经测定某种生物发现嘌呤碱基和嘧啶碱基的含量比相等,则这种生物一定不是
币岛弟搞错了吧。这个题应该选AG,鸟嘌呤A,腺嘌呤、C,胞嘧啶、T,胸腺嘧啶、U,尿嘧啶A-T(U) G-C 所以在双链DNA中,嘌呤碱基和嘧啶碱基的含量比相等,反过来说,如果嘌呤碱基和嘧啶碱基的含量比相等,则这种生物中一定不会只含有单链的碱基。所以只能选A
嘧啶碱基降解不需要nad吗
嘧啶核苷酸在酶作用下生成磷酸、核糖及自由碱基,产生的嘧啶碱进一步分解。胞嘧啶脱氨基转变成尿嘧啶,尿嘧啶最终生成NH3、CO2及β-丙氨酸。胸腺嘧啶降解成β-氨基异丁酸。
某生物核酸的碱基组成是嘌呤碱基占58%,嘧啶碱基占42%,此生物不可能是( )a.噬
B 解析: 在DNA中,由于碱基互补配对,故嘌呤碱基等于嘧啶碱基,而在RNA内,各碱基数量不定。某生物核酸的碱基组成是嘌呤碱基占58%,嘧啶碱基占42%,说明该生物一定含有RNA,而噬菌体是DNA病毒,核酸只含有DNA。
高一生物 某生物核酸的碱基组成,嘌呤碱基占52%,嘧啶碱基占45%,此生物一定不是
A以DNA为遗传物质的生物,嘌吟碱碱基加嘧啶碱基之和为1。题中,嘌吟碱碱基加嘧啶碱基之和小于1,以RNA遗传物质。 因此该生物一定不是真核生物。另外,真核生物中是有RNA的,只是不以遗传物质的形式存在 希望你能采纳
胸腺嘧啶二聚体的形成和修复
形成:253.7纳米紫外线照射可使DNA分子中同一条链两相邻的胸腺嘧啶碱基之间形成二聚体,5、6碳位上两嘧啶形成键位。影响DNA的双螺旋结构,使得DNA复制和转录功能受到阻碍。修复:紫外线照射形成了胸腺嘧啶二聚体是以UvrABC进行修复的(某些化学造成的损伤也是以此方式修复的)。DNA损伤时,局部有一膨胀的变型区,蛋白质UvrA及UvrB结合在此变性区,并促使DNA解链,ATP参与此过程。随之,Uvr C蛋白结合到损伤部位的复合物上。在损伤部位相邻的12个核苷酸间距的两端被切开,在解链酶的作用下,损伤部位的12个核苷酸片段经解链脱出,随后,在DNA聚合酶1的作用下补充了空隙,最后在连接酶的作用下完成了额修复。反应完成之后,Uvr A、B、C在蛋白酶水解下被破坏。修复完成。
嘌呤和嘧啶碱基是真核生物的主要能源吗?为什么
真核生物的主要能源是糖类(主要是单糖,比如葡萄糖),其次是脂类。嘌呤和嘧啶碱基主要参与核酸的组成。望对你有帮助!
嘧啶碱基环上各原子在同一平面上,对么?
是的,就这个样子,
嘌呤和嘧啶碱基合成的不同
嘌呤VS嘧啶器官:同 主要是肝细胞定位:细胞质VS细胞质+线粒体原料:同 Asp,Gln,一碳单位,CO2 异 甘氨酸,5"-磷酸核糖VSPRPP特点:在磷酸核糖分子上逐步加上小分子物质合成嘌呤核苷酸VS先合成嘧啶环,再与PRPP合成嘧啶核苷酸过程:先合成IMP,再转变成AMP和GMPVS 先合成乳清酸,再与磷酸核糖相连关键酶:同 PRPP合成酶异 PRPP酰胺转移酶 VS CPSII,天冬氨酸氨基甲酰磷酸转移酶
控制合成胰岛素《含51个氨基酸》的基因中,含有嘧啶碱基至少多少个?
控制合成胰岛素(含51个氨基酸)的基因中,(至少)有306个含N碱基,而DNA中嘌呤和嘧啶数是相等的,各占一半,
控制合成胰岛素(含51个氨基酸)的基因中,含有嘧啶碱基至少有 A306 B153 C102 D51 为什么不考虑终止密码
哎,这道题,我直接觉得出题的是个2,胰岛素是有51个AA,但人家是两条肽链以二硫键连接起来的,AB之间,本身还有一段切除的肽链,这题直接给学生一种错误的感觉,你从51个AA,推测基因的情况,这个是对的,是题目在混淆你(我觉得这是一道非常失败,而且老师没有生物常识,还自以为很高明,但提问方式确是不好反驳),题目本身就没有考虑基因的具体情况,你根本不用考虑什么终止密码子了, 因为本身就非常不准确。 你不用纠结这道题了, 因为题目本身很失败,高考题不会是这个2样。 复习高考还是要多看书,做一些高质量的题,而不是这种很没有意义的题目,历年各省真题是很有价值的,希望能帮到你。 不知道这类失败的模拟题还要横行多少年啊,我想当个老师还当不成呢,╮(╯▽╰)╭
下列物质中,哪种物质直接参与了核酸从头合成中嘧啶碱基的合成()
下列物质中,哪种物质直接参与了核酸从头合成中嘧啶碱基的合成() A.二氧化氮 B.谷氨酸 C.天冬氨酸 D.甘氨酸 E.丙氨酸 正确答案:C
控制合成胰岛素(含51个氨基酸)的基因中,含嘧啶碱基有多少
控制合成胰岛素(含51个氨基酸)的基因中,(至少)有306个含N碱基,而DNA中嘌呤和嘧啶数是相等的,各占一半,
经测定某生物体内遗传物中嘧啶占全部碱基
d烟草花叶病毒A黄瓜为植物,B噬菌体,C白鼠为动物,他们的遗传物质均为双链DNA,所以体内的嘧啶碱基=嘌呤碱基烟草花叶病毒为RNA病毒,嘧啶与碱基碱基之间不存在等量关系。B、D的区别是 噬菌体为DNA病毒 烟草花叶病毒为RNA病毒,其内不含DNA
DNA和RNA共有的嘧啶碱基是( ) A. A B. U C. C D. T
DNA中含氮碱基分别是A、T、C、G,RNA中含氮碱基分别是A、U、C、G,则DNA和RNA共有的是A、C、G,其中嘧啶碱基是C. 故选:C.
