DNA图谱 / 问答 / 标签

BOC-L-6-羟基正亮氨酸的日本海关编码是什么?

基本信息:中文名称BOC-L-6-羟基正亮氨酸中文别名N-alpha-t-丁基氧基羰基-6-羟基-L-正亮氨酸;Boc-L-6-羟基正亮氨酸;英文名称(2S)-6-hydroxy-2-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoicacid英文别名N-Boc-hydroxylnorleucine;N-t-butyloxycarbonyl-L-6-hydroxynorleucine;BOC-L-6-HYDROXYNORLEUCINE;AmbotzBAA1117;Boc-N-6-hydroxynorleucine;Boc-L-Nle(6-OH)-OH;(2S)-tert-butoxycarbonylamino-6-hydroxyhexanoicacid;CAS号77611-37-1日本海关编码(HS-code):292419029概述(Summary):292419029.Otheracyclicamides(includingacycliccarbamates)andtheirderivatives;saltsthereof.Generaltariff:0.046.WTOtariff:0.031.GSPtariff:Free.

亮氨酸突变为苯丙氨酸功能

A

氨基酸是蛋白质吗

氨基酸和蛋白质的关系  蛋白质是人体最重要的营养素之一,它是人体组织的构成成分,作为体内各种生理活性物质的构成成分,并且在人体需要时还可以被代谢分解释放能量,对维持人体正常的生理活动发挥着不可替代的作用。氨基酸是组成蛋白质的基本单位,如果把蛋白质比作一堵墙,氨基酸就是砌墙的砖瓦。氨基酸是构成蛋白质的基本单位,它按不同的顺序和构型而组成不同的蛋白质。食物蛋白质的质量也是由它所含的必需氨基酸的数量来决定的。通常,构成蛋白质的氨基酸来源有两条途径:(1)体内合成。此类氨基酸可通过代谢活动由其它营养物质转变而来。(2)食物提供。此类氨基酸则是食物中的蛋白质经胃肠消化后分解为氨基酸,吸收入血后参与体内蛋白质的合成。在氨基酸中有8种氨基酸因它们在体内不能直接合成蛋白质或合成速度远不能满足机体需要,故必须从食物中获取。此类氨基酸称为必需氨基酸即:亮氨酸、异亮氨酸、蛋氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。而婴儿的必需氨基酸还要加上组氨酸。在评价蛋白质的营养时,不但要看蛋白质的数量,而且更重要的是要看蛋白质的质量。也就是说,食物中必需氨基酸的种类是否齐全、数量是否充足、各氨基酸之间的比例是否恰当。一般来说,鱼、肉、蛋、奶及豆制品中的氨基酸是优质蛋白。因为,除了这些食品的蛋白质含量高、容易消化吸收外,更重要的是其蛋白质的8种必需氨基酸齐备,数量、比例也都接近人体需要。粮谷类主食蛋白质大营养价值远不如动物性蛋白质,主要缺陷就是赖氨酸严重不足,蛋氨酸、苯丙氨酸含量也不高。因为膳食蛋白质的氨基酸模式越接近人体蛋白质组成部分,在消化吸收后越适应人体合成蛋白的需要,越易被机体利用,其它氨基酸大数量再多也会被机体作为燃料消耗从而排出体外。营养学上把含量达不到人体模式的氨基酸叫做限制性氨基酸,其中含量最低的称为第一限制性氨基酸,它决定了食物的营养价值。食物蛋白质中必需氨基酸的种类、含量和相互间的比值对蛋白质的营养价值有着极大的影响。食物中氨基酸的评分方法是:用第一限制性氨基酸含量与理想模式的比值乘以100。得出的评分越接近100,说明氨基酸含量越接近人体需要,评分越低,表示营养价值越差。常见接近人体需要的食品有鸡蛋(生鸡蛋除外)、牛奶等;而氨基酸含量低、营养价值差的食品有玉米、全麦等。氨基酸的种类、含量和比值愈接近或符合人体组织蛋白质中各种氨基酸的需要量时,其生物学价值就越高,也就是蛋白质的营养价值越高。

人体血液中有2种氨基酸的浓度显著高于其他氨基酸,它们是()。

人体血液中有2种氨基酸的浓度显著高于其他氨基酸,它们是()。 A.谷氨酸+天冬氨酸B.谷氨酰胺+丙氨酸C.丙氨酸+天冬氨酸D.甲硫氨酸+亮氨酸正确答案:B

食用豆腐中含有亮氨酸,化学式为C6H13NO2,以下关于亮氨酸说法正确的是(  )A.一个分子中含有一个氧

由亮氨酸的化学式为C6H13NO2可知:A、亮氨酸为纯净物,不可能含有其它分子,故A错误;B、一个分子中的原子个数:6+13+1+2=22个,故B错误;C、属于有机物,说法正确,因为含有碳元素具有有机物的特征,为有机物,故C正确;D、属于氧化物,说法错误,它虽然含有氧元素,但非氧化物,故D错误.故选C.

什么是必需氨基酸?什么是非必需氨基酸?

必需氨基酸指的是人体自身(或其它脊椎动物)不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。它是人体(或其它脊椎动物)必不可少,而机体内又不能合成的,必须从食物中补充的氨基酸,称必需氨基酸。非必需氨基酸不一定非从食物直接摄取不可,非必需氨基酸可在动物体内合成,作为营养源不需要从外部补充。对成人来讲必需氨基酸共有八种:赖氨酸、色氨酸、苯丙氨酸、甲硫氨酸、苏氨酸、异亮氨酸、亮氨酸、缬氨酸。对人来说非必需氨基酸为甘氨酸、丙氨酸、脯氨酸、酪氨酸、丝氨酸、半胱氨酸、天冬酰胺、谷氨酰胺、天冬氨酸、谷氨酸。这些氨基酸由碳水化合物的代谢物或由必需氨基酸合成碳链,进一步由氨基转移反应引入氨基生成氨基酸。已知即使摄取非必需氨基酸,也是对生长有利的。拓展资料必需氨基酸在人体中的存在,不仅提供了合成蛋白质的重要原料,而且对于促进生长,进行正常代谢、维持生命提供了物质基础。如果人体缺乏或减少其中某一种,人体的正常生命代谢就会受到障碍,甚至导致各种疾病的发生或生命活动终止。由此可见,必需氨基酸在人体生命活动中显得多么需要。必需氨基酸对婴儿的成长起着重要的作用。组氨酸为小儿生长发育期间的必需氨基酸,精氨酸、胱氨酸、酪氨酸、牛磺酸为早产儿所必需。参考资料:百度百科—必需氨基酸

亮氨酸做标准曲线的优点

优点:没有误差,用来观察实验结果。茚三酮与氨基酸的反应分两步进行,首先是氨基酸被氧化,产生二氧化碳uff64氨和醛,而水合茚三酮被还原成还原性茚三酮;第二步是所生成的还原性茚三酮与另一个水合茚三酮分子和氨缩合生成成为蓝紫色化合物,该化合物颜色的深浅与氨基酸的含量成正比uff61配制:取无水冰醋酸(按含水量计算,每1g水加醋酐5.22mL)750mL,加入高氯酸(70%-72%)8.5mL,摇匀,在室温下缓缓滴加醋酐23mL,边加边摇,加完后再振摇均匀,放冷,加无水冰醋酸适量使成1000mL,摇匀,放置24小时。若所测供试品易乙酰化,则须用水份测定法测定本页的含水量,再用水和醋酐调节至本液的含水量为0.01%-0.2%。以上内容参考:百度百科-亮氨酸

人体所非必须的十二种氨基酸和必须的八种氨基酸个叫什么名字

必需氨基酸共有八种:赖氨酸、色氨酸、苯丙氨酸、甲硫氨酸、苏氨酸、异亮氨酸、亮氨酸、缬氨酸非必需氨基酸十二种:甘氨酸、丙氨酸、丝氨酸、天冬氨酸、谷氨酸(及其胺)、脯氨酸、精氨酸、组氨酸、酪氨酸、胱氨酸。扩展资料:必需氨基酸在人体中的存在,不仅提供了合成蛋白质的重要原料,而且对于促进生长,进行正常代谢、维持生命提供了物质基础。如果人体缺乏或减少其中某一种,人体的正常生命代谢就会受到障碍,甚至导致各种疾病的发生或生命活动终止。氨基酸代谢途径:1、合成各种组织蛋白,酶和激素。2、通过氨基转换作用形成人体的非必需氨基酸。3、通过脱氨基作用形成含氮部分和不含氮部分,其中含氮部分在肝脏中转化成尿素排出体外,不含氮部分又有两条代谢途径,一是氧化分解成二氧化碳和水,释放能量,二是转化成糖和脂肪。参考资料来源:百度百科-必须氨基酸参考资料来源:百度百科- 非必须氨基酸参考资料来源:百度百科-氨基酸

什么叫氨基酸水溶肥,含氨基酸水溶肥原料分析

氨基酸水溶肥是以农副产品及动、植物残骸为主要原料,经过一定的生物发酵肯膜浓缩等生产技术,加工而成的环保型肥料。氨基酸水溶肥富含活性肽、活性肽、氨基酸、钙元素、天然生长活性物质,可有效刺激作物生长发育,提高作物体内酶活力,增强作物的抗病抗逆能力,具有生根、保花、保果等功效。含氨基酸水溶肥原料来源:1、氨基酸的来源主要是动、植物的一些下脚料及其他物质的发酵或水解产物。2、植物源氨基酸主要有大豆、饼粕等的发酵产物以及豆制品、粉丝的下脚料等;3、动物源氨基酸主要有皮革、毛发、蹄角料、鱼粉、鱼杂及屠宰场下脚料等。扩展资料:氨基酸水溶肥作用1、快速提高主根、侧根、毛细根的增生速度。2、持久性养根、壮根,增加根系的生长活力。3、大幅度提升根系对肥水的吸收和利用率,达到主根健壮、侧根密集、毛细根空前增多的效果。4、对盐化、酸化的土壤具有显著的缓冲能力,保护根系健康成长,避免因根系活力下降造成作物脱水、脱肥和早衰现象。参考资料:百度百科--水溶性肥料、

人体必需的氨基酸,您知道吗?

蛋白质是人类必需的营养物质,高中生每天要摄入80 90克蛋白质,才能满足需要,保证身体 健康 。 蛋白质进入人体后,在胃蛋白酶、胰蛋白酶的作用下,水解生成氨基酸。一部分氨基酸重新结合成人体所需的各种蛋白质,构成和修补人体的各种组织。另一部分氨基酸则发生氧化反应放出热量,供给人体活动的需要。人体内各种组织的蛋白质也在不断地分解,最后生成尿素,排出体外。 自然界中存在的氨基酸有几百种,但人体中只有二十多种,其中有八种是人体自身不能合成的,必须由食物获得,称为必需氨基酸。 人体必需氨基酸有:赖氨酸、缬氨酸、蛋氨酸、 苏氨酸、亮氨酸、苯丙氨酸、异亮氨酸 、色氨酸。 不同的食物中含有的蛋白质的数量及成分不同,营养价值也不同。为了维护人体的 健康 ,应注意合理搭配膳食,科学营养,保证人体必需氨基酸的摄取。 由上述可知,蛋白质为人体提供氨基酸,氨基酸又为人体提供蛋白质和部分能量,在它们相互转化的过程中,保证了人体各组成部分的正常运转以及功能的正常发挥。 一孔之见,定有不妥之处,希友友们在评论区提出宝贵的意见。

为什么亮氨酸,蛋氨酸,脯氨酸在薄层层析中的展层速度不同

氨基酸必须含有一个氨基和一个羧基,一个氢离子,再带一个侧链R基团。 (一)按R基的化学机构常见的二十中氨基酸可分为三类:脂肪族,芳香族和杂环族。 1.脂肪氨基酸 (1)中性氨基酸 甘氨酸 丙氨酸 缬氨酸 亮氨酸 异亮氨酸 (2)含羟基或硫氨基酸 丝氨酸 苏氨酸 半胱氨酸 甲硫氨酸(蛋氨酸) (3)酸性氨基酸及其酰胺 天冬氨酸 谷氨酸 天冬酰胺 谷氨酰胺 (4)碱性氨基酸 赖氨酸 精氨酸 2.芳香族氨基酸 苯丙氨酸 酪氨酸 色氨酸 3.杂环族氨基酸 组氨酸 脯氨酸 (二)按R基的极性性质分类 (1)非极性R基氨基酸 丙氨酸 缬氨酸 亮氨酸 异亮氨酸 苯丙氨酸 色氨酸 甲硫氨酸 脯氨酸 (2)不带电荷的极性R基氨基酸 爱暗算 苏氨酸 酪氨酸 天冬酰胺 谷氨酰胺 半胱氨酸 (3)带正电荷的R基氨基酸 赖氨酸 精氨酸 组氨酸 (4)带负电荷的氨基酸 天冬氨酸 谷氨酸

人一天所需几种氨基酸?,分别是那几种?

