基因

DNA图谱 / 问答 / 标签

基因选择性表达的介绍

生物体在个体发育的不同时期、不同部位,通过基因水平、转录水平等的调控,表达基因组中不同的部分,其结果是完成细胞分化和个体发育。 基因的选择性表达是指在细胞分化中,基因在特定的时间和空间条件下有选择表达的现象,其结果是形成了形态结构和生理功能不同的细胞。

请问 基因的表达场所在哪? 不是最终场所

核内基因首先在细胞核内进行转录成mRNA,然后mRNA被转运至内质网上的核糖体开始翻译。全部过程就是基因的表达过程。

什么叫做基因共表达网络

基因表达谱分析所采用的常用方法是聚类,其目的就是将基因分组。从数学的角度,聚类得到的基因分组,一般是组内各成员在数学特征上彼此相似,但与其它组中的成员不同。从生物学的角度,聚类分析方法所隐含的生物学意义或基本假设是,组内基因的表达谱相似,它们可能有相似的功能。然而,产物有相同功能的编码基因(例如对其它蛋白质有磷酸化作用),不一定共享相似的转录模式。相反,有不同功能的基因可能因为巧合或随机扰动而有相似的表达谱。尽管有许多意外的情况存在,大量功能相关的基因的确在相关的一组条件下有非常相似的表达谱,特别是被共同的转录因子共调控的基因,或者产物构成同一个蛋白复合体,或者参与相同的调控路径。因此,在具体的应用中,可以根据对相似表达谱的基因进行聚类,从而指派未知基因的功能。

基因表达的产物是什么

基因产物是基因表达过程中形成的RNA或蛋白质。基因表达产物的多少常用来衡量一个基因的表达活性,如果一个基因的表达产物异常减少的话,这种基因产物的数量异常常常预示着疾病基因的存在。基因(遗传因子)是产生一条多肽链或功能RNA所需的全部核苷酸序列。基因支持着生命的基本构造和性能。储存着生命的种族、血型、孕育、生长、凋亡等过程的全部信息。环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、衰、病、老、死等一切生命现象都与基因有关。

基因的表达过程是什么?

基因的表达过程简单说就是转录和翻译过程. 转录是以DNA分子的一条链为模板合成mRNA的过程; 翻译是以mRNA为模板合成多肽和蛋白质的过程.

怎样调控基因表达?

蛋白泛素化修饰或者用siRNA(或shRNA)干涉处理。DNA和染色体水平:基因丢失、基因修饰、基因重排、基因扩增、染色体结构变化。转录水平调控:转录起始、延伸、终止均有影响。原核生物借助于操纵子,真核生物通过顺式作用元件和反式作用因子相互作用进行调控。转录后水平调控:真核生物原初转录产物经过加工成为成熟的mRNA,包括加帽、加尾、甲基化修饰等。扩展资料:首先要构建增进转录的载体;为使克隆的目的基因得到有效的表达,必须将目的基因置于强的启动子控制之下:应用乳糖启动子,色氨酸启动子,λ噬菌体左向转录启动子等构建了较为理想的载体。通过修饰调整使目的基因处于正确转译相位。调节SD序列与转译起始位点之间的距离,使克隆基因最有效地表达。除了以大肠杆菌作为表达外源基因的宿主外,在枯草杆菌中也表达产生了乙型肝炎病毒核心抗原、口蹄疫病毒的主要抗原、人的β干扰素以及分泌型的人胰岛素原C肽。参考资料来源:百度百科-基因表达方法

什么叫做基因表达水平(gene expression level)

这个level有量化的含义,在比较不同组织、不同时期同一种基因表达量多少的时候需要这个概念.另外需要指出的是,gene expression在某些情况下并不单单指从DNA到protein的表达,有时候也泛指从DNA到RNA的转录.

基因表达调控的层次及意义?

分为转录水平上的基因表达调控和翻译水平上的基因表达调控。1.转录水平的调控:包括DNA转录成RNA时的是否转录及转录频率的调控,DNA的序列决定了DNA的空间构型,DNA的空间构型决定了转录因子是否可以顺利的结合到DNA的调控序列上,比如结合到TATA等序列上。 2.翻译水平的调控:翻译水平的调控又可以分成翻译前的调控和翻译后的调控。 a、翻译前的调控主要是RNA编辑修饰。生物体对RNA进行编辑剪切,比如核糖体RNA剪切后变成28S/16S/5S.还有一些甲基化修饰等等。 b、翻译后调控主要是蛋白的修饰,蛋白修饰后可以成为有功能的蛋白或者有隐藏功能的蛋白。

基因表达实验流程是什么?

1、获取目的基因2、目的基因与载体相连3、含有目的基因的载体导入宿主细胞(原核或真核)4、转录水平的鉴定:提取total RNA,可选用realtime-PCR或reverse transcription PCR鉴定5、蛋白水平鉴定:Western blot 等

中心法则是指(  )A.基因控制蛋白质合成的过程B.遗传信息的转录和翻译的过程C.碱基互补配对的过程D

中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的表达过程;也可以从DNA传递给DNA,即完成DNA的复制过程;这是所有有细胞结构的生物所遵循的法则.在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对中心法则的补充.因此,中心法则是指遗传信息的传递和表达的过程.故选:D.

基因的表达是什么?

基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。差别基因表达(differentialgeneexpression)指细胞分化过程中,奢侈基因按一定顺序表达,表达的基因数约占基因总数的5%~10%。也就是说,某些特定奢侈基因表达的结果生成一种类型的分化细胞,另一组奢侈基因表达的结果导致出现另一类型的分化细胞,这就是基因的差别表达。其本质是开放某些基因,关闭某些基因,导致细胞的分化。基因表达简介:基因表达产物通常是蛋白质,但是非蛋白质编码基因如转移RNA(tRNA)或小核RNA(snRNA)基因的表达产物是功能性RNA。所有已知的生命,无论是真核生物(包括多细胞生物)、原核生物(细菌和古细菌)或病毒,都利用基因表达来合成生命的大分子。基因表达可以通过对其中的几个步骤,包括转录,RNA剪接,翻译和翻译后修饰,进行调控来实现对基因表达的调控。基因调控赋予细胞对结构和功能的控制,基因调控是细胞分化、形态发生以及任何生物的多功能性和适应性的基础。基因调控也可以作为进化改变的底物,因为控制基因表达的时间、位置和量可以对基因在细胞或多细胞生物中的功能(作用)产生深远的影响。在遗传学中,基因表达是基因型产生表型的最基本水平。存储在DNA中的遗传密码通过基因表达得到“翻译”,并且基因表达的特性产生生物体的表型。因此,基因表达的调节对于生物体的发育至关重要。

什么是基因表达

基因表达是指基因指导下的蛋白质合成过程。生物体生命活动中并不是所有的基因都同时表达,代谢过程中所需要的各种酶和蛋白质的基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,而与生物发育过程有关的基因则要在特定的反应式表达。基因表达的用运利用基因芯片研究干旱胁迫下玉米基因表达。玉米是全球第一大作物、中国第二大作物,而干旱是影响其产量的重要限制因素。开花期是玉米需水临界期,对干旱胁迫反应最敏感,此时逢干旱会使产量下降幅度最大。张教授的课题组以开花期玉米为材料,分别对其进行短期和长期的干旱胁迫,采用全基因组芯片研究了顶叶中基因的表达情况。扩展资料:基因表达的意义:有助于肺癌的早期诊断众所周知,吸烟是肺癌的风险因子,因此吸烟者被认为是肺癌的高风险人群。吸烟者的正常上皮细胞的基因表达模型是否可用于肺癌存在状态的一种生物标志呢?Avrum Spira和同事进行了这一研究。在预测患者是否会向癌症发展时,他们研究的生物标志的准确率达到90%。对病毒种类检测基因表达调控的指挥系统有很多种,不同生物使用不同的信号来指挥基因调控。原核生物和真核生物之间存在着相当大差异。原核生物中,营养状况、环境因素对基因表达起着十分重要的作用;而真核生物尤其是高等真核生物中,激素水平、发育阶段等是基因表达调控的主要手段,营养和环境因素的影响则为次要因素。参考资料来源:百度百科-基因表达百度百科-基因表现

基因表达包括哪两个过程

基因表达包含转录和翻译两个过程。⒈转录:以一条DNA链为膜板合成一条mRNA,此过程在细胞核内完成后,mRNA通过核孔进入细胞质;⒉翻译:以这条mRNA为膜板,tRNA携带氨基酸与之进行碱基互补配对,然后经脱水缩合,形成一条肽链,该过程在核糖体上进行,肽链再经过旋转缠绕最后形成蛋白质。基因表达是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。同一基因在不同组织能生成不同的基因产物来源于不同组织的类似蛋白,可以由同一基因编码产生,这种现象首先是由于基因中的增强子等有组织特异性,它能与不同组织中的组织特异因子结合,故在不同组织中同一基因会产生不同的转录物与转录后加工作用。

概述基因表达主要包括哪些过程

基因表达是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。基因表达的过程:1、转录过程:在RNA聚合酶的催化下,以DNA为模板合成mRNA的过程;2、翻译过程:以mRNA作为模板,tRNA作为运载工具,在有关酶、辅助因子和能量的作用下将活化的氨基酸在核糖体上装配为蛋白质多肽链的过程。

基因表达的三个阶段是怎样的?

1、复制(duplication)是在分子进化过程中产生新的遗传物质的主要机制。它可以定义为遗传物质的任何复制行为。复制的常见来源包括异位重组、逆转录、异倍性、多倍性和滑链错配等。2、转录(Transcription)是遗传信息从DNA流向RNA的过程。即以双链DNA中的确定的一条链(模板链用于转录,编码链不用于转录)为模板,以A、U、C、G四种核糖核苷酸为原料,在RNA聚合酶催化下合成RNA的过程。3、翻译是蛋白质生物合成(基因表达中的一部分,基因表达还包括转录)过程中的第二步(转录为第一步),翻译是根据遗传密码的中心法则,将成熟的信使RNA分子(由DNA通过转录而生成)中“碱基的排列顺序”(核苷酸序列)解码,并生成对应的特定氨基酸序列的过程。但也有许多转录生成的RNA,如转运RNA(tRNA)、核糖体RNA(rRNA)和小核RNA(snRNA)等并不被翻译为氨基酸序列。转录特点转录时,细胞通过碱基互补的原则来生成一条带有互补碱基的mRNA,通过它携带密码子到核糖体中可以实现蛋白质的合成。与DNA的复制相比,转录有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取并复制为mRNA。就是说,以特定的DNA片段作为模板,以DNA依赖的RNA聚合酶作为催化剂,合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物,在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。被选为模板的单链叫模板链,又称无义链;另一条单链叫非模板链,又称编码链、有义链、信息链。DNA上的转录区域称为转录单位(transcription unit)。RNA聚合酶合成RNA时不需引物,但无校正功能。

基因的表达是什么?