我们来自外星吗?陨石中首次发现核酸主要成分嘧啶碱基
地球上的物种千千万万,但是这些物种最早起源于哪里呢?在众说纷纭当中,有一种说法叫做地球生命外来说,表示生命最初是由陨石等外来物质携带着打开生命之门的钥匙,经过漫长的太空漂流来到地球上的。在过往的研究当中,科学家们已经在一种碳质球粒陨石中检测到了嘌呤碱基的成分,这是组成DNA与RNA的重要化学成分之一,其中包括鸟嘌呤和腺嘌呤,不过除了嘌呤碱基以外,组成DNA与RNA还需要嘧啶碱基,但是此前科学家们只在陨石中监测出了尿嘧啶,还有胞嘧啶和胸腺嘧啶没有被发现,不过最近,这两样成分被来自日本的科学家找到了。 由日本北海道大学、日本海洋科学技术中心等团队的研究人员使用专门针对碱基进行优化的小规模量化的先进分析技术,分析了3颗富碳陨石:分别是默奇森陨石、默里陨石和塔吉什湖陨石。这些陨石中含有丰富的有机物,一直以来为科学家们提供了重要的研究样本,特别是默奇森陨石,美国宇航局戈达德太空飞行中心的天体生物学家丹尼尔·格拉文就曾说过:“我们并没有探测到生命本身,但所有的组成部分都在那里。没有默奇森,我就找不到工作”。 这一次,日本的研究人员不仅检测到了此前在陨石中发现的嘌呤碱基和尿嘧啶,还检测到了一直缺失的胞嘧啶、胸腺嘧啶以及它们的异构体。各种嘧啶碱基在陨石中的存在浓度达到了十亿分比,该浓度和科学家们模拟太阳系形成前条件的实验预测的结果差不多。他们认为,这些结果表明,这类化合物可能是在星际介质中经由光化学反应产生的,随后又在太阳系形成的过程中融入了小行星,小行星携带着这些化合物,最终以陨石的形式抵达地球,构建了地球上的早期生命。 这项研究又一次丰富了地球生命外来说这一假说,如果未来这一假说得到了证实,那么我们寻找地外文明的旅程或许其实也是人类的寻根之旅,当我们有朝一日找到了外星人,是不是会发现原来他们也在用DNA做遗传物质呢?这就需要时间来给我们答案了。
嘧啶碱基的介绍
嘧啶碱基 pyrimidine base,嘧啶核的各部分被取代的化合物。和嘌呤碱基一样,在生物体内以核酸、核苷酸、核苷等的成分而存在,游离态的比较少见。
含氮碱基分为嘌呤和嘧啶,
正确. 含氮碱基包括嘌呤碱和嘧啶碱 DNA中的嘌呤碱分为:鸟嘌呤G,腺嘌呤A;嘧啶碱分为:胞嘧啶C,胸腺嘧啶T. RNA中无胸腺嘧啶T,而存在尿嘧啶U,其他相同
"所有DNA分子中的嘌呤碱基总数都等于嘧啶碱基总数"这句话为什么不对
以下情况都不符合 1、基因突变 2、DNA上含有少量特殊嘌呤或嘧啶(非ATCG) 3、单链DNA分子 还有很多情况,上面句子的“所有”二字太绝对.
某生物核酸的碱基组成,嘌呤碱基占52%,嘧啶碱基占48%,此生物一定不是( )A.噬菌体B.大肠杆菌C.
A、噬菌体是DNA病毒,只含有DNA一种核酸,且DNA为双链结构,遵循碱基互补配对原则,因此其嘌呤碱基数目和嘧啶碱基数目相等,这与题干内容不符,A错误;B、大肠杆菌是原核生物,含有DNA和RNA两种核酸,且DNA中的嘌呤碱基数目和嘧啶碱基数目相等,而RNA中的嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,B正确;C、烟草是真核生物,含有DNA和RNA两种核酸,且DNA中的嘌呤碱基数目和嘧啶碱基数目相等,而RNA中的嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,C正确;D、烟草花叶病毒是RNA病毒,只含有RNA一种核酸,RNA为单链结构,其中嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,D正确.故选:A.
写出2种嘌呤和三种嘧啶碱基的名称和结构式.
A :腺嘌呤 G :鸟嘌呤 C:胞嘧啶 T:胸腺嘧啶 U:尿嘧啶 其中,AGCU构成了DNA,AGCU构成了RNA.
嘌呤碱基 和 嘧啶碱基 分别以什么方式和 戊糖连接
戊糖的第一位C与嘧啶碱的第一位N或与嘌呤碱的第九位N相连接
某种生物碱基组成中嘧啶碱基与嘌呤碱基组成比例不同说明
嘌呤数目和嘧啶数目不等,说明这种核酸是RNA. 一定不是噬菌体,因为噬菌体只有DNA,而其他三种生物都既有DNA,又有RNA.
在DNA、RNA中,嘌呤碱基含量是否等于嘧啶碱基含量?
DNA是,RNA不是DNA中相等因为是两条链A=T C=GRNA中没关系因为就一条链(A:腺嘌呤,G:鸟嘌呤,C:胞嘧啶,T:胸腺嘧啶,另外RNA没有T,而是U尿嘧啶)
真核生物体内嘌呤碱基和嘧啶碱基比1:1
嘌呤碱基和嘧啶碱基比1:1,对于双链DNA而言,是一定的,因为有碱基的互补配对。但是对于RNA而言,因为它是单链结构,无碱基互补配对原则,所以比例为1:1的情况很少,但在一定程度上有这种可能性。在真核生物体内既有DNA又有RNA,包括腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶和尿嘧啶。因此真核生物体内嘌呤碱基和嘧啶碱基比1:1,是不对的。 呵呵
为什么嘌呤碱基占58%,嘧啶碱基占42%的生物不可能是T4噬菌体?
因为噬菌体内只有DNA,嘌呤碱基占50%。嘧啶碱基占50%,这是肯定的。如果存在RNA或是DNA与RNA都有的生物,才可能嘌呤碱基占58%,嘧啶碱基占42%
嘌呤与嘧啶的排列顺序与碱基堆积力的关系
只是相对于B-DNA中的一条链而言,碱基堆积力也是存在于单链上的。所谓的碱基堆积力是指在DNA双螺旋结构中,碱基对平面垂直于中心轴,层叠于双螺旋的内侧,相邻疏水性碱基在旋进中彼此堆积在一起相互吸引形成的作用力。双链DNA中的碱基比单链DNA中碱基的堆积程度高,是由两条链配对碱基间的氢键引起的。所有的碱基都指向正确方向时,达到最大的氢键键合。已经被堆积的碱基更容易键合,已经被氢键定向的的碱基更容易堆积。氢键和碱基堆积是一致的,碱基堆积是一种协同作用,处于中间的碱基比两边的碱基稳定。从嘌呤到嘧啶方向的碱基堆积作用大于从嘧啶到嘌呤方向的碱基堆积作用是指一条链上从5"向3‘方向上上下相邻的两个碱基。
含氮碱基分为嘌呤和嘧啶,这句话对不对?
