DNA图谱 / 问答 / 问答详情

为什么要有虚数,虚数的定义是什么?

2023-07-27 21:36:01
共2条回复
苏萦
数本来都是在数轴的横轴上的,也就是X轴上就可以表示的就是实数。落在X轴以外的数不能用一个表示距离到原点来表示,要用距离加方位表示的数就是虚数。
虚数本没有什么意义,但是因为科学研究需要对一些特殊算是算法的表示方法,因此虚数才显得比较重要。
血莲丿红尘
虚数是指平方是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
详见http://baike.baidu.com/view/1302.htm

相关推荐

虚数的概念,定义

这是从高3数学书上抄的~ 复数A+BI中~当B不等于0时~叫虚数~A=0 ~B不等于0时~叫纯虚数~A,B分别叫实部和虚部~虚数的概念虚数的单位I最早是由欧拉引出的,他取imaginary(想像的、假想的)一词的词头作为虚数单位,I=√-1,于是一切虚数都具有bi的形式.但虚数的确定要归功于18世纪两位业余数学家,一位是挪威的测绘员威赛尔,另一位是巴黎的会计师阿尔干。 要追溯出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。 有理数出现的非常早,它是伴随人们的生产实践而产生的。 无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。 不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示。西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。 无理数的确定与开方运算息息相关。对于那些非完全平方数,人们发现它们的平方根是可以无限制地求到任意多位的无限不循环小数。(像π=3.141592625…,E=2。71828182…等),称为无理数。 但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无是数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在褛范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。 到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念。如果不使用负数平方根,就是可能决四次方程的求解问题。虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语。一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么。它们线性虚幻。虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮。 可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来。有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数。 虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a=bi,这里a和b都是实数。虚数也常称为纯虚数。 从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位。他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释。后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知。
2023-07-27 01:40:105

虚数的定义?

虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。  (2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。  (3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数  在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。  这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义  我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源  “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。  人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。   到了16世纪,意大利数学家卡当在其著作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。  1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式:  形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)  当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3)  在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。   直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。  由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如  继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质  i 的高次方会不断作以下的循环:  i^1 = i  i^2 = - 1  i^3 = - i  i^4 = 1  i^5 = i  i^6 = - 1...  由于虚数特殊的运算规则,出现了符号i  当ω=(-1+√3i)/2或ω=(-1-√3i)/2时:  ω^2 + ω + 1 = 0  ω^3 = 1  许多实数的运算都可以推广到i,例如指数、对数和三角函数。  一个数的ni次方为:  x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)).  一个数的ni次方根为:  x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))).  以i为底的对数为:  log_i(x) = 2 ln(x)/ i*pi.  i的余弦是一个实数:  cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064.  i的正弦是虚数:  sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.  i,e,π,0和1的奇妙关系:  e^(i*π)+1=0  i^I=e^(-π÷2) [编辑本段]符号来历  1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。  通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述  虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院)   翻译:徐国强  虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。  IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University  Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i."   [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]参考资料: 《人文数学网络期刊》22期48页开放分类: 词语,数学,词汇,数词,复数
2023-07-27 01:41:198

虚数概念

复数的平方根叫虚数
2023-07-27 01:41:381

虚数的定义

虚数的解释 (1) [unreliable figure]∶虚假 不实 的数字 (2) [imaginary number]∶实数与虚数单位之积,亦即实部为零的 复数 (如3i) 详细解释 (1).不表示 实际 数量的数词。 宋 司马 光 《言山陵择地札子》 :“伏望朝廷特赐指挥按行山陵使等,只於 永安县 界旧陵侧近选择善地,旬日之内,早定夺闻奏……不得 大约 虚数及妄立近限,必使号令明信,则事无不济而民力不困矣。” 清 汪中 《述学·释三九上》 :“因而生人之措辞,凡一二之所不能尽者,则约之三以见其多;三之所不能尽者,则约之九以见其极多,此 言语 之虚数也。实数可稽也,虚数不可执也。” (2).虚假的数额。 宋 苏轼 《应诏论四事状》 :“ 元丰 八年登极大赦以前,人户积欠共计五万三百馀贯,若谓非贫乏有可送纳,即自 元祐 元年 至今,并不曾纳到分文,显见 有司 空留帐籍虚数,以害朝廷实惠。” 宋 陆游 《陆郎中墓 志铭 》 :“尝为 丹徒 丞,朝廷用言者,遣使籍江上沙田,立税额,使指甚厉,吏莫敢违,亦或从而张虚数以为功。” 《宋史·食货志下五》 :“十三场茶岁课缗钱五十万……岁纔得息钱三万馀缗,而官吏廪给杂费不预,是则虚数多而 实利 寡。” 《金史·陈规传》 :“ 唐 魏徵 曰:‘兵在以道御之而已。御壮健 足以 无敌于 天下 ,何取细弱以增虚数。"” (3).虚伪的礼节。数, 礼数 。 清 侯方域 《陈 将军 二鹤记》 :“世之战士,皆骁雄劲悍之徒……养以有馀之财而作其感恩之气, 然后 报其主而不叛。吾未见其可以虚数致也。” (4).数学 名词 。负数的平方根。 词语分解 虚的解释 虚 ū 空:虚无。虚实。虚度。虚名。虚左( 尊敬 地空出左边的座位,古代以左为尊)。空虚。乘虚而入。 不真实的:虚伪。虚假(?)。虚妄。虚惊。虚夸。虚构。虚传。虚张声势。 内心怯懦:做贼 心虚 。 不 自满 :虚 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天
2023-07-27 01:41:571

什么是虚数?虚数的定义又是什么

虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。  (2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。  (3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数  在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。  这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义  我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源  “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。  人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。   到了16世纪,意大利数学家卡当在其著作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。  1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式:  形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)  当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3)  在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。   直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。  由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如  继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质  i 的高次方会不断作以下的循环:  i^1 = i  i^2 = - 1  i^3 = - i  i^4 = 1  i^5 = i  i^6 = - 1...  由于虚数特殊的运算规则,出现了符号i  当ω=(-1+√3i)/2或ω=(-1-√3i)/2时:  ω^2 + ω + 1 = 0  ω^3 = 1  许多实数的运算都可以推广到i,例如指数、对数和三角函数。  一个数的ni次方为:  x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)).  一个数的ni次方根为:  x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))).  以i为底的对数为:  log_i(x) = 2 ln(x)/ i*pi.  i的余弦是一个实数:  cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064.  i的正弦是虚数:  sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.  i,e,π,0和1的奇妙关系:  e^(i*π)+1=0  i^I=e^(-π÷2) [编辑本段]符号来历  1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。  通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述  虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院)   翻译:徐国强  虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。  IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University  Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i."   [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]参考资料: 《人文数学网络期刊》22期48页开放分类: 词语,数学,词汇,数词,复数
2023-07-27 01:42:051

什么是虚数和复数??

