酸中还含有氨基的氢与分子中的其他部分发生取代而形成亚胺的环状化合物(亚氨基酸).氨基与羧基结合在同一碳原子上的称为α-氨基酸.天然得到的氨基酸大部分是α-氨基酸(R-CHNH2-COOH),α-氨基酸相互间失水形成肽键连接(见图)的化合物为蛋白质或肽.由于氨基从α顺次向相邻的碳原子移动,因此被称之为β-,γ-,δ-氨基酸等,但并不存在于蛋白质中.在生物体内这些氨基酸仅以游离状态存在着(例如:β-丙氨酸,γ-氨基丁酸).氨基酸是本世纪初由费歇尔等(E.Fisheretal.)阐明的.构成一般蛋白质的有23种(半胱氨酸和胱氨酸另计),立体构型均属L-型.这些氨基酸的简称详见“氨基酸合成”词目中.氨基酸根据氨基与羧基数分类为中性即一氨基一羧酸(如丙氨酸、亮氨酸等),酸性即一氨基二羧酸(如天冬氨酸、谷氨酸),碱性的即二氨基一羧酸(如赖氨酸)等.此外还把含有芳香环、羟基、巯基的氨基酸分别分类为芳香族氨基酸(如酪氨酸、苯丙氨酸、色氨酸)、含羟基氨基酸(如丝氨酸、苏氨酸)、含硫氨基酸(半胱氨酸、胱氨酸、甲硫氨酸).在自然界中还发现许多非蛋白质组成成分的氨基酸,在植物中主要是以游离的或γ-谷氨酰衍生物的形态存在.   天然的氨基酸现已经发现的有300多种,其中人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(人体无法自身合成).另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的.   游离氨基酸也只是氨基酸家族中的一种!

丙氨酸底物法是什么意思?

测定人血清中丙氨酸氨基转移酶的活性。丙氨酸,化学式为C3H7NO2,分子量为89.09,是构成蛋白质的基本单位,是组成人体蛋白质的21种氨基酸之一。有α-丙氨酸和β-丙氨酸两种同分异构体。

氨基酸有几种形式存在?

1、α-氨基酸:羧酸分子中的α氢原子被氨基所代替直接形成的有机化合物,α-氨基酸是指氨基连在羧酸的α位。α-氨基酸的立体结构除甘氨酸外,α-氨基酸的α-碳原子上所连结的4个基团都不相同。此时4个基团的排列方式从三度空间看,有两种方式。这两种方式相互成镜子中的影子,而不可重叠,互成立体异构体,因此α-氨基酸有立体异构体存在。两种异构体分别称L型和D型。除甘氨酸无立体异构体外,存在于蛋白质中的氨基酸都是L型的。2、β-氨基酸指氨基结合在β位碳原子上的氨基酸。唯一常见的天然存在的β-氨基酸是β-丙氨酸,虽然β-丙氨酸常常作为生物活性大分子的组成组分,但β-肽一般不出现在自然界中。扩展资料α-氨基酸的种类:最简单的氨基酸是甘氨酸,它的侧链基团是氢原子。其他含有脂肪族侧链基团的有丙氨酸、缬氨酸、亮氨酸、异亮氨酸和脯氨酸。脯氨酸含有的不是氨基而是亚氨基,理应称之为亚氨基酸,它的侧链基团连接在α-碳原子,也连接在氨基上,形成四氢吡咯酸的环形结构。含有侧链芳香族基团的有苯丙氨酸、酪氨酸和色氨酸;含有侧链脂肪族羟基的有丝氨酸和苏氨酸。在中性环境带有正电荷的有赖氨酸和精氨酸两种碱性氨基酸。参考资料来源:百度百科-α-氨基酸参考资料来源:百度百科-β-氨基酸

丙氨酸彻底氧化分解产生的多少摩尔ATP

15ATP。丙氨酸在线粒体中通过联合脱氨作用转化为丙酮酸并产生一分子NADH,丙酮酸到乙酰辅酶A产生一分子NADH,后进入TCA循环彻底氧化产生10ATP,合计15ATP。1分子乙酰-CoA含2个C原子,一次TCA循环将2个C变成CO2同时生成1GTP(=1ATP)1FADH2,3NADH;经过呼吸链11FADH2=1*1.5=1.5ATP,4NADH=4*2.5=10ATP,所以共产生1.5+10+1=12.5ATP扩展资料:β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。由于氨基酸在同一pH环境中,各类氨基酸的带电状态不同,即它们具有不同的等电点(PI),这是电泳法和色谱法分离氨基酸的原理。参考资料来源:百度百科-丙氨酸