人体(或其它脊椎动物)必不可少,而机体内又不有合成的,必须从食物中补充的氨基酸,称必需氨基酸.必需氨基酸共有8种:赖氨酸、色氨酸、苯丙氨酸、甲硫氨酸(蛋氨酸)、苏氨酸、异亮氨酸、亮氨酸、缬氨酸.如果饮食中经常缺少上述氨基酸,可影响健康. 蛋白质的基本组成单位是氨基酸,与人体有关的氨基酸有20多种,各种蛋白质的氨基酸组成和数量不同.因此,形成了成千上万种蛋白质.虽然人体对所有氨基酸都需要,但由于大多数氨基酸可以由人体自身合成或由其他氨基酸转变而来,因此,实际上成人需要从饮食中摄取的氨基酸只有8种,儿童为9种,我们称之为必需氨基酸.饮食中只要含有适宜数量和比例的必需氨基酸,即可满足人体对氨基酸的需要.有些厂家在广告中说,“产品含有20多种氨基酸”,其实是偷换概念,误导消费者. 健康人不需要食用蛋白质粉 《中国居民膳食营养素参考摄入量》中推荐成人每人每天蛋白质的摄入量是65~90克,或者按总能量计占10%~12%即可满足代谢需要.此外,蛋白质摄入量因人的年龄、体重及劳动强度不同而存在一定的差异.生长发育期的儿童和青少年、怀孕期或哺乳期的妇女,蛋白质的需要量一般高一些. 对于健康人而言,只要坚持正常饮食,蛋白质缺乏这种情况一般不会发生.奶类、蛋类、肉类、大豆、小麦和玉米含必需氨基酸种类齐全、数量充足、比例适当.因此,我们只要坚持食物丰富多样,就完全能满足人体对蛋白质的需要,没有必要再补充蛋白质粉.而且,食物带给人的心理享受和感官刺激,是蛋白质粉所不能替代的. 蛋白质粉食用要适量 对于有需要的特殊人群,除了通过食物补充必需氨基酸以外,可以适当选择蛋白质粉作为蛋白质的补充,但是一定要注意蛋白质粉的用量.蛋白质经胃肠道消化吸收后,需要经肝脏加工转化为人体自身物质供人体使用,同时,蛋白质在体内代谢的产物氨、尿素、肌酸酐等含氮物质需要经过肾脏排泄.一个人如果食入过多的蛋白质,会增加肝、肾负担,对人体产生不利影响.因此,蛋白质绝不是多多益善.《中国居民膳食指南》提出的最高蛋白质摄入量是每千克体重0.92克,如果超过这个量,就有可能损害人体健康.事实上,蛋白质只要能维持人体代谢的需要即可.多余的蛋白质在消化吸收后,肝脏会将它们转变成肝糖原或肌糖原贮存起来;如果肝糖原或肌糖原已经足够,则转变成脂肪贮存起来;这种转变产生的其他代谢产物必须从肾脏排出来.蛋白质过剩,不但使人肥胖,还增加肝脏和肾脏的代谢负担,久而久之就可能影响它们的功能. 需要提醒的是,在我们补充蛋白质的同时,也要注意补充碳水化合物(糖类)、脂类、维生素和矿物质.因为这些营养素缺乏,不但会影响蛋白质的利用和代谢,同时会引起一些疾病,对健康非常不利. 哪些人要慎用蛋白质粉 1.肾脏疾病患者要严格限制蛋白质的摄入量,并且以含9种必需氨基酸的蛋白质为主.蛋白质的量要限制在20~40克/天. 2.肝脏疾病患者由于肝脏对蛋白质的加工、利用出现障碍,应适当增加蛋白质的摄入量.但对于肝昏迷、肝硬化晚期患者,供给过多蛋白质会增加肝脏负担,加剧病情,应限制动物蛋白.又因其在体内代谢会产生较多的氨,可以诱发或加重肝昏迷,所以这类患者可以选择某些富含支链氨基酸的植物蛋白,特别是大豆蛋白.因为支链氨基酸主要在肌肉中代谢,对肝功能有保护作用. 3.新生儿新生儿不宜食用蛋白质粉,他们应选择蛋白质含量在10%~20%的奶粉. 4.痛风病人要避免食用以大豆蛋白为主要成分的蛋白质粉.因为大豆中的嘌呤,可以造成体内尿酸增高,促成或加重痛风.

各种氨基酸的作用是什么

1、赖氨酸:促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化;2、色氨酸:促进胃液及胰液的产生;3、苯丙氨酸:参与消除肾及膀胱功能的损耗;4、蛋氨酸甲硫氨酸:参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能;5、苏氨酸:有转变某些氨基酸达到平衡的功能;6、异亮氨酸:参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺;7、亮氨酸:作用平衡异亮氨酸;8、缬氨酸:作用于黄体、乳腺及卵巢。9、精氨酸:精氨酸与脱氧胆酸制成的复合制剂是主治梅毒、病毒性黄疸等病的有效药物。10、组氨酸:可作为生化试剂和药剂,还可用于治疗心脏病,贫血,风湿性关节炎等的药物。11、人体虽能够合成精氨酸和组氨酸,但通常不能满足正常的需要,因此,又被称为半必需氨基酸或条件必需氨基酸,在幼儿生长期这两种是必需氨基酸.人体对必需氨基酸的需要量随着年龄的增加而下降,成人比婴儿显著下降。12、非必需氨基酸(nonessentialaminoacid):指人或其它脊椎动物自己能由简单的前体合成,不需要从食物中获得的氨基酸.例如甘氨酸、丙氨酸等氨基酸。

蛋白质摄入:神奇的亮氨酸的作用

  前沿假设   蛋白质数量、质量和分布时间都是决定其合成代谢效果的重要变量。其中,蛋白质的数量是最重要的。多吃点蛋白质,你摄入的必需氨基酸就越多,能部分弥补蛋白质质量的问题。另外,含有大量蛋白质的一餐需要更多时间去消化,因此能够更久的维持氨基酸供应,从而部分弥补低蛋白质摄入频率的问题。   然而,这不代表每日摄入蛋白质总量就是解决一切问题的 方法 。有足够的理由相信,即使是摄入总量很大,也无法最大化刺激一整天的MPS。   因此我的前沿假设就派上用场了。对绝大部分人来说,上面给的建议就绰绰有余了(参见蛋白质摄入,没你想的那么简单(二))。前沿假设部分基本上是我对蛋白质代谢的一些猜想,为那些偏执于尽可能多的增肌、绝不想放过任何比赛优势的人提出的建议。我没有考虑这些建议是否值得去花时间和金钱,我们只是讨论这些是否能增加点效果并不会有害。   亮氨酸(Leucine)   我们前面讨论过,必需氨基酸含量是评定一种蛋白质合成代谢潜力的重要指标。在这些必需氨基酸里,亮氨酸刺激MPS的效果尤甚。不过,一餐或蛋白质来源中的亮氨酸含量却未必重要,关键在于有多少亮氨酸能进入到血液中。显然,血浆亮氨酸浓度部分取决于你食物中的亮氨酸含量,但如果食物中蛋白质消化很慢的话,血浆中的亮氨酸则永远达不到高浓度。   快速消化的蛋白质通常比慢速消化的蛋白质更具合成代谢作用。一项研究测试了快速消化的乳清蛋白一次性服用和分次服用的效果(West,2011)。一次性服用一定量的乳清蛋白能带来高水平的血浆氨基酸浓度,但很短暂。服用等量乳清蛋白,但隔一段时间服用一次,一点点服用完以模拟缓慢消化蛋白质,这样只能带来较少的血浆氨基酸浓度提高,但能维持较长时间。一次性服用和分几次服用的比较的优势在于,相比直接比较不同的消化速度的蛋白质,这样控制了氨基酸成分的差异。一次性服用带来更好的MPS反应,意味着蛋白质吸收和消化的速度对于肌肉合成代谢来说是具有重要作用的。   食物中的亮氨酸含量与蛋白质消化吸收的速度共同决定了血浆亮氨酸峰值。而亮氨酸峰值是MPS对蛋白质反应的重要决定因素(Pennings,2011),但要注意,并不是亮氨酸水平越高,MPS水平就越高。   因此,我们进食蛋白质作为构建肌肉的原料,而由于进食蛋白质产生血浆亮氨酸峰值,激发MPS(也就是告诉身体要拿这些原料做点东西)。构建原材料的功能通常不是肌肉增长的限制因素。只需要一点点蛋白质就能为肌肉高速合成提供充足的原材料。下图的研究说明了这件事(白色为蛋白质,蓝色为蛋白质+亮氨酸,纵轴为“从头肌肉蛋白质合成”,Wall等人,2013)。   注意,柱状图不代表MPS。我们在参与者食用的蛋白质中加入了示踪物。示踪物用来追踪蛋白质的去向。通过取肌肉切片,我们可以看到在几个小时后有多少蛋白质构建进入了肌肉(这被称之为从头肌肉蛋白质合成,de novo MPS)。在只进食蛋白质的一组里,有些蛋白质成为了肌肉组织的一部分,但额外摄入亮氨酸的话,蛋白质中更多的氨基酸成为了肌肉组织。并没有摄入更多蛋白质,而是额外的亮氨酸激发了MPS,告诉肌肉开始用氨基酸。这表明,MPS反应的限制因素不是可用的构建原材料,而是激发功能的亮氨酸水平。要注意,在这个研究中,额外的亮氨酸是加在小分量(20g)蛋白质之中,参与者为老年人。   买亮氨酸补剂?还是吃更多蛋白质?   可不可以只靠着吃更多蛋白质来获得较高的亮氨酸峰值水平而不额外补充亮氨酸?不幸的是,只是吃更多蛋白质的话未必能提高血浆亮氨酸水平。吃更多蛋白质的话,蛋白质消化吸收的时间就会更久,也就是说血浆亮氨酸水平会维持更久的较高水平,但峰值未必会提高多少。相比额外补充无需消化的亮氨酸,你无法达到相同的峰值水平。   吃小分量的蛋白质只会带来较低的亮氨酸峰值,吃大分量蛋白质会带来较高的亮氨酸峰值,从而带来更高水平的MPS。但如果你继续提高蛋白质进食量的话,只会花更多时间消化吸收,血浆亮氨酸峰值和MPS速率提高的很有限,但MPS提高时间会久一点。如果你很久不能进食的话,这样做会有益处。而另一方面,如果你很快就要吃下一顿饭的话,这么做就没什么意义了。   注意如果你愿意吃更多的快速蛋白质(乳清蛋白、水解蛋白),血浆亮氨酸水平会更高一些而不是更久。但乳清蛋白和水解蛋白也算是补剂,表现更像亮氨酸补剂一些。   混合食物可能会降低血浆亮氨酸峰值水平   要注意,大部分蛋白质相关研究是用蛋白质补剂完成的,而不是混着蔬菜什么的真正的食物。   用补剂很容易孤立出效果来,做研究很方便。全蛋白质食物较难精确估量,烹饪过程也会带来一些变量,咀嚼次数也不同,有些人几分钟就吃完一盘菜,而有些人磨磨唧唧半天吃不完等等。但混合食物的合成代谢反应与蛋白质补剂会有些不同。   比如说,有研究表明,酪蛋白加入碳水会降低蛋白质消化吸收速度(Gorissen,2014)。尽管酪蛋白已经是慢速消化蛋白了,没有太多可以减缓的余地了。另外,研究加入的是碳水化合物粉剂,还不是日常中真的碳水化合物食物,像土豆、米饭什么的,真的食物可能会让消化更慢。因此,在蛋白质中加入含有碳水、脂肪等完整食物可能会减缓蛋白质消化吸收速率,降低血浆亮氨酸水平,限制MPS反应。   因此,就算你吃的是高蛋白混合餐,你也很可能达不到最佳血浆亮氨酸水平或MPS速率。因此,亮氨酸补剂或许是一个有效的提高混合食物的合成代谢反应的策略。   这个概念得到了一些研究的作证。在第一个研究中,在6.25g蛋白质里加入2.25g亮氨酸就能提高MPS(Churchward-Venne, 2012)。但在后续的研究中,6.25g蛋白质中加入2.25g亮氨酸却没能增加MPS(Churchward-Venne, 2014)。这两个研究有什么区别呢?第二个研究中,蛋白质饮料中还含有碳水和脂肪。这些数据显示,额外的碳水和脂肪会降低亮氨酸峰值水平从而降低MPS的提高水平。   第二个研究还测试了较高量的亮氨酸补充(4.25g)。较高亮氨酸剂量则提高了MPS反应。因此,这说明当你食物中含有碳水和脂肪时,你需要摄入更多的亮氨酸来刺激MPS。而现实生活中,真的食物会有更多难消化的碳水什么的降低蛋白质消化吸收速度,会更难达到最优的血浆亮氨酸水平。   还不信服吗?我还有更多证据。   有研究测试了三餐加入亮氨酸补剂的合成代谢效果。该研究测试了在老年人身上较高和较低蛋白质食谱上加入亮氨酸。   三餐都各添加了5g亮氨酸。参与者还进行了单侧抗阻训练。这样,一条腿就处于训练后状态,而另一条腿可以作为控制组。(Murphy,2016)。   白色:低蛋白,蓝色:高蛋白,横轴:安慰剂、亮氨酸,纵轴:MPS   你可能会很诧异,高蛋白饮食没有带来更高的MPS速率。但额外摄入亮氨酸,高低蛋白饮食的合成代谢效果都提高了。每天3次,每次5g的亮氨酸摄入提高了MPS速率,而多摄入33g蛋白质却做不到。上图显示的是休息的那条腿的情况,而在训练过的那条腿上,亮氨酸相对高蛋白的优越性更为明显。   当然,对于运动员来说,即使是高蛋白组摄入的蛋白质也比较低。然而,我认为,如果蛋白质摄入更高的话,亮氨酸补剂的效果会比蛋白粉更好。仔细看看上图,在高蛋白组里,多出来的蛋白质都做了什么?你已经有足够的肌肉构建原料了,再多吃蛋白质也不会提高多少血浆亮氨酸水平了。   因此,补充亮氨酸可能会比吃更多蛋白质要更有益。   另外,饭前15-30分钟补充亮氨酸可能比吃饭时补充效果更好,不然额外的亮氨酸可能会被 其它 营养元素减缓。提前摄入一些,等血浆浓度到了峰值后,正好开始进食,氨基酸开始进入血浆作为构建原料利用起来。亮氨酸补剂单独服用也能在禁食状态下刺激MPS(Wilkinson,2013),说明其它氨基酸不会在摄入亮氨酸后立即成为限制因素,但会逐渐成为MPS的限制因素( Churchward-Venne, 2012)。   其它亮氨酸策略   我想快速讲讲两外两个亮氨酸策略。   有人认为两餐之间补充亮氨酸能有效全天保持MPS的高水平。这个策略基于肌肉完整效应,也就是蛋白质只能刺激MPS一小会儿。在一开始的提高之后,就算氨基酸水平足够高,MPS还是会回到原来水平,而血浆内的亮氨酸理论上应该能继续刺激MPS(Atherthon,2011)。然而,有数据显示,训练后不存在肌肉完整效应 (Churchward-Venne, 2012)。运动员多多少少总是会处在训练后状态,而训练能让肌肉对氨基酸保持至少24小时的敏感度(具体时长取决于训练状态和容量)(Burd,2011)。另外,也没证据能证明亮氨酸补剂能克服可能的肌肉完整效应而蛋白质不能。简单来说,这种策略并没有太多依据。   另外一个就是补充BCAA。亮氨酸是BCAA种的一种(另外两种为缬氨酸和异亮氨酸)。单独摄入BCAA的话,只会带来较小MPS提升,可能因为你需要其它氨基酸作为肌肉增长的原料(Jackman,2017)。而在进食蛋白质时额外摄入BCAA时,MPS的提高还不如直接多吃点蛋白质,更不如单独摄入亮氨酸 (Churchward-Venne, 2014)。这听起来可能有点奇怪,为什么额外摄入两种别的氨基酸还不如单独摄入亮氨酸了?异亮氨酸和缬氨酸在体内的载体与亮氨酸相同,因此可能是它们会和亮氨酸竞争,导致亮氨酸峰值水平不高。   因此,单独使用亮氨酸补剂比较好,而完整的蛋白质是更好的肌肉构建原料的来源。BCAA在这里就没什么用了,对于提高MPS来说,BCAA不如亮氨酸;对于提供原材料来说,又不如蛋白质。   高级建议   高级建议是基于我的最优建议之上的(见蛋白质摄入,没你想的那么简单(二)),每天至少四餐,早午晚餐+睡前一餐,每餐至少40g蛋白质,蛋白质主要来自于动物食材。另外,进餐前或进食中摄入5g亮氨酸补剂(分别为第一、第二选择)。如果买不到亮氨酸补剂的话,用乳清蛋白或水解蛋白也可以(第三选择)。   本文作者:Jorn Trommelen(公众号:Atlas分享)   本文为原创 文章 ,版权归作者所有,未经授权不得转载!