复数包括实数和虚数,纯虚数就是虚数。z=a+bi,z为复数,a为实数,bi为虚数。a=0时,z就是虚数;b=0时,z就是实数。
2023-07-27 01:42:175

复数中的实数,虚数,纯虚数是怎样定义的

复数可以写成a+bi;当a不等于0,b也不等于0时为虚数;当a=0,b不等于0时,则为纯虚数;当a不等于0,b=0时,则为实数。
2023-07-27 01:42:471

虚数如何产生的,意义是什么

复数 开放分类: 数学、数学家、实数、虚数定义[编辑本段]复数就是实数和虚数的统称复数的基本形式是a+bi,其中a,b是实数,a称为实部,bi称为虚部,i是虚数单位,在复平面上,a+bi是点Z(a,b)。Z与原点的距离r称为Z的模|Z|=√a方+b方a+bi中:a=0为纯虚数,b=0为实数,b不等于0为虚数。复数的三角形式是 Z=r[cosx+isinx]中x,r是实数,rcosx称为实部,irsinx称为虚部,i是虚数单位。Z与原点的距离r称为Z的模,x称为辐角。起源[编辑本段]16世纪意大利米兰学者卡当(Jerome Cardan1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。 数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如,习的数学武子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是的形式(a、b都是实数)(说明:现行教科书中没有使用记号=-i,而使用=一1)。法国数学家棣莫佛(1667—1754)在1730年发现公式了,这就是著名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。 德国数学家高斯(1777—1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。 经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。 随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。具体内容和应用[编辑本段]形如a+bi的数 。式中 a,b 为实数 ,i是 一个满足i^2=-1的数 ,因为任何实数的平方不等于-1,所以 i不是实数,而是实数以外的新的数。在复数a+bi中,a 称为复数的实部,b称为复数的虚部 ,复数的实部和虚部分别用Rez和Imz表示,即Rez =a,Imz=b。i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。复数的产生来自解代数方程的需要。16世纪,意大利数学家G.卡尔达诺首先用公式表示出了一元三次方程的根,但公式中引用了负数开方的形式,并把 i=sqrt(-1) 当作数,与其他数一起参与运算。由于人们无法理解 i的实质,所以在很长时间内不承认负数的平方根也是数,而称之为虚数。直到19世纪,数学家们对这些虚数参与实数的代数运算作出了科学的解释,并在解方程和其他领域中使虚数得到了广泛的应用,人们才认识了这种新的数。复数的四则运算规定为:(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)-(c+di)=(a-c)+(b-d)i,(a+bi)61(c+di)=(ac-bd)+(bc+ad)i,(c与d不同时为零)(a+bi)÷(c+di)=(ac+bd/c^2+d^2)+(bc-ad/c^2+d^2)i,(c+di)不等于0复数有多种表示形式,常用形式 z=a+bi 叫做代数式。此外有下列形式。①几何形式。复数z=a+bi 用直角坐标平面上点 Z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。②向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。③三角形式。复数z=a+bi化为三角形式z=r(cosθ+isinθ)式中r= sqrt(a^2+b^2),叫做复数的模(或绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。④指 数形式。将复数的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ)复数三角形式的运算:设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。复数的乘、除、乘方、开方可以按照幂的运算法则进行。复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复数不能建立大小顺序。┢柯乐栤┮ 2008-08-24 12:03 您觉得这个答案好不好?好(2)不好(0) 实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括整数,分数,0.数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:│a│=①a为正数时,|a|=a②a为0时, |a|=0③a为负数时,|a|=-a③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)
2023-07-27 01:42:561

虚数是什么,定义是什么

在数学里,如果有某个数的平方是负数的话,那个数就是虚数了。所有的虚数和实数组成复数。
2023-07-27 01:43:061

0是不是虚数

我跟你讲,虚数的定义在于:虚数的一般式为:c=a+bi,a和b是实数. 如果b=0,则c叫实数; 如果a=0,则c叫纯虚数。 当数值为0时,b=0所以0是实数
2023-07-27 01:43:161

常数和虚数的关系

常数就是常量,是恒定不变的数,多出现在函数中,例如函数y=2x中常数是2;实数有理数和无理数的总称,有理数指能表示为p/q,p、q为整数的数,即指有限小数或无限循环小数,例如:0,1,1/3;无理数指不能表示为p/q,p、q为整数的数,即指无限不循环小数,例如:e=2.71828……,兀=3.1415926……,根号2;虚数是指非实数的数,例如i=根号(-1),6i,1/i,根号负数的数都是虚数.拓展:1、有一类数叫超越数,定义为无法表示为有理系数方程的根的数,像e,兀等.2、并不是无理数经过初等运算后还是无理数,例如(1+根号2)+(1-根号2)=2.3*(知道了可以吓唬同学,甚至吓唬老师)并不是虚数经过初等运算后还是虚数,例如i^i=e^(-兀/2),后者是实数.希望帮到你。
2023-07-27 01:43:322

实数虚数怎么计算

定义:虚数是指平方是负数的数虚数和实数是复数的两大部分计算:规定i^2=-1实数与i进行四则运算时,原有的运算仍让成立因此如-2=2*i^2直观上来看根号2*i就是根号-2的表示,但是【注意】不能用根号里带符号这种表示。
2023-07-27 01:43:541

实数和虚数的分别?

平方为正数的是实数,平方为负数的是虚数.实数我们经常接触,日常生活中经常碰见. 在数学里,将平方是负数的数定义为纯虚数.所有的虚数都是复数.定义为i^2=-1.但是虚数是没有算术根这一说的,所以±√(-1)=±i.对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA.实数和虚数组成的一对数在复数范围内看成一个数,起名为复数.虚数没有正负可言.不是实数的复数,即使是纯虚数,也不能比较大小.这种数有一个专门的符号“i”(imaginary),它称为虚数单位.不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示.
2023-07-27 01:44:191

实数与虚数的概念与运算

平方为正数的是实数,平方为负数的是虚数。实数我们经常接触,日常生活中经常碰见。在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。
2023-07-27 01:44:352

实数、虚数是什么 什么是实数、虚数

1、实数(realnumber)是有理数和无理数的总称。实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(realnumbersystem)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。 2、虚数。虚数是指实数以外的复数,其中实部为0的虚数称为纯虚数。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2=-1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a+bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。
2023-07-27 01:44:441

虚数的概念

在数学里,将偶数指数幂是负数的数定义为纯虚数,虚数是没有正负可言的和虚数相对的就是实数,还有复数,这些词语在数学里面都是很重要的的概率词之一。
2023-07-27 01:45:061

什么是虚数 虚数的介绍

1、在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。 2、可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。 3、在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。
2023-07-27 01:45:131

虚数的定义

题库内容:虚数的解释(1) [unreliable figure]∶虚假 不实 的数字 (2) [imaginary number]∶实数与虚数单位之积,亦即实部为零的 复数 (如3i) 详细解释 (1).不表示 实际 数量的数词。 宋 司马 光 《言山陵择地札子》 :“伏望朝廷特赐指挥按行山陵使等,只於 永安县 界旧陵侧近选择善地,旬日之内,早定夺闻奏……不得 大约 虚数及妄立近限,必使号令明信,则事无不济而民力不困矣。” 清 汪中 《述学·释三九上》 :“因而生人之措辞,凡一二之所不能尽者,则约之三以见其多;三之所不能尽者,则约之九以见其极多,此 言语 之虚数也。实数可稽也,虚数不可执也。” (2).虚假的数额。 宋 苏轼 《应诏论四事状》 :“ 元丰 八年登极大赦以前,人户积欠共计五万三百馀贯,若谓非贫乏有可送纳,即自 元祐 元年 至今,并不曾纳到分文,显见 有司 空留帐籍虚数,以害朝廷实惠。” 宋 陆游 《陆郎中墓 志铭 》 :“尝为 丹徒 丞,朝廷用言者,遣使籍江上沙田,立税额,使指甚厉,吏莫敢违,亦或从而张虚数以为功。” 《宋史·食货志下五》 :“十三场茶岁课缗钱五十万……岁纔得息钱三万馀缗,而官吏廪给杂费不预,是则虚数多而 实利 寡。” 《金史·陈规传》 :“ 唐 魏徵 曰:‘兵在以道御之而已。御壮健 足以 无敌于 天下 ,何取细弱以增虚数。"” (3).虚伪的礼节。数, 礼数 。 清 侯方域 《陈 将军 二鹤记》 :“世之战士,皆骁雄劲悍之徒……养以有馀之财而作其感恩之气, 然后 报其主而不叛。吾未见其可以虚数致也。” (4).数学 名词 。负数的平方根。 词语分解 虚的解释 虚 ū 空:虚无。虚实。虚度。虚名。虚左( 尊敬 地空出左边的座位,古代以左为尊)。空虚。乘虚而入。 不真实的:虚伪。虚假(?)。虚妄。虚惊。虚夸。虚构。虚传。虚张声势。 内心怯懦:做贼 心虚 。 不 自满 :虚 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天
2023-07-27 01:45:211