碱基互补配对原则theprincipleofcomplementarybasepairing 在dna分子结构中,由于碱基之间的氢键具有固定的数目和dna两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是adenine(a,腺嘌呤)一定与thymine(t,胸腺嘧啶)配对,guanine(g,鸟嘌呤)一定与cytosine(c,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。 腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即a=t,g≡c根据碱基互补配对的原则,一条链上的a一定等于互补链上的t;一条链上的g一定等于互补链上的c,反之如此。因此,可推知多条用于碱基计算的规律。 规律一:在一个双链dna分子中,a=t、g=c。即:a+g=t+c或a+c=t+g。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。 规律二:在双链dna分子中,两个互补配对的碱基之和的比值与该dna分子中每一单链中这一比值相等。(a1+a2+t1+t2)/(g1+g2+c1+c2)=(a1+t1)/(g1+c1)=(a2+t2)/(g2+c2) 规律三:dna分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即dna分子一条链中的比值等于其互补链中这一比值的倒数。(a1+g1)/(t1+c1)=(t2+c2)/(a2+g2) 规律四:在双链dna分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mrna中该种比例的比值。即双链(a+t)%或(g+c)%=任意单链(a+t)%或(g+c)%=mrna中(a+u)%或(g+c)%。 规律五:不同生物的dna分子中,其互补配对的碱基之和的比值(a+t)/(g+c)不同,代表了每种生物dna分子的特异性。
什么是嘌呤和嘧啶代谢
嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。 嘧啶与核酸 形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。 Image:Cytosine chemical structure.png|胞嘧啶 Image:Thymine chemical structure.png|胸腺嘧啶 Image:Uracil chemical structure.png|尿嘧啶 其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。 杂环化合物 嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。 嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面: 1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。 2、重要的能源物质 三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。 3、重要的信使分子 环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。 4、作为某些活性基因的载体 S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。 5、参与组成某些辅酶 腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。 人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。 嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。
RNA组分鉴定中,为什么鉴定的是嘌呤碱而不是嘧啶碱
因为DNA中有 A T 和G C而RNA中有A U 和G C所以鉴定RNA不能用 GC ,而应用腺嘌呤A和尿嘌呤UDNA与RNA的结构和组分的异同点.⑴组分:同:①DNA与RNA都是由磷酸、戊糖和含氮碱基组成.②DNA与RNA均含有四种常规碱基,包括两种嘌呤碱基和两种嘧啶碱基.嘌呤碱基均为腺嘌呤和鸟嘌呤;两种嘧啶碱基之一均为胞嘧啶.异:①DNA中的戊糖是核糖,而RNA中的戊糖是脱氧核糖.②DNA中的另一种嘧啶是胸腺嘧啶,而RNA中的另一种嘧啶是尿嘧啶.⑵结构:同:①DNA与RNA都含有一级结构和二级结构.②DNA与RNA的一级结构都是通过3ˊ,5ˊ-磷酸二酯键连接而成的.异:①DNA的一级结构是多聚脱氧核苷酸链,也指脱氧核苷酸的排列顺序.而RNA的一级结构是多核苷酸链.②DNA的二级结构是由两股链反向互补构成,并进一步形成的右手双螺旋结构.而RNA的二级结构是通过单股链自身回折配对局部形成双螺旋区(通过链内互补构成局部双螺旋),不配对部分形成环状.③DNA含有三级结构,而RNA没有.
提取细胞核中全部核酸进行碱基分析可知嘌呤碱基数等于嘧啶碱基数 为啥错了
细胞核中全部核酸包括DNA和RNA两种,DNA是双链的,它的嘌呤碱基数等于嘧啶碱基数 ,RNA是单链,它的嘌呤碱基数不一定等于嘧啶碱基数 。希望我的回答对你能有所帮助。
简述嘌呤碱基的最终代谢产物是什么?嘧啶碱基的最终代谢产物是什么?
9 煮熟的鸡蛋 温度,酸碱度等
嘌呤碱基与嘧啶碱基的结合保证了什么物质
嘌呤碱基与嘧啶碱基的结合保证了DNA分子空间结构的相对稳定。嘌呤碱基与嘧啶碱基的特性因素,结合起来会使结构稳定,结构稳定就会保证DNA分子空间结构的相对稳定。
真核生物体内嘌呤碱基和嘧啶碱基比1:1
嘌呤碱基和嘧啶碱基比1:1,对于双链DNA而言,是一定的,因为有碱基的互补配对。但是对于RNA而言,因为它是单链结构,无碱基互补配对原则,所以比例为1:1的情况很少,但在一定程度上有这种可能性。在真核生物体内既有DNA又有RNA,包括腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶和尿嘧啶。因此真核生物体内嘌呤碱基和嘧啶碱基比1:1,是不对的。呵呵
嘌呤占52%,嘧啶占48%生物是什么
由题意知,该生物的核酸中嘌呤碱基占52%,嘧啶碱基占48%,即嘌呤≠嘧啶,因此该生物不可能只含有DNA,因此该生物不可能是噬菌体. 故选:A.
"所有DNA分子中的嘌呤碱基总数都等于嘧啶碱基总数"这句话为什么不对
以下情况都不符合1、基因突变2、DNA上含有少量特殊嘌呤或嘧啶(非ATCG)3、单链DNA分子还有很多情况,上面句子的“所有”二字太绝对。
不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是什么?
不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是1。因为在双链DNA分子中,按照碱基互补原则,一个嘌呤碱基与一个嘧啶碱基互不配对,所以嘌呤碱基总数等于嘧啶碱基总数,比值是1。
嘌呤碱基和嘧啶碱基的结构
腺嘌呤(adenine,简写:A) 鸟嘌呤(guanine,简写:G) 尿嘧啶(uracil,简写:U) 胞嘧啶(cytosine,简写:C) 胸腺嘧啶(thymine,简写:T)
不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是什么?
你好!不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是1。因为在双链DNA分子中,按照碱基互补原则,一个嘌呤碱基与一个嘧啶碱基互不配对,所以嘌呤碱基总数等于嘧啶碱基总数,比值是1。打字不易,采纳哦!
细胞中嘌呤碱基与嘧啶碱基数目一定相等吗?