螺旋藻含的18种氨基酸的每一种氨基酸的名称是什么?

一.甘氨酸 (GLY) 1、降低血液中的胆固醇浓度,防治高血压 2、降低血液中的血糖值,防治糖尿病 3、能防治血凝、血栓 4、提高肌肉活力,防止胃酸过多 5、甜味为砂糖的0.8倍,对人体有补益等营养作用 二.亮氨酸(LEU) *1、降低血液中的血糖值,对治疗头晕有作用 2、促进皮肤、伤口及骨头有愈合作用 3、如果缺乏时,会停止生长,体重减轻 三.蛋氨酸 (MET) *1、参与胆碱的合成,具有去脂的功能,防治动脉硬化高血脂症 2、有提高肌肉活力的功能 3、促进皮肤蛋白质和胰岛素的合成 四.酪氨酸 (TYR) 1、造肾上腺激素、甲状腺激素和黑色素的必需氨基酸 2、可防治老年痴呆症 3、促进新陈代谢,增进食欲 4、对治疗胃溃疡等慢性疾病、神经性炎症及发育不良等效果 5、与色素形成有关系,缺乏时会利白化症 五.组氨酸(HIS) *1、参与血球蛋白合成,促进血液生成 2、产生组氨、促进血管扩张,增加血管壁的渗透性 3、医治胃病、十二指肠等有特效 4、促进腺体分泌,对过敏性疫病有效果 5、可治疗消化性溃疡、发育不良等症状 6、对治疗心功能不全、心绞痛、降低血压、哮喘及类风湿关节炎 有效果 六.苏氨酸(THR) *人体必需,缺乏时会使人消瘦,甚至死亡 七.丙氨酸(ALA) 1、能促进血液中酒精的代谢(分解)作用增强肝功能,有保肝护肝作用 2、甜味为砂糖的1.2倍 八.异亮氨酸 (ILE) *1、能维持机体平衡,治疗精神障碍 2、有促进食欲的增加和抗贫血的作用 3、如果缺乏时,会出现体力衰竭,昏迷等症状 九.色氨酸(TRY) *1、促进血红蛋白的合成 2、防治癞皮病 3、促进生长,增加食欲 4、甜味为砂糖的35倍,配制生产的低塘食物等对糖尿病、肥胖病人食用较好 十.胱氨酸 (CYS) 1、有治疗脂肪肝和解拘Ч?2、治疗皮肤的损伤,对病后、产后脱发有疗效 十一.赖氨酸(LYB) *1、参与结缔组织、微血管上皮细胞间质的形成,并保持正常的渗 透性 2、可增加食欲,促进胃蛋白酶的分泌,增强免疫能力,改善发育 迟缓,防止蛀牙,促进儿童生长 3、提高钙的吸收,促进骨骼生长 4、如果缺乏,会降低人的敏感性,妇女会停经,出现贫血、头晕、头昏和恶心等病状 十二.天门冬氨酸(ASP) 1、降代血氨,对肝有保护作用 2、对肌肉有保护作用,可治疗心绞痛,对心肌梗塞等有防治效果 3、增加鲜味,促进食欲 十三.缬氨酸(VAL) *1、促使神经系统功能正常 2、如果缺乏时,会造成触觉敏感度特别提高,肌肉的共济运动失调 3、可作为肝昏迷的治疗药物 十四.苯丙氨酸(PHE) *在机体内转变为酪氨酸,促进甲状腺素和肾和肾上腺素的合成 十五.脯氨酸 (PRO) 对高血压有疗效作用 十六.丝氨酸 (SER) 1、降低血液中的胆固醇浓度,防治高血压 2、是脑等组织中的丝氨酸磷脂的组成部分 3、结核细菌病有效果,可治疗肺病 十七.谷氨酸 (GLU) 1、降低血氨,有解氨毒的作用 2、参与脑的蛋白和塘代谢,促进氧化,改善中枢神经活动,有维持和促进脑细胞功能的作用,促进智力的增加 3、对严重肝功能不全,肝昏迷,酸中毒,癫痫精神分裂症、神经 衰弱等有治疗效果 4、对治疗胃溃疡、胃液缺乏、消化不良、食欲不振有效果 5、保护皮肤湿润,防治干裂,如配制的洗涤剂、化妆品,对皮肤、粘膜元刺激,适于幼儿及皮肤病患者使用 十八.精氨酸(ARG) 1、降低血氨,促进体中尿素生成,治疗肝昏迷等 2、增加肌肉活力,保持性功能,对治疗精子减少症有作用

跪求:氨基酸的极性表,不会的别来找骂!

1、非极性氨基酸(疏水氨基酸)8种   丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe)   色氨酸(Trp)蛋氨酸(Met)   2、极性氨基酸(亲水氨基酸):   1)极性不带电荷:7种   甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)   酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)    2)极性带正电荷的氨基酸(碱性氨基酸) 3种 赖氨酸(Lys)精氨酸(Arg)组氨酸(His)    3)极性带负电荷的氨基酸(酸性氨基酸) 2种 天冬氨酸(Asp)谷氨酸(Glu)

亮氨酸拉链蛋白所识别的DNA有何特点?如何理解亮氨酸拉链转录因子的二聚体结构同识

亮氨酸拉链是聚体,有一长串的亮氨酸在链的尾部,与另外一条富含亮氨酸的多肽链形成拉链。在亮氨酸拉链的另一端(即与DNA结合的一段)是带正电的氨基酸,便于与DNA结合是一种蛋白结构基元~~

人体必需氨基酸有哪些?各有什么作用呢?

氨基酸大致可以分为三类:必需氨基酸、半必需氨基酸和非必需氨基酸。必需氨基酸,指人体不能合成或合成速度远不适应机体的需要,必须从外界获取,这些氨基酸称为必需氨基酸。人体必需氨基酸包括:赖氨酸(Lysine 简写:Lys)、色氨酸(Tryptophan 简写:Trp)、苯丙氨酸(Phenylalanine 简写:Phe)、甲硫氨酸(Methionine 简写:Met)、苏氨酸(Threonine 简写Thr)、异亮氨酸(Isoleucine 简写:Ile)、亮氨酸(Leucine 简写:Leu)、缬氨酸(Valine 简写:Val),共8种。但研究发现组氨基酸(Histidine 简写:His)为婴儿所必需,因此婴儿的必需氨基酸为9种。必需氨基酸在我们体内扮演着非常重要的作用——氨基酸是构成蛋白质的基本单位,氨基酸种类不全,配比数量不足都会影响人体蛋白质的合成,从而影响人体健康。1、赖氨酸赖氨酸(又名离氨酸)可以促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化。赖氨酸可以调节人体代谢平衡,还能提高钙的吸收及其在体内的积累,加速骨骼生长。如缺乏赖氨酸,会造成胃液分沁不足而出现厌食、营养性贫血,致使中枢神经受阻、发育不良。此外,赖氨酸能够防治单纯性疱疹感染(如热病疱疹、口唇疱疹),补充赖氨酸能加速疱疹感染的康复并抑制其复发。2、色氨酸色氨酸可以促进胃液及胰液的产生。色氨酸可转化生成人体大脑中的一种重要神经传递物质――5–羟色胺,可改善睡眠的持续时间,具有促睡眠作用。此外,色氨酸还具有减轻人体对疼痛的敏感性、缓解紧张焦虑情绪等功效。3、苯丙氨酸苯丙氨酸参与消除肾及膀胱功能的损耗。此外,苯丙氨酸具有减轻饥饿感,增强性欲,增强记忆力、提高思维灵敏度,振奋精神、消除抑郁情绪等作用。4、甲硫氨酸(蛋氨酸)蛋氨酸参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能。缺乏蛋氨酸,会引起食欲减退、生长减缓或不增加体重、肾脏肿大和肝脏铁堆积等现象,最后导致肝坏死或纤维化。因此,蛋氨酸可用于防治慢性或急性肝炎、肝硬化等肝脏疾病。此外,蛋氨酸可以清除人体内的铅、汞、锡等有害物质的作用,也可用于缓解砷、三氯甲烷、四氯化碳、苯、吡啶和喹啉等有害物质的毒性反应。5、苏氨酸苏氨酸有转变某些氨基酸达到平衡的功能。苏氨酸的结构中含有羟基,对人体皮肤具有持水作用,与寡糖链结合,对保护细胞膜起重要作用。此外,苏氨酸能够促进人体对蛋白质的吸收利用,防止脂肪在肝脏中积累,具有促进人体内抗体生成、增强人体免疫系统功能等作用。6、异亮氨酸异亮氨酸参与胸腺、脾脏及脑下腺的调节以及代谢。异亮氨酸是人血红蛋白形成所必需的成分,能够调节人体血糖(主要是提高血糖水平),治疗神经障碍、食欲减退和贫血,提高能量水平、提高人体体能。在肌肉蛋白质代谢中极为重要。7、亮氨酸(又名白氨酸)亮氨酸具有促进睡眠、降低人体对疼痛的敏感性、缓解紧张焦躁的情绪、防止身体功能失调和预防中毒等功效。亮氨酸可用于诊断和治疗小儿的突发性高血糖症,也可用作头晕治疗剂及营养滋补剂。8、缬氨酸缬氨酸的功效、适宜人群与异亮氨酸基本相同。研究发现,当缬氨酸不足时,大鼠中枢神经系统功能会发生紊乱,共济失调而出现四肢震颤。此外,它也可作为加快创伤愈合的治疗剂。最后,CELLIN细胞里生物科技想说的是,人体内每一种氨基酸都不能缺少,否则会影响到身体的正常运转,因此健康的成年人最好通过日常饮食补充上述八种氨基酸。当然,为确保机体更健康有效地运行,日常膳食营养摄入有所不及时,不妨考虑一些功能性营养食品或营养补剂。