虚数的概念,定义

这是从高3数学书上抄的~ 复数A+BI中~当B不等于0时~叫虚数~A=0 B不等于0时~叫纯虚数~ A,B分别叫实部和虚部~ 虚数的概念 虚数的单位I最早是由欧拉引出的,他取imaginary(想像的、假想的)一词的词头作为虚数单位,I=√-1,于是一切虚数都具有bi的形式.但虚数的确定要归功于18世纪两位业余数学家,一位是挪威的测绘员威赛尔,另一位是巴黎的会计师阿尔干. 要追溯出现的轨迹,就要联系与它相对实数的出现过程.我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数. 有理数出现的非常早,它是伴随人们的生产实践而产生的. 无理数的发现,应该归功于古希腊毕达哥拉斯学派.无理数的出现,与德谟克利特的“原子论”发生矛盾.根据这一理论,任何两个线段的比,不过是它们所含原子数目的经.而勾股定理却说明了存在着不可通约的线段. 不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示.西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”. 无理数的确定与开方运算息息相关.对于那些非完全平方数,人们发现它们的平方根是可以无限制地求到任意多位的无限不循环小数.(像π=3.141592625…,E=2.71828182…等),称为无理数. 但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无是数,也不能长度解决代数方程的求解问题.像x 2+1=0这样最简单的二次方程,在褛范围内没有解.12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的.他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数.这等于不承认方程的负根的存在. 到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念.如果不使用负数平方根,就是可能决四次方程的求解问题.虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语.一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根.对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么.它们线性虚幻.虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮. 可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来.有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数. 虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a=bi,这里a和b都是实数.虚数也常称为纯虚数. 从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位.他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释.后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知.
2023-07-27 01:45:301

什么是虚数?

什么是虚数 负数开平方,在实数范围内无解。 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。 虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i) 虚数的实际意义 大多数人最为熟悉的数有两种,即正数(+5, +17.5)和负数(-5,-17.5)。负数是在中世 纪出现的,它用来处理3-5这类问题。从古代人看来,要 从三个苹果中减去五个苹果似乎是不可能的。但是,中世纪 的商人却已经清楚地认识到欠款的概念。“请你给我五个苹 果,可是我只有三个苹果的钱,这样我还欠你两个苹果的钱。” 这就等于说:(+3)-(+5)=(-2)。 正数及负数可以根据某些严格的规则彼此相乘。正数乘 正数,其乘积为正。正数乘负数,其乘积为负。最重要的是, 负数乘负数,其乘积为正。 因此,(+1)×(+1)=(+1); (+1)×(-1)=(-1); (-1)×(-1)=(+1)。 现在假定我们自问:什么数自乘将会得出+1?或者用 数学语言来说,+1的平方根是多少? 这一问题有两个答案。一个答案是+1,因为(+1) ×(+1)=(+1);另一个答案则是-1,因为(-1) ×(-1)=(+1)。数学家是用√ ̄(+1)=±1来 表示这一答案的。(碧声注:(+1)在根号下) 现在让我们进一步提出这样一个问题:-1的平方根是 多少? 对于这个问题,我们感到有点为难。答案不是+1,因 为+1的自乘是+1;答案也不是-1,因为-1的自乘同 样是+1。当然,(+1)×(-1)=(-1),但这是 两个不同的数的相乘,而不是一个数的自乘。 这样,我们可以创造出一个数,并给它一个专门的符号, 譬如说#1,而且给它以如下的定义:#1是自乘时会得出 -1的数,即(#1)×(#1)=(-1)。当这种想法 刚提出来时,数学家都把这种数称为“虚数”,这只是因为 这种数在他们所习惯的数系中并不存在。实际上,这种数一 点也不比普通的“实数”更为虚幻。这种所谓“虚数”具有 一些严格限定的属性,而且和一般实数一样,也很容易处理。 但是,正因为数学家感到这种数多少有点虚幻,所以给 这种数一个专门的符号“i”(imaginary)。我们可以把正 虚数写为(+i),把负虚数写为(-i),而把+1看作 是一个正实数,把(-1)看作是一个负实数。因此我们可 以说√ ̄(-1)=±i。 实数系统可以完全和虚数系统对应。正如有+5, -17.32,+3/10等实数一样,我们也可以有 +5i,-17.32i,+3i/10等虚数。 我们甚至还可以在作图时把虚数系统画出来。 假如你用一条以0点作为中点的直线来表示一个正实数 系统,那么,位于0点某一侧的是正实数,位于0点另一侧 的就是负实数。 这样,当你通过0点再作一条与该直线直角相交的直线 时,你便可以沿第二条直线把虚数系统表示出来。第二条直 线上0点的一侧的数是正虚数,0点另一侧的数是负虚数。 这样一来,同时使用这两种数系,就可以在这个平面上把所 有的数都表示出来。例如(+2)+(+3i)或 (+3)+(-2i)。这些数就是“复数”。 数学家和物理学家发现,把一个平面上的所有各点同数 字系统彼此联系起来是非常有用的。如果没有所谓虚数,他 们就无法做到这一点了。
2023-07-27 01:45:494

什么是虚数?求详细解答。

虚数就是指数幂是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
2023-07-27 01:45:561

什么是虚数?

虚数的意义 (1)[unreliable figure]∶虚假不实的数字(2)[imaginary number]∶复数中a+bi,b不等于零时叫虚数(3)[暂无英文]:汉语中不表明具体数量的词。 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中p是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA. 不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。编辑本段i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号 ω2 + ω + 1 = 0 ω3 = 1的简式。其中ω=(-1+√3i)/2。编辑本段虚数的符号 1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。 通常,我们用符号C来表示复数集,用符号R来表示实数集。编辑本段虚数的历史 要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。 有理数出现的非常早,它是伴随人们的生产实践而产生的。 无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。 不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示。西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。 无理数的确定与开方运算息息相关。对于那些非完全平方数,人们发现它们的平方根是可以无限制地求到任意多位的无限不循环小数。(像π=3.141592625…,E=2。71828182…等),称为无理数。 但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在褛范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。 到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念。如果不使用负数平方根,就是可能决四次方程的求解问题。虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语。一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么。它们线性虚幻。虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮。 对于早期的数学家们来说,使得虚数成为似乎是合理的和可以接受的倒不是像x^2+1=0这样的二次方程的求解问题,而是具有实数根的三次方程求解问题。 1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式: 形如:x^3+ax+b=0的三次方程解如下: x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3) 当卡丹试图用该公式解方程x^3-15x-4=0时他的解是: x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3) 在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。 因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。 可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来。有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数。 虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a+bi,这里a和b都是实数。虚数也常称为纯虚数。 虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解。从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位。他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释。后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知。现在,复数一般用来表示向量(有方向的数量),这在力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚。编辑本段描述虚数 虚数原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院) 翻译:徐国强虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。译自《人文数学网络期刊》22期48页IMAGINARYby Lawrence Mark LesserArmstrong Atlantic State UniversityImaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i." Ah-hai!from the Humanistic Mathematics Network Journal # 22, p. 48.原载《科学时报》2003年2月14日科学周末 [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致编辑本段和i有关的运算 许多实数的运算都可以推广到i,例如指数、对数和三角函数。 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ i*pi. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.
2023-07-27 01:46:052

什么是虚数?虚数的定义又是什么?