基因的表达就是基因转录及翻译的过程。转录过程由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。基因组DNA由两条反向平行和反向互补链组成,每条链具有5"和3"末端。这两条链分别称为“模板链”(产生RNA转录物的模板)和“编码链”(含有转录本序列的DNA序列)。基因表达的调控:通过转录因子直接调控靶标DNA表达是最简单和最直接的转录调控改变转录水平的方法。基因的编码区周围通常都具有几个蛋白质结合位点,具有调节转录的特定功能。常见的调控蛋白质与DNA结合的位点有增强子、绝缘子和沉默子。调节转录的机制非常多样,可以阻断DNA上与RNA聚合酶结合的关键位点,也可以充当激活剂辅助RNA聚合酶结合来促进转录。转录因子的活性进一步受到细胞内信号的调节,引起蛋白质翻译后修饰,包括磷酸化乙酰化或糖基化。这些变化影响转录因子直接或间接转录因子与启动子DNA的 结合、RNA聚合酶的募集以及新合成RNA分子的延伸。真核生物中的核膜通过允许这些转录因子在细胞核中存在的持续时间来进一步调控转录环境刺激或内分泌信号可能导致调节蛋白的修饰,引发细胞内信号的级联,导致基因表达的调节。以上内容参考:百度百科-基因表达

基因的表达是什么呢?

基因的表达指使基因所携带的遗传信息表现为表型的过程。包括基因转录成互补的RNA序列。对于结构基因,信使核糖核酸(mRNA)继而翻译成多肽链,并装配加工成最终的蛋白质产物。在RNA聚合酶的催化下,以DNA为模板合成mRNA的过程称为转录在双链DNA中,作为转录模板的链称为模板链或反义链而不作为转录模板的链称为编码链或有义链。在双链DNA中与转录模板互补。相关知识基因是DNA的片段,但必须具有遗传效应,有的DNA片段属间隔区段,没有控制性状的作用,这样的DNA片段就不是基因。每个DNA分子有很多个基因。每个基因有成百上千个脱氧核苷酸。基因不同是由于脱氧核苷酸排列顺序不同。基因控制性状就是通过控制蛋白质合成来实现的。DNA的遗传信息又是通过RNA来传递的。

基因表达名词解释是什么?

基因表达就是基因转录及翻译的过程。基因表达水平一般是通过该基因转录的mRNA的多少来衡量的,每个基因转录产生的mRNA的量,是受到时空等多种因素调控的,个体在不同的生长发育阶段。基因表达可以简单分为两个过程:转录和翻译。真核细胞的转录发生在细胞核中,DNA被用作制造信使RNA(mRNA)的模板。在细胞质中进行翻译,mRNA中包含的信息用于制造多肽链。基因表达的翻译过程:翻译的目的是为了快速准确地产生多肽,从复合体上分离后,多肽链需要进行修饰才能行使其生理功能。在不同的细胞其中,不同的多肽链被进行不同的修饰。举个例子,为了产生分泌到胃肠道内的消化酶,多肽链需要先在内质网被修饰,然后经过高尔基体,以分泌囊泡的形式通过细胞膜进入到消化道内。以上内容参考:百度百科-基因表达

基因的表达

基因表达(gene expression)是指将来自基因的遗传信息合成功能性基因产物的过程。基因表达产物通常是蛋白质,所有已知的生命,都利用基因表达来合成生命的大分子。简介基因表达产物通常是蛋白质,但是非蛋白质编码基因如转移RNA(tRNA)或小核RNA(snRNA)基因的表达产物是功能性RNA。所有已知的生命,无论是真核生物(包括多细胞生物)、原核生物(细菌和古细菌)或病毒,都利用基因表达来合成生命的大分子。基因表达可以通过对其中的几个步骤,包括转录,RNA剪接,翻译和翻译后修饰,进行调控来实现对基因表达的调控。基因调控赋予细胞对结构和功能的控制,基因调控是细胞分化、形态发生以及任何生物的多功能性和适应性的基础。基因调控也可以作为进化改变的底物,因为控制基因表达的时间、位置和量可以对基因在细胞或多细胞生物中的功能(作用)产生深远的影响。在遗传学中,基因表达是基因型产生表型的最基本水平。存储在DNA中的遗传密码通过基因表达得到“翻译”,并且基因表达的特性产生生物体的表型。因此,基因表达的调节对于生物体的发育至关重要。

基因的表达过程

基因的表达过程如下:第一个过程,转录:以一条DNA链为膜板合成一条mRNA,此过程在细胞核内完成后,mRNA通过核孔进入细胞质。第二个过程,翻译:以这条mRNA为膜板,tRNA携带氨基酸与之进行碱基互补配对,然后经脱水缩合,形成一条肽链,该过程在核糖体上进行,肽链再经过旋转缠绕最后形成蛋白质。补充资料:基因是指携带有遗传信息的DNA或RNA序列,也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。基因有两个特点,如下:一是能复制自己,以保持人的基本特征。二是基因能“突变”,突变绝大多数会导致疾病,另外一小部分是非致病突变,非致病突变是使生物可以在自然的选择中被选择出最好的自然个体。原核生物的基因组成是一个单纯的DNA或RNA分子,因此又称为基因带,通常也称为它的染色体。基因在染色体上的位置称为座位,每个基因都有其特定的座位。

基因表达包括

基因表达包括:转录和翻译基因(遗传因子)是产生一条多肽链或功能RNA所需的全部核苷酸序列。基因支持着生命的基本构造和性能。储存着生命的种族、血型、孕育、生长、凋亡等过程的全部信息。环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、衰、病、老、死等一切生命现象都与基因有关。它也是决定生命健康的内在因素。因此,基因具有双重属性:物质性(存在方式)和信息性(根本属性)。带有遗传信息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传信息的表现。组成简单生命最少要265到350个基因。(这涉及基因工作组的力量,人类的基因工作组与果蝇的基本相似)。19世纪60年代,奥地利遗传学家格雷戈尔·孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。1909年丹麦遗传学家约翰逊(W. Johansen,1859~1927)在《精密遗传学原理》一书中正式提出“基因”概念。

基因是怎么表达的

中心法则.基因:有遗传效应的DNA片段.DNA经过转录形成RNA,这个步骤发生在细胞核内.RNA通过核孔运出,到达细胞质.在细胞质内,经过翻译,形成蛋白质.蛋白质形成,相关的性状就会表达出来.基因的表达,就是基因通过转录和翻译,形成蛋白质,有结构特性或者发挥出了功能活性.

基因的表达包括哪些过程

  基因的表达包括转录和翻译两个过程。   转录是以一条DNA链为膜板合成一条mRNA,此过程在细胞核内完成后,mRNA通过核孔进入细胞质。   在双链DNA中,作为转录模板的链称为模板链或反义链。而不作为转录模板的链称为编码链或有义链,编码链与模板链互补,它与转录产物的差异仅在于DNA中的胸腺嘧啶变为RNA中的尿嘧啶。   翻译是以mRNA作为模板,tRNA作为运载工具,在有关酶、辅助因子和能量的作用下将活化的氨基酸在核糖体上装配为蛋白质多肽链的过程。