猫咪百科|氨基酸缺乏症

作为猫奴,都知道猫过瘦,是营养不良的表现,但是你是否知道当某种营养元素缺乏时,会导致猫咪身体如何吗?接下来带大家逐一了解每一种营养元素若缺乏,会带来哪些危害。一、脂肪酸 1、披毛干燥无光泽; 2、有皮屑; 3、行为不活跃; 4、脂肪肝增大; 5、肾长轻度矿化; 5、肝脏脂肪渗透。 二、精氨酸 1、喂无精氨酸但其他氨基酸充足的日粮并且前1天晚上限饲时,在1~3h内就会引起严重的高血氨,使得猫咪呻吟、呕吐、流涎、坐卧不安、神经亢奋、共济失调、痉挛、前弓反张、肢爪伸张、呼吸暂停、苍白病(黄萎病)或死亡; 2、如自由采食无精氨酸的日粮,症状会较轻,但会出现腹泻、严重消瘦、食欲降低和拒食等症状。 三、组氨酸 1、给幼猫饲喂无组氨酸日粮,会使得其体重以5g/天的速度下降。 四、异亮氨酸 1、给幼猫饲喂无异亮氨酸的日粮,使其体重以7~10g/天的速度降低; 2、当日粮(代谢能为4.7kcal/g)中异亮氨酸的含量为2.2g/kg时,幼猫生长不理想,几天后在眼睛、鼻子和嘴的周围产生卟啉样的硬皮样物质,且被毛凌乱,脚垫外皮脱落、破裂、受损、嗜睡、出现缓慢的翻正反射和共济失调。 五、亮氨酸 1、给幼猫饲喂无亮氨酸日粮,会使得其体重以7g/天的速度下降。 六、赖氨酸 1、给幼猫饲喂无赖氨酸日粮,会使得其体重以11g/天的速度下降。 七、蛋氨酸 1、体重减轻; 2、还会引起精神抑郁; 3、眼睛有异常分泌物并黏塞眼睑; 4、导致幼猫眼睑和爪垫严重损伤。 八、酪氨酸及无苯丙氨酸 1、体重减轻; 2、幼猫的黑毛变成红色; 3、神经机能障碍,尾巴异常地向后背弯曲; 4、活动亢进; 5、多涎; 6、经常发出叫声。 九、苏氨酸 1、采食量下降,体重下降; 2、幼猫四肢轻微颤抖、腿抽筋、步伐僵硬、共济失调且难以保持平衡; 3、弓形腿。 十、色氨酸 1、给幼猫饲喂无色氨酸的日粮,会导致采食量降低,且体重以13g/天的速度下降。 十一、缬氨酸 1、给幼猫饲喂无色氨酸的日粮,会导致采食量降低,且体重以6~14g/天的速度下降。 十二、牛磺酸 1、导致猫的FCRD和失明; 2、DCM和心力衰竭; 3、不适的免疫应答; 4、幼年孱弱,耳聋; 5、低繁殖力导致大量死胎、重吸、流程,降低出生率和幼仔成活率,先天缺乏症包括脑积水和无脑畸形。 明天将会给大家带来“矿物质元素”缺乏给猫咪带来的影响。

八大必须氨基酸的作用

1、亮氨酸促进睡眠,降低对疼痛的敏感性,缓解偏头痛,缓和焦躁及紧张情绪,减轻因酒精而引起生化反应失调的症状并有助于控制酒精中毒。2、赖氨酸参与结缔组织、微血管上皮细胞间质的形成,并保持正常的渗透性。可增加食欲,促进胃蛋白酶的分泌,增强免疫能力,改善发育迟缓,防止蛀牙,提高钙的吸收,促进骨骼生长,对儿童发育,增加体重和身高具有明显作用。3、苯丙氨酸降低饥饿,提高性欲,消除抑郁情绪,改善记忆及提高思维敏捷度。4、异亮氨酸血红蛋白形成必需氨基,调节糖和能量的水平;帮助提高体能,帮助修复肌肉组织。5、缬氨酸加快创伤愈合,治疗肝功能衰竭;提高血糖水平,增加生长激素。6、甲硫氨酸帮助分解脂肪,能预防脂肪肝,心血管疾病和肾脏疾病的发生;防止肌肉软弱无力。7、色氨酸促进睡眠,减少对疼痛的敏感度;缓解偏头痛,缓和焦躁及紧张情绪。8、谷氨酰胺谷氨酰胺的需要量大大超过了机体合成谷氨酰胺的能力,使体内的谷氨酰胺含量降低,而这一降低,便会使蛋白质合成减少、小肠粘膜萎缩及免疫功能低下。扩展资料含有氨基酸的食物成人必需氨基酸的需要量约为蛋白质需要量的20%~37%。氨基酸在食品中的作用不可忽视,有的是调味剂,有的是营养强化剂,有的可起增香作用等。1、氨基酸的味大多数氨基酸都有味感,在食品中起着酸、甜、苦、涩等味的作用。色氨酸无毒,甜度强,它及其衍生物是很有发展前途的甜味剂。还有一些水溶性小的氨基酸具有苦味,是食品加工中蛋白质水解的产物。谷氨酸主要存在于植物蛋白中,可用小麦产面筋蛋白水解得到。谷氨酸具有酸味和鲜味两种味,其中以酸味为主。当加碱适当中和后生成谷氨酸钠盐;生成盐以后.谷氨酸的酸味消失,鲜味增强。谷氨酸钠是广泛使用的鲜味剂——味精的主要成分。2、风味的前提物质之一氨基酸与糖类物质发生羰氨反应是食品加工中重要的香气和上色的重要原因,在反应过程中消耗了一部分氨基酸和糖,生成了风味物质。氨基酸也会加热分解生成某些风味物质,或在细菌的分解下产生具有异味的物质,所以氨基酸是风味物质的前提物质,也是腐败菌的营养物质。蛋白质是一类大分子物质,可以在酸、碱或蛋白酶的作用下水解为小分子物质:蛋白质彻底水解后,能得到其基本组成单位——氨基酸。存在于自然界中的氨基酸有300余种,但是参与构成蛋白质的氨基酸通常有20种,并且它们均属于L—α一氨基酸(甘氨酸除外)。这些氨基酸以不同的连接顺序通过肽键连接起来构成蛋白质。参考资料来源:百度百科——必需氨基酸参考资料来源:百度百科——氨基酸

3h标记的亮氨酸是什么颜色的

3h标记的亮氨酸是白色。3h标记的亮氨酸与正常的亮氨酸是一个颜色,呈现白色粉末或者结晶性粉末,并不是根据颜色来观察的,而是根据检测出氢三的途径观察蛋白质的合成途径。亮氨酸是氨基酸,是合成蛋白质的原料之一,这个题实际就是问你氨基酸在细胞内合成蛋白质的途径,核糖体-内质网-高尔基体。

哪些食物中含有白氨酸

有个正白氨酸的:正白氨酸是二十种基本氨基酸的其中一种,它和异亮氨酸互为同分异构体。在营养学上,正白氨酸是人体的必需氨基酸。正白氨酸是在蛋白质内最普遍的氨基酸,而且对于婴儿与孩童时期的正常发育和成年人身体内的氮平衡都很重要。正白氨酸可能在以平衡蛋白质的生化和分解的方法来维持肌肉上占了很重要的角色。正白氨酸的主要食物来源有:全谷、牛奶、乳制品、蛋、猪肉、牛肉、鸡肉、豆、大豆、叶菜。

氨基酸成分分析是什么?

氨基酸含有氨基和羧基两种成分。与羟基酸类似,氨基酸可按照氨基连在碳链上的不同位置而分为α-,β-,γ-...w-氨基酸,但经蛋白质水解后得到的氨基酸都是α-氨基酸,而且仅有二十几种,他们是构成蛋白质的基本单位。氨基酸为构成动物营养所需蛋白质的基本物质。含有碱性氨基和酸性羧基的有机化合物。氨基连在α-碳上的为α-氨基酸。组成蛋白质的氨基酸大部分为α-氨基酸。物理性质氨基酸为无色晶体,熔点超过200℃,比一般有机化合物的熔点高很多。α-氨基酸有酸、甜、苦、鲜4种不同味感。谷氨酸单钠和甘氨酸是用量最大的鲜味调味料。氨基酸一般易溶于水、酸溶液和碱溶液中,不溶或微溶于乙醇或乙醚等有机溶剂。氨基酸在水中的溶解度差别很大,例如酪氨酸的溶解度最小,25℃时,100g水中酪氨酸仅溶解0.045g,但在热水中酪氨酸的溶解度较大。赖氨酸和精氨酸常以盐酸盐的形式存在,因为它们极易溶于水,因潮解而难以制得结晶。

奶粉里亮氨酸多少正常

25mg/Kg正常。 亮氨酸指的是一种支链氨基酸,如果它的数值轻微偏高,那么对孩子的身体健康影响不大。但如果高的程度很大,那么可能会导致新生儿腹泻,严重的甚至会影响肾功能,所以这种情况也是要引起家长重视的。

氨基酸的测定中为什么用正亮氨酸做内标

内标必须是自然界没有的

亮氨酸是什么

亮氨酸是在蛋白质内最常出现的氨基酸,而且对于婴儿与孩童时期的正常发育和成年人身体内的氮平衡都很重要。在营养学上,亮氨酸是人体的必需氨基酸。中文学名:亮氨酸、白氨酸 亮氨酸中文别名:α-氨基-γ-甲基戊酸、α-氨基异己酸英文名:Leucine化学式:C6H13NO2分子式:(CH3)2CHCH2CH(NH2)COOH分子量:131.18

谁能告诉我——白氨酸和亮氨酸的区别???急,谢

你好,亮氨酸是氨基酸的组成成分之一,是必须氨基酸。他是多种物质如蛋白质的组成成分,基本所有的食物中都含有多种氨基酸。简单而言多种氨基酸组成蛋白质,多种蛋白质组成食物

