mapreduce

  • 网络分布式计算系统;并行编程技术;分布式编程环境

mapreducemapreduce

mapreduce

分布式计算系统

  有了分布式计算系统(MapReduce),软件开发者可以创造能够通过分散群机和独立存在的计算机并行加工处理海量的非结构型 …

并行编程技术

为编写云端应用开发的并行编程技术MAPREDUCE)大获成功,以至于其程序的开源版本Hadoop成为行业标准。Google还 …

分布式编程环境

Google的云计算平台解析_网络_比特网 ... Google File System 文件系统 MapReduce 分布式编程环境 Google 的云应用 ...

并行计算

4. 具备并行计算Mapreduce等)/机器学习 / 自然语言处理 / 数据挖掘其中至少一种的研究背景和项目背景。 岗位描述:1. 对 …

并行计算环境

...le GFS存储系统的开源实现,主要应用场景是作为并行计算环境MapReduce)的基础组件,同时也是BigTable(如HBase …

数据处理

大规模数据处理(MapReduce), 搜索引擎等技术小蚊子_数据分析文初_分布式Hadoop提供的功能(1)Hadoop Distributed File S…

并行计算执行环境

...d)”云计算系统,包括弹性计算系统(BC-EC)、并行计算执行环境MapReduce)、结构化海量数据存储系统(Hugetable…

1
The record-breaking MapReduce approach, he said, is useful in physics, cryptography and data mining. 他还介绍说,破记录的MapReduce方法在物理学,密码学和数据挖掘领域也是很有用的。
2
Try to get the code to the point where I can fire off another MapReduce before leaving for the day. 在结束当日工作之前,尽可能把代码整理到可以启动另一个MapReduce。
3
Alas, there are several things that Hadoop does not do, at least when accessed through the MapReduce interface. 唉,有几件事情Hadoop也不做,至少在通过MapReduce访问接口。
4
Now you have set up the Hadoop Cluster on the cloud, and it's ready to run the MapReduce applications. 现在,已经在云中设置了Hadoop集群,该运行MapReduce应用程序了。
5
When the data set is small, MapReduce and load balancing do not effect an appreciable increase in throughput in a cloud system. 数据集较小时,MapReduce和负载平衡不会对云系统吞吐量的增加产生明显影响。
6
Google's MapReduce algorithm turns a bunch of cell phones into a self-contained cloud computing environment. 谷歌的MapReduce算法能将一群手机转化成为一个自包含的云计算环境。
7
It's an interesting read to explore how the MapReduce model can apply to a variety of computational algorithms. 这是一个有趣的阅读用来探索MapReduce模型如何应用到各种不同的可计算算法。
8
Generate graphs of the resulting data and stare at them for a while. 生成(MapReduce的)结果数据图,并仔细凝视观察一会。
9
The two core components are the Hadoop Distributed File System for storing data and Hadoop MapReduce for writing parallel-processing jobs. 其中两个核心组件是用于存储数据的HadoopDistributedFileSystem(Hadoop分布式文件系统)和用于写入并行处理任务的HadoopMapReduce。
10
Is there any additional work being done to simplify the management of a cluster, the HDFS, MapReduce processes, etc. ? 那么管理这样一个集群、HDFS以及MapReduce的处理还有什么额外的工作需要做吗?
11
For a given amount of money, MapReduce may provide a much faster solution, since it can support much larger hardware environments. 对于一个给定的数额的金钱,MapReduce解决方案提供了一种快得多,因为它可以支持更大的硬件环境。
12
Using MapReduce programming model can easy write distributed applications and simplifying distributed programming. 应用MapReduce编程模型很容易编写分布式程序,简化了分布式编程。
13
Canonical MapReduce is the calculation of word frequency in a set of documents. 典型的MapReduce示例是计算单词在文档集中出现的频率。
14
Processing in Elastic MapReduce is centered around the concept of a Job Flow. ElasticMapReduce的处理是围绕着任务流这一概念为中心来开展的。
15
To achieve speed and scalability, Hadoop relies on MapReduce, a simple but powerful framework for parallel computation. 为了实现快速和可伸缩性,Hadoop依赖于MapReduce,一个简单但强大的并行计算框架。
16
Rebuild code to be safe, then fire off a three-hour MapReduce job to crunch log data to analyze network latencies. 安全起见,重构代码,然后启动一个需运行三小时的MapReduce任务,生成日志数据,来分析网络延迟。
17
MapReduce doesn't depend on a traditional structured database, where information is categorized as it's collected. MapReduce不需要传统结构的数据库,信息在收集的时候就已经分类了。
18
explains the utility of MapReduce by two Google fellows -- appropriate authors, since Google invented the parallel MapReduce paradigm. 阐述了由两个谷歌MapReduce效用的家伙——适当的作者,因为谷歌发明了平行MapReduce范式。
19
As a result of this paper, many open source implementations of MapReduce emerged between 2004 to the present. 这篇文章导致的结果是,从2004年到现在出现了许多开放源码的MapReduce实现。
20
In a cloud environment, the MapReduce structure increases the efficiency of throughput for large data sets. 在云环境中,MapReduce结构提高了大型数据集的吞吐效率。
21
Google introduced the idea of MapReduce as a programming model for processing or generating large sets of data. Google引用MapReduce的概念作为处理或生成大型数据集的编程模型。
22
Next in the MapReduce life cycle: All of the intermediate results get boiled down and summarized. 在MapReduce生命周期中,下一步是浓缩和汇总所有中间结果。
23
In this example, you see the MapReduce process on a small set of data. 在这个示例中,我们使用MapReduce处理一个小数据集。
24
Different sets of input files were provided, each of different size, and executed the MapReduce tasks in both single- and two-node clusters. 提供了不同的输入文件集,每个文件集的大小不同,并在单节点和双节点集群中执行MapReduce任务。
25
First, MapReduce does have associated projects for supporting declarative languages. 首先,MapReduce有相关计划支持的声明的语言。
26
In the overall context of your cluster, this is a very small amount of data, but it is critical to running a MapReduce job. 在你集群的整个环境下,这些虽然都是很少量的数据,但是对运行MapReduce工作来说非常重要。
27
HBase is a database representation over Hadoop's HDFS, permitting MapReduce to operate on database tables over simple files. HBase是数据库在Hadoop的HDFS上的表现,在简单文件上执行MapReduce以操作数据库表。
28
I'm looking at performance modeling of Pig programs, which in essence represent dags of MapReduce jobs. 我正在建立Pig程序的性能模型,实际上它代表着分布式计算系统(mapreduce)工作量的多少。
29
There is no shortage of cloud-based MapReduce options available both as open source and commercial offerings. 基于云的MapReduce系统既有开放源码的,也有商用产品。
30
The advantage of MapReduce is that it allows for the distributed processing of the map and reduction operations. MapReduce的优点是它允许对映射和缩减操作进行分布式处理。