负数开平方,在实数范围内无解. 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数. 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数. 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分). 虚数单位为i,i即根号负1. 3i为虚数,即根号(-3),即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i)
2023-07-27 01:46:121

虚数的概念和性质

引用自“百度知道”: 虚数的定义 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以定义sqrt(-1)=±i (sqrt指根号)。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 虚数的几何意义 如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号i 当ω=(-1+√3i)/2或ω=(-1-√3i)/2时: ω^2 + ω + 1 = 0 ω^3 = 1 许多实数的运算都可以推广到i,例如指数、对数和三角函数。 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ i*pi. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i. i,e,π,0和1的奇妙关系: e^(i*π)+1=0 i^I=e^(-π÷2)
2023-07-27 01:46:341

什么是虚数

平方后等于-1的数是i,而a+bi就叫做虚数
2023-07-27 01:46:431

虚数i定义式

虚数的解释(1) [unreliable figure]∶虚假 不实 的数字 (2) [imaginary number]∶实数与虚数单位之积,亦即实部为零的 复数 (如3i) 详细解释 (1).不表示 实际 数量的数词。 宋 司马 光 《言山陵择地札子》 :“伏望朝廷特赐指挥按行山陵使等,只於 永安县 界旧陵侧近选择善地,旬日之内,早定夺闻奏……不得 大约 虚数及妄立近限,必使号令明信,则事无不济而民力不困矣。” 清 汪中 《述学·释三九上》 :“因而生人之措辞,凡一二之所不能尽者,则约之三以见其多;三之所不能尽者,则约之九以见其极多,此 言语 之虚数也。实数可稽也,虚数不可执也。” (2).虚假的数额。 宋 苏轼 《应诏论四事状》 :“ 元丰 八年登极大赦以前,人户积欠共计五万三百馀贯,若谓非贫乏有可送纳,即自 元祐 元年 至今,并不曾纳到分文,显见 有司 空留帐籍虚数,以害朝廷实惠。” 宋 陆游 《陆郎中墓 志铭 》 :“尝为 丹徒 丞,朝廷用言者,遣使籍江上沙田,立税额,使指甚厉,吏莫敢违,亦或从而张虚数以为功。” 《宋史·食货志下五》 :“十三场茶岁课缗钱五十万……岁纔得息钱三万馀缗,而官吏廪给杂费不预,是则虚数多而 实利 寡。” 《金史·陈规传》 :“ 唐 魏徵 曰:‘兵在以道御之而已。御壮健 足以 无敌于 天下 ,何取细弱以增虚数。"” (3).虚伪的礼节。数, 礼数 。 清 侯方域 《陈 将军 二鹤记》 :“世之战士,皆骁雄劲悍之徒……养以有馀之财而作其感恩之气, 然后 报其主而不叛。吾未见其可以虚数致也。” (4).数学 名词 。负数的平方根。 词语分解 虚的解释 虚 ū 空:虚无。虚实。虚度。虚名。虚左( 尊敬 地空出左边的座位,古代以左为尊)。空虚。乘虚而入。 不真实的:虚伪。虚假(?)。虚妄。虚惊。虚夸。虚构。虚传。虚张声势。 内心怯懦:做贼 心虚 。 不 自满 :虚 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天
2023-07-27 01:47:191

有关虚数的问题

虚数 (1)[unreliable figure]∶虚假不实的数字(2)[imaginary number]∶实数与虚数单位之积,亦即实部为零的复数(如3i)在数学里,如果有某个数的平方是负数的话,那个数就是虚数了。所有的虚数都是复数。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。虚数的符号1777年瑞士数学家欧拉开始使用符号i=√(-1)表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数),称为复数。虚数的历史由于虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解。笛卡尔称“虚数”的本意是指他是假的;莱布尼兹在公元18世纪初则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如√(-1)、√(-2)的数学式都是不可能有的,纯属虚幻的。欧拉之后,挪威的一个测量学家维塞尔,提出把复数a+bi用平面上的点(a,b)来表示。后来,高斯提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的数量),这在力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚。不表示实在数量的数词。如下面例子中的一、三、五、九、百、千、万等数词都是虚数。【例】以一当十|三五成群|千方百计|万紫千红|九牛一毛|龙生九子|三月不知肉味|。描述虚数虚数原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院) 翻译:徐国强虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。译自《人文数学网络期刊》22期48页IMAGINARYby Lawrence Mark LesserArmstrong Atlantic State UniversityImaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i." Ah-hai!from the Humanistic Mathematics Network Journal # 22, p. 48.原载《科学时报》2003年2月14日科学周末 [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致
2023-07-27 01:47:381

请问:虚数的定义是什么?实用范围是什么?

定义:负数开平方,在实数范围内无解。数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。虚数单位为i,i即根号负1我只知道它可以用来解四次方程,如果不使用负数平方根,就不可能决四次方程的求解问题。
2023-07-27 01:47:481

虚数怎样定义

虚数定义为i,i=√-1,它是从i^2=-1得来的。对于复数a+bi,(a,b为实数,b≠0),分为实部a和虚部bi两部分。由于有了虚数i的定义,所有一元n(n=2m,m为自然数1,2,3,......)次方程的根就都可以求解了。
2023-07-27 01:47:551

虚数i的意义?

如果有数平方是负数的话,那个数就是虚数了;所有的虚数都是复数~在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。
2023-07-27 01:48:181

高二数学 关于虚数

第一问:根据纯虚数的定义可得,m方-m-2=0,m方+m不等于0,得m=2
2023-07-27 01:48:382

虚数的物理意义

在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中p是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA.不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数的物理指称性呼唤着新数学 是很无聊的……
2023-07-27 01:48:561

什么是虚数,什么是复数?

虚数不是来自生活,而是为了数学需要。比如X平方+1=0,该方程无实数解,所以规定一个虚数单位i。i的平方=负一,一个虚数按a+bi来表示。a是实部,b是虚部。(ab都要是实数)例如3+i 4-2i等等注意虚数不能比较大小。而实数和虚数的总称就是复数
2023-07-27 01:49:074

虚数有什么性质

在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以定义sqrt(-1)=±i (sqrt指根号)。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。虚数的几何意义如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。i的性质  i 的高次方会不断作以下的循环:  i^1 = i  i^2 = - 1  i^3 = - i  i^4 = 1  i^5 = i  i^6 = - 1...  由于虚数特殊的运算规则,出现了符号i  当ω=(-1+√3i)/2或ω=(-1-√3i)/2时:  ω^2 + ω + 1 = 0  ω^3 = 1  许多实数的运算都可以推广到i,例如指数、对数和三角函数。  一个数的ni次方为:  x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)).  一个数的ni次方根为:  x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))).  以i为底的对数为:  log_i(x) = 2 ln(x)/ i*pi.  i的余弦是一个实数:  cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064.  i的正弦是虚数:  sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.  i,e,π,0和1的奇妙关系:  e^(i*π)+1=0  i^I=e^(-π÷2)回答人的补充 2009-12-29 19:06 很简单。对于X^2=-1,由于 i^2 = - 1,所以 x^2=i^2 ,解得 x=±i。
2023-07-27 01:49:451

虚数是什么 举一个例子有哪些?

在数学中,虚数就是形如a+b*i的数,其中a、b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内地点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。例如:(1)2+3i就表示一个复数,2是实部,3i表示虚部,3i就表示一个纯虚数;(2)-1的开方就是虚数,称为一个虚数单位。虚数的由来:随着数学的发展,数学家发现一些三次方程的实数根还非得用负数的平方根表示不可,而且如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这样一个令人满意的结果,此外对负数的平方根按数的运算法则进行运算,结果也是正确的。意大利数学家卡尔丹作出一个折中,表示他称负数的平方根为 “虚构的数”,意思是可以承认它为数,但不像实数那样可以表示实际存在的量,而是虚构的,到了1632年,法国数学家笛卡儿正式给了负数的平方根,一个大家乐于接受的名字——虚数。虚数的虚字,表示它不代表实际的数,而只存在于想象之中,尽管虚数是 “虚”的,但数学家却没有放松对它的研究。他们发现了关于虚数的许许多多的性质和应用,大数学家欧拉提出了 “虚数单位”的概念,他把U作为虚数单位,用符号i表示,相当于实数的单位1,虚数有了单位,就能像实数一样写成虚数单位倍数的形式了。从此数学家把实数与虚数同等对待,并合称为复数,于是数的家族得到了统一,任何一个复数可以写成a+bi的形式,当b=0时,a+bi=a,它就是实数当;b#0时,a+bi就是虚数了。以上内容参考:百度百科-虚数
2023-07-27 01:49:543

虚数的实在意义

为了计算负数的开方。在数学里有意义,在自然界无意义。要追溯出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。有理数出现的非常早,它是伴随人们的生产实践而产生的。无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示。西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。无理数的确定与开方运算息息相关。对于那些非完全平方数,人们发现它们的平方根是可以无限制地求到任意多位的无限不循环小数。(像π=3.141592625…,E=2。71828182…等),称为无理数。但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无是数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在褛范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念。如果不使用负数平方根,就是可能决四次方程的求解问题。虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语。一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么。它们线性虚幻。虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮。可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来。有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数。虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a=bi,这里a和b都是实数。虚数也常称为纯虚数。从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位。他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释。后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知。
2023-07-27 01:50:322

谁能给我讲一下虚数根的含义,那真是太感谢了.