丙氨酸的r基是什么

  丙氨酸的r基是甲基,甲基是甲烷分子中去掉一个氢原子后剩下的电中性的一价基团。由碳和氢元素组成。甲基作为一个化学基团(-CHu2083),它能够结合在DNA上某些特定部位,这个甲基和DNA结合过程叫甲基化。   丙氨酸是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。它的分子式是C3H7NO2,有α-丙氨酸和β-丙氨酸两种同分异构体。   α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。多从发酵法和天然产物中提取。   β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。

通过转氨基作用可生成丙酮酸的是

通过转氨基作用可生成丙酮酸的氨基酸是丙氨酸。A、甘氨酸。B、天冬氨酸。C、甲硫氨酸。D、谷氨酸。E、丙氨酸。答案解析:E。拓展:葡萄糖-丙氨酸循环在运动中的意义:(1)运动时骨骼肌释放丙氨酸进入血液循环中,由血中输送到肝脏.经糖的异生作用生成葡萄糖,从而可以维持血糖浓度的稳定,对保证运动能力有积极作用。(2)将运动肌中糖分分解代谢的中间产物丙酮酸转变为丙氨酸,防止肌细胞内丙酮酸浓度升高.减少乳酸生成,保证糖分解代谢通畅,有利于延缓运动中产生的疲劳。(3)将运动肌中氨基酸的氨基以无毒形式运输到肝脏内解毒,避免血氨过度升高,对维持运动能力有益。丙氨酸既是酸性又是碱性,因为丙氨酸中的-COOH呈酸性,-NH2呈碱性。丙氨酸,化学式为C3H7NO2,分子量为89.09,是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一,有α-丙氨酸和β-丙氨酸两种同分异构体。由于氨基酸在同一pH环境中,各类氨基酸的带电状态不同,即它们具有不同的等电点(PI),这是电泳法和色谱法分离氨基酸的原理。

α氨基酸和β氨基酸怎么区分?

1、α-氨基酸:羧酸分子中的α氢原子被氨基所代替直接形成的有机化合物,α-氨基酸是指氨基连在羧酸的α位。α-氨基酸的立体结构除甘氨酸外,α-氨基酸的α-碳原子上所连结的4个基团都不相同。此时4个基团的排列方式从三度空间看,有两种方式。这两种方式相互成镜子中的影子,而不可重叠,互成立体异构体,因此α-氨基酸有立体异构体存在。两种异构体分别称L型和D型。除甘氨酸无立体异构体外,存在于蛋白质中的氨基酸都是L型的。2、β-氨基酸指氨基结合在β位碳原子上的氨基酸。唯一常见的天然存在的β-氨基酸是β-丙氨酸,虽然β-丙氨酸常常作为生物活性大分子的组成组分,但β-肽一般不出现在自然界中。扩展资料α-氨基酸的种类:最简单的氨基酸是甘氨酸,它的侧链基团是氢原子。其他含有脂肪族侧链基团的有丙氨酸、缬氨酸、亮氨酸、异亮氨酸和脯氨酸。脯氨酸含有的不是氨基而是亚氨基,理应称之为亚氨基酸,它的侧链基团连接在α-碳原子,也连接在氨基上,形成四氢吡咯酸的环形结构。含有侧链芳香族基团的有苯丙氨酸、酪氨酸和色氨酸;含有侧链脂肪族羟基的有丝氨酸和苏氨酸。在中性环境带有正电荷的有赖氨酸和精氨酸两种碱性氨基酸。参考资料来源:百度百科-α-氨基酸参考资料来源:百度百科-β-氨基酸