什么是基因表达模式分析

什么是基因表达模式分析 说白了就是分析基因如何表达的。基因表达模式,就是从DNA到蛋白质的过程,这个过程是如何进行的就是它的模式。 什么是基因表达的系列分析? 基因表达系列分析 1995年Velculescu等提出了基因表达系列分析(Serial Analysis of Gene Expression,SAGE)技术,能同时对上千个转录物进行研究。 1. SAGE的原理和实验路线。 1.1 SAGE的原理 SAGE的主要依据有两个。第一,一个9~10碱基的短核苷酸序列标签包含有足够的资讯,能够唯一确认一种转录物。例如,一个9碱基顺序能够分辨262144个不同的转录物(49),而人类基因组估计仅能编码80000种转录物,所以理论上每一个9碱基标签能够代表一种转录物的特征序列。第二,如果能将9碱基的标签集中于一个克隆中进行测序,并将得到的短序列核苷酸顺序以连续的资料形式输入计算机中进行处理,就能对数以千计的mRNA转录物进行分析。 1.2 SAGE的实验路线。 如图1所示:(1) 以biotinylated oligo(dT)为引物反转录合成cDNA,以一种限制性内切酶(锚定酶 Anchoring Enzyme, AE)酶切。锚定酶要求至少在每一种转录物上有一个酶切位点,一般4碱基限制性内切酶能达到这种要求,因为大多数mRNA要长于256碱基(44)。通过链霉抗生物素蛋白珠收集cDNA3′端部分。对每一个mRNA只收集其polyA尾与最近的酶切位点之间的片段。(2) 将cDNA等分为A和B两部分,分别连线接头A或接头B。每一种接头都含有标签酶(Tagging Enzyme TE)酶切位点序列(标签酶是一种Ⅱ类限制酶,它能在距识别位点约20碱基的位置切割DNA双链)。接头的结构为引物A/B序列+标签酶识别位点+锚定酶识别位点。(3) 用标签酶酶切产生连有接头的短cDNA片段(约9~10碱基),混合并连线两个cDNA池的短cDNA片段,构成双标签后,以引物A和B扩增。(4) 用锚定酶切割扩增产物,抽提双标签(Ditga)片段并克隆、测序。一般每一个克隆最少有10个标签序列,克隆的标签数处于10~50之间。(5) 对标签资料进行处理。在所测序列中的每个标签间以锚定酶序列间隔,如图1中锚定酶采用Nia Ⅲ限制性内切酶,则以CATG/GTAC序列确定标签的起始位置和方向。 图1 基因表达系列分析(SAGE)示意 锚定酶(AE)和标签酶(TE)是NiaⅢ、FokI X和O分别表示不同标签的核苷酸顺序 由于双标签体的长度基本相同,不会导致扩增的偏态性,同时数量和种类极大的转录物使同一种标签连线成双标签体的可能性极小,这保证了克隆中的每一个标签代表一种转录物在当前细胞状态下的一个单位的转录产物,因此通过计算机软体的分析能够得到上千种基因表达产物的标签序列以及丰裕度。 虽然SAGE技术能够尽可能全面地收集生物组织的基因表达资讯,但也不能完全保证涵盖所有的低丰度的mRNA。另外标签体的连线可能因接头的干扰造成克隆所包含的标签体过少和克隆序列末端不能高效地连入载体。Powell利用磁性生物素珠特异吸附引物,避免了接头的干扰(Powell 1998)。 2. SAGE的优点和应用 SAGE是一项快捷、有效的基因表达研究技术,任何具备PCR和手动测序器具的实验室都能使用这项技术,结合自动测序技术能够在3个小时内完成1000个转录物的分析。另外使用不同的锚定酶(识别5~20碱基的Ⅱ类核酸内切酶),使这项技术更具灵活性。 首先SAGE可应用于人类基因组研究。1995年 Velculescu 等选择B *** F I和Nia Ⅲ分别作为标签酶和锚定酶,使用计算机对9碱基标签资料进行分析并对GenBank检索。在分析的1000个标签中,95%以上的标签能够代表唯一的转录物。转录水平依标签出现频率分为4类:① 超过三次 共380个,占45.2%;② 出现三次 共45个,占5.4%;③ 出现两次 共351个,占7.6%;④ 仅出现过一次 共840个,占41.8%。所以SAGE能够快速、全范围提取生物体基因表达资讯,对已知基因进行量化分析。SAGE也能应用于寻找新基因。虽然SAGE的标签仅包括9个碱基,但加上锚定酶的位点序列(4个碱基)共可确认13碱基序列。如果一个标签检索已知序列时没有同源序列,13碱基片段就可作为探针筛选cDNA文库得到cDNA克隆。 其次,SAGE可用于定量比较不同状态下的组织细胞的特异基因表达。Stephen L等(1997)利用SAGE技术比较小鼠胚囊纤维细胞基因表达。小鼠胚囊纤维细胞能产生对温度敏感的P53肿瘤抑制蛋白,就可通过SAGE分析,比较两种不同温度下基因表达的差异。从约15 000个分析的基因中,发现有14个基因的表达依赖于P53蛋白,有3个基因的表达与P53蛋白的失活显著相关。Zhang等(1997)比较正常细胞和肿瘤细胞基因表达的300000个转录物发现:在分析的4500种转录物中,至少有500种在两种细胞组织中的表达有显著差异。 第三,由于SAGE能够同时最大限度的收集一种基因组的基因表达资讯,转录物的分析资料可用来构建染色体表达图谱(Chromosomal expression map)。Victor等分析了酵母基因组的基因表达,从60633个转录物中发现了4655个基因(表达水平分布在0.3~2.0/细胞),其中1981个基因已被确认了功能,2684个还未被报道过。利用基因的表达资讯与基因组图谱融合绘制的染色体表达图谱,使基因表达与物理结构连系起来,更利于基因表达模式的研究。(Velculescu,1997) SAGE是基因表达定性和定量研究的一种有效工具,非常适合于比较不同发育状态或疾病状态的生物基因表达。另外SAGE能够接近完整地获得基因组表达资讯,能够直接读出任何一种型别细胞或组织的基因表达资讯。SAGE技术的应用将大大加快基因组研究的进展,但必须和其它技术相互融合、互为补充,才能最大可能地进行基因组基因表达的全面研究。 什么是基因表达? 是指生物体将一个基因所携带的遗传资讯转变为具有生物性的多肽链的过程。 基因表达 基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传资讯经过转录和翻译,转变成具有生物活性的蛋白质分子.生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。 1.转录过程 在RNA聚合酶的催化下,以DNA为模板合成mRNA的过程称为转录(transcription).在双链DNA中,作为转录模板的链称为模板链(template strand),或反义链(antisensestrand);而不作为转录模板的链称为编码链(coding strand),或有义链(sense strand).在双链DNA中与转录模板互补的一条DNA链即编码链,它与转录产物的差异仅在于DNA中T变为RNA中的U.在含许多基因的DNA双链中,每个基因的模板链并不总是在同一条链上,亦即一条链可作为某些基因的模板链的,也可是另外一些基因的编码链。 转录后要进行加工,转录后的加工包括: (1)剪接:一个基因的外显子和内含子都转录在一条原始转录物RNA分子中,称为前mRNA(pre-mRNA),又称核内异质RNA(heterogenuous nuclear RNA,huRNA)。因此前mRNA分子既有外显子顺序又有内含子顺序,另外还包括编码区前面及后面非翻译顺序。这些内含子顺序必须除支而把外显子顺序连线起来,才能产生成熟的有功能的mRNA分子,这个过程称为RNA剪接(RNa splicing)。剪下发生在外显子的3"末端的GT和内含子3"末端与下一个外显子交界的AG处。 (2)加帽:几乎全部的真核 mRNa 端都具“帽子”结构。虽然真核生物的mRNA的转录以嘌呤核苷酸三磷酸(pppAG或pppG)领头,但在5"端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7GpppAGpNp)。mNRA5"端的这种结构称为帽子(cap)。不同真核生物的mRNA具有不同的帽子。 mRNA的帽结构功能:①能被核糖体小亚基识别,促使mRNA和核糖体的结合;②m7Gppp结构能有效地封闭RNa 5"末端,以保护mRNA免疫5"核酸外切酶的降解,增强mRNA的稳定 (3)加尾:大多数真核生物的mRNA 3"末端都有由100~200个A组成的Poly(A)尾巴。Poly(A)尾不是由DNA编码的,而是转录后的前mRNA以ATP为前体,由RNA末端腺苷酸转移酶,即Ploy(A)聚合酶催化聚合到3"末端。加尾并非加在转录终止的3"末端,而是在转录产物的3"末端,由一个特异性酶识别切点上游方向13~20碱基的加尾识别讯号AAUAAA以及切点下游的保守顺序GUGUGUG,把切点下游的一段切除,然后再由Poly(A)聚合酶催化,加上Poly(A)尾巴,如果这一识别讯号发生突变,则切除作用和多聚腺苷酸化作用均显著降低。mRNAPoly(A)尾的功能是:①可能有助mRNA从核到细胞质转运;②避免在细胞中受到核酶降解,增强mRNA的稳定性。 2.翻译过程真核细胞的转录以及加工都是细胞核内进行,但翻译过程则在细胞质中进行。 以mRNA作为模板,tRNA作为运载工具,在有关酶、辅助因子和能量的作用下将活化的氨基酸在核糖体(亦称核蛋白体)上装配为蛋白质多肽链的过程,称为翻译(translation),这一过程大致可分为3个阶段: (1)肽链的起始:在许多起始因子的作用下,首先是核糖体的小亚基和mRNA上的起始密码子结合,然后甲酰甲硫氨酰tRNA(tRNA fMet)结合上去,构成起始复合物。通过tRNA的反密码子UAC,识别mRNA上的起始密码子AUG,并相互配对,随后核糖体大亚基结合到小亚基上去,形成稳定的复合体,从而完成了起始的作用。 (2)肽链的延和长:核糖体上有两个结合点——P位和A位,可以同时结合两个氨酰tRNA。当核糖体沿着mRNA从5"→3"移动时,便依次读出密码子。首先是tRNAfMet结合在P位,随后第二个氨酰tRNA进入A位。此时,在肽基转移酶的催化下,P位和A位上的2个氨基酸之间形成肽键。第一个tRNA失去了所携带的氨基酸而从P位脱落,P位空载。A位上的氨酰tRNA在移位酶和GTP的作用下,移到P位,A位则空载。核糖体沿mRNA 5"端向3"端移动一个密码子的距离。第三个氨酰tRNA进入A位,与P位上氨基酸再形成肽键,并接受P位上的肽链,P位上tRNA释放,A位上肽链又移到P位,如此反复进行,肽链不断延长,直到mRNA的终止密码出现时,没有一个氨酰tRNA可与它结合,于是肽链延长终止。 (3)肽链的终止:终止讯号是mRNA上的终止密码子(UAA、UAG或UGA)。当核糖体沿着mRNA移动时,多肽链不断延长,到A位上出现终止讯号后,就不再有任何氨酰tRNA接上去,多肽链的合成就进入终止阶段。在释放因子的作用下,肽酰tRNA的的酯键分开,于是完整的多肽链和核糖体的大亚基便释放出来,然后小亚基也脱离mRNA。 (4)翻译后加工(postranslational processing):从核糖体上释放出来的多肽需要进一步加工修饰才能形成具有生物活性的蛋白质。翻译后的肽链加工包括肽链切断,某些氨基酸的羟基化、磷酸化、乙酰化、糖基化等。真核生物在新生手肽链翻译后将甲硫氨酸裂解掉。有一类基因的翻译产物前体含有多种氨基酸顺序,可以切断为不同的蛋白质或肽,称为多蛋白质(polyprotein)。例如胰岛素(insulin)是先合成86个氨基酸的初级翻译产物,称为胰岛素原(proinsulin),胰岛素原包括A、B、C三段,经过加工,切去其中无活性的C肽段,并在A肽和B肽之间形成二硫键,这样才得到由51个氨基酸组成的有活性的胰岛素。 3.外显子与内含子表达过程中的相对性 从内含子与外显子的定义来看,两者是不能混淆的,但是真核生物的外显子也并非都“显”(编码氨基酸),除了tRNA基因和rRNA基因的外显子完全“不显”之外,几乎全部的结构基因的首尾两外显子都只有部分核苷酸顺序编码氨基酸,还有完全不编码基酸的外显子,如人类G6PD基因的第一外显子核苷酸顺序。 现在已发现一个基因的外显子可以是另一基因的内含子,反之亦然。以小鼠的淀粉酶基因为例,来源于肝的与来源于唾液腺的是同一基因。淀粉酶基因包括4个外显子,肝生成的淀粉酶不保留外显子1,而唾液腺中的淀粉酶则保留了外显子1的50bp顺序,但把外显子2与前后两段内含子一起剪下掉,经过这样剪接,外显子2就变成唾液淀粉酶基因中的内含子。 4.同一基因在不同组织能生成不同的基因产物 来源于不同组织的类似蛋白,可以由同一基因编码产生,这种现象首先是由于基因中的增强子等有组织特异性,它能与不同组织中的组织特异因子结合,故在不同组织中同一基因会产生不同的转录物与转录后加工作用。此外真核生物基因可有一个以一的poly(A)位点,因此能在不同的细胞中产生具有不同3"末端的前mRNA,从而会有不同的剪接方式。由于大多数真核生物基因的转录物是先加poly(A)尾巴,然后再行剪接,因此不同组织、细胞中会有不同的因子干预多聚腺苷酸化作用,最后影响剪接模式。 基因表达就是转录和翻译.转录发生在细胞核中,翻译发生在细胞质中的核糖体上. 基因表达是指细胞在生命过程中,把储存在DNA顺序中遗传资讯经过转录和翻译,转变成具有生物活性的蛋白质分子。 基因表达是指细胞在生命过程中,把储存在DNA顺序中遗传资讯经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。 基因表达包含转录(DNA到RNA)和翻译(RNA到蛋白质)两步。 基因表达是指细胞在生命过程中,把储存在DNA顺序中遗传资讯经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。 全基因组基因表达分析包括lncrna吗 因此,lncRNA未来能否作为分子靶标成功应用于临床诊断和癌症治疗、细胞分化及发育等密切相关; 应急功能,尤其是与衰老相关的疾病有密切关系,例如心血管疾病、阿尔兹海默症:LncRNA可作为细胞内各种讯号招募蛋白形成复合物参与免疫反应和宿主防御。 LncRNA与疾病:LncRNA与人类的许多疾病LncRNA在生物体内的功能主要分为三大类: 生物学功能:LncRNA与表观遗传调控、转录调控,不像mRNA的翻译需要严格按照三联体密码子的使用法则一样,单个密码子的移码突变就会导致蛋白功能的丧失,lncRNA的保守区段可能仅在一段较短的区域内,这些较短区域对于结构或序列特异性相互作用较为关键、转录后调控、癌症等、miRNA调控:在lncRNA的基因组序列两端各设计1个gRNA,致使整个lncRNA区段或大部分片段序列缺失,从而实现lncRNA的敲除。 由于大多数长链非编码RNA在物种之间没有明显的序列保守性,对lncRNA进行碱基替换、插入或缺失部分序列时仍能表现出其原有的生物学活性。 技术原理 LncRNA敲除原理。因此lncRNA功能的缺失需要通过删除这段保守的区域来完成,将是其日后发展的难点与热点、糖尿病 基因表达分析与基因组测序与什么联络 基因表达分析是看表达量的,基因组测序是看基因组的突变情况,有无缺失,突变等,一个是定量的一个是定性的,可以理解为

“基因表达”、“基因差别表达”、“基因选择性表达”都是什么意思?