在数学里,如果有数平方是负数的话,那个数就是虚数了;所有的虚数都是复数.“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字.后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实.虚数轴和实数轴构成的平面称复数平面,复平面上每一点对应着一个复数.每一个虚数可表达为 ib,其中 b 是实数,i的定义是:i^2 = - 1 虚根包括虚数单位的方程的根,亦即有负数平方根的方程的根 例如: ①x^2+1=0 x^2=-1 x=±i(虚根) ②x^3=1 x^3-1=0 (-1+x)(1+x+x^2)=0 x=1、-0.5+√3i/2或-0.5-√3i/2 (共轭复根) ③cosx=2 x=1.316957897i (三角函数扩展到复数范围)
2023-07-27 01:50:381

为什么实数不能叫虚数呢?

所谓实数,说白了,就是实实在在存在的数,和虚数相对应数。那么什么是虚数呢?举个简单例子:√-1在实数范围内是不存在的(负数的开二次方),但是为了满足某种需要,我们给i或j定义成√-1,这就是虚数的单位了,类似于实数范围内的“1”。既然我们给出了√-1的表示方法,那么我们便能定义更多的数了,例如2+i、√i这些具有a+bi形式的数,我们可以看出,当b=0的时候,这些具有a+bi形式的数便是我们所说的实数了,所以实数被比它更广泛的“复数”所包含,【是现实生活中,能体现出来的实实在在的数,包括有理数和无理数】(其中无理数就是无限不循环小数,有理数就包括整数和分数)(虚数的引进是为了工程或者科学上的需要)。
2023-07-27 01:50:451

虚数的概念是什么 我才初一,讲简单点

解答:在国内中学所学的数的概念中,任何数,无论有理数、无理数,正数、负数,整数、分数,一个数自己乘以自己的结果,永远是正数。如果一个数自己乘以自己后,得出的是负数,那么这个数就称为虚数。虚数是我们平常碰不到的数,也是匪夷所思的数,可是数学中引入虚数的概念后,创造了许多惊天动地成就:1、提供了积分的一种新的办法,特别是三角函数的积分;2、提供了解决交流电路中电容器、电感器的复阻抗问题;3、解决了化学中的原子结构问题:轨道问题、能层问题。.................................................................................................................
2023-07-27 01:50:566

实数,虚数,纯虚数的定义,虚数实数纯虚数区分

1.复数就是实数和虚数的总称。 2. 所有的数都是复数。 3. 实数是有理数和无理数的总称 表示为 a。 4. 虚数是复数中除了实数的数。 5. 在复数域中,负数-1的平方根记为i(即i2=-1),称为虚数或虚数单位。 6.一个实数乘以i称为纯虚数,例如5i 就是一个纯虚数。
2023-07-27 01:51:111

温不利大球场是哪个俱乐部的主场?

温布利属于英格兰足总的,一般作为英格兰国家队的主场。像足总杯的半决赛、决赛,联赛杯的决赛,英冠升英超附加赛的决赛也多数安排在温布利球场。
2023-07-27 01:44:0515

3秒打开智能锁的“小黑盒”是什么?