亮氨酸简介

目录 1 拼音 2 英文参考 3 概述 4 亮氨酸药典标准 4.1 品名 4.1.1 中文名 4.1.2 汉语拼音 4.1.3 英文名 4.2 结构式 4.3 分子式与分子量 4.4 来源(名称)、含量(效价) 4.5 性状 4.5.1 比旋度 4.6 鉴别 4.7 检查 4.7.1 酸度 4.7.2 溶液的透光率 4.7.3 氯化物 4.7.4 硫酸盐 4.7.5 铵盐 4.7.6 其他氨基酸 4.7.7 干燥失重 4.7.8 炽灼残渣 4.7.9 铁盐 4.7.10 重金属 4.7.11 砷盐 4.7.12 细菌内毒素 4.8 含量测定 4.9 类别 4.10 贮藏 4.11 版本 5 参考资料 1 拼音 liàng ān suān 2 英文参考 leucine [WS/T 476—2015 营养名词术语] Leu [WS/T 476—2015 营养名词术语] 3 概述 亮氨酸(leucine;Leu)化学名称为2氨基4甲基戊酸,它是一种脂肪族支链非极性的α氨基酸[1]。亮氨酸是人体的必需氨基酸和生酮生糖氨基酸[1]。 4 亮氨酸药典标准 4.1 品名 4.1.1 中文名 亮氨酸 4.1.2 汉语拼音 Liang"ansuan 4.1.3 英文名 Leucine 4.2 结构式 4.3 分子式与分子量 C6H13NO2131.17 4.4 来源(名称)、含量(效价) 本品为L2氨基4甲基戊酸。按干燥品计算,含C6H13NO2不得少于98.5%。 4.5 性状 本品为白色结晶或结晶性粉末;无臭,味微苦。 本品在甲酸中易溶,在水中略溶,在乙醇或乙醚中极微溶解。 4.5.1 比旋度 取本品,精密称定,加6mol/L盐酸溶液溶解并定量稀释制成每1ml中约含40mg的溶液,依法测定(2010年版药典二部附录Ⅵ E),比旋度为+14.9°至+16.0°[2]。 4.6 鉴别 (1)取本品与亮氨酸对照品各适量,分别加水溶解并稀释制成每1ml中约含0.4mg的溶液,作为供试品溶液与对照品溶液。照其他氨基酸项下的色谱条件试验,供试品溶液所显主斑点的位置和颜色应与对照品溶液的主斑点相同。 (2)本品的红外光吸收图谱应与对照的图谱(《药品红外光谱集》987图)一致。 4.7 检查 4.7.1 酸度 取本品0.50g,加水50ml,加热使溶解,放冷至室温,依法测定(2010年版药典二部附录Ⅵ H),pH值应为5.5~6.5。 4.7.2 溶液的透光率 取本品0.50g,加水50ml,加热使溶解,放冷至室温,照紫外-可见分光光度法(2010年版药典二部附录Ⅳ A),在430nm的波长处测定透光率,不得低于98.0%。 4.7.3 氯化物 取本品0.25g,依法检查(2010年版药典二部附录Ⅷ A),与标准氯化钠溶液5.0ml制成的对照液比较,不得更浓(0.02%)。 4.7.4 硫酸盐 取本品1.0g,依法检查(2010年版药典二部附录Ⅷ B),与标准硫酸钾溶液2.0ml制成的对照液比较,不得更浓(0.02%)。 4.7.5 铵盐 取本品0.10g,依法检查(2010年版药典二部附录Ⅷ K),与标准氯化铵溶液2.0ml制成的对照液比较,不得更深(0.02%)。 4.7.6 其他氨基酸 取本品适量,加水溶解并稀释制成每1ml中约含20mg的溶液,作为供试品溶液;精密量取1ml,置200ml量瓶中,用水稀释至刻度,摇匀,作为对照溶液;另取亮氨酸对照品与缬氨酸对照品各适量,置同一量瓶中,加水溶解并稀释制成每1ml中各约含0.4mg的溶液,作为系统适用性试验溶液。照薄层色谱法(2010年版药典二部附录Ⅴ B)试验,吸取上述三种溶液各5μl,分别点于同一硅胶G薄层板上,以正丁醇-水-冰醋酸(3:1:1)为展开剂,展开后,晾干,喷以茚三酮的丙酮溶液(1→50),在80℃加热至斑点出现,立即检视。对照溶液应显一个清晰的斑点,系统适用性试验溶液应显两个完全分离的斑点。供试品溶液如显杂质斑点,其颜色与对照溶液的主斑点比较,不得更深(0.5%)。 4.7.7 干燥失重 取本品,在105℃干燥3小时,减失重量不得过0.2%(2010年版药典二部附录Ⅷ L)。 4.7.8 炽灼残渣 取本品1.0g,依法检查(2010年版药典二部附录Ⅷ N),遗留残渣不得过0.1%。 4.7.9 铁盐 取本品1.5g,依法检查(2010年版药典二部附录Ⅷ G),与标准铁溶液1.5ml制成的对照液比较,不得更深(0.001%)。 4.7.10 重金属 炽灼残渣项下遗留的残渣,依法检查(2010年版药典二部附录Ⅷ H 第二法),含重金属不得过百万分之十。 4.7.11 砷盐 取本品2.0g,加水5ml,加硫酸1ml与亚硫酸10ml,在水浴上加热至体积约剩2ml,加水5ml,滴加氨试液至对酚酞指示液显中性,加盐酸5ml,加水使成28ml,依法检查(2010年版药典二部附录Ⅷ J 第一法),应符合规定(0.0001%)。 4.7.12 细菌内毒素 取本品,依法检查(2010年版药典二部附录Ⅺ E),每1g亮氨酸中含内毒素的量应小于25EU(供注射用)。 4.8 含量测定 取本品约0.1g,精密称定,加无水甲酸1ml溶解后,加冰醋酸25ml,照电位滴定法(2010年版药典二部附录Ⅶ A),用高氯酸滴定液(0.1mol/L)滴定,并将滴定的结果用空白试验校正。每1ml高氯酸滴定液(0.1mol/L)相当于13.12mg的C6H13NO2。 4.9 类别 药用辅料,前体药物载体和润滑剂。 4.10 贮藏 遮光,密封保存。 4.11 版本

L-6-羟基正亮氨酸的英国海关编码是什么?

基本信息:中文名称L-6-羟基正亮氨酸英文名称L-6-HydroxyNorleucine英文别名L-6-HYDROXYNORLEUCINE;CAS号6033-32-5英国海关编码(HS-code):2922500090概述(Summary):2922500090.Otheramino-alcohol-phenols,amino-acid-phenolsandotheramino-compoundswithoxygenfunction.Generaltariff:.

N-苄氧羰基-D-正亮氨酸的的上游原料和下游产品有哪些?

基本信息:中文名称N-苄氧羰基-D-正亮氨酸中文别名N-苄氧羰基-D-己氨酸;英文名称(2R)-2-(phenylmethoxycarbonylamino)hexanoicacid英文别名Cbz-D-norleucine;Z-D-Nle-OH;D-Z-Nor-Leu-OH;N-Benzyloxycarbonyl-D-norleucine;N-Benzyloxycarbonyl-D-Norleucine;Z-D-norleucine;CAS号15027-14-2上游原料CAS号中文名称64-17-5乙醇15027-13-1N-苄氧羰基-DL-正亮氨酸109-72-8正丁基锂501-53-1氯甲酸苄酯616-06-8DL-正亮氨酸更多上下游产品参见:http://baike.molbase.cn/cidian/1545077

氯乙酰基-DL-正亮氨酸的的上游原料和下游产品有哪些?

基本信息:中文名称氯乙酰基-DL-正亮氨酸英文名称2-[(2-chloroacetyl)amino]hexanoicacid英文别名N-CHLOROACETYL-DL-NLE;N-chloroacetyl-DL-norleucine;N-chloroacetyl-norleucine;CHLOROACETYL-DL-NORLEUCINE;N-Chloracetyl-DL-norleucin;N-Chloracetyl-norleucin;CAS号67206-26-2上游原料CAS号中文名称616-06-8DL-正亮氨酸79-04-9一氯代乙酰氯616-05-72-溴己酸142-62-1己酸更多上下游产品参见:http://baike.molbase.cn/cidian/1458061

BOC-L-6-羟基正亮氨酸的英国海关编码是什么?

基本信息:中文名称BOC-L-6-羟基正亮氨酸中文别名N-alpha-t-丁基氧基羰基-6-羟基-L-正亮氨酸;Boc-L-6-羟基正亮氨酸;英文名称(2S)-6-hydroxy-2-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoicacid英文别名N-Boc-hydroxylnorleucine;N-t-butyloxycarbonyl-L-6-hydroxynorleucine;BOC-L-6-HYDROXYNORLEUCINE;AmbotzBAA1117;Boc-N-6-hydroxynorleucine;Boc-L-Nle(6-OH)-OH;(2S)-tert-butoxycarbonylamino-6-hydroxyhexanoicacid;CAS号77611-37-1英国海关编码(HS-code):2924190090概述(Summary):2924190090.Otheracyclicamides(includingacycliccarbamates)andtheirderivatives;saltsthereof.Generaltariff:.

蛋白质及氨基酸的显色反应

蛋白质与双缩脲反应生成紫色物质。蛋白质与浓硝酸反应深沉黄色物质。蛋白质与HgNO3 或HgNO2反应生成黄色物质。蛋白质与乙醛酸的反应生成红色物质。蛋白质的坂口反应生成红色物质。蛋白质与磷钼酸和磷钨酸反应生成蓝色物质。蛋白质与茚三酮反应生成紫色物质。氨基酸与茚三酮反应生成紫色物质。氨基酸与Sanger试剂反应后经酸水解生成黄色物质。酪氨酸与重氮化合物反应生成橘黄色物质。组氨酸与重氮苯磺酸反应生成棕红色物质。

氨基如何氧化成羰基

氨基中没有碳原子,不可能氧化成羰基. 氨基氧化生成生成羟氨基、亚硝基和硝基. 仲醇氧化才生成酮羰基. 要把氨基转化为酮羰基,可采用的方式是:第一,将胺在低温下与亚硝酸反应,生成重氮化合物.第二步,重氮化合物水解生成仲醇 第三,将仲醇氧化成酮.

氨基如何氧化成羰基

氨基中没有碳原子,不可能氧化成羰基,氨基氧化生成生成羟氨基、亚硝基和硝基,仲醇氧化才生成酮羰基,要把氨基转化为酮羰基,可采用的方式是:第一,将胺在低温下与亚硝酸反应,生成重氮化合物;第二步,重氮化合物水解生成仲醇; 第三,将仲醇氧化成酮。

高中化学 含氨基的有机物能发生什么反应?写一下反应方程式谢谢

你好,氨基的反应活性并不强,但是有关氨基的反应也并不少。1,氨基的第一个重要反应就是他的碱性,可以与酸反应生成盐,R-NH2+H+==R-NH3+,其中重要的是季铵盐和羧酸盐,羧酸铵盐在加热时会失水变成酰胺,R-COONH3-R′→加热→R-CO-NH-R′+H2O。,2,其次就是胺的酰化反应,酰卤、酸酐、羧酸、酯都可以和氨反应得到酰胺,以乙酸酐和乙酰氯为例,(CH3CO)2O+NH3→CH3CONH2+CH3COOH,CH3COCl+NH3→CH3CONH2+HCl3,氨基可以和醛酮反应,得到的产物随胺的R基不同而不同,醛酮以乙醛为例,产物可以是CH3C=N-R,CH3C(OH)NRR′等。4,与亚硝酸反应得到重氮化合物(或偶氮化合物)。其他的都不是很重要。希望对你有所帮助!不懂请追问!望采纳!

为什么对氨基硝基苯难于重氮盐反应生成重氮化合物

因为有苯磺酸,如果不把他变成盐的话,它之身就能发生酸碱中和

氨基如何氧化成羰基

氨基中没有碳原子,不可能氧化成羰基。氨基氧化生成生成羟氨基、亚硝基和硝基。仲醇氧化才生成酮羰基。 要把氨基转化为酮羰基,可采用的方式是:第一,将胺在低温下与亚硝酸反应,生成重氮化合物。第二步,重氮化合物水解生成仲醇 第三,将仲醇氧化成酮。

氨基酸,巯基,蛋白质,羧基

R是可变基团巯基又称氢硫基。是由一个硫原子和一个氢原子相连组成的一价原子团,结构式为:—SH蛋白质是由α—氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合而成的高分子化合物。羧基是有机化学中的基本酸基,所有的有机酸都可以叫羧酸,由一个碳原子、两个氧原子和一个氢原子组成,化学式-COOH。如醋酸(CH3COOH)、柠檬酸都含有羧基,这些羧基与烃基直接连接的化合物,叫作羧酸。

含巯基的氨基酸有哪些

基本氨基酸(20个)里只有半胱氨酸 含一个巯基 甲硫氨酸不含巯基,含一个甲硫基 就像羟基和甲氧基的区别

含巯基的氨基酸是()

含巯基的氨基酸是() A.半胱氨酸B.丝氨酸C.蛋氨酸D.脯氨酸E.鸟氨酸正确答案:半胱氨酸

组成蛋白质的巯基氨基酸有哪些

含巯基的蛋白质编码氨基酸只有半胱氨酸。另外一种含硫氨基酸甲硫氨酸(也叫蛋氨酸)含有的是甲硫基(CH3S-)。

一个氨基一个巯基是什么

一个氨基一个巯基是氢硫基或硫醇基,是由一个硫原子和一个氢原子相连组成的负一价官能团,化学式为-SH。巯基端连接不同的基团,有机物所属的类别不同,如硫醇(R-SH)、硫酚(Ar—SH)。

请问,含有巯基的氨基酸有哪一些?越详细越好,

有甲硫氨酸Met还有半胱氨酸Cys常见的组成蛋白质的有生物活性的就这些了.其他的还有羟基衍生物,都是酶将这两种氨基酸修饰得到的

氟尿嘧啶(5?FU)是A.嘧啶类抗代谢药B.氨基酸类抗代谢药C.叶酸类抗代谢药

【答案】:A本题要点是代谢拮抗物。氟尿嘧啶(5-FU)的结构与胸腺嘧啶相似,在体内转变为其活性形式,即一磷酸脱氧核糖氟尿嘧啶核苷和三磷酸氟尿嘧啶核苷发挥作用,使TMP合成受到阻断。氟尿嘧啶是嘧啶类抗代谢药。

6-重氮-5-氧正亮氨酸抗代谢药的结构和机理是什么?