A、表现型=基因型+外界环境,因此基因型相同的生物体表现型不一定相同,A错误; B、细胞类生物的遗传物质都是DNA,病毒的遗传物质是DNA或RNA,因此以RNA为遗传物质的生物一定是病毒,B正确; C、细胞含有DNA和RNA两种核酸,其中DNA中嘌呤碱基与嘧啶碱基数目一定相等,但RNA中嘌呤碱基与嘧啶碱基数目不一定相等,因此细胞中嘌呤碱基与嘧啶碱基数目也不一定相等,C错误; D、真核生物染色体上的基因不都是成对存在的,如性染色体非同源区段的基因不是成对存在的,D错误. 故选:B.
组成RNA的嘧啶碱和嘌呤碱分别有哪些?
因为DNA中有 A T 和G C而RNA中有A U 和G C所以鉴定RNA不能用 GC ,而应用腺嘌呤A和尿嘌呤UDNA与RNA的结构和组分的异同点.⑴组分:同:①DNA与RNA都是由磷酸、戊糖和含氮碱基组成.②DNA与RNA均含有四种常规碱基,包括两种嘌呤碱基和两种嘧啶碱基.嘌呤碱基均为腺嘌呤和鸟嘌呤;两种嘧啶碱基之一均为胞嘧啶.异:①DNA中的戊糖是核糖,而RNA中的戊糖是脱氧核糖.②DNA中的另一种嘧啶是胸腺嘧啶,而RNA中的另一种嘧啶是尿嘧啶.⑵结构:同:①DNA与RNA都含有一级结构和二级结构.②DNA与RNA的一级结构都是通过3ˊ,5ˊ-磷酸二酯键连接而成的.异:①DNA的一级结构是多聚脱氧核苷酸链,也指脱氧核苷酸的排列顺序.而RNA的一级结构是多核苷酸链.②DNA的二级结构是由两股链反向互补构成,并进一步形成的右手双螺旋结构.而RNA的二级结构是通过单股链自身回折配对局部形成双螺旋区(通过链内互补构成局部双螺旋),不配对部分形成环状.③DNA含有三级结构,而RNA没有.
为什么嘌呤碱基和嘧啶碱基总数各占全部碱基总数的50%
碱基互补配对原则 the principle of complementary base pairing 在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。 腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T, G≡C根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。因此,可推知多条用于碱基计算的规律。 规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。 规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2) 规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2) 规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。即双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%。 规律五:不同生物的DNA分子中,其互补配对的碱基之和的比值(A+T)/(G+C)不同,代表了每种生物DNA分子的特异性。
碱基指嘌呤和嘧啶的衍生物,是什么意思?
碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤A、鸟嘌呤G,嘧啶包括胞嘧啶C、胸腺嘧啶T、尿嘧啶U,说“碱基指嘌呤和嘧啶的衍生物”是指嘌呤和嘧啶都有相似的框架结构,碱基就是在这个基础上构成的。
嘌呤核苷酸与嘧啶核苷酸的合成有何异同点?
在嘌呤核苷酸中,嘌呤碱以第9位的N与戊糖第1"位的C以核苷键相连接;戊糖第5"位的C再与磷酸以脂键相结合。而嘧啶核苷酸中,则是嘧啶碱以第1位的N与戊糖第1"位的C以核苷键相连接,其它不变。
嘌呤碱基和嘧啶碱基代谢过程有何区别与联系
嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳性嘧啶与核酸形成D N A和R N A的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(C y t o s i n e),胸腺嘧啶(T h y m i n e),尿嘧啶(U r a c i l)。l m a g e:C y T o s i n e c h e m i c a l s t r u c t u r e.p n g|胞嘧啶l m a g e:T h y m i n e c h e m i c a l s t r u c t u r e.p n g|胸脲嘧啶l m a g e: U r a c i l c h e m i c a l s t r u c t u r e.p n g|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结会。杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。
溴氯嘧啶的亲核取代
在一般情况下,2,4(6)-二卤代嘧啶的芳香亲核取代反应得到4(6)-位取代产物,二氯嘧啶亲核取代活性比较高.
比较嘌呤核苷酸和嘧啶核苷酸从头合成的异同
在嘌呤核苷酸中,嘌呤碱以第9位的N与戊糖第1"位的C以核苷键相连接;戊糖第5"位的C再与磷酸以脂键相结合;而嘧啶核苷酸中,则是嘧啶碱以第1位的N与戊糖第1"位的C以核苷键相连接,其它不变。嘌呤合成从5-磷酸核糖焦磷酸开始,先经一系列酶促反应,生成次黄嘌呤核苷酸,再转变为其他嘌呤核苷酸;(即在磷酸核糖基础上成环)嘧啶合成则是先合成嘧啶环,再与PRPP合成乳清苷酸,脱羧形成尿嘧啶核苷酸,再以此合成其他嘧啶核苷酸。(先成环,再接到磷酸核糖上)这是最主要的区别。此外嘌呤是形成咪唑环后还要合成第二个环,而嘧啶只有一个嘧啶环。扩展资料:嘧啶核苷酸的补救途径,可通过磷酸核糖转移酶催化,使各种嘧啶碱接受PRPP供给的磷酸核糖基直接生成嘧啶核苷酸;也可在核苷磷酸化酶催化下,嘧啶碱先与核糖-1-磷酸反应生成嘧啶核苷,再在嘧啶核苷激酶催化下,被磷酸化生成核苷酸。嘧啶核苷酸的从头合成与嘌呤核苷酸不同,嘧啶环的元素来源于谷氨酰胺、二氧化碳和天冬氨酸,其特点是首先将这些原料合成嘧啶环,然后与PRPP反应生成。参考资料来源:百度百科-嘧啶核苷酸的生物合成
嘧啶苷类(氮原子在嘧啶环,酰胺苷键)和碳苷哪个难水解?
都是N-C糖苷键,核糖的C-1原子和嘌呤的N-9或嘧啶的N-1通过缩合反应形成β-N糖苷键。也就是1,9-糖苷键和1,1-糖苷键
嘧啶合成所需的氨基甲酰磷酸的氨源来自
嘧啶合成所需的氨基甲酰磷酸的氨源来自谷氨酰胺。根据查询相关公开信息显示,嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。
请问tRNA受体茎环(acceptor stem)是指双氢尿嘧啶环吗?
stem是茎(或称臂),ring才是环。acceptor stem是氨基酸臂,接受氨基酸的茎。
嘧啶核苷酸的合成有何特点?分别有哪些氨基酸参加?