1、 基因表达(gene expression):是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。同一基因在不同组织能生成不同的基因产物来源于不同组织的类似蛋白,可以由同一基因编码产生,这种现象首先是由于基因中的增强子等有组织特异性,它能与不同组织中的组织特异因子结合,故在不同组织中同一基因会产生不同的转录物与转录后加工作用。2、 基因差别表达:指细胞分化过程中,奢侈基因按一定顺序表达,表达的基因数约占基因总数的5%~10%。也就是说,某些特定奢侈基因表达的结果生成一种类型的分化细胞,另一组奢侈基因表达的结果导致出现另一类型的分化细胞,这就是基因的差别表达。其本质是开放某些基因, 关闭某些基因,导致细胞的分化。3、 基因选择性表达:由于细胞分化发生于 生物体的整个生命进程中,所以基因的选择性表达在生命过程各阶段都在体现。不仅如此,基因的选择性表达在单细胞原核、真核生物生长发育中,甚至病毒的 生命活动中都明显表现,这充分体现了基因的选择性表达的普遍性。什么是基因?因(遗传因子、遗传基因)指携带有遗传信息的DNA序列,是控制性状的基本遗传单位,亦即一段具有功能性的DNA序列。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。人类约有两万至两万五千个基因。染色体在体细胞中是成对存在的,每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母辈。按照其控制的性状,又可分为显性基因和隐性基因。一般来说,生物体中的每个细胞都含有相同的基因,但并不是每个细胞中的每个基因所携带的遗传信息都会被表达出来。不同部位和功能的细胞,能将遗传信息表达出来的基因也不同。参考资料搜狗百科:http://baike.sogou.com/v712473.htm?fromTitle=基因选择性表达

基因表达的意义是什么?

基因表达调控(geneexpressionregulationandcontrol)是指通过生物体内的调控系统来调节和控制体内蛋白质的含量与活性,使之在特定的时间、特定的空间、并以一定的强度出现,以适应机体生长、发育和繁殖的需要。基因表达调控的生物学意义:(一)适应环境、维持生长和增殖;(二)维持个体发育与分化

基因的表达概念是什么

基因表达就是基因转录及翻译的过程。在一定调节机制控制下,大多数基因经历基因激活、转录及翻译等过程,产生具有特异生物学功能的蛋白质分子。其本质是开放某些基因,关闭某些基因,导致细胞的分化。

基因表达的过程,具体些

首先,DNA上的基因前面有其相应的启动子,那个是RNA聚合酶的识别和结合位点,RNA聚合酶的作用下,以DNA分子的一条链为模版,四种游离的核糖核苷酸为原料,遵循碱基互补配对原则,进行转录,地点在细胞核内,转录的结果就是产生一条mRNA,然后mRNA通过核孔进入细胞质,与核糖体结合,开始翻译过程,mRNA上的相邻三个碱基为一个密码子,与一个带有对应氨基酸的tRNA,通过碱基互补配对结合,然后tRNA离开,那个氨基酸通过脱水缩合的方式与下一个tRNA上的氨基酸结合,最终形成肽链,一条或多条肽链经过一定的盘曲折叠形成具有一定空间结构的蛋白质。呼呼,累死咯......好多字

简述基因的表达过程

基因表达是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。基因的表达过程简单说就是转录和翻译过程.转录是以DNA分子的一条链为模板合成mRNA的过程;翻译是以mRNA为模板合成多肽和蛋白质的过程.

基因表达调控的方式有哪些

基因表达调控分为很多水平:1.DNA、染色体水平调控:基因丢失、基因修饰、基因重排、基因扩增、染色体结构变化。2.转录水平调控(主要调控方式):转录起始、延伸、终止均有影响。原核生物借助于操纵子,真核生物通过顺式作用元件和反式作用因子相互作用进行调控。3.转录后水平调控:主要指真核生物原初转录产物经过加工成为成熟的mRNA,包括加帽、加尾、甲基化修饰等。4.翻译水平调控:对mRNA稳定性的调控、反义RNA对翻译水平的调控等。5.翻译后水平调控:蛋白质的剪切、化学修饰(磷酸化、乙酰化、糖基化等)、转运等。6.mRNA降解的调控。

(基因表达)为什么转录翻译后胸腺嘧啶就消失了,在之后就没出现过了,为什么密码子表只有AUGC没有T?

这是转录,不是DNA的复制。基因转录是以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。转录出来的是mRNA,是信使RNA,它的作用就是为蛋白质的合成提供模板的。T是胸腺嘧啶,只存在于DNA中,在RNA中是U,尿嘧啶。因为基因是通过不同的蛋白质来表达的,而蛋白质又是以mRNA为模板合成出来的,所以遗传密码就以mRNA中的碱基序列来表示了。就是说,在遗传密码表中,只有U,没有T了。遗传密码表

组蛋白的修饰是怎么样影响基因表达的

在哺乳动物基因组中,组蛋白则可以有很多修饰形式.。一个核小体由两个H2A,两个H2B,两个H3,两个H4组成的八聚体和147bp缠绕在外面的DNA组成.组成核小体的组蛋白的核心部分状态大致是均一的,,游离在外的N-端则可以受到各种各样的修饰,,包括组蛋白末端的乙酰化,甲基化,磷酸化,泛素化,ADP核糖基化等等.,这些修饰都会影响基因的转录活性。组蛋白的甲基化修饰:组蛋白被甲基化的位点是赖氨酸和精氨酸.赖氨酸可以分别被一、二、三甲基化,精氨酸只能被一、二甲基化.在组蛋白H3上,共有5个赖氨酸位点可以被甲基化修饰.一般来说,,组蛋白H3K4的甲基化主要聚集在活跃转录的启动子区域。组蛋白H3K9的甲基化同基因的转录抑制及异染色质有关。EZH2可以甲基化H3K27,,导致相关基因的沉默,,并且与X-Chromosomeinactivation相关.。H3K36的甲基化同基因转录激活相关。

想知道组蛋白基因的一些详细性质?

H1: 组织蛋白H1有著一个中央球状结构域及长的C与N端尾巴,能将小珠子串结构围成30纳米大小的螺线管结构。对比其他种类的组织蛋白,H1的数量只为其他的一半。这是因为它不是构成核小体部份,而只是将DNA及核小体紧扣在一起。H1亦有著它的异构体,称为组织蛋白H5。H2A、H2B及H4: 组织蛋白H2A、H2B及H4同样有著一个主要的球状结构域与长的N端尾巴,是组成小珠子串结构内的核小体的重要原素。H3: 与组织蛋白H2A及H2B类似,组织蛋白H3有著一个主要的球状结构域与长的N端尾巴,是组成小珠子串结构内的核小体的重要原素。它的N端尾巴从球状核小体核心伸出,能进行多种影响细胞运作的表观遗传修饰。这些修饰包括将甲基及乙醘基共价附著於离氨酸或精氨酸,及丝氨酸或羟丁氨酸的磷酸化。离氨酸9的甲基化涉及基因沉默及在DNA内形成相对较不活跃的异染色质。组织蛋白H3的乙醘基化会在组织蛋白尾巴内不同的离氨酸位置出现,并且由组织蛋白乙醘转移酶(HAT)所催化。离氨酸14的乙醘基化在基因中很普遍,亦会转录成为核糖核酸(RNA)。

组蛋白基因的介绍

组蛋白基因(histone gene) 组蛋白基因是已知的重复基因中唯一具有蛋白质编码机能的基因。它们在DNA合成开始前短暂地表达,因而它的活动与细胞周期密切相关。

组蛋白修饰的基因调控

基因表达是一个受多因素调控的复杂过程.组蛋白是染色体基本结构-核小体中的重要组成部分,其N-末端氨基酸残基可发生乙酰化、甲基化、磷酸化、泛素化、多聚ADP糖基化等多种共价修饰作用.组蛋白的修饰可通过影响组蛋白与DNA双链的亲和性,从而改变染色质的疏松或凝集状态,或通过影响其它转录因子与结构基因启动子的亲和性来发挥基因调控作用.组蛋白修饰对基因表达的调控有类似DNA遗传密码的调控作用.

真核生物基因的特点

真核生物的基因组一般比较庞大,例如人的单倍体基因组由3×106bp硷基组成,按1000个碱基编码一种蛋白质计,理论上可有300万个基因。但实际上,人细胞中所含基因总数大概会超过10万个。这就说明在人细胞基因组中有许多dna序列并不转录成mrna用于指导蛋白质的合成。dna的复性动力学研究发现这些非编码区往往都是一些大量的重复序列,这些重复序列或集中成簇,或分散在基因之间。在基因内部也有许多能转录但不翻译的间隔序列(内含子)。因此,在人细胞的整个基因组当中只有很少一部份(约占2-3%)的dna序列用以编码蛋白质。真核生物基因组有以下特点 1.真核生物基因组dna与蛋白质结合形成染色体,储存于细胞核内,除配子细胞外,体细胞内的基因的基因组是双份的(即双倍体,diploid),即有两份同源的基因组。 2.真核细胞基因转录产物为单顺反子。一个结构基因经过转录和翻译生成一个mrna分子和一条多肽链。3.存在重复序列,重复次数可达百万次以上。4.基因组中不编码的区域多于编码区域。5.大部分基因含有内含子,因此,基因是不连续的。 6.基因组远远大于原核生物的基因组,具有许多复制起点,而每个复制子的长度较小。

组蛋白在基因调节系统中的作用

1、蛋白乙酰化可促进基因表达.去乙酰化可抑制基因表达..个人认为这道道有点问题.. 2、适量的Mg2+可促进装配...鬼笔环肽是抑制解聚.

组蛋白修饰的基因调控

基因表达是一个受多因素调控的复杂过程.组蛋白是染色体基本结构-核小体中的重要组成部分,其N-末端氨基酸残基可发生乙酰化、甲基化、磷酸化、泛素化、多聚ADP糖基化等多种共价修饰作用.组蛋白的修饰可通过影响组蛋白与DNA双链的亲和性,从而改变染色质的疏松或凝集状态,或通过影响其它转录因子与结构基因启动子的亲和性来发挥基因调控作用.组蛋白修饰对基因表达的调控有类似DNA遗传密码的调控作用.