正确答案:C解析:本题要点是氮杂丝氨酸抗代谢药的结构和机理。谷氨酰胺在嘌呤合成过程中多次担当提供氨基的角色。氮杂丝氨酸和6-重氮-5-氧正亮氨酸的结构与谷氨酰胺相似,可以干扰谷氨酰胺在嘌呤核苷酸和嘧啶核苷酸合成过程中的作用,从而抑制嘌呤核苷酸的合成。

氨基酸,蛋白质,核酸都能发生水解反应吗?

核苷酸或氨基酸在聚合成核酸或蛋白质的过程都会产生水。核酸合成的途径有两条:1、从无到有的途径,也称为从头合成。这条途径以氨基酸等为原料,先转化为嘌呤、嘧啶等碱基,再合成为核苷、核苷酸,最后组合成人体自身的核酸。从传统观点看,这是人体合成自身核酸的主要途径。2、补救的途径,也称为补救合成。这条途径不是以氨基酸为原料,而是以体内碱基为原料,合成核苷、核苷酸,组后也可以组合成人体自身的核酸。蛋白质的合成过程:原核生物与真核生物的蛋白质合成过程中有很多的区别,真核生物此过程更复杂,下面着重介绍原核生物蛋白质合成的过程,并指出真核生物与其不同之处。蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。

面粉缺少什么氨基酸

[编辑本段]食物中的蛋白质  含蛋白质多的食物包括:牲畜的奶,如牛奶、羊奶、马奶等;畜肉,如牛、羊、猪、狗肉等;禽肉,如鸡、鸭、鹅、鹌鹑、鸵鸟等;蛋类,如鸡蛋、鸭蛋、鹌鹑 蛋等及鱼、虾、蟹等;还有大豆类,包括黄豆、大青豆和黑豆等,其中以黄豆的营养价值最高,它是婴幼儿食品中优质的蛋白质来源;此外像芝麻、瓜子、核桃、 杏仁、松子等干果类的蛋白质的含量均较高。由于各种食物中氨基酸的含量、所含氨基酸的种类各异,且其他营养素(脂肪、糖、矿物质、维生素等)含量也不相同,因此,给婴儿添加辅食时,以上食品都是可供选择的,还可以根据当地的特产,因地制宜地为小儿提供蛋白质高的食物。   蛋白质食品价格均较昂贵,家长可以利用几种廉价的食物混合在一起,提高蛋白质在身体里 的利用率,例如,单纯食用玉米的生物价值为60%、小麦为67%、黄豆为64%, 若把这三种食物,按比例混合后食用,则蛋白质的利用率可达77%。  生物体内普遍存在的一种主要由 氨基酸 组成的生物大分子。它与 核酸 同为生物体最基本的物质,担负着生命活动过程的各种极其重要的功能。蛋白质的基本结构单元是氨基酸,在蛋白质中出现的氨基酸共有20种。氨基酸以肽键相互连接,形成肽链。   简史 1820年H.布拉孔诺发现甘氨酸和亮氨酸,这是最初被鉴定为蛋白质成分的氨基酸,以后又陆续发现了其他的氨基酸。到19世纪末已经搞清蛋白质主要是由一类相当简单的有机分子——氨基酸所组成。1902年E.菲舍尔和F.霍夫迈斯特各自独立地阐明了在蛋白质分子中将氨基酸连接在一起的化学键是肽键;1907年E.菲舍尔又成功地用化学方法连接了18个氨基酸首次合成了多肽,从而建立了作为蛋白质化学结构基础的多肽理论。对蛋白质精确的三维结构知识主要来自对蛋白质晶体的X射线衍射分析,1960 年J.C.肯德鲁首次应用X射线衍射分析技术测定了肌红蛋白的晶体结构 ,这是第一个被阐明了三维结构的蛋白质。中国科学工作者在1965年用化学合成法全合成了结晶牛胰岛素,首次实现了蛋白质的人工合成;在1969~1973年期间,先后在2.5埃和1.8埃分辨率水平测定了猪胰岛素的晶体结构,这是中国阐明的第一个蛋白质的三维结构。   活性   蛋白质分子在受到外界的一些物理和化学因素的影响后,分子的肽链虽不裂解,但其天然的立体结构遭致改变和破坏,从而导致蛋白质生物活性的丧失和其他的物理、化学性质的变化,这一现象称为蛋白质的变性。早在1931年中国生物化学家吴宪就首次提出了正确的变性作用理论。引起蛋白质变性的主要因素有:①温度。②酸碱度。③有机溶剂。④脲和盐酸胍。这是应用最广泛的蛋白质变性试剂。⑤去垢剂和芳香环化合物。   蛋白质的变性常伴随有下列现象:①生物活性的丧失。这是蛋白质变性的最主要特征。②化学性质的改变。③物理性质的改变。在变性因素去除以后,变性的蛋白质分子又可重新回复到变性前的天然的构象,这一现象称为蛋白质的复性。蛋白质的复性有完全复性、基本复性或部分复性。只有少数蛋白质在严重变性以后,能够完全复性。蛋白质变性和复性的研究,对了解体内体外的蛋白质分子的折叠过程十分重要。主要通过蛋白质的变性和复性的研究,肯定了蛋白质折叠的自发性,证实了蛋白质分子的特征三维结构仅仅决定于它的氨基酸序列。活性蛋白质分子在生物体内刚合成时,常常不呈现活性,即不具有这一蛋白质的特定的生物功能。要使蛋白质呈现其生物活性,一个非常普遍的现象是,蛋白质分子的肽链在一些生化过程中必须按特定的方式断裂。蛋白质的激活是生物的一种调控方式,这类现象在各种重要的生命活动中广泛存在。   很多蛋白质由亚基组成,这类蛋白质在完成其生物功能时,在效率和反应速度的调节方面,很大程度上依赖于亚基之间的相互关系。亚基参与蛋白质功能的调节是一个相当普遍的现象,特别在调节酶的催化功能方面。有些酶存在和活性部位不重叠的别构部位,别构部位和别构配体相结合后,引起酶分子立体结构的变化,从而导致活性部位立体结构的改变,这种改变可能增进,也可能钝化酶的催化能力。这样的酶称为别构酶。已知的别构酶在结构上都有两个或两个以上的亚基。   功能   蛋白质在生物体中有多种功能。   催化功能 有催化功能的蛋白质称酶,生物体新陈代谢的全部化学反应都是由酶催化来完成的。   运动功能 从最低等的细菌鞭毛运动到高等动物的肌肉

为什么6’-巯基嘌呤,氨甲蝶呤和氨基蝶呤可抑制核苷酸的生物合成

6一巯基嘌呤,与次黄嘌呤的结构相似,可抑制从次黄嘌呤核苷酸向腺苷酸和鸟苷酸的转变;同时,6一巯基嘌呤也是次黄嘌呤一鸟嘌呤磷酸核糖转移酶的竞争性抑制剂,使PRPP分子中的磷酸核糖不能转移给次黄嘌呤和鸟嘌呤,影响了次黄嘌呤核苷酸和鸟苷酸的补救合成途径,当然也就抑制了核酸的合成;故6一巯基嘌呤可用作抗癌药物。氨基蝶呤(亦称氨基叶酸)和氨甲蝶呤是叶酸类似物,都是二氢叶酸还原酶的竞争性抑制剂,使叶酸不能转变为二氢叶酸和四氢叶酸;因此,影响了嘌呤核苷酸和嘧啶核苷酸合成所需要的一碳单位的转移,使核苷酸合成的速度降低甚至终止,进而影响核酸的合成。叶酸类似物也是重要的抗癌药物。氨基蝶呤及其钠盐、氨甲蝶呤是治疗白血病的药物,也用作杀鼠剂;氨甲蝶吟也是治疗绒毛膜癌的重要药物。三甲氧苄氨嘧啶可与二氢叶酸还原酶的催化部位结合,阻止复制中的细胞合成胸苷酸和其他核苷酸,是潜在的抗菌剂和抗原生动物剂。三甲氧苄二氨嘧啶专一性抑制细菌的二氢叶酸还原酶,与磺胺类药物结合使用,治疗细菌感染性疾病。5"一氟尿嘧啶和 5"一氟脱氧尿苷,是重要的抗癌药物;在体内,它们可转变为 5"一氟脱氧尿嘧啶核苷酸(F-dUMP),后者是脱氧胸腺嘧啶核苷酸的类似物,是胸腺嘧啶核苷酸合成酶的自杀性抑制剂。5"一氟脱氧尿嘧啶核苷酸的第六位碳原子与的硫氢基结合;接着,N5,N10一亚甲基四氢叶酸与5"一氟脱氧尿嘧啶核苷酸的第五位碳原子结合,形成了一个共价结合的三元复合物,使酶不能把氟除去,干扰了尿嘧啶的甲基化,因而不能合成胸腺嘧啶核苷酸;使快速分化的细胞由于缺乏胸苷酸不能合成 DNA而死亡。

甲氨蝶呤是否抑制人体嘌呤核苷酸和胸苷酸的合成?求教生化专业人士

是氨甲喋呤一般对于快速增值的细胞如癌细胞较敏感,生长缓慢或者根本不生长的大多数哺乳动物细胞,因为合成较少,因此敏感性低,但骨髓细胞,肠粘膜和毛发小囊除外,这就是一些患者经治疗后掉头发的原因,氨甲喋呤是有效地抗癌物,尤其是对儿童白血病,实际上,一个成功的化疗方案是对癌症受害者使用致命剂量的氨甲喋呤,几小时后再给与大剂量的5-甲酰THF和(或)胸苷来“挽救"病人(但希望不是挽救癌症)

氯化钴和氯化铁加硫氰化氨反应

氯化钴和氯化铁加硫氰化氨反应的化学方程式如下:CoCl2 + FeCl2 + 6NH4SCN → [Fe(SCN)6]3- + [Co(SCN)4]2- + 12NH4Cl这是一种双金属离子配合物的合成反应,其中硫氰酸氨作为配体与钴、铁形成了络合物。在反应中,硫氰酸氨的硫氰基(SCN-)取代了氯离子(Cl-),形成了两个络合物。氢氧化铵或氨水可以用于调节反应液的 pH 值,使得反应更加稳定和高效。氯化钴和氯化铁为起始反应物,硫氰化氨为配体,反应条件通常需要在25-30摄氏度下进行,并且反应物和配体需要充分混合和搅拌。反应结束后可以通过过滤和结晶等方法来分离和纯化产物。

简述氨基酸脱氨基作用有哪几种方式,各自的特点是什么

脱氨基作用氨基酸解代谢主要途径.体内氨基酸通种式脱氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其联合脱氨基作用氨基酸脱氨基主要式.所谓联合脱氨基,指氨基酸转氨基作用氧化脱氨基作用联合,其程氨基酸首先与α-酮戊二酸转氨酶催化相应α-酮酸谷氨酸,谷氨酸L-谷氨酸脱氢酶作用α-酮戊二酸氨,α-酮戊二酸再继续参与转氨基作用.述联合脱氨基作用逆,所体内合非必需氨基酸主要途径.催化氨基酸转氨基酶转氨酶,其辅酶维素B6磷酸酯即磷酸吡哆醛磷酸吡哆胺,酶催化某氨基酸α氨基转移另种α酮酸酮基,相应氨基酸.体内种转氨酶,其谷丙转氨酶(GPT或ALT)谷草转氨酶(GOT或AST)重要.由于骨骼肌肌L-谷氨酸脱氢酶性弱,难于进行联合脱氨基作用,该组织氨基酸主要通嘌呤核苷酸循环进行脱氨基作用.嘌呤核苷酸循环程,氨基酸首先通连续转氨基作用氨基转移给草酰乙酸,冬氨酸;冬氨酸与黄嘌呤核苷酸腺苷酸带琥珀酸,经裂解AMP,AMP腺苷酸脱氨酶催化脱氨基.由见,嘌呤核苷酸循环实际看另种形式联合脱氨基作用.展开

什么是蛋白质的脱氨基作用?