嘧啶核苷酸的从头合成与嘌呤核苷酸不同,生物体先利用小分子化合物形成嘧啶环。再与核糖磷酸结合成尿苷酸。关键的中间化合物是乳清酸。其它嘧啶核苷酸由尿苷酸转变而成。在嘧啶核苷酸合成过程中有:Gln和Asp参加。嘧啶核苷酸的分解代谢是先去除磷酸和核糖生成嘧啶碱,嘧啶碱在肝内降解。降解产物易溶于水,这点与嘌呤碱不同,嘌呤碱的代谢产物尿酸仅微溶于水。扩展资料:氨基酸在人体内通过代谢可以发挥下列一些作用:合成组织蛋白质;变成酸、激素、抗体、肌酸等含氨物质;转变为碳水化合物和脂肪;氧化成二氧化碳和水及尿素,产生能量。乳清酸磷酸核糖转移酶催化乳清酸转变为乳清酸核苷酸,而乳清酸核苷酸脱羧酶又催化乳清酸核苷酸转变为尿嘧啶核苷酸。两种酶有异常则尿嘧啶核苷酸的合成被阻断,失去最终产物对合成代谢的抑制作用,于是乳清酸便过度产生,尿中乳清酸排出增多。
有哪种形式一碳单位参与嘌呤和嘧啶核苷酸的合成
在DNA和RNA,一对在部分含氮碱发挥作用。 5种碱是杂环化合物,氮原子位于所述环或取代的氨基,其中一些(取代氨基,和氮气嘌呤环,嘧啶环氮3)直接参与碱基配对的。 有五个基地:胞嘧啶(简称C),鸟嘌呤(G),腺嘌呤(A),胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义五种碱基,腺嘌呤和鸟嘌呤,嘌呤属于家庭(缩写为R&下),它们具有双环结构。胞嘧啶,尿嘧啶,胸腺嘧啶嘧啶属于家庭(Y),该环系统是一个六元杂环。 RNA,尿嘧啶代替胸腺嘧啶的位置。值得注意的是,胸腺嘧啶尿嘧啶比5-甲基更多,甲基增加的继承的准确性。通过与核糖或脱氧核糖共价键 基化合物附着于碳原子以形成称为核苷。与磷酸结合形式再次核苷连接到五碳糖5个碳原子的核苷酸的磷酸基团。 基地:腺嘌呤 - 胸腺嘧啶 - 尿嘧啶 - 鸟嘌呤 - 胞嘧啶 - 嘌呤 - 嘧啶核苷腺苷 - 尿苷 - 鸟苷 - 胞苷 - 脱氧 - 胸部苷 - 脱氧鸟嘌呤 - 脱氧核糖核苷酸:AMP - UMP - GMP - CMP - ADP - UDP - 国内生产总值 - CDP - 三磷酸腺苷 - UTP - GTP - CTP - 坎普 - cGMP的脱氧核苷酸:恒定 - DTMP - 卸载 - 的dGMP - 的dCMP - DADP - DTDP - DUDP - dGDP - DCDP - 的dATP - dTTP的 - 的dUTP - dGTP - 的dCTP 核酸:DNA - RNA - LNA - 巴勒斯坦民族权力机构 - 基因 - 非编码RNA - 的miRNA - rRNA基因 - shRNA的 - 的siRNA - 酰tRNA - 线粒体 - 寡核苷酸核糖核酸酸(缩写为RNA,即,核糖核酸),存在于生物细胞和某些病毒的遗传信息的病毒样载体。 RNA由磷酸酯键的成长链分子凝结的核糖核苷酸。核糖核苷酸分子由磷酸,核糖和基地。 RNA碱基有四种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA牛逼胸腺嘧啶和RNA特性变得基地。 随着不同的DNA,RNA通常是单链的分子长度,不形成双螺旋结构,但是很多的RNA还需要通过碱基配对的规则来实行某种生物学功能,甚至三级结构的二级结构。 DNA和RNA基本上是相同的碱基配对规则,但是除了A-U,G-C与外部,G-U也可以配对。 在细胞中,根据不同的RNA结构和功能主要分为三类,即,酰tRNA(转运RNA),rRNA基因(核糖体RNA),mRNA(信使RNA)。的mRNA是蛋白质合成的模板,根据在细胞核的DNA转录的内容; tRNA的核苷酸序列(即遗传密码)mRNA的认可和氨基酸的转运; rRNA基因是核糖体的蛋白质的合成工作场所的组合物的组分。 在病毒,许多病毒只RNA作为遗传信息的唯一载体(而不是通常用作载体的双链DNA细胞生物)。 自1982年以来,有研究表明,许多RNA,如I,II型内含子RNA酶P,HDV,大亚基核糖体RNA,而且有这么有生化反应催化方法的酶活性活动此类核酶被称为RNA(核酶)。 90年代以来,也发现RNA干扰(RNA干扰,RNA干扰)等等现象证明了RNA在基因表达调控中起重要作用。
关于嘧啶核苷酸的生物合成哪种说法是错的。()
关于嘧啶核苷酸的生物合成哪种说法是错的。() A.首先合成的嘧啶环,再与磷酸核糖焦磷酸结合,生成嘧啶核苷酸 B.二氢乳清酸脱氢酶是一个含铁的黄素酶,有氧存在时产生H2O2 C.氨甲酰磷酸合成酶受UMP反馈抑制 D.胞嘧啶与磷酸核糖焦磷酸反应生成CMP E.UTP在CTP合成酶作用下可生成CTP 正确答案:D
核酸的基本组成单位是核苷酸,它是由()、()、()组成。嘌呤和嘧啶环中均含有()?
核苷酸是由(碱基)、(核糖)、(磷酸)组成。嘌呤和嘧啶环中均含有(氮元素)。核酸的组成核苷酸的组成
请问 嘌呤和嘧啶分别是如何与核糖形成核苷键的?