二羟苯丙氨酸

二羟苯丙氨酸熔点为256°C dec,沸点为369 °C at 760 mmHg,闪光点为177 °C,密度1.333 g/cm,是灰白色的固体。二羟苯丙氨酸是酪氨酸经酪氨酸羟化酶的作用下羟化产生的一种氧化产物,具有儿茶酚羟基,可进一步生成另外一些有生物活性的物质:L-多巴在酪氨酸酶的作用下生成多巴醌继而自发转变为黑色素,或在芳香族氨基酸脱羧酶的作用下生成多巴胺,继而形成去甲肾上腺素与肾上腺素等。扩展资料丙氨酸有α-丙氨酸和β-丙氨酸两种同分异构体。α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。多从发酵法和天然产物中提取。β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。参考资料来源:百度百科-3,4-二羟苯丙氨酸参考资料来源:百度百科-2-羟基苯丙氨酸

a-丙氨酸的化学式

α-丙氨酸:CH3CH(NH2)COOH氨基在α碳原子(与羧基直接相连的碳原子)上;β-丙氨酸:NH2CH2CH2COOH氨基在β碳原子(与羧基间隔一个碳原子连接的碳原子)上。

α氨基酸和β氨基酸怎么区分?

1、α-氨基酸:羧酸分子中的α氢原子被氨基所代替直接形成的有机化合物,α-氨基酸是指氨基连在羧酸的α位。α-氨基酸的立体结构除甘氨酸外,α-氨基酸的α-碳原子上所连结的4个基团都不相同。此时4个基团的排列方式从三度空间看,有两种方式。这两种方式相互成镜子中的影子,而不可重叠,互成立体异构体,因此α-氨基酸有立体异构体存在。两种异构体分别称L型和D型。除甘氨酸无立体异构体外,存在于蛋白质中的氨基酸都是L型的。2、β-氨基酸指氨基结合在β位碳原子上的氨基酸。唯一常见的天然存在的β-氨基酸是β-丙氨酸,虽然β-丙氨酸常常作为生物活性大分子的组成组分,但β-肽一般不出现在自然界中。扩展资料α-氨基酸的种类:最简单的氨基酸是甘氨酸,它的侧链基团是氢原子。其他含有脂肪族侧链基团的有丙氨酸、缬氨酸、亮氨酸、异亮氨酸和脯氨酸。脯氨酸含有的不是氨基而是亚氨基,理应称之为亚氨基酸,它的侧链基团连接在α-碳原子,也连接在氨基上,形成四氢吡咯酸的环形结构。含有侧链芳香族基团的有苯丙氨酸、酪氨酸和色氨酸;含有侧链脂肪族羟基的有丝氨酸和苏氨酸。在中性环境带有正电荷的有赖氨酸和精氨酸两种碱性氨基酸。参考资料来源:百度百科-α-氨基酸参考资料来源:百度百科-β-氨基酸

服用β-丙氨酸对身体有没有副作用?

贝塔丙氨酸对提高爆发力是有很明显的作用,但每天服用量不要超过6克,否则会有一定副作用,会造成身体不适!

α-氨基酸和β-氨基酸是什么意思?

1、α-氨基酸:羧酸分子中的α氢原子被氨基所代替直接形成的有机化合物,α-氨基酸是指氨基连在羧酸的α位。α-氨基酸的立体结构除甘氨酸外,α-氨基酸的α-碳原子上所连结的4个基团都不相同。此时4个基团的排列方式从三度空间看,有两种方式。这两种方式相互成镜子中的影子,而不可重叠,互成立体异构体,因此α-氨基酸有立体异构体存在。两种异构体分别称L型和D型。除甘氨酸无立体异构体外,存在于蛋白质中的氨基酸都是L型的。2、β-氨基酸指氨基结合在β位碳原子上的氨基酸。唯一常见的天然存在的β-氨基酸是β-丙氨酸,虽然β-丙氨酸常常作为生物活性大分子的组成组分,但β-肽一般不出现在自然界中。扩展资料α-氨基酸的种类:最简单的氨基酸是甘氨酸,它的侧链基团是氢原子。其他含有脂肪族侧链基团的有丙氨酸、缬氨酸、亮氨酸、异亮氨酸和脯氨酸。脯氨酸含有的不是氨基而是亚氨基,理应称之为亚氨基酸,它的侧链基团连接在α-碳原子,也连接在氨基上,形成四氢吡咯酸的环形结构。含有侧链芳香族基团的有苯丙氨酸、酪氨酸和色氨酸;含有侧链脂肪族羟基的有丝氨酸和苏氨酸。在中性环境带有正电荷的有赖氨酸和精氨酸两种碱性氨基酸。参考资料来源:百度百科-α-氨基酸参考资料来源:百度百科-β-氨基酸