糖类代谢和蛋白质代谢的关系 糖类和蛋白质在体内是可以相互转化的。几乎所有组成蛋白质的天然氨基酸都可以通过脱氨基作用,形成的不含氮部分进而转变成糖类;糖类代谢的中间产物可以通过氨基酸转换作用形成非必需氨基酸。注意:必需氨基酸在体内不能通过氨基转换作用形成。 脱氨基作用是将氨基酸的氨基脱去形成含氮和不含氮两部分,它是破坏氨基酸的过程,因此使得氨基酸的数目减少了。氨基转换作用是指将一种氨基酸转变成另外一种氨基酸,因此氨基酸的数目并没有减少。但是在生物体内并不是所有的氨基酸都能通过氨基转换作用生成,例如人体就有8种氨基酸在体内不能形成,称之为必需氨基酸。

体内氨基酸脱氨基的最主要的方式是?

脱氨基作用是氨基酸分解代谢的主要途径.体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式.所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在L-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用.上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径.催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素B6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α 氨基转移到另一种α酮酸的酮基上,生成相应的氨基酸.体内有多种转氨酶,其中谷丙转氨酶(GPT或ALT)和谷草转氨酶(GOT或AST)最为重要.由于骨骼肌和心肌中L-谷氨酸脱氢酶的活性弱,难于进行联合脱氨基作用,该组织的氨基酸主要通过嘌呤核苷酸循环进行脱氨基作用.嘌呤核苷酸循环过程,氨基酸首先通过连续的转氨基作用将氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸带琥珀酸,经裂解生成AMP,AMP在腺苷酸脱氨酶催化下脱去氨基.由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用.

氨基酸脱氨基的方式有几种,各有什么特点

脱氨基作用是氨基酸分解代谢的主要途径.体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式.所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在L-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用.上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径.催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素B6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α 氨基转移到另一种α酮酸的酮基上,生成相应的氨基酸.体内有多种转氨酶,其中谷丙转氨酶(GPT或ALT)和谷草转氨酶(GOT或AST)最为重要.由于骨骼肌和心肌中L-谷氨酸脱氢酶的活性弱,难于进行联合脱氨基作用,该组织的氨基酸主要通过嘌呤核苷酸循环进行脱氨基作用.嘌呤核苷酸循环过程,氨基酸首先通过连续的转氨基作用将氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸带琥珀酸,经裂解生成AMP,AMP在腺苷酸脱氨酶催化下脱去氨基.由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用.

人体内氨基酸的脱氨基作用主要有哪些?分别有什么作用?

你好!脱氨基作用主要有几方面作用:1。将氨基酸转化为其它化合物,如脂肪。如果食物中获得大量氨基酸,但身体中只能利用一部分,剩余的就主要转化成脂肪贮存起来,这也是现代人越发肥胖的原因之一。2。转化供能。主要是饥饿状态或营养不良或慢性病或节食减肥锻炼过程中,为提供机体活动所需能量,在糖供能不足时分解蛋白质以供能。如有疑问,请追问。

肝内联合脱氨基作用是将下列哪两个反应联合起来进行的()

肝内联合脱氨基作用是将下列哪两个反应联合起来进行的() A.氨基转移B.脱氨基C.谷氨酸的氧化脱氨基D.脱水脱氨基E.直接脱氨基正确答案:AC

生物体内氨基酸脱氨基的主要方式是

脱氨基作用是氨基酸分解代谢的主要途径。体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式。所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在l-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用。上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径。催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素b6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α

氨基酸分解代谢中脱氨基作用有哪些类型

脱氨基作用是氨基酸分解代谢的主要途径。体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式。所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在L-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用。上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径。催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素B6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α氨基转移到另一种α酮酸的酮基上,生成相应的氨基酸。体内有多种转氨酶,其中谷丙转氨酶(GPT或ALT)和谷草转氨酶(GOT或AST)最为重要。由于骨骼肌和心肌中L-谷氨酸脱氢酶的活性弱,难于进行联合脱氨基作用,该组织的氨基酸主要通过嘌呤核苷酸循环进行脱氨基作用。嘌呤核苷酸循环过程,氨基酸首先通过连续的转氨基作用将氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸带琥珀酸,经裂解生成AMP,AMP在腺苷酸脱氨酶催化下脱去氨基。由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用。

氨基酸脱氨基的方式有哪几种?产生的氨在体内如何运输和代谢?谢谢了,大神帮忙啊

氨对生物机体有毒,特别是高等动物的脑对氨极敏感,血中1%的氨会引起中枢神经中毒,因此,脱去的氨必须排出体外。氨中毒的机理:脑细胞的线粒体可将氨与α-酮戊二酸作用生成glu,大量消耗α-酮戊二酸,影响tca,同时大量消耗nadph,产生肝昏迷。氨的去向:(1)重新利用合成a.a、核酸。(2)贮存gln,asn高等植物将氨基氮以gln,asn的形式储存在体内。(3)排出体外排氨动物:水生、海洋动物,以氨的形式排出。排尿酸动物:鸟类、爬虫类,以尿酸形式排出。排尿动物:以尿素形式排出。(肝外→肝脏)1、gln转运gln合成酶、gln酶(在肝中分解gln)gln合成酶,催化glu与氨结合,生成gln。gln中性无毒,易透过细胞膜,是氨的主要运输形式。gln经血液进入肝中,经gln酶分解,生成glu和nh3。2、丙氨酸转运(glc-ala循环)肌肉可利用ala将氨运至肝脏,这一过程称glc-ala循环。丙氨酸在ph7时接近中性,不带电荷,经血液运到肝脏在肌肉中,糖酵解提供丙酮酸,在肝中,丙酮酸又可生成glc。肌肉运动产生大量的氨和丙酮酸,两者都要运回肝脏,而以ala的形式运送,一举两得。1、直接排氨排氨动物将氨以gln形式运至排泄部位,经gln酶分解,直接释放nh3。游离的nh3借助扩散作用直接排除体外。2、尿素的生成(尿素循环)排尿素动物在肝脏中合成尿素的过程称尿素循环1932年,krebs发现,向悬浮有肝切片的缓冲液中,加入鸟氨酸、瓜氨酸、arg中的任一种,都可促使尿素的合成。尿素循环途径(鸟氨酸循环):(1)、氨甲酰磷酸的生成(氨甲酰磷酸合酶i)肝细胞液中的a.a经转氨作用,与α-酮戊二酸生成glu,glu进入线粒体基质,经glu脱氢酶作用脱下氨基,游离的氨(nh4+)与tca循环产生的co2反应生成氨甲酰磷酸。氨甲酰磷酸是高能化合物,可作为氨甲酰基的供体。氨甲酰磷酸合酶i:存在于线粒体中,参与尿素的合成。氨甲酰磷酸合酶ii:存在于胞质中,参与尿嘧啶的合成。n-乙酰glu激活氨甲酰磷酸合酶i、ii(2)、合成瓜氨酸(鸟氨酸转氨甲酰酶)鸟氨酸接受氨甲酰磷酸提供的氨甲酰基,生成瓜氨酸。鸟氨酸转氨甲酰酶存在于线粒体中,需要mg2+作为辅因子。瓜氨酸形成后就离开线粒体,进入细胞液。(3)、合成精氨琥珀酸(精氨琥珀酸合酶)(4)、精氨琥珀酸裂解成精氨酸和延胡索素酸(精氨琥珀酸裂解酶)精氨琥珀酸→精氨酸+延胡索素酸此时asp的氨基转移到arg上。来自asp的碳架被保留下来,生成延胡索酸。延胡索素酸可以经苹果酸、草酰乙酸再生为天冬氨酸,(5)、精氨酸水解生成鸟氨酸和尿素尿素形成后由血液运到肾脏随尿排除。尿素循环总反应:nh4++co2+3atp+asp+2h2o→尿素+2adp+2pi+amp+ppi+延胡索酸形成一分子尿素可清除2分子氨及一分子co2,消耗4个高能磷酸键。联合脱-nh2合成尿素是解决-nh2去向的主要途径。尿素循环与tca的关系:草酰乙酸、延胡素酸(联系物)。肝昏迷(血氨升高,使α-酮戊二酸下降,tca受阻)可加asp或arg缓解。(见核苷酸代谢)尿酸(包括尿素)也是嘌呤代谢的终产物。

脱氨基(答对追加)

LZ说的是主链C变成C=C么这样的话是消去反应,反应机理是E1或 E2如果是C—N变成C=C就是亲核取代反应机理方法有很多种基本上加亲核试剂就行了并不像楼上说的什么高温高压 那应该是亲核取代了

氨基酸脱氧氨基作用名词解释

脱氨基作用,细胞内从有机化合物分子上除去氨基的酶促反应,是机体内 氨基酸代谢的第一步。脱氨基作用有氧化脱氨, 转氨,联合脱氨和非氧化脱氨等方式。其中以 联合脱氨基最为重要。 氧化脱氨作用基作用普遍存在于动植物细胞中,动物的脱氨基作用主要在肝脏进行;非氧化脱氨基作用见于微生物,但并不普遍。生物中许多含氨基的化合物在分解代谢过程里几乎都有这类反应。这些化合物包括各种 氨基酸、 腺嘌呤、 鸟嘌呤、 胞嘧啶及它们的衍生物。脱氨基作用是由各种脱氨酶催化的,反应产物是对应的酮基化合物。在氨基酸的分解代谢中, L-谷氨酸的氧化性脱氨作用很重要。因为在许多生物中只有谷氨酸一种氨基酸能进行氧化性脱氨,催化这一反应的谷氨酸脱氢酶的专一性又较高。现在认为,至少在动物体内,大部分氨基酸是通过氨基转换和谷氨酸氧化脱氨的联合作用脱氨的,也可通过此联合作用的逆反应合成某些氨基酸。   氧化脱氨基作用是指氨基酸在脱氨基时伴有氧化(脱氢)过程。    催化氧化脱氨基的酶有氨基酸氧化酶和L-谷氨酸脱氢酶。 L-谷氨酸脱氢酶是以NAD+(或NADP+)为辅酶的不需氧脱氢酶,其在体内分布广(除肌肉组织外)、活性强,能催化L-谷氨酸氧化脱氨,生成α-酮戊二酸。   L-谷氨酸脱氢酶的催化反应是可逆的。当谷氨酸浓度高时,则向分解方向进行。由于L-谷氨酸脱氢酶的底物仅限于L-谷氨酸,因此不是体内理想的脱氨基过程。   氨基转移作用在各组织细胞普遍存在。催化转氨基作用的酶,称为氨基转移酶或简称转氨酶。它的作用是使氨基酸的α-氨基转移至另一α-酮酸的羰基上。   氨基转移酶的辅酶是吡哆胺磷酸和吡哆醛磷酸,它们作为氨基传递体而起作用   氨基转移作用也是可逆反应,除个别几个氨基酸如赖氨酸、苏氨酸、脯氨酸、羟脯氨酸外,其他氨基酸都可参与氨基的转移作用。只要体内存在相应的酮酸,就可合成某种氨基酸,这是体内合成非必需氨基酸的主要途径。 丙氨酸:α-酮戊二酸氨基转移酶(称谷丙转氨酶(GPT),又称丙氨酸转氨酶(ALT) )和天冬氨酸:α-酮戊二酸氨基转移酶(称谷草转氨酶(GOT)、又称天冬氨酸转氨酶(AST))两种酶很重要。 

体内氨基酸脱氨基的最主要的方式是?