嘌呤或者嘧啶碱基与核糖组成核苷,再与磷酸组成核苷酸。嘌呤环与嘧啶环与糖环之间是通过N-核苷键连接的,分别有:腺苷(A)、鸟苷(G)、胞苷(C)、尿苷(U)这些都是核糖核苷,与脱氧核糖连接的为脱氧核苷。
嘧啶核苷酸合成原料是否需要一碳单位
需要dUMP甲基化生成dTMP的时候,需要N5,N10-亚甲四氢叶酸作为甲基供体,一碳单位直接参与。
嘧啶环各原子来源
嘧啶环中的第一位N原子来源于()。 A.天冬酰胺的酰胺基 B.谷氨酸 C.谷氨酰胺的酰胺基 D.天冬氨酸正确答案及相关解析 正确答案 D
嘧啶核苷酸从头合成的原料有哪些
天冬氨酸、谷氨酰胺、二氧化碳。嘧啶核苷酸的生物合成嘧啶核苷酸的生物合成1、嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。后者又在天冬氨酸转氨甲酰酶催化下,将氨基甲酰基转移到天冬氨酸的氨基上生成氨甲酰天冬氨酸。氨甲酰天冬氨酸脱水环化,生成二氢乳清酸,再脱氢即成乳清酸(嘧啶衍生物)。2、尿嘧啶核苷酸(UMP)和胞嘧啶核苷酸(cMP)合成:乳清酸与PRPP作用生成乳清酸核苷酸,后者脱羧即成尿苷酸。扩展资料反应过程中的关键酶在不同生物体内有所不同,在细菌中,天冬氨酸氨基甲酰转移酶是嘧啶核苷酸从头合成的主要调节酶;而在哺乳动物细胞中,嘧啶核苷酸合成的调节酶主要是氨基甲酰磷酸合成酶Ⅱ。主要合成过程:形成的第一个嘧啶核苷酸是乳氢酸核苷酸(OMP),进而形成尿嘧啶核苷酸(UMP),UMP在一系列酶的作用下生成CTP。dTMP由dUMP经甲基化生成的。嘧啶核苷酸从头合成的特点是先合成嘧啶环,再磷酸核糖化生成核苷酸。参考资料来源:百度百科-嘧啶核苷酸的生物合成参考资料来源:百度百科-核苷酸
嘌呤环和嘧啶环合成的原料
嘌呤环合成的原料:谷氨酰胺、天冬氨酸、甘氨酸、二氧化碳、一碳单位 嘧啶环合成的原料:谷氨酰胺、天冬氨酸、二氧化碳
合成嘌呤环和嘧啶环的前体物质分别是啥
嘌呤环合成的原料:谷氨酰胺、天冬氨酸、甘氨酸、二氧化碳、一碳单位嘧啶环合成的原料:谷氨酰胺、天冬氨酸、二氧化碳
嘌呤环和嘧啶环是如何形成的
嘧啶(C4H4N2,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。 嘧啶环广泛使用的合成途径是利用具有N-C-N骨架的试剂和含有C-C-C单元的试剂相结合,即双亲核基团和双亲电基团的方法。N-C-N试剂的两个氮原子作为亲核基团,而C-C-C试剂的两个末端碳原子相当于亲电基团。脲、硫脲和胍常用作N-C-N试剂,而1,3-二酮,二酯和二氰、α,b不饱和酮及酸衍生物都可作为环系的C-C-C部分。文献[8]报道FcCOCH=CHAr与硫脲在碱催化下发生加成反应,生成嘧啶类衍生物10,收率58-79%,醇钠是该反应的最佳催化剂。实验表明采用超声波可以促进该反应的选择性和提高反应速度。 嘌呤(Purine),是身体内存在的一种物质,主要以嘌呤核苷酸的形式存在,在作为能量供应、代谢调节及组成辅酶等方面起着十分重要的作用。嘌呤是有机化合物,分子式C5H4N4,无色结晶,在人体内嘌呤氧化而变成尿酸,人体尿酸过高就会引起痛风。 嘌呤是由一个嘧啶环和咪唑环组成的,嘌呤环的编号方式是固定的,即是从嘧啶环的N为1开始编号,按照杂原子位数和最小原则向下编号,先编嘧啶环,然后第七位开始编咪唑环,同样是从N开始。
嘧啶环上两个n原子
嘧啶(C4H4N2,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。嘧啶环广泛使用的合成途径是利用具有N-C-N骨架的试剂和含有C-C-C单元的试剂相结合,即双亲核基团和双亲电基团的方法。N-C-N试剂的两个氮原子作为亲核基团,而C-C-C试剂的两个末端碳原子相当于亲电基团。脲、硫脲和胍常用作N-C-N试剂,而1,3-二酮,二酯和二氰、α,b不饱和酮及酸衍生物都可作为环系的C-C-C部分。文献[8]报道FcCOCH=CHAr与硫脲在碱催化下发生加成反应,生成嘧啶类衍生物10,收率58-79%,醇钠是该反应的最佳催化剂。实验表明采用超声波可以促进该反应的选择性和提高反应速度。嘌呤(Purine),是身体内存在的一种物质,主要以嘌呤核苷酸的形式存在,在作为能量供应、代谢调节及组成辅酶等方面起着十分重要的作用。嘌呤是有机化合物,分子式C5H4N4,无色结晶,在人体内嘌呤氧化而变成尿酸,人体尿酸过高就会引起痛风。嘌呤是由一个嘧啶环和咪唑环组成的,嘌呤环的编号方式是固定的,即是从嘧啶环的N为1开始编号,按照杂原子位数和最小原则向下编号,先编嘧啶环,然后第七位开始编咪唑环,同样是从N开始。
嘧啶环的原子来源于
天冬氨酸和氨甲酰磷酸。经查询正保医学教育网得知,嘧啶环的原子来源于天冬氨酸和氨甲酰磷酸。嘧啶环广泛使用的合成途径是利用具有N-C-N骨架的试剂和含有C-C-C单元的试剂相结合,即双亲核基团和双亲电基团的方法。
嘧啶环中的两个氨原子是来自于?
天冬氨酸 一号氮;NH3 3号氮;
分子内含有嘧啶结构、嘧啶环上引入的甲磺酰基作为氢键接受体和HMG-CoA还原酶形成氢键,增加抑制的药为
【答案】:C本题考查的是HMG-CoA还原酶抑制药的结构。氟伐他汀钠、阿托伐他汀钙、瑞舒伐他汀钙均为全合成的“他汀”类药物,都具有开环的二羟基戊酸侧链,但分子内含有不同种的杂环结构。结构如下所示:
求生物化学--嘧啶核苷酸的合成 ppt课件
嘧啶核苷酸的生物合成 嘧啶核苷酸的从头合成与嘌呤核苷酸不同,嘧啶环的元素来源于谷氨酰胺、二氧化碳和天冬氨酸,其特点是首先将这些原料合成嘧啶环,然后与PRPP反应生成。 ①嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。后者又在天冬氨酸转氨甲酰酶催化下,将氨基甲酰基转移到天冬氨酸的氨基上生成氨甲酰天冬氨酸。氨甲酰天冬氨酸脱水环化,生成二氢乳清酸,再脱氢即成乳清酸(嘧啶衍生物)。 ②尿嘧啶核苷酸(UMP)和胞嘧啶核苷酸(cMP)合成:乳清酸与PRPP作用生成乳清酸核苷酸,后者脱羧即成尿苷酸。 尿苷酸是所有其他嘧啶核苷酸的前体。由尿嘧啶核苷酸转变成胞嘧啶核苷酸是在核苷三磷酸水平上进行的。UMP经相应的激酶催化而生成UDP和UTP,由谷氨酰胺提供氨基,使UTP转变为CTP。
嘌呤和嘧啶环体内分解的主要产物有那些?