2018年5月26日,第九届中国(永康)国际门业博览会在有“中国门都”美誉的浙江永康开幕。但凡门博会,常有开锁高手来“踢馆”。据业内人说,这几乎是行内潜规则了,比如锁匠圈里有“鬼马大师”之称的张洪军,就是历年门博会上的常客。因为是常态,所以当门博会第一天,一位叫王海丽的年轻女人对着一个个展位宣称“你家的智能锁,我3秒就能开”时,大家并没在意。据业内人事后说,开始大家没在意,是因为以前的“踢馆”,双方都有心照不宣的“江湖规矩”——这世上没开不了的锁,只是时间问题。当场开不了,并不算栽,握手言和,算交个朋友;要是锁不幸被破了,锁匠也不让你难堪,送上改良方法,收点“咨询费”。对商家来说,这不算坏事,互促互进,皆大欢喜。但王海丽接下去的操作,让诸多智能锁商家手脚冰凉!王海丽从包里拿出一个塑料小黑盒。它比手机小一点,但要厚一倍,盒顶露出一截铜线圈。这就是出现在门博会上的小黑盒黑盒上只有两个按钮:底部是电源键,侧面是触发开关。将黑盒的铜线圈贴近智能锁,在锁体不同的位置游走,同时一下一下按下触发键,“唰”,随着锁体里电机转动声,原本设置指纹和密码的智能锁打开了!大家开始坐不住了……而王海丽则“大开杀戒”,整个过程轻松得令人恐怖:没有费时费力的暴力拆锁、更不用复杂高端的技术破解,小黑盒就如门禁卡般,隔空一刷、门洞大开!1、2、3、4……王海丽当场刷开了8家品牌商的智能锁,最快的真的只用了3秒钟!不夸张地说,自打有踢馆潜规则以来,智能锁从没被虐得这么惨过。围观的人越来越多,大家纷纷拿出手机,把焦点定在王海丽和她的小黑盒上。接下来,事件开始在锁具圈内发酵,一个又一个智能锁被小黑盒秒开的视频,陆陆续续出现在锁匠和锁具经销商的微信朋友圈——这些被秒开的智能锁不光有此次门博会上的,还有在小区里实测被瞬间攻陷的。与此同时,一篇《那个女人毁了整个指纹锁行业》的文章开始在网上流传,行业圈内一片哗然。小黑盒究竟是什么破锁利器?这些智能锁究竟出了什么漏洞?遭遇如此惨败?这位被指“毁了智能锁行业”的王海丽究竟又是何许人?她为什么要这么做?6月24日上午,江苏徐州,都市快报《好奇实验室》对她进行了专访。小黑盒目前卖到脱销戏剧化变成商家自查法宝有部分流入市场“好奇实验室”已向公安部报警“我已经得罪不少人了,但这个行业确实要洗牌了。”王海丽说,她是湖南一家智能锁公司的老板,小黑盒是和常州一家开锁工具厂家一起做出来的,去永康门博会上“搞事情”,就是真正的“踢馆”。为什么去踢馆?我们很多锁都卖到国外去了,于是就有人仿我们。你要光仿我们的好技术,我也没办法。可他们仿我的外形、仿我的广告,却用最差的技术和配件,还说是我的分公司,所以我不干了!你知道这事让很多品牌商和经销商头疼死了吗?比如,《好奇实验室》以前经常采访的杭州一家锁业公司,代理了几个品牌智能锁,还正在合作研发一款新型识别的智能锁。现在他们很尴尬,不知道锁究竟出了什么漏洞,一旦遇到小黑盒,代理的锁还靠谱吗?新研发的锁扛得住吗?这几天一直在向我们打听进展。门博会之后,就有圈里的人问我买小黑盒。我以前是送的,现在索性做起了这笔生意,我给小黑盒起了一个名字:“智能锁专业测试工具”,每台580元,最高的时候卖到1200元。那些秒开的视频传得越疯,骂我毁了整个行业的声音越狠,小黑盒却卖得越来越火爆,已经快脱销了。本来是开锁工具,现在变成了品牌商、经销商验证自己智能锁是否安全的测试工具,这种戏剧性本身就说明了很多问题。小黑盒卖出了多少?这一个月来,我好几个城市跑来跑去,在宁波、永康、长沙分别设了仓库,销量超过3000多台。因为只有一条生产线,产能跟不上,各个发货仓都是配额供货,部分单子只好延期发货。目前市面上已经出现了两款类似的黑盒子,台州那边生产的,价格还更便宜。微信上现在每天都收到用户反馈信息,被小黑盒破解的智能锁数量不断在增加。不担心这东西流到坏人手里吗?我也担心出事,任何一把开锁工具都是双刃剑。我们卖得很谨慎,主要给品牌商、经销商和锁匠三类人。品牌商需要有身份证明,有的品牌商也担心我们不发货,还主动提供营业执照和门头照片。经销商都是朋友圈的,大都认识,人群相对不算复杂。锁匠需要提供国家统一的职业资格证。都是一一登记,去向很清晰。这也是作为开锁工具,公安部门强制要求的。因为智能锁被秒开的视频被大量转发,确实也有个人联系我们拿货,但都拒绝了。但我们更希望有关部门把智能锁漏洞这事管起来,不要捂着,也捂不住啊,现在干这行的都知道了。小黑盒其实就是特斯拉线圈淘宝上已有人开始销售生产车间工人在组装小黑盒小黑盒构造并不复杂,就是一个特斯拉线圈——利用变压器使普通电压升压,然后经由两级线圈,从放电终端放电的设备;通俗说,就是一个人工闪电制造器,全世界有很多爱好者。特斯拉线圈会产生强电磁脉冲。如果把它靠近一个荧光灯管,灯管就会发亮。而这种高频率、高强度的电磁脉冲,可以破坏周边的电子设备。虽然王海丽没有细说特斯拉线圈针对智能锁哪个漏洞进行的攻击,但她担心的事终于还是发生了。6月26日清晨,《好奇实验室》发现,这把“双刃剑”已经从微信朋友圈公开转到淘宝网上销售。店铺10多家,发货地有重庆、东莞、徐州,价格更便宜,每台只要320元,最高的销量已经卖出160多台。“近期排单比较多,要明天发货。”出乎意料的是,作为一种开锁工具,卖家没有向记者索要任何身份证明。对此,好奇实验室昨日已向公安部网络违法犯罪报警平台、阿里违法商品报警平台举报。《好奇实验室》实测:用小黑盒开锁成功率到底有多高?这次智能锁惨败事件,真的是因为某些智能锁厂家偷工减料造成的吗?永康踢馆事件后,《好奇实验室》联系了浙江锁具产品质量检验中心。检验中心反馈说,他们也是在第一时间拿到了小黑盒,从仓库中拿了10款智能锁进行了测试,结果打开了1款,但目前对漏洞和破解原理还不是很清楚。10∶1的破开率看上去并不是很严重,但也有业内人士提醒——送质检中心检验的锁具与其量产后的,往往不是一回事。“前面要的是通过,后面考虑的是成本。”另一方面,也有不少商家在永康踢馆事件后迅速打出“经特斯拉线圈测试,未被破解”的视频,以应对当下风波。如果你在搜索引擎中打入“特斯拉线圈、强电磁脉冲”关键词,看到的内容几乎一致,尤其是在破解原理上——业内人士的解释是:特斯拉线圈产生的强电磁脉冲攻击智能锁芯片之后,会造成芯片死机并重启,而有的智能锁默认重启后自动开锁,所以特斯拉线圈能秒开智能锁。虽然这个事件不能代表整个行业,但却引起了整个行业的轰动和恐慌,说明大家对智能锁产品的稳定性、安全性的关注度非常高……作为用户,在购买智能锁的时候,千万不要只看价格,更要看产品的质量。口说无凭,实验为证,《好奇实验室》实测给大家看。小黑盒发货仓库实测连开三把锁,总耗时不到3分钟,最快的一把只用了5秒6月22日,宁波镇海区的车间里,王海丽同事、李德辉技术员正忙着给小黑盒打包,每个盒子配上一张纸制说明书、一个测试灯泡,填好单子,发货。小黑盒产生的脉冲可以让灯泡在无电源的情况下发出亮光“发到全国各地都有,光宁波这个仓库,这半个月就发出去300多台了。”李德辉说。“基本上都能打开,我们一共试了10把门锁,都开了。有经销商反馈上来的消息,他代理了6款门锁,都被黑盒子打开了。”李德辉回答。李德辉现场搬出三款智能锁进行测试,这三款锁都是从经销商那里拿到的国产货。实验员现场测试智能锁首先测试的是××斯品牌智能锁,包含指纹、密码、磁卡、钥匙等多种开启功能,价格5000多元。“每个锁的点位都不一样,可能在锁的上、中、下部分,甚至侧面都有可能。所以需要不断地挪动,找到开锁的位置。”李德辉说。按这样的方法,实验员上下左右不断移动,就像扫雷一下。半分钟后,实验员换了一台小黑盒继续实验,突然“唰”一声,门锁打开了。开锁的位置定格在门锁的刷卡处。耗时1分钟。第二款是×壹品牌智能锁,价格是3000多元,同样是磁卡、指纹、密码等多种开启方式。实验员从上而下慢慢寻找,大约1分钟时间,门锁被打开,开锁点也是定格在刷卡处。第三把锁是普×××智能锁,价格1000元左右,功能类似。但实验员只用了5秒钟,就打开了这把锁。实验员用自家智能锁测试门没打开,但门锁死机了实验员的家在杭州城北某小区,2014年交付,智能门锁是由开发商统一安装的,看不到品牌和logo标识。出乎意料的是,当小黑盒刚靠近,门锁却一下当机了——被小黑盒攻击之后,门锁系统没有任何反应,背光不亮了,系统提示音也没有了,就像是一部没装电池的门锁。任何操作,都打不开门锁。最后,实验员在门锁的应急电源处接了一个7号电池,系统又重新启动,恢复正常。杭州锁具市场盲测10款智能锁打开了2款最后,实验员去了杭州的一家五金锁具市场,随机进了两家锁具专卖店,对正在销售的10款门锁进行盲测。第一款是×花智能锁,售价1800元。“运气”比较好,小黑盒靠近键盘中间位置时,门锁就打开了。但接下来一连测试了8款智能锁,没有一款可以打开的,它们的表现都一样——可以触发系统背光、语音播报,但就是开不了锁。最后打开的一款是×安牌智能锁,价格900元。开始只成功了一半——这款锁的锁舌是分段式的,要往回缩进两次才能开启。但被小黑盒攻击后,锁舌不断进进出出,但就是没全开。实验员不断给小黑子充电,连续尝试将近20次,最后终于打开了这把锁。专家实测后认为最大的漏洞在智能锁的电机输入信号上6月23日,苏州迈瑞微电子有限公司,首席技术官李扬渊接受了《好奇实验室》的采访。首先,李扬渊并不认同偷工减料是这起事件的主要罪魁祸首。永康门博会之后,李扬渊也收到了合作商——宁波×州锁业寄来的一部小黑盒,请他对该品牌旗下的一款智能锁做测试。“稳压器和电流过载保护,作用是对电源系统进行优化和保护。我们用线圈开锁的时候,可以听到语音播报:‘已经开启",这说明智能锁的整体功能、包括电源是正常的。线圈脉冲并没有破坏电源系统,所以可以推出跟稳压器等没有关系。”其次,李扬渊认,确实存在“死机、重启,导致破解”的可能性。那么,还有没有其他可能性呢?正常地打开智能锁,需要三个环节:一、输入,比如是密码、指纹、人脸识别等;二、认证,芯片对输入信号进行识别认证;三、执行,认证无误,系统发出指令信号,转动电机,打开门锁。小黑盒破解智能锁,不存在信息输入、识别认证这两道关,问题出在第三步执行上。而智能锁的最后开启,是由电机转动带动锁芯完成的,因此李扬渊觉得试验的重点应该在电机的输入信号上。“很可能是小黑盒的脉冲干扰产生电流,经过智能锁内部的元器件,产生一种信号,让系统误以为是正常指令,触发了电机启动。”为验证这个猜想,李扬渊拆开一部智能锁,拔掉了里面的电源,当小黑盒再次靠近电路板后,神奇的事情发生了——明明没有电源供电,万能表上有电压反应了。然后接上电源,再次用小黑盒攻击测试,此时锁开了!也就是说在电磁波的干扰下,出现了电流,电流就像是一个信号弹,触发电机驱动芯片,于是锁开了。“即使不用小黑盒,只要是会产生电磁干扰的设备,都有可能驱动电机。”李扬渊拿起一台普通对讲机,慢慢靠近拔去电源的门锁,这次真的只用了1秒钟,秒开!用对讲机测试,只要频率高,同样可以干扰智能锁。全自动智能锁最容易打开智能锁的电机启动方式有两种:全自动、半自动。具体到实物上,全自动智能锁只要认证通过,锁舌就自动退回,门自动全开;而半自动的,还需要转动一下把手,才能打开。这两种不同的启动方式,在李扬渊看来,破解容易度有很大的区别。半自动把手型门锁,有两根电机控制线,两根线需要遇到一个高低电平差,就像一上一下的心电图,才算是一个开锁信号。“这就需要小黑盒找到特定的位置,加上运气成分,才能打开门锁。”而全自动的门锁,从内部开锁时通常使用按键开关,一按开锁。因为考虑到更好的用户体验,按键只用按很短的一下。对干扰器而言,使一条线产生瞬间的电位变化,当然比两条线产生有差别的持续的电位要容易多了。没被小黑盒破解的智能锁就真的安全吗?一些锁商在庆幸:“我的锁没被小黑盒破解,我的锁是安全的。”但李扬渊却不赞同。“首先,小黑盒是开锁工具,而不是标准检测工具。它的电量、距离、频率等因素,都会影响到开锁的成功率。“其次从风险性来讲,应该是普遍性的,因为直流电机驱动芯片使用电平来控制是工业标准,全世界的直流电机驱动电路都是这样做的。智能锁被无线干扰打开,不是偷工减料的问题,而是设计漏洞。”A4纸打印的黑白照片实测居然可以骗过一款智能锁的人脸识别系统锁匠:锁的功能越多,留出的后门就越多!整个采访中,《好奇实验室》多次听到锁匠们这么说:锁的功能越多,留出的后门就越多!A4纸打印的黑白照片骗过人脸识别在苏州工业园的一幢人才公寓里,工程师吴函峰向《好奇实验室》演示了一款国产智能锁的人脸识别系统漏洞。实验分三步——首先,把实验员的脸注册到系统中。然后,给实验员拍了一张照片,A4纸黑白打印。最后,用A4纸打印的黑白照片,贴近智能锁上的人脸识别探头。
2023-07-27 01:44:052