如何检测指定基因的组蛋白乙

基本由三种,乙酰基化,甲基化,糖基化。这里举前两个做例子。核小体由8个组蛋白构成,每个组蛋白有一个侧链N,即一小段多肽。侧链N基本由精氨酸和赖氨酸组成,这两种蛋白质由带负电的R基,注意每个DNA都有大量磷酸根,所以DNA是正电的。由于正负相吸,侧链N在当DNA不需要转录的时候能紧紧困住盘绕在核小体上面的DNA,所以DNA聚合酶无法靠近DNA来转录。乙酰基化:当需要转录的时候,组蛋白乙酰基化酶来乙酰基化侧链N。乙酰基化的侧链N失去负电性,所以就没那么紧得盘绕着核小体,DNA聚合酶就可以开始转录。转录完毕后,组蛋白去乙酰基化酶会去掉乙酰基,所以侧链N再一次紧紧捆住核小体。甲基化:甲基化侧链N不同部位会导致更紧的缠绕或者更松的缠绕。比如,甲基化侧链N的第三个精氨酸会导致更松,甲基化第九个导致更紧。后者导致的X染色体失活,即一个女性性染色体在受精发生后会失活。

从表达特异性的差异来看,编码组蛋白的基因属于什么基因

从表达特异性的差异来看,编码组蛋白的基因属于超基因。组蛋白基因是已知的重复基因中唯一具有蛋白质编码机能的基因。它们在DNA合成开始前短暂地表达,因而它的活动与细胞周期密切相关。基因组中存在大量重复序列用以编码组蛋白是有其重要意义的。DNA复制时,组蛋白也要成倍增加,而且往往在DNA合成一小段后,组蛋白马上就要与其相结合,这要求在较短的时间内合成大量的组蛋白,因而需要有大量的组蛋白基因存在。人体基因组中还有几个大的基因簇,也属于中度重复顺序长的分散片段型。在一个基因簇内含有几百个功能相关的基因,这些基因簇又称为超基因(Super gene),如人类主要组织相容性抗原复合体HLA和免疫球蛋白重链及轻链基因都属于超基因。超基因可能是由于基因扩增后又经过功能和结构上的轻微改变而产生的,但仍保留了原始基因的结构及功能的完整性。

组蛋白的修饰是怎么样影响基因表达的

组蛋白甲基化诱导了DNA的甲基化:组蛋白甲基化是招募DNA甲基化酶DNMT的信号,在异染色质蛋白HP1的协助下,DNA发生甲基化。DNA的甲基化又诱导组蛋白的去乙酰化:甲基CpG结合蛋白MeCP2可以特定地结合到甲基化的DNA.上,在组蛋白去乙酰化酶的作用下,将组蛋白.上的乙酰基去掉。而组蛋白去乙酰化状态是异染色质的特征,是基因失活的表现。去乙酰化的染色质具有一个更浓缩的结构。结果基因转录被抑制。去乙酰化的染色质可以在组蛋白乙酰基转移酶HAT的作用下而发生组蛋白乙酰化,转录进行。但是这个过程可以被组蛋白去乙酰化酶HDAC逆转。HDAC又可以被抑制因子抑制。于是转录又被激活

基因和碱基有什么关系?

基因和碱基关系:碱基是组成DNA的一种组成成分.基因是有功能的一段DNA.

基因中的碱基是什么?

DNA是双螺旋结构,即两条反向平行的多核苷酸链相互缠绕形成一个右旋的双螺旋结构。每对螺旋由10对碱基组成,碱基按A-T,C-G互补配对,彼此以氢键相联。通过修改碱基,人类获取了编辑基因的能力,合成生物学开始发展。通过设计改造微生物进行定向发酵,使细胞工厂可以高效生产目标产品。现在我们看到的植物天然产物、食品、生物可降解材料等多类产品,都可以用细胞工厂发酵生产。例如,通过最新的合成生物技术,华熙生物已可以做到每升提取液提取73g透明质酸, 效率提升近4倍。

“基因”和“碱基”有什么关系?

脱氧核苷酸(核苷酸的一种)是DNA的基本组成单位 。碱基是核苷酸的组成部分。 一、【基因】带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。组成简单生命最少要265到350个基因。涉及到了基因工作组的量,人类的基因工作组与果蝇的基本相似。【主要特征】1、基因——有遗传效应的DNA片段,是控制生物性状的基本遗传单位。人们对基因的认识是不断发展的。19世纪60年代,遗传学家孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理的产物。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。2、20世纪50年代以后,随着分子遗传学的发展,尤其是沃森和克里克提出双螺旋结构以后,人们才真正认识了基因的本质,即基因是具有遗传效应的DNA片断。研究结果还表明,每条染色体只含有1~2个DNA分子。每个DNA分子上有多个基因,每个基因含有成百上千个脱氧核苷酸。由于不同基因的脱氧核苷酸的排列顺序(碱基序列)不同,因此,不同的基因就含有不同的遗传信息。1994年中科院曾邦哲提出系统遗传学概念与原理,探讨猫之为猫、虎之为虎的基因逻辑与语言,提出基因之间相互关系与基因组逻辑结构及其程序化表达的发生研究。二、【碱基】1、指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。2、除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。【种类】表观遗传学修饰--5-胞嘧啶甲基称为第5种碱基,5-羟甲基胞嘧啶称为第6种碱基。在最新的研究成果中,研究人员发现了第7种,和第8种DNA碱基:5-胞嘧啶甲酰、5-胞嘧啶羧基。这两种碱基实际上都是由胞嘧啶经由张毅教授研究组一直研究的关键蛋白:Tet蛋白修饰后形成 。

脱氧核糖核酸和基因是同一回事吗?

不是脱氧核糖核酸(DNA,为英文Deoxyribonucleicacid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。基因(Gene,Mendelianfactor)是指携带有遗传信息的DNA或RNA序列,也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。

如何找一个基因自身的保守序列

在NCBI上面找在上边查找基因序列方法是: 首先打开NCBI网站首页,然后在search一栏中选择nucleotide,在框中输入要的基因序列名称,点击search就行。然后会出来很多结果,因为很多基因是同名的,或是一个基因在不同种属中不一样,寻找要的基因序列就行了。注意的是,要确定基因名称是否是统一的,找到基因序列,蛋白序列就很容易了,因为结果中会显示该基因的蛋白序列。可以在开始search的时候选protein,找到的就是蛋白序列了。

如何在NCBI上找某个基因的mRNA序列

如何在NCBI上找某个基因的mRNA序列1 打开NCBI主页2 左边search里面选择GENE 右边的对话框里输入你想要的基因名称3 在出来的所有条目第一行后面都有种属表明,比如Homo sapiens是人Felis catus是猫。选择你想要的种属。4 再出现的页面中找到那个像数轴的图,在左侧有可以点击的蓝色数字,往往开头有AK、NM的开头,点击它,再出现的下拉框里选择GENEBANK。5 最下面就是他的基因序列 当然也可以参考页面上提供的CDS区域范围来看。

怎样查基因序列

1 打开NCBI主页 2 左边search里面选择GENE 右边的对话框里输入你想要的基因名称 3 在出来的所有条目第一行后面都有种属表明,比如Homo sapiens是人Felis catus是猫。选择你想要的种属。 4 再出现的页面中找到那个像数轴的图,在左侧有可以点击的蓝色数字,往往开头有AK、NM的开头,点击它,再出现的下拉框里选择GENEBANK。 5 最下面就是他的基因序列 当然也可以参考页面上提供的CDS区域范围来看。

怎样寻找基因中的外显子序列

1、首先输入基因的完整学名,找到与基因相关的cDNA序列.在这一cRNA序列的解说信息里,就已经有各外显子的分节.2、将该cDNA输入Blast进行序列比对,就可以找到其每一个外显子所对应的染色体位置,这些信息就显示了所有的外显子.处于外显子两端的序列就是内含子.3、如你需要完整的基因序列,需要在blast中选择others这个数据库,然后查找相关的Bac质粒中含有你完整基因的文件,在其中找到你所需的信息.

ncbi的基因序列是从哪一端开始的

是5‘端到3"端

人的基因各不相同,那为什么还要测人类基因组序列呢?

人类基因组DNA序列分布于22条常染色体和2条性染色体上,目前人们已掌握其信息储存与表达规律的基因,只占其中的一小部分。对人类基因组的研究,并不是为了单纯地积累数据,而是为了揭示大量数据中所蕴藏的内在规律,从而更好地认识和保护生命体。由于载有基因的染色体不能直接用来测序,人类基因组计划的战略构想是将人类的整个基因组一步步由粗到细地进行有序的划分,最后得到可用于测序的重叠度最小的连续克隆系,将基因组分解成为较易操作的小的结构区域的过程称为作图,根据所用标志和手段不同,可分为遗传连锁图、物理图和转录图(也称基因图)。分解得到的大片段DNA一般采用下列步骤进行测序:(1)将待测大片段DNA的克隆体随机切成小片段(约1500bp);(2)将小片段克隆入测序载体;(3)对每kb的DNA进行10个~30个亚克隆的高覆盖率测序;(4)将相互重叠的读出序列组装成连续的多序列的重叠线;(5)从质量最高的读出序列中取得最后的确认序列。 人类基因组计划把“作图”定为测序的前提,目的是保证人类整个基因组的完整性,然而作图速度会限制基因组DNA的测序速度。自宣布成功绘制人类基因组草图和公布人类基因组测序草图至今,对人类基因的研究又取得了一系列重大的发现: 1 人类基因总数在3万个到3.5万个之间,低于原来估计数目的一半。这说明人类在使用基因上比其它物种更为高效。 2 基因组中存在着基因密度较高的“热点”区域和大片不携带人类基因的“荒漠”区域。研究结果表明:基因密度在第17、19和22号染色体上最高,在X、Y、第4号和第18号染色体上密度较小。 3 大约1/3以上基因组包含重复序列,这些重复序列的作用有待进一步研究。 4 所有人都具有99.99%的相同基因,而且不同人种的人比同一人种的人在基因上更为相似,任何两个不同个体之间大约每1000个核苷酸序列中会有一个不同,这称为单核苷酸多态性(SNP),每个人都有自己的一套SNP,它对“个性”起着决定的作用。 人类基因组计划对生命科学的研究和生物产业的发展具有非常重要的意义,它为人类社会带来的巨大影响是不可估量的。 首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。 第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。人体内真正发挥作用的是蛋白质,人类功能基因组学便是应用基因组学的知识和工具去了解影响发育和整个生物体特定序列的表达谱。有人将HGP比作生命周期表,因为它不再是从研究个别基因着手,而是力求在细胞水平解决基因组问题,同时研究所有基因及其表达产物,以建立对生命现象的整体认识。目前,研究者已着手通过DNA芯片等新技术对基因的表达展开全面研究,也通过蛋白质芯片的制作,标准化双向蛋白质凝胶电泳、色谱、质谱等分析手段对人类可能存在的几十万种蛋白质或多肽的特征和功能进行研究。科学家预言,蛋白质组的研究将导致药物开发方面实质性的突破,以使人类真正攻克癌症等顽疾。最后,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。

请高手给详细解释一下基因序列的信息

这个是使用seqin在Genebank上提交的基因组注释格式gene1..1751基因的起始、终结位点/gene="FSHB"基因的名称/note="folliclestimulatinghormone,betapolypeptide"关于这个名称的相关注释/db_xref="GeneID:281171"基因的IDCDS70..459基因中编码一段蛋白产物的序列/translation="MKSVQFCFLFCCWRAICCRSCELTNITITVEKEECGFCISINTTWCAGYCYTRDLVYRDPARPNIQKTCTFKELVYETVKVPGCAHHADSLYTYPVATECHCSKCDSDSTDCTVRGLGPSYCSFREIKE"蛋白序列翻译结果其他都是一些重复的,你可以去看一下关于NCBI的介绍