人体内票吟代谢的最终产物是尿酸。密定代谢的最终产物是二氧化碳、氨、β-丙氨酸(尿喀淀代谢产物)或β-氨基异丁酸(胸腺淀代谢产物)。β-丙氨酸和β-氨基异丁酸又可经脱氨基作用脱去氨基后参加有机酸代谢。人体内票吟代谢的最终产物是尿酸。密淀代谢的最终产物是二氧化碳、氨、β-丙氨酸(尿密淀代谢产物)或β-氨基异丁酸(胸腺喀定代谢产物)。β-丙氨酸和β-氨基异丁酸又可经脱氨基作用脱去氨基后参加有机酸代谢。
嘧啶核苷酸的合成有何特点?分别有哪些氨基酸参加?
嘧啶核苷酸的从头合成与嘌呤核苷酸不同,生物体先利用小分子化合物形成嘧啶环。再与核糖磷酸结合成尿苷酸。关键的中间化合物是乳清酸。其它嘧啶核苷酸由尿苷酸转变而成。在嘧啶核苷酸合成过程中有:Gln和Asp参加。嘧啶核苷酸的分解代谢是先去除磷酸和核糖生成嘧啶碱,嘧啶碱在肝内降解。降解产物易溶于水,这点与嘌呤碱不同,嘌呤碱的代谢产物尿酸仅微溶于水。扩展资料:氨基酸在人体内通过代谢可以发挥下列一些作用:合成组织蛋白质;变成酸、激素、抗体、肌酸等含氨物质;转变为碳水化合物和脂肪;氧化成二氧化碳和水及尿素,产生能量。乳清酸磷酸核糖转移酶催化乳清酸转变为乳清酸核苷酸,而乳清酸核苷酸脱羧酶又催化乳清酸核苷酸转变为尿嘧啶核苷酸。两种酶有异常则尿嘧啶核苷酸的合成被阻断,失去最终产物对合成代谢的抑制作用,于是乳清酸便过度产生,尿中乳清酸排出增多。
嘌呤环和嘧啶环合成的原料
嘌呤环合成的原料:谷氨酰胺、天冬氨酸、甘氨酸、二氧化碳、一碳单位 嘧啶环合成的原料:谷氨酰胺、天冬氨酸、二氧化碳
合成嘧啶环的原料是()
合成嘧啶环的原料是() A.谷氨酸B.谷氨酰胺与CO2C.天冬氨酸D.天冬酰胺E.一碳单位正确答案:BC
嘧啶环元素来源口诀
嘌呤环n1来自冬氨酸,c2c8来自一碳,n3n9来自氨酰胺,c6来自co2、c4、c5,n7来自甘氨酸。
嘧啶环中的两个氮原子分别来自
一氨基和三氨基。一个氮原子和第三个碳原子相连,为N-1,另一个氮原子和第四个碳原子相连,为N-3,这两个氮原子分别来自单核苷酸中的一氨基和三氨基。
生物体内嘌呤环及嘧啶环是如何合成的?有哪些氨基酸直接参与核苷酸的合成
在DNA和RNA,一对在部分含氮碱发挥作用。 5种碱是杂环化合物,氮原子位于所述环或取代的氨基,其中一些(取代氨基,和氮气嘌呤环,嘧啶环氮3)直接参与碱基配对的。 有五个基地:胞嘧啶(简称C),鸟嘌呤(G),腺嘌呤(A),胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义五种碱基,腺嘌呤和鸟嘌呤,嘌呤属于家庭(缩写为R&下),它们具有双环结构。胞嘧啶,尿嘧啶,胸腺嘧啶嘧啶属于家庭(Y),该环系统是一个六元杂环。 RNA,尿嘧啶代替胸腺嘧啶的位置。值得注意的是,胸腺嘧啶尿嘧啶比5-甲基更多,甲基增加的继承的准确性。通过与核糖或脱氧核糖共价键 基化合物附着于碳原子以形成称为核苷。与磷酸结合形式再次核苷连接到五碳糖5个碳原子的核苷酸的磷酸基团。 基地:腺嘌呤 - 胸腺嘧啶 - 尿嘧啶 - 鸟嘌呤 - 胞嘧啶 - 嘌呤 - 嘧啶核苷腺苷 - 尿苷 - 鸟苷 - 胞苷 - 脱氧 - 胸部苷 - 脱氧鸟嘌呤 - 脱氧核糖核苷酸:AMP - UMP - GMP - CMP - ADP - UDP - 国内生产总值 - CDP - 三磷酸腺苷 - UTP - GTP - CTP - 坎普 - cGMP的脱氧核苷酸:恒定 - DTMP - 卸载 - 的dGMP - 的dCMP - DADP - DTDP - DUDP - dGDP - DCDP - 的dATP - dTTP的 - 的dUTP - dGTP - 的dCTP 核酸:DNA - RNA - LNA - 巴勒斯坦民族权力机构 - 基因 - 非编码RNA - 的miRNA - rRNA基因 - shRNA的 - 的siRNA - 酰tRNA - 线粒体 - 寡核苷酸核糖核酸酸(缩写为RNA,即,核糖核酸),存在于生物细胞和某些病毒的遗传信息的病毒样载体。 RNA由磷酸酯键的成长链分子凝结的核糖核苷酸。核糖核苷酸分子由磷酸,核糖和基地。 RNA碱基有四种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA牛逼胸腺嘧啶和RNA特性变得基地。 随着不同的DNA,RNA通常是单链的分子长度,不形成双螺旋结构,但是很多的RNA还需要通过碱基配对的规则来实行某种生物学功能,甚至三级结构的二级结构。 DNA和RNA基本上是相同的碱基配对规则,但是除了A-U,G-C与外部,G-U也可以配对。 在细胞中,根据不同的RNA结构和功能主要分为三类,即,酰tRNA(转运RNA),rRNA基因(核糖体RNA),mRNA(信使RNA)。的mRNA是蛋白质合成的模板,根据在细胞核的DNA转录的内容; tRNA的核苷酸序列(即遗传密码)mRNA的认可和氨基酸的转运; rRNA基因是核糖体的蛋白质的合成工作场所的组合物的组分。 在病毒,许多病毒只RNA作为遗传信息的唯一载体(而不是通常用作载体的双链DNA细胞生物)。 自1982年以来,有研究表明,许多RNA,如I,II型内含子RNA酶P,HDV,大亚基核糖体RNA,而且有这么有生化反应催化方法的酶活性活动此类核酶被称为RNA(核酶)。 90年代以来,也发现RNA干扰(RNA干扰,RNA干扰)等等现象证明了RNA在基因表达调控中起重要作用。