元始天尊的师傅是谁啊

元世尊,全称“绿玄祖莲玉清元世尊妙无神”,又名“玉青子许高妙台商黄原大道君”,是道教三大最高神之一。“玉清苑石天尊”道场位于昆仑玉清。道教记载,玉清、尚青、灵宝、道德佛太清,“三号,虽异,同也。”《门十则》说:“轩辕前三化身为第一。”杜青是大道的化身。元始天尊是公认的教祖,是道教经典中最高神的第一位,三清、玉清元始天尊、上清灵宝天尊、太清道德天尊,元始天尊的师傅是天道洪钧道祖。元尊的大师地位虽高,但出现的时间比太上老君晚。老子创立了道家,他创立了教的阐发。唐代以后,道观多设有“三清殿”,世纪初的佛常持混元珠像于堂神中间。在斋戒的大型道教仪式中,也有三个明确的神或像,都以第一佛为中位。第一佛的生日是正月初一,有的民间在冬至祭拜第一佛。元·石天尊主最早记载于东晋葛洪《枕书》:“昔二仪未分,未成形。日月不在,如鸡,乱黄。盘古已真人,天地之精,自元始,游于其中。”元朝第一个国王,开天辟地之后,成功治理天下,倾身而去,走在空中,看见圣母太原,喜欢她的贞洁,化作绿光送进嘴里。圣母怀胎十二年,始生于背间,言行常受彩云保护。因为它的前身是盘古和元始王,所以被称为元始天尊。《人间真仙仙总镜》云:“元,此也;始,始,先天之气。这个气化就是开天辟地的人,就是盘古;成为主持天庭的始祖,是元朝的开始。”天空中排名最高的:据陶弘景编著的《真灵位图》,齐高靓道,神仙居住的地方是“玉清三元宫”,元始天尊以36天占据其“天下第一”,即玉清疆域,元始天尊占据天空最高的地方,即35天之上。余庆境内,有紫云亭,蓝天是城。按时,所有的神仙都去玉清祭拜佛祖。《隋书经籍志》说世纪初的佛是神仙,每次天地开,都给他一条秘道去抢人。“都是上品神仙,包括太上老君、太上老公公、天真皇帝、五天帝、天官”。http://5b0988e595225.cdn.sohucs.com/images/20181219/290c701697354b56acf9aab142044f5d.jpeg
2023-07-27 01:44:081

王姓的由来?

一、问题的提出 书上有一篇关于李姓的研究报告,让我明白了姓氏也是一种文化,想起了我的姓--王,便想出了调查王姓历史的题目。 二、调查方法 查阅有关书籍、报纸,上网浏览,问家长,了解古今王姓名人及王姓人口数量。 三、调查情况和资料整理 信息渠道 涉及的方面 具体内容 书籍、报刊、上网 历史、现代的名人 战国时“鬼谷先生”王诩、书法家王羲之及王献之,文学家王维、王勃、王昌龄,政治家王安石等。 上网 王姓人口数量 据统计,王姓人口数量为9288.1万人,有人统计,王姓不仅人口居全国第一,而且历史名人也居全国第一位。 上网、问家长 王姓的历史由来 1.为周文王第十五子毕公高的后裔 2.源于太子晋的王氏 3.为周平王太孙赤之后4.出自妫姓5.出自子姓6.他族改姓或赐姓7.少数民族改姓王氏 四、结论 1. 王姓历史久远,加之支系众多,世族繁盛,代代名人层出不穷。如战国时期授苏秦、张仪纵横术的“鬼谷先生”王诩。西汉古代四大美女之一王昭君,琅琊的王羲之、王献之父子的书法千古留名。唐代,有著《滕王阁序》的“初唐四杰”之一的王勃;有“诗中有画,画中有诗”的大诗人王维、王昌龄。著名的文学家、王安石。元曲的代表作家王实甫,所著《西厢记》堪称经典。明、清之际的大思想家,著《日知论》的王夫之。清末有大文学家王国维。现代的名人有:科学家王选、中国马克思主义经济学家王亚南、中国无产阶级革命家王稼祥、被授予共和国上将军衔王震……我们为王姓祖先创造的辉煌感到自豪。 2. 王氏的众多分支中数来仍以源自周文王姬姓子孙的那一支名气最大。这一支王姓源自原来的周朝,也即今天的甘肃、陕西西安一带,其后来的主要分封之地在今山东省境。根据考证,福州王氏发源于山东琅琊王氏,以王审之为福州王氏的祖先代表。 3. 据2007年最新统计,王姓是当代中国人口最多的姓氏,王姓人口数量达9288.1万人。 希望采纳
2023-07-27 01:44:101

元始天尊的师父是谁?