二羟苯丙氨酸

二羟苯丙氨酸熔点为256°C dec,沸点为369 °C at 760 mmHg,闪光点为177 °C,密度1.333 g/cm,是灰白色的固体。二羟苯丙氨酸是酪氨酸经酪氨酸羟化酶的作用下羟化产生的一种氧化产物,具有儿茶酚羟基,可进一步生成另外一些有生物活性的物质:L-多巴在酪氨酸酶的作用下生成多巴醌继而自发转变为黑色素,或在芳香族氨基酸脱羧酶的作用下生成多巴胺,继而形成去甲肾上腺素与肾上腺素等。扩展资料丙氨酸有α-丙氨酸和β-丙氨酸两种同分异构体。α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。多从发酵法和天然产物中提取。β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。参考资料来源:百度百科-3,4-二羟苯丙氨酸参考资料来源:百度百科-2-羟基苯丙氨酸

β-氨基丙酸的简介

通用名称:β-氨基丙酸;3-氨基丙酸;β-丙氨酸英文名称:β-Alanine;beta-Alanine;3-Aminopropanoic acid分 子 式:C3H7NO2结 构 式:分 子 量:89.09CAS NO: 107-95-9溶解度:H2O: 1 M at 20 °C, clear, colorless闪点:204-206°C密度:1,437 g/cm

丙氨酸溶于乙腈吗

β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。

丙氨酸生成丙酮酸的反应式

丙氨酸在NAD(P)+和水以及氨基转移酶的作用下才会生成丙酮酸。丙氨酸,化学式为C3H7NO2,分子量为89.09,是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。有α-丙氨酸和β-丙氨酸两种同分异构体。丙氨酸有α-丙氨酸和β-丙氨酸两种同分异构体。α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。多从发酵法和天然产物中提取。β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。由于氨基酸在同一pH环境中,各类氨基酸的带电状态不同,即它们具有不同的等电点(PI),这是电泳法和色谱法分离氨基酸的原理。以上参考:丙氨酸——百度百科

简述丙氨酸在体内是如何转变为脂肪的?

1、丙氨酸→丙酮酸(谷丙转氨酶)同时α酮戊二酸→谷氨酸。2、丙酮酸→乙酰辅酶A,使用一个辅酶A 产生一个二氧化碳。3、乙酰辅酶A→丙二酸单酰辅酶A(耗一个ATP)。4、丙二酸单酰辅酶A→丙二酸单酰辅酶ACP。进入脂肪酸的合成。扩展资料:α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。多从发酵法和天然产物中提取。β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。参考资料来源:百度百科-丙氨酸

丙氨酸结构式是什么?

CH3—CH(NH2)—COOH0。丙氨酸是一种氨基酸,是蛋白质的组成部分。所有的氨基酸都有一个相同的基本结构,但都有个别的部分附着在这个基本结构上。就丙氨酸而言,这部分是所有氨基酸中最简单的一种,丙氨酸只有一个碳原子和三个氢原子。丙氨酸的结构的确切外观可以根据丙氨酸是在自然界中存在还是人工合成的而有所不同。丙氨酸含有13个不同的原子,其中包括7个氢原子、3个碳原子和2个氧原子,丙氨酸的大部分结构是由所有氨基酸共有的一组基本原子组成的。注意:丙氨酸有α-丙氨酸和β-丙氨酸两种同分异构体。α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。多从发酵法和天然产物中提取。β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。由于氨基酸在同一pH环境中,各类氨基酸的带电状态不同,即它们具有不同的等电点(PI),这是电泳法和色谱法分离氨基酸的原理。以上内容来源:百度百科-丙氨酸