嘧啶核苷酸从头合成的原料有哪些
天冬氨酸、谷氨酰胺、二氧化碳。嘧啶核苷酸的生物合成嘧啶核苷酸的生物合成1、嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。后者又在天冬氨酸转氨甲酰酶催化下,将氨基甲酰基转移到天冬氨酸的氨基上生成氨甲酰天冬氨酸。氨甲酰天冬氨酸脱水环化,生成二氢乳清酸,再脱氢即成乳清酸(嘧啶衍生物)。2、尿嘧啶核苷酸(UMP)和胞嘧啶核苷酸(cMP)合成:乳清酸与PRPP作用生成乳清酸核苷酸,后者脱羧即成尿苷酸。扩展资料反应过程中的关键酶在不同生物体内有所不同,在细菌中,天冬氨酸氨基甲酰转移酶是嘧啶核苷酸从头合成的主要调节酶;而在哺乳动物细胞中,嘧啶核苷酸合成的调节酶主要是氨基甲酰磷酸合成酶Ⅱ。主要合成过程:形成的第一个嘧啶核苷酸是乳氢酸核苷酸(OMP),进而形成尿嘧啶核苷酸(UMP),UMP在一系列酶的作用下生成CTP。dTMP由dUMP经甲基化生成的。嘧啶核苷酸从头合成的特点是先合成嘧啶环,再磷酸核糖化生成核苷酸。参考资料来源:百度百科-嘧啶核苷酸的生物合成参考资料来源:百度百科-核苷酸
嘧啶环上第一位氮原子来源
天冬氨酸。嘧啶环上第一位氮原子的来源是天冬氨酸,在嘧啶生物合成的过程中,天冬氨酸被转化成羟乙酰谷氨酸,再通过多个反应步骤逐渐形成嘧啶环的结构,其中天冬氨酸的羧基与其他分子发生缩合反应,最终形成了尿嘧啶和胸腺嘧啶等核苷酸单元。
嘧啶环上第三位氮原子来源
嘧啶环上第三位氮原子来源于谷氨酰胺的酰胺氮。合成特点是先从头合成嘧啶环,再与PRPP中的磷酸核糖形成鸟苷酸UMP。UMP是胞苷酸CMP和胸苷酸TMP的前体,可转变为CMP和TMP。嘧啶环,化学术语,合成途径是利用具有N-C-N骨架的试剂和含有C-C-C单元的试剂相结合。
嘧啶环中的两个氮原子来自
嘧啶环中的两个氮原子来自天冬氨酸和氨基甲酰磷酸。嘧啶环,化学术语,合成途径是利用具有N-C-N骨架的试剂和含有C-C-C单元的试剂相结合,即双亲核基团和双亲电基团的方法。N-C-N试剂的两个氮原子作为亲核基团,而C-C-C试剂的两个末端碳原子相当于亲电基团。脲、硫脲和胍常用作N-C-N试剂,而1,3-二酮,二酯和二氰、α,b不饱和酮及酸衍生物都可作为环系的C-C-C部分。氨基甲酰磷酸是在Mg++、ATP及N-乙酰谷氨酸存在的情况下,由氨基甲酰磷酸合成酶催化NH3和HCO-3在肝细胞线粒体中合成。氨基甲酰磷酸基本介绍:体内催化氨基甲酰磷酸生成的酶有两种,一种是氨基甲酰磷酸合成酶Ⅰ,存在于肝线粒体中,最终产物是尿素;另一种是氨基甲酰磷酸合成酶Ⅱ,存在于各种细胞的细胞液中,反应最终产物是嘧啶。氨基甲酰磷酸的合成。氨基甲酰磷酸(carbamylphosphate)是在Mg++、ATP及N-乙酰谷氨酸;(Nacetylglutamicacid,AGA)存在的情况下,由氨基甲酰磷酸合成酶;(carbamylphosphatesynthetaseI,CPSI)催化NH3和HCO-3在肝细胞线粒体中合成。
嘧啶环的原子来源于
嘧啶环的原子来源于碳氢化合物,例如烷烃、烯烃、芳香族烃等。
嘧啶环中第二位c原子来自
嘧啶环中第二位c原子来自氨甲酰磷酸。N—C—N试剂的两个氮原子作为亲核基团,而C—C—C试剂的两个末端碳原子相当于亲电基团。脲、硫脲和胍常用作N—C—N试剂,而1,3—二酮,二酯和二氰、α,b不饱和酮及酸衍生物都可作为环系的C—C—C部分。嘧啶环介绍:嘧啶环,化学术语,合成途径是利用具有N—C—N骨架的试剂和含有C—C—C单元的试剂相结合,即双亲核基团和双亲电基团的方法。FcCOCH=CHAr与硫脲在碱催化下发生加成反应,生成嘧啶类衍生物10,收率58至79%,醇钠是该反应的最佳催化剂。实验表明采用超声波可以促进该反应的选择性和提高反应速度。嘧啶作为有机合成的中间体在合成化学中具有非常重要的作用,合成带有特定基团的嘧啶类中间体或目标产物是非常必要的。从逆合成方法可以大致推断出构建嘧啶环的起始原料。嘧啶环的结构:嘧啶具有环状结构的一类化合物。构成环的原子除碳原子外,还至少含有一个杂原子。杂原子包括氧、硫、氮等。从理论上讲,可以把杂环化合物看成是苯的衍生物,即苯环中的一个或几个CH被杂原子取代而生成的化合物。杂环化合物可以与苯环并联成稠环杂环化合物。最常见的杂环化合物是五元和六元杂环及苯并杂环化合物等。五元杂环化合物有:呋喃、噻吩、吡咯、噻唑、咪唑、唑等。六元杂环化合物有:吡啶、吡嗪、嘧啶等。稠环杂环化合物有:吲哚、喹啉、蝶啶、吖啶等。杂环化合物中,最小的杂环为三元环,最常见的是五、六元环,其次是七元环。杂环化合物常以俗名命名,较少用系统命名。系统命名是指以相应的碳环为母体而命名。
手绘嘌呤碱和嘧啶环的元素的来源
手绘嘌呤碱和嘧啶环的元素的来源是谷氨酰胺和天冬氨酸。嘌呤环各原子的来源:谷氨酰胺→咪唑环N9。嘧啶环N3。甘氨酸→咪唑环C4、C5。天冬氨酸→嘧啶环N1。N5,N10-甲炔四氢叶酸→咪唑环C8。N10-甲酰四氢叶酸→嘧啶环C2。→嘧啶环C6。嘧啶环各原子的来源:天冬氨酸→嘧啶环N1、C4、C5、C6。谷氨酰胺→嘧啶环N3。CO2→嘧啶环C2。