基因序列和编码序列有什么区别

  CDS是编码序列Codingsequence的缩写。DNA转录成mRNA,mRNA经剪接等加工后翻译出蛋白质,所谓CDS就是与蛋白质序列一一对应的DNA序列,且该序列中间不含其它非该蛋白质对应的序列,不考虑mRNA加工等过程中的序列变化,总之,就是与蛋白质的密码子完全对应。CDS是编码一段蛋白产物的序列,是结构基因组学术语。ORF开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。当一个新基因被识别,其DNA序列被解读,人们仍旧无法搞清相应的蛋白序列是什么。  基本区别(1)开放读码框是从一个起始密码子开始到一个终止密码子结束的一段序列;不是所有读码框都能被表达出蛋白产物,或者能表达出占有优势或者能产生生物学功能的蛋白。  (2)CDS,是编码一段蛋白产物的序列。  (3)cds必定是一个orf。但也可能包括很多orf。  (4)反之,每个orf不一定都是cds。  希望对您有所帮助

怎样找到基因序列(请告诉详细步骤)O(∩_∩)O谢谢

NCBI,若有序列号则直接输入查找。没有可以通过查找物种以及基因名称在NCBI中查找。步骤:1.打开http://www.ncbi.nlm.nih.gov/sites/entrez2. 上方有搜索条,默认为PUBMED,打开下拉菜单,选择Gene,在右侧输入"基因名称"AND"物种名称", 点击搜索3. 如基因序列收录,应该在搜索结果里,找到点击打开说的比较简单,如你没搜到,可以给我发消息

怎么用基因id查询基因序列?

用你要查的基因的ID。在NCBI等数据库库中,每个基因都有一个编号,即ID,就像每个人有一个身份证一样。如果你不知道其ID 也可以输入基因名称搜寻的。

知道在染色体上的位置,如何查出那段基因序列

到NCBI网站,查人的基因组,找到关注的染色体就可以。在染色体上获取目的基因要用到限制性核酸内切酶,根据目的基因的基因序列来选择相应的限制性核酸内切酶,限制性核酸内切酶就能切割出所需的目的基因了,并且根据切割的末端又可以分为粘性末端和平末端。用于DNA基因组物理图谱的组建;基因的定位和基因分离;DNA分子碱基序列分析;比较相关的DNA分子和遗传工程。限制性核酸内切酶是由细菌产生的,其生理意义是提高自身的防御能力。限制酶一般不切割自身的DNA分子,只切割外源DNA。扩展资料:DNA分子类似“计算机磁盘”,拥有信息的保存、复制、改写等功能。将人体细胞核中的23对染色体中的DNA分子连接起来拉直,其长度大约为0.7米,但若把它折叠起来,又可以缩小为直径只有几微米的小球。因此,DNA分子被视为超高密度、大容量的分子存储器。基因芯片经过改进,利用不同生物状态表达不同的数字后还可用于制造生物计算机。基于基因芯片和基因算法,未来的生物信息学领域,将有望出现能与当今的计算机业硬件巨头――英特尔公司、软件巨头――微软公司相匹敌的生物信息企业。参考资料来源:百度百科-基因

如何在NCBI上查到某个给定基因的序列,并且在序列中清楚的显示出其中的外显子和内含子?

1、首先输入基因的完整学名,找到与基因相关的cDNA序列。在这一cRNA序列的解说信息里,就已经有各外显子的分节。2、将该cDNA输入Blast进行序列比对,就可以找到其每一个外显子所对应的染色体位置,这些信息就显示了所有的外显子。处于外显子两端的序列就是内含子。3、如你需要完整的基因序列,需要在blast中选择others这个数据库,然后查找相关的Bac质粒中含有你完整基因的文件,在其中找到你所需的信息。

已知部分基因序列,如何获得全长基因?

基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。   1. RACE技术    1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3"RACE和5"端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5"RACE跟3"RACE原理基本一样,但是相对于3"RACE来说难度较大。   5"-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5"接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。   1.1基于‘模板跳转"的SMART RACE技术  SMART-RACE技术的最大特点是5′ RACE过程中的“模板跳转”现象,即当反转录进行到mRNA模板的5′末端时,反转录酶表现出末端转移酶活性,在第一链cDNA的3′端加上3-5 个残基(主要是dC) ,随后第一链cDNA与3′端含几个dG的寡核苷酸引物退火,使反转录反应发生跳移,以引物中寡核苷酸为模板继续进行,最终反转录所得产物必然包含完整的mRNA5′末端序列及引物序列,可直接用于RACE-PCR获得完整地5′ cDNA末端。由于上述过程无需接头连接,而且直接以第一链cDNA作为模板进行RACE-PCR ,因此更加简便、快捷。另外,SMART -RACE还采用了降落PCR、抑制PCR、LD - PCR 等先进扩增技术,提高了PCR扩增的敏感性和真实性,降低了非特异的产物背景,因此该技术已被广泛应用于cDNA末端快速扩增,尤其是5"端的克隆。   1.2末端脱氧核苷酸转移酶( TdT)加尾技术   传统的5′RACE反应是以TdT对第一链cDNA进行同聚物加尾来引发第二链cDNA的合成[12] ,这种方法经常会导致RACE反应失败或产生一些副产品。其主要原因是同聚物加尾反应难以控制,TdT 加尾时不能区分cDNA是否是全长,非全长cDNA分子被加尾后将在随后的PCR反应中得到优先扩增,从而产生大量的非特异性产物背景,并且TDT的加尾效率比较低[13]。目前许多研究这对其进行了改进。   夏瑞等[11]提出了一种改良的TDT加尾克隆基因5"端的方法。其首先用1个15 bp左右的特异反转录引物代替通用反转录引物Olig( dT) n对模板cDNA进行初步筛选,使合成的cDNA更靠近目的基因的5′端。其次, 两个上游引物采取巢式策略取代一般的poly( dG)n或poly ( dC)n,从而控制第二轮PCR的退火温度, 保证扩增的特异性。并且在PCR过程中采用了如锚定PCR、巢式PCR、降落PCR等方法增加扩展产物的特异性。这些新的改进使得到目的条带的概论增加,并且反转录引物不需要磷酸化, 从而大大节约实验成本。   2.染色体步移法   染色体步行(chromosome walking)是指由生物基因组或基因组文库中的已知序列出发逐步探知其旁邻的未知序列或与已知序列呈线性关系的目的序列核苷酸组成的方法和过程14]。对于基因组测序已经完成的少数物种(水稻、拟南芥等)来说,可以轻松地从数据库中找到已知序列的侧翼序列。但是这毕竟只是研究少数模式植物时的情况,对于自然界中种类繁多的其植物而言,在不知道它们的基因组DNA序列以前,想要知道一个已知区域两侧的DNA序列,只能采用染色体步移技术。因而,染色体步移技术在现代分子生物学研究中占有举足轻重的地位,是结构基因组研究以及功能基因组研究的基础。   目前,分离侧翼序列的染色体步移方法主要有两种,一是结合基因组文库为主要手段的染色体步移技术,构建基因组文库进行染色体步移尽管步骤比较繁琐,但是适于长距离步移,可以获得代表某一特定染色体的较长连续区段的重叠基因组克隆群。随着亚克隆文库条件构建条件的优化及测序技术的进步,这种方法也将更加快捷,准确。另一个是基于PCR扩增为主要手段的染色体步移技术。基于PCR扩增为主要手段的染色体步移技术步移距离相对较短,但是操作比较简单,尤其适合于已知一段核苷酸序列的情况下进行的染色体步移。反向PCR、外源接头介导PCR和热不对称交错PCR(TAIl-PCR)等就是建立在PCR技术基础上的染色体步行技术,为扩增已知序列旁侧的未知DNA片段提供了捷径.这些方法的建立可以不必经过烦琐的建库和筛选过程而获得全长基因序列.   2.1连接介导PCR    连接介导聚合酶链反应是以连接反应为基础的单侧PCR技术,首先通过基因组DNA酶切,在酶切后的DNA片段的一端连接上一个公共连接子,而后用这个连接子为引物与另一个基因特异引物进行扩增,得到了包含连接子在内的基因序列。连接介导PCR又分为连接载体的PCR、连接单链接头的PCR和连接双链接头PCR。此方法原理简单,操作方便。   2.1.1连接载体的PCR   连接载体的PCR是利用已知基因组DNA序列设计的特异引物和载体通用引物进行扩增获得目的片段的一项PCR技术。操作方法是首先用内切酶酶切基因组DNA和载体质粒DNA,得到小片段DNA和线形字体序列,然后用T4连接酶把载体序列与DNA小片段相连接,以连接产物为模板,以一个基因特异引物和载体引物进行扩展,通过克隆测序得到未知的侧翼序列。   2.1.2连接单链接头的PCR    连接单链接头的PCR又叫锅柄PCR,是连接单链接头PCR的典型代表,因其以一个类似锅柄结构的DNA分子为模板而得名[18]。其基本原理是:将基因组总DNA 用能产生5" 端突出末端的内切酶切割;接着连上一条单链的寡核苷酸,其具有两个特点,其一是5"端和限制性片段的突出末端互补,其二是除此以外的序列必须和已知序列中一段完全同源;在PCR 的复性阶段,外源接头就会和其链内同源序列配对而成一个末端部分封闭的分子内环状结构,在TaqDNA 聚合酶的作用下,沿着3" 端将单链部分完全补平后而形成一个锅柄结构,因此这种方法也被称为锅柄PCR。由于其末端是一个反向重复序列,故最后只需一条引物即可完成对目标区段的扩增。   2.1.3连接双链接头PCR   双链接头法也称为adapter介导的PCR法[ 19,20]。其主要过程为首先用能够产生粘性末端的限制性内切酶消化基因组DNA,然后将末端配对的接头和限制性片段连接,以其作模板,用接头引物和已知序列特异引物进行PCR扩增,即可获得包含侧翼序列的目标片段。显然,这类方法存在一个问题:即如何抑制接头到接头的非目标扩增。因此许多研究者由对其进行了改进,出现了抑制PCR,多功能接头PCR和T接头PCR[21]。   2.2热不对称交错PCR(TAIl-PCR)   热不对称性PCR (thermal asymmetric interlaced PCR, TAIL-PCR)就是建立在PCR技术基础上的染色体步移技术,为扩增已知序列旁侧的未知DNA 片段提供了捷径。该技术由Liu和Whitter于1995年首先研究并报道[22]。以基因组DNA为模板,使用高退火温度的长特异引物和短的低退火温度的简并引物,通过特殊的热不对称(高严谨性PCR和低严谨性PCR交替)循环程序,有效扩增特异产物。该技术具有简单快速、特异性高、分离出的DNA 序列可以用于图位克隆、遗传图谱绘制和直接测序等优点,近年来,被分子生物学研究者广泛应用,成为分子生物学研究中非常实用的基因侧翼序列克隆技术,同时在植物基因克隆方面也取得了很大进展。   TAIL-PCR技术的基本原理是利用目标序列旁的已知序列设计3个嵌套的特异性引物(special prime ,简称sp1 ,sp2 ,sp3 ,约20 bp) ,用它们分别和1个具有低Tm值的短的(14 bp) 随机简并引物(Arbitrary degenerate prime 简称AD)相组合,以基因组DNA作为模板,根据引物的长短和特异性的差异设计不对称的温度循环,通过分级反应来扩增特异引物。   TAIL-PCR包括3轮PCR反应。第1轮PCR反应包括5次高严谨性反应、1次低严谨性反应、10次较低严谨性反应和12次热不对称的超级循环。首先5次高严谨性的反应,使长的高退火温度的特异引物SPl与已知的序列退火并延伸,目标序列扩增成直线性型上升,由AD引物结合产生的非特异性产物的浓度则较低。而后进行1次低退火温度的反应,目的是使简并引物结合到较多的目标序列上,接下来10次较低严谨性的反应可以使两种引物均能与模板退火,从而使原来由高严谨性循环所产生的单链靶DNA复制成双链DNA,为下一轮线性扩增模板做准备。最后是进行12次热不对称的TAIL循环(超级循环即高特异性和低特异性循环交替),目的片段得以指数性地扩增,扩增的量大大超过了非目标片段。经过上述一系列的反应得到了不同浓度的3种类型产物:TAIL-PCR中间会出现3 种类型的产物。类型1是特异引物和任意引物之间扩增的产物(即目标产物;类型2是单独由特异引物扩增的产物;类型3是单独由任意引物引发的产物。该方法由3步连续的PCR扩增过程构成。经过第一阶段的PCR扩增后,类型2产物的分子数目在3种产物中最多,类型1产物稍低。在第二阶段的扩增中,类型1产物的分子数逐渐升至最高,类型2分子数目基本保持不变,而类型3的分子数目仍然保持很低。在第三阶段结束后,基本上只有类型1产物,即目的产物。   TAIL-PCR的技术难点,首先是引物设计,和一般的PCR反应相比,TAIL-PCR反应对引物的要求较高,引物的设计很是重要。特异性引物和简并引物的选择直接影响扩增的效果。特异引物设计:3个嵌套的特异性引物长度一般在20~30 bp之间,Tm 值一般设为58~68℃。SP1、SP2 和SP3之间最好相距100 bp以上以便在电泳时更容易区分3轮PCR产物。简并引物是按照物种普遍存在的蛋白质的保守氨基酸序列设计的,相对较短,长度一般是14 bp左右,Tm值介于30~48℃之间。AD引物是否最佳与它的简并度、引物长度和核苷酸序列组成有很大关系。   目前一些研究这又对TAIL-PCR进行了该进,比如省去了10个中等严谨度的PCR循环,3次PCR循环中的变性时间由5 s延长到了30 s,更有利于DNA彻底解链,第3次循环增加了热不对称交织PCR,更有利于特异目的片段的富集,把较低特异性反应的温度从44℃降到29℃等,以利于更好的扩增目的片段。   3 .RACE技术与染色体步移方的比较   3.1 SMART-RACE与末端脱氧核苷酸转移酶( TdT)加尾技术的比较    SMART-RACE技术是目前一种比较成熟的技术,它能够最大限度地提高在反转录反应中获取全长cDNA的可能,成功率高,可以节约时间并且操作程序简单,但是于价格过于昂贵, 试验成本增加, 而且对RNA质量要求很高。TdT加尾扩增法的优化改良, 成功率和稳定性都得到较大的提高,改良的TdT末端加尾扩增法综合了多项PCR扩增方法如锚定PCR、巢式PCR、降落PCR等, 原理简单易懂, 操作性强,能够满足一般基因克隆的要求。   3.2连接介导PCR与TAIL-PCR的比较    连接介导PCR原理简单,但其需要DNA内酶切酶切,而内酶切又比较昂贵,增加实验的成本。并且酶切的好坏,接头处理方法是否得当而影响接头与DNA小片段的连接效率,从而导致失败。TAIL-PCR不需要进行DNA酶切而直接用DNA做模板进行扩增,仅仅只需要三轮PCR扩增,就可以得到目的条带。简单、特异性高、高灵敏度、快速、不涉及连接反应这就是TAIL-PCR的优点,但是TAIL-PCR也有缺点,主要是TAIL-PCR 反应需要较多的引物组合。此外,由于AD引物存在有限的结合位点,对于个别的侧翼序列,即使使用不同的简并引物也难以扩增到阳性结果。目前已经有学者提出用RAPD的引物替代AD引物的观点,由于RAPD引物数量很多,所以可以解决AD引物存在有限的结合位点的不足。   4.总结    RACE是一种快速、有效的克隆基因全长cDNA的有效方法。基因的3"端通过RACE技术非常容易得到,但是5"端却比较难,即使用比较昂贵的5"端RACE试剂盒也不一定能得结果。而基于PCR扩增的染色体步移法,却有得天独厚的优势,它不仅仅能用于基因全长的获得而且还可以得到基因5"端的启动子序列。模板仅仅只要基因组DNA就行,原理简单易懂,操作方法也简单易行,并且非常的廉价,适用于不同水平和不同层次的研究者。笔者通过TAIL-PCR技术成功得到了芒果LFY基因的全长及其启动子序列。