服用β-丙氨酸对身体有没有副作用

你好,我是一名体育生。1:结构β型丙氨酸在生物化学中是唯一自发生成的氨基酸,其氨基位于羧酸盐的β位。按照IUPC的命名规则,它应被称作3-氨基-丙氨酸。与它常见的类似物左旋α-丙氨酸不同,β型丙氨酸没有手征中心。2:代谢在生物体内,β型丙氨酸并不参与蛋白质或酶的合成,通常,它由二氢尿嘧啶和肌肽的降解产生。β型丙氨酸也是自发生成的缩氨酸肌肽和维生素B5的重要组分,在正常状态下,β型丙氨酸被最终代谢为乙酸。3:生理作用β型丙氨酸是肌肽少有的几个前体物质之一。已经证实,补充β型丙氨酸有助于提升肌肉组织内肌肽的含量,从而消除(运动员)疲劳,提升肌肉活动能力。你需要注意的是它的毒副作用!!!如果β型丙氨酸摄入量(以溶液或胶囊服用)超过10mg每千克体重,将诱发机体感觉异常。具体症状轻缓依个人以及服用剂量而定。但研究还发现,如果以含有组胺酸的鸡汤提取物摄入β型丙氨酸,则不会诱发机体感觉异常。是药三分毒!!!希望你可以慎用少用!!如果想增加身体机能最好的办法就是多进行体能训练!最后祝你身体健康!

丙氨酸是什么氨基酸

丙氨酸是L-氨基酸。丙氨酸是构成蛋白质的基本单位,是组成人体蛋白质的21种氨基酸之一。组成蛋白质分子的氨基酸都是L-氨基酸。丙氨酸有α-丙氨酸和β-丙氨酸两种同分异构体:1、α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。目前多从发酵法和天然产物中提取。2、β-丙氨酸亦称3-氨基丙酸,无色晶体。熔点198℃(分解),溶于水,微溶于乙醇,不溶于乙醚。用于合成泛酸和电镀,也用于微生物学和生物化学等的研究上,可由丝胶、明胶、玉米朊等蛋白质水解并精制而成,也可用化学方法合成。更多关于丙氨酸是什么氨基酸,进入:https://m.abcgonglue.com/ask/c401161616064402.html?zd查看更多内容

ALA的丙氨酸

中文名称:丙氨酸英文名称:alanine;Ala 定义:学名:2-氨基-丙酸。一种脂肪族的非极性氨基酸。常见的是L-α-氨基酸,是蛋白质编码氨基酸之一,哺乳动物非必需氨基酸和生糖氨基酸。D-丙氨酸存在于多种细菌细胞壁的肽聚糖。β丙氨酸是维生素泛酸和辅酶A的组分。符号:A。应用学科:生物化学与分子生物学(一级学科);氨基酸、多肽与蛋白质(二级学科).

丙氨酸具有两性,其原因是

丙氨酸型两性表面活性剂是指β-丙氨酸上的氢被长链烷基取代的取代物,其制法是将烷基胺(如月桂基胺)与丙烯酸甲酯在加热下反应生成月桂基氨基丙酸甲酯,然后以碱处理得月 桂胺基丙酸钠(I)。 此外,由烷基胺与2 mol丙烯酸甲酯在加热下反应生成烷基亚氨二丙酸甲酯,再以碱处理得烷基亚氨二丙酸钠(11)。 丙氨酸型两性表面活性剂易溶于水,偏酸性时呈阳离子活性,偏碱性时呈阴离子活性。在微酸性等电点时,溶解度最小,表面张力和渗透力低,去污力差;在偏碱性时去污力强。丙氨酸型两性表面活性剂具有良好的去污力,起泡力,性能温和,对皮肤刺激性小,可用于生产香波和金属清洗剂,还可用作染色助剂等。

β丙氨酸和氨基酸有什么区别

北塔丙氨酸和氨基酸有什么区别丙氨酸是氨基酸中的一类,别氨酸是构成蛋白质的基本单位是组成人体蛋白质的21种氨基酸之一

丙氨酸缩写是什么?

丙氨酸缩写是Ala。丙氨酸,外文名Alanine,化学式C3H7NO2,一种脂肪族的非极性氨基酸。常见的是L-α-氨基酸,是蛋白质编码氨基酸之一,哺乳动物非必需氨基酸和生糖氨基酸。D-丙氨酸存在于多种细菌细胞壁的肽聚糖。β丙氨酸是维生素泛酸和辅酶A的组分。用途本品为制造维生素B6、合成泛酸钙和其他有机化合物原料。添加于食品中能增强化学调味料的调味效果,改善甜味剂的味感和有机酸的酸味,提高含醇饮料的质量,防止油类氧化和改善浸渍食品风味等。还可用作生化试剂,用于生物化学和微生物研究方面。以上内容参考:百度百科-丙氨酸

丙氨酸和缬氨酸谁的极性大

丙氨酸和缬氨酸极性一样大。都是非极性氨基酸。非极性氨基酸包括甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸。1、丙氨酸是构成蛋白质的基本单位,是组成人体蛋白质的21种氨基酸之一。丙氨酸有支链非极性α-丙氨酸和β-丙氨酸两种同分异构体。2、缬氨酸是一种含有五个碳原子的支链非极性α-氨基酸。L-缬氨酸是组成蛋白质的20种氨基酸中的一种,是哺乳动物的必需氨基酸和生糖氨基酸。

求丙酸氨的物理和化学性质?