元世尊,全称“绿玄祖莲玉清元世尊妙无神”,又名“玉青子许高妙台商黄原大道君”,是道教三大最高神之一。“玉清苑石天尊”道场位于昆仑玉清。道教记载,玉清、尚青、灵宝、道德佛太清,“三号,虽异,同也。”《门十则》说:“轩辕前三化身为第一。”杜青是大道的化身。元始天尊是公认的教祖,是道教经典中最高神的第一位,三清、玉清元始天尊、上清灵宝天尊、太清道德天尊,元始天尊的师傅是天道洪钧道祖。元尊的大师地位虽高,但出现的时间比太上老君晚。老子创立了道家,他创立了教的阐发。唐代以后,道观多设有“三清殿”,世纪初的佛常持混元珠像于堂神中间。在斋戒的大型道教仪式中,也有三个明确的神或像,都以第一佛为中位。第一佛的生日是正月初一,有的民间在冬至祭拜第一佛。元·石天尊主最早记载于东晋葛洪《枕书》:“昔二仪未分,未成形。日月不在,如鸡,乱黄。盘古已真人,天地之精,自元始,游于其中。”元朝第一个国王,开天辟地之后,成功治理天下,倾身而去,走在空中,看见圣母太原,喜欢她的贞洁,化作绿光送进嘴里。圣母怀胎十二年,始生于背间,言行常受彩云保护。因为它的前身是盘古和元始王,所以被称为元始天尊。《人间真仙仙总镜》云:“元,此也;始,始,先天之气。这个气化就是开天辟地的人,就是盘古;成为主持天庭的始祖,是元朝的开始。”天空中排名最高的:据陶弘景编著的《真灵位图》,齐高靓道,神仙居住的地方是“玉清三元宫”,元始天尊以36天占据其“天下第一”,即玉清疆域,元始天尊占据天空最高的地方,即35天之上。余庆境内,有紫云亭,蓝天是城。按时,所有的神仙都去玉清祭拜佛祖。《隋书经籍志》说世纪初的佛是神仙,每次天地开,都给他一条秘道去抢人。“都是上品神仙,包括太上老君、太上老公公、天真皇帝、五天帝、天官”。http://5b0988e595225.cdn.sohucs.com/images/20181219/290c701697354b56acf9aab142044f5d.jpeg
2023-07-27 01:44:152

王姓的由来

王姓的来源有多个,但构成现代王姓的主要来源有四个:子姓、姬姓、妫姓和外族改姓。最古老的王姓出自子姓。传说在商朝末年,商纣王的叔父比干与箕子、微子一起被称为商末“三仁”。纣王荒淫无道,比干多次犯颜上谏,反遭到纣王杀害,其子孙因为是王子的后裔,所以就以“王”为姓,被称为“子姓王氏”。子姓王氏的历史至今已经有约3100年了。经历了从秦朝一直到唐朝,再到今天。期间子姓王氏一直居住在河南地区,形成著名的汲郡王姓望族,后来散播到了甘肃、山东、河北和山西等地。 最多的王姓来源于周朝的王族,周朝的王族本姓姬,但从这个家族中不断有一些人由于失势或亡国而分离出来,因为他们过去是属于王家的因此以王为姓。这一支王姓以王子乔为始祖。姬姓王氏还可以被细分为三个分支。周武王的弟弟毕公高封于毕国,春秋时,他的裔孙毕万做了晋国的司徒,功高位重,被封于魏,战国时,魏国、韩国、赵国三方瓜分了晋国。后裔中最著名的是战国时代的“四君子”之一的信陵君魏无忌。当时因其是王家之后,便称其为“王家”,从此便以王为姓。这支姬姓王氏大约有2200年的历史了。第二分支源于春秋初年周平王的后裔。周平王在位51年,太子早夭,周平王驾崩之后,由其孙姬赤继位,但姬赤的胞弟姬林夺了王位,即周桓王。姬赤出奔晋国,子孙以其曾为王者而改姓王。一直到唐朝,这支姬姓王氏一直生活在山西临猗一带,史称河东临猗王姓,这支姬姓王氏大约有2700年的历史了。第三分支源于周考王的胞弟桓公揭之后。桓公揭封于王城。他的封地虽小,但处于东周王城的西部,历史上称其为西周桓公。周朝灭亡以后,子孙迁到河南伊川和临汝,以居于王城而改姓王,后被称为王城王氏,这支姬姓王氏大约有2400年的历史了。好名等你来拿!王姓起名字,结合传统科学理论,起名字时尚好听,大气不俗!铜陵辰阳文化科技有..广告 相关问题全部
2023-07-27 01:44:011

曲阜师范大学日照校区宿舍

6人间,有独立卫浴,都是上下铺。曲阜校区的宿舍分为北公寓,校内公寓,西公寓。1、北公寓:共6栋楼,北一,北四有独卫,有阳台,其余的只有阳台,上床下桌。北一楼下为女生澡堂,北五楼下为男生澡堂。2、校内公寓:校八校九有书橱,有阳台,有的有独卫;校医院旁边去年新辟一校内男宿舍。3、西公寓:西四有独卫,女生宿舍。其他的西一,二,三没有独卫,均有阳台。校区设施教学楼是按照ABCD英文字母编排,有A楼B楼C楼D楼E楼F楼和S楼,另外有图书馆一座,图书馆全名日照图书馆,向本校学生开放,进入须持学生证,是日照市高校最大的图书馆。C楼也叫主楼,是曲阜师范大学日照校区最高的一座楼,7楼以上为教师办公区,其他为教学区。F楼为实验楼,于2011年末新落成的S楼位于校园南部,也有实验室和普通教室。以上内容来源:百度百科-曲阜师范大学日照校区
2023-07-27 01:44:006

金平府是哪里?

金平府是《西游记》中的地名,唐僧师徒经过的国家天竺国下辖的州府.金平府是天竺国的富庶之地,以举办灯会和供奉香油而闻名。取经团队在元宵节前夕到达此地,看到了当地灯会的兴盛。可玄英洞三妖却在此地假扮佛祖,收取香油。
2023-07-27 01:43:562

温布利球场是谁的主场?

温布利球场是位于英国伦敦的一座足球场,是英格兰国家队的主场,同时也承办英格兰国内各项比赛的决赛。温布利最早建于1923年,于2007年重建,被公认为是世界上最伟大的球场之一。
2023-07-27 01:43:564

元始天尊的师傅是谁?

元世尊,全称“绿玄祖莲玉清元世尊妙无神”,又名“玉青子许高妙台商黄原大道君”,是道教三大最高神之一。“玉清苑石天尊”道场位于昆仑玉清。道教记载,玉清、尚青、灵宝、道德佛太清,“三号,虽异,同也。”《门十则》说:“轩辕前三化身为第一。”杜青是大道的化身。元始天尊是公认的教祖,是道教经典中最高神的第一位,三清、玉清元始天尊、上清灵宝天尊、太清道德天尊,元始天尊的师傅是天道洪钧道祖。元尊的大师地位虽高,但出现的时间比太上老君晚。老子创立了道家,他创立了教的阐发。唐代以后,道观多设有“三清殿”,世纪初的佛常持混元珠像于堂神中间。在斋戒的大型道教仪式中,也有三个明确的神或像,都以第一佛为中位。第一佛的生日是正月初一,有的民间在冬至祭拜第一佛。元·石天尊主最早记载于东晋葛洪《枕书》:“昔二仪未分,未成形。日月不在,如鸡,乱黄。盘古已真人,天地之精,自元始,游于其中。”元朝第一个国王,开天辟地之后,成功治理天下,倾身而去,走在空中,看见圣母太原,喜欢她的贞洁,化作绿光送进嘴里。圣母怀胎十二年,始生于背间,言行常受彩云保护。因为它的前身是盘古和元始王,所以被称为元始天尊。《人间真仙仙总镜》云:“元,此也;始,始,先天之气。这个气化就是开天辟地的人,就是盘古;成为主持天庭的始祖,是元朝的开始。”天空中排名最高的:据陶弘景编著的《真灵位图》,齐高靓道,神仙居住的地方是“玉清三元宫”,元始天尊以36天占据其“天下第一”,即玉清疆域,元始天尊占据天空最高的地方,即35天之上。余庆境内,有紫云亭,蓝天是城。按时,所有的神仙都去玉清祭拜佛祖。《隋书经籍志》说世纪初的佛是神仙,每次天地开,都给他一条秘道去抢人。“都是上品神仙,包括太上老君、太上老公公、天真皇帝、五天帝、天官”。http://5b0988e595225.cdn.sohucs.com/images/20181219/290c701697354b56acf9aab142044f5d.jpeg
2023-07-27 01:43:542