基因专利里面的序列是怎么写的还有前面的一串串数字是什么意思

真实的或者假设的携带基因信息的DNA分子的一级结构。基因序列中的字母只有四种,即A、C、G、T,分别代表组成DNA的四种核苷酸。腺嘌呤,胞嘧啶,鸟嘌呤,胸腺嘧啶,任意长度大于4的一串核苷酸被称做一个序列,每个字母代表一种碱基,两个碱基形成一个碱基对,碱基对的配对规律是固定的。部分DNA序列或基因序列使用一串字母表示的真实的或者假设的携带基因信息的DNA分子的一级结构。

求大肠杆菌基因序列

大肠杆菌有不同的菌株,其基因组序列是不同的,你可以用准确的菌株名在NCBI的Genome数据库中搜索,以实验室常用的工程大肠杆菌BL21株为例,其基因组的序列和信息在以下链接中非常详细:http://www.ncbi.nlm.nih.gov/genome?Db=genome&Cmd=ShowDetailView&TermToSearch=24757其基因组的序列和图片(包括编码区)在这个链接:http://www.ncbi.nlm.nih.gov/nuccore/253322479?report=graph你可以拷贝全部序列,或者部分序列,编码区连氨基酸对应的密码子都标好了,非常方便。其基因组中各个基因的序列在下面这个链接,要那个基因,就点相应的链接(文件大,需耐心等待):http://www.ncbi.nlm.nih.gov/nuccore/CP001665有什么问题可给我留言。

基因序列比较怎么分析?

看你是要对比几条序列了,双序列比对需要BLAST,NCBI上有,也可以在百度搜索本地版的下载下来,多序列比对需要cluxtal X软件, 要把所有基因序列fasta格式放在一起,需要输入所有序列的fasta格式,然后进行多序列联配!

基因序列和引物序列的关系

PCR一对引物的序列与目的基因中的两段序列(分别为正链与反链)呈互补关系。这种关系看图一目了然,文字半天也说不清楚。请楼主直接搜索PCR原理图片。引物如果冻干状态可以在-20oC保存很久。如果用TE缓冲液溶解后需要分装,仍保存在-20oC,用时取一小支,稀释到使用倍数,避免重复解冻

蛋白质的基因序列和氨基酸序列有什么区别

蛋白质是由氨基酸连接并经过加工在空间中形成不同空间结构才产生具有生物功能的蛋白质。也就是说机体在产生蛋白质前是先通过 机体在一定时间,一定部位选择性的表达特定基因(mRNA),真核生物编码一种氨基酸都对应一个密码子,在rRNA的参与下通过tRNA转录处所要表达的氨基酸,连接成多肽,再在经过编辑,剪切等过程加工成成熟多肽,通过各种细胞器加工,分泌产生成熟蛋白质。即 蛋白质是由对应氨基酸不同排布形成,归根结底都是由基因表达的不同阶段的产物。 这个只是大概的过程 完整的基因表达产生蛋白质的过程是相当的复杂 ,目前有的具体加工过程只是推理换为得到验证,甚至有些过程换有待科学工作者去深入研究。

基因序列是模板链还是编码链

是编码链.用错链对引物设计有影响,因为核苷酸结构不对称,分三端和五端. 所以5"-ATCGXXXXXXXXXXXXXX 和 3‘-ATCGXXXXXXXXXXXXXX是两个不同的引物分子. 引物设计软件都使用编码链,所以楼主不用烦了直接复制粘贴好了哇.

怎样获取一个基因的CDS序列

cds就是基因序列,cds是编码区的缩写,是基因编码蛋白质的核酸序列,也就是转录成mRNA序列的区域。你这里的提取是说获知基因序列信息?还是要从样本中提取出来目的基因?需要提取基因做表达之类的话可以根据cds序列信息设计扩增引物,提取样本DNA后进行PCR扩增,跑个胶纯化一下就好了。某基因CDS区是第949位碱基到5229位碱基,也就是高亮的那部分序列就是这个基因的CDS序列完整信息。

已知某蛋白质的氨基酸序列,如何确定其基因序列?说一下详细的过程

这个不能准确的确定基因序列。因为基因转录成的mRNA上的密码子具有简并性,也就是说多个密码子可以编码同一种氨基酸。比如CUU、CUA、CUG、CUC均编码亮氨酸。反过来,你知道蛋白质序列中有亮氨酸,但你却不知道亮氨酸到底是CUU、CUA、CUG、CUC这四个中谁编码的。所以根据氨基酸序列反推出来的基因序列有很多条。如果真要得到一种基因序列的话就只能先查密码子表推出mRNA,再根据碱基互补配对原则反推出基因的序列,注意mRNA上的U就是基因中的T,它们都与A配对。

已知基因编码怎么查基因序列

基因编码是一些数据库对基因的编号,大家一般使用权威数据库的编号。只要知道基因编码,登录对应的数据库就可以查询基因序列等信息。

如何在NCBI上找到基因外显子或内含子的序列

1、首先输入基因的完整学名,找到与基因相关的cDNA序列.在这一cRNA序列的解说信息里,就已经有各外显子的分节.2、将该cDNA输入Blast进行序列比对,就可以找到其每一个外显子所对应的染色体位置,这些信息就显示了所有的外显子.处于外显子两端的序列就是内含子.3、如你需要完整的基因序列,需要在blast中选择others这个数据库,然后查找相关的Bac质粒中含有你完整基因的文件,在其中找到你所需的信息.

我正在扩增一个基因的基因组序列,怎么界定这个基因组序列的前后两端?

这个问题的概念有点问题,基因组通常指的是某一个生物体的全部遗传物质可以称之为基因组。如果只是一个基因的话,直接是确认基因序列的起始就可以了。判断基因的前后两端不是很容易,因为很多时候只能根据最终的表达产物来进行判断。通常认为,一个开放阅读框是从起始密码子开始(绝大多数是ATG),到终止密码子结束(TAG,TAA,TGA),是编码一个蛋白的完整序列。序列分析的时候,就会发现前后有的会有好几个ATG,所以可以把预期的序列先到ncbi上去blast,看别人已经放出来的序列,再来进行判断。

如何根据氨基酸序列查询基因序列?