分子式:C9H10O2 分子量:150.18 CAS号:501-52-0 性质:白色棱状结晶。熔点48.5℃,沸点280℃,125-129℃(0.8kPa),相对密度1.071。易溶于热水、醇、苯、氯仿、醚、冰醋酸、石油醚和二硫化碳,微溶于冷水。能随水蒸气挥发。 制备方法:以肉桂酸为原料,可按下述两种方法操作制得3-苯丙酸。(1)将肉桂酸与80-90℃的氢氧化钠溶液混合使成钠盐,向溶液添加雷尼镍后,缓缓滴加水合肼。冷至20℃,加盐酸至pH=1,即析出3-苯丙酸。(2)在搅拌下,将2.5%的钠汞齐慢慢加入肉桂酸与氢氧化钠溶液的混合物中,肉桂酸被产生的新生氢还原为苯丙酸。将反应混合物盐酸酸化,苯丙酸即呈油状物析出,并很快固化,用热水重结晶,即得成品。 用途:该品是香料的定香剂。

丙氨酸彻底氧化分解生成二氧化碳和水的反应过程

丙氨酸彻底氧化分解生成二氧化碳和水的反应过程:丙氨酸脱氨生成丙酮酸,丙酮酸氧化脱羧生成乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化生成CO2和H2O。丙氨酸是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。它的分子式是C3H7NO2,有α-丙氨酸和β-丙氨酸两种同分异构体。

丙氨酸偏高是什么意思

1、丙氨酸偏高可以是疾病因素引起的,也可以是非疾病因素引起的。正常情况下的丙氨酸氨基转移酶偏高常常提示可能患有肝脏疾病,但肝病并不是导致丙氨酸氨基转移酶异常的充分必要条件。2、丙氨酸是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。它的分子式是C3H7NO2,有α-丙氨酸和β-丙氨酸两种同分异构体。更多关于丙氨酸偏高是什么意思,进入:https://www.abcgonglue.com/ask/95954b1616003722.html?zd查看更多内容

含丙氨酸的食物有那些

苯丙氨酸是人体必需氨基酸之一,用于食品,可添加于焙烤食品中,强化苯丙氨酸的营养作用,还与糖类发生氨基-羧化反应以改善食品香味,并补充人体所需功能性食品氨基酸平衡意见建议:富含含苯丙氨酸,奶酪、巧克力和柑橘类食物、腌渍沙丁鱼、西红柿、牛奶、乳酸饮料、乳酪、动物肝脏、牛肉、酸牛奶、炼乳、香肠、火腿、发酵食品、蚕豆、扁豆、菠萝、香蕉、无花果、茶叶(含咖啡因的各种饮料和食品)、白酒、水果酒、啤酒、陈醋、大酱、腐乳、臭豆腐、松花蛋、渍制品(如酸菜、泡菜等)、鲐鲅鱼、蓝圆参、竹荚鱼、金枪鱼、带鱼、鲈鱼、鳓鱼、黄花鱼、鲭鱼、鲤鱼、牡蛎、螃蟹、鲍鱼等等。富含氨基酸的食物有鱼,如墨鱼、章鱼、鱿鱼、泥鳅、海参、墨鱼、蚕茧、鸡肉、冷冻豆腐、海藻等;而其他氨基酸如豆类、花生、杏仁或香蕉较多,牛肉、鸡蛋、大豆、白木耳和新鲜果蔬也富含氨基酸。可以适当增加蛋白类食物,比如植物蛋白,豆浆及豆制品等以及优质动物蛋白