脱氨基作用是氨基酸分解代谢的主要途径。体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式。所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在L-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用。上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径。催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素B6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α氨基转移到另一种α酮酸的酮基上,生成相应的氨基酸。体内有多种转氨酶,其中谷丙转氨酶(GPT或ALT)和谷草转氨酶(GOT或AST)最为重要。由于骨骼肌和心肌中L-谷氨酸脱氢酶的活性弱,难于进行联合脱氨基作用,该组织的氨基酸主要通过嘌呤核苷酸循环进行脱氨基作用。嘌呤核苷酸循环过程,氨基酸首先通过连续的转氨基作用将氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸带琥珀酸,经裂解生成AMP,AMP在腺苷酸脱氨酶催化下脱去氨基。由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用。

体内氨基酸脱氨基作用主要有哪些方式

氨基作用是氨基酸分解代谢的主要途径.体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式.所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在L-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用.上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径.催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素B6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α 氨基转移到另一种α酮酸的酮基上,生成相应的氨基酸.体内有多种转氨酶,其中谷丙转氨酶(GPT或ALT)和谷草转氨酶(GOT或AST)最为重要.由于骨骼肌和心肌中L-谷氨酸脱氢酶的活性弱,难于进行联合脱氨基作用,该组织的氨基酸主要通过嘌呤核苷酸循环进行脱氨基作用.嘌呤核苷酸循环过程,氨基酸首先通过连续的转氨基作用将氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸带琥珀酸,经裂解生成AMP,AMP在腺苷酸脱氨酶催化下脱去氨基.由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用.

谷氨酸脱氨基的化学过程?

谷氨酸脱氨基的化学过程分成三步:第一阶段(糖酵解):1个分子的葡萄糖分解成2分子的丙酮酸,同时脱下4个(H),放出少量的能量,合成2个ATP,其余以热能散失,场所在细胞的基质中.  第二阶段(柠檬酸循环;三羧酸循环):2个分子的丙酮酸和6个分子的水中的氢全部脱下20个(H),生成6分子的二氧化碳,释放少量的能量,合成2个ATP,其余散热消失,场所线粒体机基质.  第三阶段(电子传递链;氧化磷酸化):在前两个阶段脱下的24个(H)与6个氧气分子结合成水,并释放大量的能量合成34个ATP,场所在线粒体的基质.(在线粒体内膜上

苯胺脱氨基反应

是指苯胺分子中氨基基团和一个氢原子离开分子,生成质子化的苯甲酰亚胺的反应过程。该反应通常在苯胺和卤代烷(或酰卤之间催化进行。该反应可采用碱催化或酸催化,但通常使用二甲基甲酰胺等有机溶剂来催化。

脱氨基的产物是氨基,然后转化为NH3,再变为尿素,

楼主,这样说应该不大对,脱氨基的产物可分为含氮部分和不含氮部分 1、不含氮部分是转化为糖类和脂肪去进行氧化分解的. 2、含氮部分不仅含有蛋白质的氨基,还含有R基上的部分含氮链,因为这些链上也含有和氨基相同的基团,这些含氮部分与血液中的C源结合(CO2),就形成了尿素(NH2)2CO .

氨基酸脱氨基后产生的阿尔法酮酸有哪些代谢途径

氨基酸脱氨基后生成的α-酮酸主要代谢途径有:①通过转氨基作用合成非必需氨基酸。②转变成糖、脂类。③氧化供能。

比较微生物分解氨基酸的五种脱氨方式不同之处,最好是列表,急急急啊,谢谢咯

(一)氧化脱氨基:第一步,脱氢,生成亚胺;第二步,水解。   (二)非氧化脱氨基作用: ①还原脱氨基(严格无氧条件下); ②水解脱氨基; ③脱水脱氨基; ④脱巯基脱氨基; ⑤氧化-还原脱氨基,两个氨基酸互相发生氧化还原反应,生成有机酸、酮酸、氨; ⑥脱酰胺基作用。   (三)转氨基作用。 α-氨基酸和α-酮酸之间发生氨基转移作用,结果是原来的氨基酸生成相应的酮酸,而原来的酮酸生成相应的氨基酸。   (四)联合脱氨基: 1、以谷氨酸脱氢酶为中心的联合脱氨基作用。氨基酸的α-氨基先转到α-酮戊二酸上,生成相应的α-酮酸和Glu,然后在L-Glu脱氨酶催化下,脱氨基生成α-酮戊二酸,并释放出氨。 2、通过嘌呤核苷酸循环的联合脱氨基做用。

体内氨基酸脱氨基作用主要有哪些方式

脱氨基作用是氨基酸分解代谢的主要途径。体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式。所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在l-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用。上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径。催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素b6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α氨基转移到另一种α酮酸的酮基上,生成相应的氨基酸。体内有多种转氨酶,其中谷丙转氨酶(gpt或alt)和谷草转氨酶(got或ast)最为重要。由于骨骼肌和心肌中l-谷氨酸脱氢酶的活性弱,难于进行联合脱氨基作用,该组织的氨基酸主要通过嘌呤核苷酸循环进行脱氨基作用。嘌呤核苷酸循环过程,氨基酸首先通过连续的转氨基作用将氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸带琥珀酸,经裂解生成amp,amp在腺苷酸脱氨酶催化下脱去氨基。由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用。

什么是脱氨反应

脱氨(deamination):在酶的催化下从生物分子(氨基酸或核苷酸)中除去氨基的过程。 氧化脱氨(oxidative deamination):α-氨基酸在酶的催化下脱氨生成相应的α-酮酸的过程。氧化脱氨实际上包括氧化和脱氨两个步骤。(脱氨和水解) 脱氨基作用 细胞内从有机化合物分子上除去氨基的酶促反应,是机体内氨基酸代谢的第一步。脱氨基作用有氧化脱氨基和非氧化脱氨基作用两类。氧化脱氨基作用普遍存在于动植物细胞中,动物的脱氨基作用主要在肝脏进行;非氧化脱氨基作用见于微生物,但并不普遍。 生物中许多含氨基的化合物在分解代谢过程里几乎都有这类反应。这些化合物包括各种氨基酸、腺嘌呤、鸟嘌呤、胞嘧啶及它们的衍生物。脱氨基作用是由各种脱氨酶催化的,反应产物是对应的酮基化合物。在氨基酸的分解代谢中,L-谷氨酸的氧化性脱氨作用很重要。因为在许多生物中只有谷氨酸一种氨基酸能进行氧化性脱氨,催化这一反应的谷氨酸脱氢酶的专一性又较高。现在认为,至少在动物体内,大部分氨基酸是通过氨基转换和谷氨酸氧化脱氨的联合作用脱氨的,也可通过此联合作用的逆反应合成某些氨基酸。

体内氨基酸脱氨基的主要方式是

脱氨基作用是氨基酸分解代谢的主要途径。体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式。所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在l-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用。上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径。催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素b6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α

什么事脱氨基反应

一般是指重氮化脱氨基反应,即脱去直接与苯环相连的氨基,使其变为氢的反应。具体分为两步,一是在强酸下滴加亚硝酸钠,使之重氮化,然后再用乙醇之类脱去重氮基,变成氢。

参与脱氨基作用的是:

参与脱氨基作用的是: A.谷氨酰基循环B.鸟氨酸循环C.嘌呤核苷酸循环D.丙氨酸-葡萄糖循环E.三羧酸循环正确答案:C

氨基酸脱氨基作用的方式有哪些

脱氨基作用是氨基酸分解代谢的主要途径。体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式。所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在l-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用。上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径。催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素b6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α氨基转移到另一种α酮酸的酮基上,生成相应的氨基酸。体内有多种转氨酶,其中谷丙转氨酶(gpt或alt)和谷草转氨酶(got或ast)最为重要。由于骨骼肌和心肌中l-谷氨酸脱氢酶的活性弱,难于进行联合脱氨基作用,该组织的氨基酸主要通过嘌呤核苷酸循环进行脱氨基作用。嘌呤核苷酸循环过程,氨基酸首先通过连续的转氨基作用将氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸带琥珀酸,经裂解生成amp,amp在腺苷酸脱氨酶催化下脱去氨基。由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用。

简述体内氨基酸的脱氨基作用

简述体内氨基酸的脱氨基作用脱氨基作用是氨基酸分解代谢的主要途径.体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式.

丙氨酸的脱氨方式是什么?为什么?

丙氨酸通过联合脱氨的方式将氨基脱掉,这步反应产生2分子的NADH,相当于生成5分子ATP。具体的反应过程是:各种氨基酸先与α-酮戊二酸在转氨酶的催化下进行转氨基作用,将氨基转给α-酮戊二酸生成谷氨酸,本身变成相应的α-酮酸。然后谷氨酸在L-谷氨酸脱氢酶的催化下进行氧化脱氨基,生成氨和α-酮戊二酸,该过程可逆。由转氨酶和谷氨酸脱氢酶所催化的总反应为:α-氨基酸+NAD+(或NADP+)+H2O→NH4++α- 酮酸+NADH(或NADPH)+H+在上述过程中,转氨基反应由转氨酶催化。转氨酶多以α-酮戊二酸为氨基受体,对氨基供体要求不严,各种氨基酸都可以。最重要的转氨酶是谷氨酸转氨酶,它催化氨基酸的α-氨基转移到α-酮戊二酸上,生成相应的α-酮酸和L-谷氨酸。转氨酶催化的反应都是可逆的,辅基是VB6成份,磷酸吡多醛(PLP)和磷酸吡多胺经过相互转换传递氨基。各种器官都可以进行转氨基作用,以肝脏和心脏的转氨酶活性最高。[1]氧化脱氨基反应由谷氨酸脱氢酶催化,反应可逆。转氨基作用生成的谷氨酸在谷氨酸脱氢酶催化下进行氧化脱氨,游离出的氨进入尿素循环。谷氨酸脱氢酶很特殊,它既能利用NAD+,又能利用NADP+。脊椎动物的谷氨酸脱氢酶由6个亚基组成,酶活性受到变构调节。GTP和ATP是变构抑制剂,GDP和ADP是变构激活剂,因此,细胞能荷的降低加速氨基酸的氧化降解。

氨基酸脱氨基的过程

脱氨基作用是氨基酸分解代谢的主要途径。体内的氨基酸可通过多种方式脱去氨基,包括氧化脱氨基作用、转氨基作用、联合脱氨基作用及嘌呤核苷酸循环,其中联合脱氨基作用是氨基酸脱氨基的主要方式。所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在L-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用。上述联合脱氨基作用是可逆的,所以也是体内合成非必需氨基酸的主要途径。催化氨基酸转氨基的酶是转氨酶,其辅酶是维生素B6的磷酸酯即磷酸吡哆醛和磷酸吡哆胺,此酶催化某一氨基酸的α 氨基转移到另一种α酮酸的酮基上,生成相应的氨基酸。体内有多种转氨酶,其中谷丙转氨酶(GPT或ALT)和谷草转氨酶(GOT或AST)最为重要。由于骨骼肌和心肌中L-谷氨酸脱氢酶的活性弱,难于进行联合脱氨基作用,该组织的氨基酸主要通过嘌呤核苷酸循环进行脱氨基作用。嘌呤核苷酸循环过程,氨基酸首先通过连续的转氨基作用将氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸带琥珀酸,经裂解生成AMP,AMP在腺苷酸脱氨酶催

体内氨基酸脱氨基作用主要有哪些方式

体内氨基酸脱氨基作用主要有哪些方式(一)氧化脱氨基:第一步,脱氢,生成亚胺;第二步,水解.(二)非氧化脱氨基作用:①还原脱氨基(严格无氧条件下);②水解脱氨基;③脱水脱氨基;④脱巯基脱氨基;⑤氧化-还原脱氨基,两个氨基酸互相发生氧化还原反应,生成有机酸、酮酸、氨;⑥脱酰胺基作用.(三)转氨基作用.α-氨基酸和α-酮酸之间发生氨基转移作用,结果是原来的氨基酸生成相应的酮酸,而原来的酮酸生成相应的氨基酸.(四)联合脱氨基:1、以谷氨酸脱氢酶为中心的联合脱氨基作用.氨基酸的α-氨基先转到α-酮戊二酸上,生成相应的α-酮酸和Glu,然后在L-Glu脱氨酶催化下,脱氨基生成α-酮戊二酸,并释放出氨.2、通过嘌呤核苷酸循环的联合脱氨基做用.

联合脱氨基作用是指()

联合脱氨基作用是指() A.氨基酸氧化酶与谷氨酸脱氢酶偶联B.氨基酸氧化酶与转氨酶偶联C.转氨酶与谷氨酸脱氢酶偶联D.谷丙转氨酶与谷草转氨酶偶联E.嘌呤核苷酸循环与鸟氨酸循环偶联正确答案:转氨酶与谷氨酸脱氢酶偶联
 首页 上一页  12 13 14 15 16 17 18 19 20 21 22  下一页  尾页