一个就是你直接blast 蛋白序列,找到与你的所需要的那个基因的序列另外就是直接search那个肽链的名字如胸腺肽Thymosin,就会出来结果,找到Homo sapiens,打开就会有一条肽链,看看是不是你需要的,那上面有一个CDS,点就会出来编码的序列

基因序列分析为什么会出现

因为有了DNA测序技术,产生基因序列数据

怎么寻找基因名称

1 打开NCBI主页2 左边search里面选择GENE 右边的对话框里输入你想要的基因名称3 在出来的所有条目第一行后面都有种属表明,比如Homo sapiens是人Felis catus是猫。选择你想要的种属。4 再出现的页面中找到那个像数轴的图,在左侧有可以点击的蓝色数字,往往开头有AK、NM的开头,点击它,再出现的下拉框里选择GENEBANK。5 最下面就是他的基因序列 当然也可以参考页面上提供的CDS区域范围来看。

关于基因预测结果的整合与否

关于基因预测结果的整合与否方法1:最长ORF法 将每条链按6个读码框全部翻译出来,然后找出所有可能的不间断开放阅读框(ORF),只要找出序列中最长的ORF,就能相当准确地预测出基因。最长ORF法发现基因的一般过程(包括基因区域预测和基因功能预测2个层次):步骤1:获取DNA目标序列 ① 如果已有目标序列,可直接进入步骤2;② 可以通过PubMed查找感兴趣的资料,通过GenBank或EMBL等数据库查找目标序列。步骤2:查找ORF并将目标序列翻译成蛋白质序列利用相应工具,如ORF Finder、Gene feature (Baylor College of Medicine)、GenLang (University of Pennsylvania)等查找ORF并将DNA序列翻译成蛋白质序列。步骤3:在数据库中进行序列搜索 利用BLAST进行ORF核苷酸序列和ORF翻译的蛋白质序列搜索。步骤4:进行目标序列与搜索得到的相似序列的全局比对(global alignment) 虽然步骤3已进行局部比对(local alignment)分析,但全局比对有助于进一步加深对目标序列的认识。步骤5:查找基因家族进行多序列比对(multiple sequence alignment),获得比对区段的基因家族信息。步骤6:查找目标序列中的特定模序 分别在Prosite、BLOCK、Motif数据库中进行profile、模块(block)、模序(motif)检索。步骤7:预测目标序列蛋白质结构 利用PredictProtein(EMBL)、NNPREDICT(University of California)等预测目标序列的蛋白质二级结构。步骤8:获取相关蛋白质的功能信息 为了了解目标序列的功能,收集与目标序列和结构相似蛋白质的功能信息非常必要。可利用PubMed进行搜索。方法2:利用编码区与非编码区密码子选用频率的差异进行基因预测 编码区的碱基组成不同于非编码区,这是由于蛋白质中20种氨基酸出现的概率、每种氨基酸的密码子兼并度和同一种氨基酸的兼并密码子使用频率不同(即密码子偏好)等原因造成的。该方法是目前各种预测程序中广泛应用的一种方法,如GCG(Genetic Computer Group研制的核酸、蛋白质分析软件包)的TestCode和Baylor Medcine College的BCM Gene Finder等程序均利用了这一方法。方法3:利用ESTs预测基因 Expressed Sequence Tags (ESTs) 代表基因序列,若DNA序列和 EST严格匹配,这段DNA序列属于基因或假基因。此法对ESTs进行聚类和拼接,聚类和拼接的目的就是将来自同一个基因或同一个转录本的具有重叠部分(over-lapping)的ESTs整合到单一的簇(cluster)中。通过聚类可产生较长的一致性序列(consensus sequence),降低数据的冗余,纠正错误数据,并最终得到基因的全长序列。随着信息学方法在基因预测中的进一步充分应用,一批新的基因预测方法被相继提出,如人工神经网络、隐马尔可夫模型(Hidden Markov Model, HMM)、动态规划法(dynamic programming)、法则系统(ruled-based system)、线性判别分析(Linear Discriminant Analysis, LDA)、决策树(decision tree)、傅立叶分析(Fourier analysis)等。这些方法是基于编码区所具有的独特信号,如剪接的供体和受体位点、起始和终止密码子、启动子特征、转录因子结合位点等进行预测。相关的基因预测软件包括:Procrustes、GeneID、GenScan、GRAIL等。

如何查找一个基因的全序列,要详细一点的,一步步的操作步骤。谢谢了

上pubmed,genebank,输入你要查找的基因名称,最好再输入种属缩小下范围,这样还是会出来一大堆摘要,仔细看一下描述,找到你需要的,点进去,里面有全基因的序列。在具体的没法和你说了,你找一本生物信息学方面的书,里面都有讲的,你自己好好看看。推荐你看看张成岗和贺福初编的《生物信息学方法与实践》,虽然是02年编的,我觉得还是不错的,而且也不厚,看完后相信对你的研究工作也会有帮助的。

(基因)和(基因序列)不是一回事吗?

基因是由遗传效应的DNA或者是RNA序列,基因序列相当于是基因中的核酸的排列顺序。欢迎追问

基因中,什么是调控序列?包括什么?

调控序列就是一段控制基因表达的DNA片段调控序列主要有以下几种:①在5′端转录起始点上游约20~30个核苷酸的地方,有TATA框(TATA box)。 TATA框是一个短的核苷酸序列,其碱基顺序为TATAATAAT。TATA框是启动子中的一个顺序,它是RNA聚合酶的重要的接触点,它能够使酶准确地识别转录的起始点并开始转录。当TATA框中的碱基顺序有所改变时,mRNA的转录就会从不正常的位置开始。②在5′端转录起始点上游约70~80个核苷酸的地方,有CAAT框(CAAT box)。CAAT框是启动子中另一个短的核苷酸序列,其碱基顺序为GGCTCAATCT。CAAT框是RNA聚合酶的另一个结合点,它的作用还不很肯定,但一般认为它控制着转录的起始频率,而不影响转录的起始点。当这段顺序被改变后,mRNA的形成量会明显减少。③在5′端转录起始点上游约100个核苷酸以远的位置,有些顺序可以起到增强转录活性的作用,它能使转录活性增强上百倍,因此被称为增强子。当这些顺序不存在时,可大大降低转录水平。研究表明,增强子通常有组织特异性,这是因为不同细胞核有不同的特异因子与增强子结合,从而对不同组织、器官的基因表达有不同的调控作用。例如,人类胰岛素基因 5′末端上游约250个核苷酸处有一组织特异性增强子,在胰岛素β细胞中有一种特异性蛋白因子,可以作用于这个区域以增强胰岛素基因的转录。在其他组织细胞中没有这种蛋白因子,所以也就没有此作用。这就是为什么胰岛素基因只有在胰岛素β细胞中才能很好表达的重要原因。④在3′端终止密码的下游有一个核苷酸顺序为AATAAA,这一顺序可能对mRNA的加尾(mRNA尾部添加多聚A)有重要作用。这个顺序的下游是一个反向重复顺序。这个顺序经转录后可形成一个发卡结构(图3-4)。发卡结构阻碍了RNA聚合酶的移动。发卡结构末尾的一串U与转录模板DNA中的一串A之间,因形成的氢键结合力较弱,使mRNA 与DNA杂交部分的结合不稳定,mRNA就会从模板上脱落下来,同时,RNA聚合酶也从DNA上解离下来,转录终止。AATAAA顺序和它下游的反向重复顺序合称为终止子,是转录终止的信号。

如何使用 NCBI 查找基因序列,mRNA,Promoter

1、在NCBI上查找基因的mRNA序列。2、Messenger RNA (mRNA)——信使核糖核酸信使核糖核酸携带遗传信息,在蛋白质合成时充当模板的RNA。信使RNA从脱氧核糖核酸(DNA)转录合成的带有遗传信息的一类单链核糖核酸(RNA)。它在核糖体上作为蛋白质合成的模板,决定肽链的氨基酸排列顺序。mRNA存在于原核生物和真核生物的细胞质及真核细胞的某些细胞器(如线粒体和叶绿体)中。

基因有没有序列坐标

有。基因序列就是使用一串字母表示的真实的或者假设的携带基因信息的DNA分子的一级结构,有序列坐标,每个基因由其在序列上的起始和结束坐标以及列在一行上的需称来左义。

高中生物,根据氨基酸序列,推断出基因序列,是根据什么原理?

氨基酸有一个或者是多个密码子与之对应!按照这种对应关系即可推理出密码子的序列!而依据转录时DNA的互补配对原则可以推出DNA(基因)序列!注意一个氨基酸序列可能会有多个DNA序列!这是由于密码子的简并(一个氨基酸可能有多个密码子)

基因组结构差异和序列差异的区别

基因组结构差异和序列差异的区别就像树干机构和树的结构一样。基因结构特指一段基因序列如血红蛋白基因的DNA结构,基因组结构是指一个细胞内所有基因的结构,或者比较这个生物的基因组和其他生物的基因组在结构上的区别,就想杨树与柳树的差别。先解释一下基因组(genomes)的概念,简单说,基因组就是一个细胞中遗传物质的总量。我们人类是二倍体,体细胞有46条/23对染色体,其实就是2套染色体,1套有23条,那么这23条染色体上所有的DNA序列就是人类的基因组。我想这道题目的意思应该是从结构、数量、序列特点等方面说明真核基因组与原核基因组的异同。相同点很多,你可以自由发挥了,比如:都是由生物基本单位中的所有核酸序列组成,都有重复序列和单一序列,都是生物的遗传物质……然后来看原核生物基因组和真核生物基因组的区别:1、真核生物基因组指一个物种的单倍体染色体组(1n)所含有的一整套基因。还包括叶绿体、线粒体的基因组。 原核生物一般只有一个环状的DNA分子,其上所含有的基因为一个基因组。2、原核生物的染色体分子量较小,基因组含有大量单一顺序(unique-sequences),DNA仅有少量的重复顺序和基因。真核生物基因组存在大量的非编码序列。包括:.内含子和外显子、.基因家族和假基因、重复DNA序列。真核生物的基因组的重复顺序不但大量,而且存在复杂谱系。3、原核生物的细胞中除了主染色体以外,还含有各种质粒和转座因子。质粒常为双链环状DNA,可独立复制,有的既可以游离于细胞质中,也可以整合到染色体上。转座因子一般都是整合在基因组中。真核生物除了核染色体以外,还存在细胞器DNA,如线粒体和叶绿体的DNA,为双链环状,可自主复制。有的真核细胞中也存在质粒,如酵母和植物。4、原核生物的DNA位于细胞的中央,称为类核(nucleoid)。真核生物有细胞核,DNA序列压缩为染色体存在于细胞核中。5、真核基因组都是由DNA序列组成,原核基因组还有可能由RNA组成,如RNA病毒。
 首页 上一页  27 28 29 30 31 32 33 34 35  下一页  尾页