丙氨酸由哪种化学元素组成

丙氨酸的分子式:C3H7NO2由C.H.O.N四种化学元素组成祝您步步高升期望你的采纳,谢谢

丙氨酸与L-丙氨酸是什么

丙氨酸是手性分子,具有镜像异构体,所以丙氨酸有两种,一种是L-丙氨酸,一种是R-丙氨酸,两者就像你的左手和右手,性状、结构一样,但是立体构型是镜像对称的。组成生物体的氨基酸绝大多数是L-氨基酸。

门冬氨酸丙氨酸是什么

门冬氨酸,是一种α-氨基酸,天冬氨酸的L-异构物是20种蛋白胺基酸之一,即蛋白质的构造单位。丙氨酸是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。门冬氨酸分子中含两个羧基和一个氨基,属酸性氨基酸,广泛存在于所有蛋白质中。天冬氨酸是草酰乙酸前体,在三羧酸循环、鸟氨酸循环及核苷酸合成中都起重要作用。丙氨酸的分子式是C3H7NO2,有α-丙氨酸和β-丙氨酸两种同分异构体。

什么食物含丙氨酸

含丙氨酸的食物有奶酪、巧克力和柑橘类食品、盐沙丁鱼、西红柿、牛奶和乳酸。饮料、奶酪、动物肝、牛肉、酸奶、精制牛奶、香肠、火腿、发酵食品、蚕豆、扁豆、菠萝、香蕉、无花果等。 丙氨酸是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。它的分子式是C3H7O2N,有α-丙氨酸和β-丙氨酸两种同分异构体。它可以预防肾结石、协助葡萄糖的代谢,有助缓和低血糖,改善身体能量。可用于合成新型甜味剂及某些手性药物中间体的原料。

丙氨酸化学分子式

DL-丙氨酸化学分子式:C3H7NO2特性与用途:无色至白色无臭针状结晶或结晶性粉末。有甜味。化学性能稳定。亚硝酸可转变为L-乳酸。易溶于水(16.72g/100ml,25oC)。微溶于乙醇。是一种营养增补剂。L-丙氨酸英文产品名称:L-Alanine;L-α-Aminopropanoic acid化学分子式:C3H7NO2特性与用途:白色无臭结晶性粉末。有特殊甜味,甜度约为蔗糖的70%。为甘氨酸的1.6倍,属最甜的氨基酸。 在水产动物(虾、蟹)中含量较多,并形成特征性呈味成分。200℃以上开始升华,熔点297℃(分解)。对热及化学性能稳定。易溶于水(17%,25℃),微溶于乙醇(80%冷酒精中0.2%),不溶于乙醚。5%水溶液的ph值5.5~7.0。用途:能改善甜感,增强甜感醇厚度,改进酸感调味效果,能提高腌制品和醋渍品风味,缓和涩味、苦味、辛辣味,防止啤酒老化。能抑制大肠杆菌、革式阳性菌、乳酸菌及好气菌等生长发育。另有异构体L-β-丙氨酸,未见有存在与蛋白质中的报告,含于苹果汁等中,甜度比α型为小。

丙氨酸结构式是什么?

丙氨酸,化学式为C3H7NO2,分子量为89.09,是构成蛋白质的基本单位,是组成人体蛋白质的20种氨基酸之一。有α-丙氨酸和β-丙氨酸两种同分异构体。α-丙氨酸亦称2-氨基丙酸。200℃以上升华,随加热速度不同约在264~296℃之间分解。是组成蛋白质的一种成分。在营养学中属人体非必需的氨基酸。多从发酵法和天然产物中提取。丙氨酸测试方法:取在105℃干燥至恒重的基准邻苯二甲酸氢钾约0.16g,精密称定,加无水冰醋酸20mL使溶解,加结晶紫指示液1滴,用本液缓缓滴定至蓝色,并将滴定结果用空白试验校正。每1mL高氯酸滴定液(0.1mol/L)相当于20.42mg的邻苯二甲酸氢钾。根据本液的消耗量与邻苯二甲酸氢钾的取用量,算出本液的浓度。供试品无水甲酸溶解后,加冰醋酸,照电位滴定法,用高氯酸滴定液滴定,并将滴定的结果用空白试验校正,根据滴定液使用量,计算丙氨酸的含量。以上内容参考:百度百科-丙氨酸
 首页 上一页  9 10 11 12 13 14 15 16 17 18 19  下一页  尾页