- 床单格子
-
虚数不是来自生活,而是为了数学需要。比如X平方+1=0,该方程无实数解,所以规定一个虚数单位i。
i的平方=负一,一个虚数按a+bi来表示。a是实部,b是虚部。(a
b都要是实数)例如3+i
4-2i等等
注意虚数不能比较大小。
而实数和虚数的总称就是复数
- u投在线
-
复数包括实数和虚数。
虚数是通过一个数学符号“i”,我们知道任何实数的平方都是大于等于0的,但在生产和生活中有时我们需要他的平方为小于0的数,因此同个设定数学符号“i”,是“i”的平方等于-1,虚数一般由实部+虚部构成,实部就是我们通常说用的实数,而虚部是在实部后面加个“i”,列入:a=1+2i
此时的“a”就是一个虚数!
- volcanoVol
-
形如a+bi,其中i的平方等于-1.
如果b不等于0则为虚数
b等于0是实数
合在一起就是复数
- 北营
-
复数A+BI中,当B不等于0时,叫虚数
2i这样的是虚数,2i+2这样的是复数
相关推荐
虚数的概念,定义
这是从高3数学书上抄的~ 复数A+BI中~当B不等于0时~叫虚数~A=0 ~B不等于0时~叫纯虚数~A,B分别叫实部和虚部~虚数的概念虚数的单位I最早是由欧拉引出的,他取imaginary(想像的、假想的)一词的词头作为虚数单位,I=√-1,于是一切虚数都具有bi的形式.但虚数的确定要归功于18世纪两位业余数学家,一位是挪威的测绘员威赛尔,另一位是巴黎的会计师阿尔干。 要追溯出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。 有理数出现的非常早,它是伴随人们的生产实践而产生的。 无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。 不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示。西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。 无理数的确定与开方运算息息相关。对于那些非完全平方数,人们发现它们的平方根是可以无限制地求到任意多位的无限不循环小数。(像π=3.141592625…,E=2。71828182…等),称为无理数。 但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无是数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在褛范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。 到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念。如果不使用负数平方根,就是可能决四次方程的求解问题。虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语。一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么。它们线性虚幻。虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮。 可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来。有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数。 虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a=bi,这里a和b都是实数。虚数也常称为纯虚数。 从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位。他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释。后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知。2023-07-27 01:40:105
虚数的定义?
虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。 (2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。 (3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义 我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源 “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。 人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。 到了16世纪,意大利数学家卡当在其著作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。 1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式: 形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3) 当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3) 在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。 直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。 由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如 继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号i 当ω=(-1+√3i)/2或ω=(-1-√3i)/2时: ω^2 + ω + 1 = 0 ω^3 = 1 许多实数的运算都可以推广到i,例如指数、对数和三角函数。 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ i*pi. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i. i,e,π,0和1的奇妙关系: e^(i*π)+1=0 i^I=e^(-π÷2) [编辑本段]符号来历 1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。 通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述 虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院) 翻译:徐国强 虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。 IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i." [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]参考资料: 《人文数学网络期刊》22期48页开放分类: 词语,数学,词汇,数词,复数2023-07-27 01:41:198
虚数概念
复数的平方根叫虚数2023-07-27 01:41:381
虚数的定义
虚数的解释 (1) [unreliable figure]∶虚假 不实 的数字 (2) [imaginary number]∶实数与虚数单位之积,亦即实部为零的 复数 (如3i) 详细解释 (1).不表示 实际 数量的数词。 宋 司马 光 《言山陵择地札子》 :“伏望朝廷特赐指挥按行山陵使等,只於 永安县 界旧陵侧近选择善地,旬日之内,早定夺闻奏……不得 大约 虚数及妄立近限,必使号令明信,则事无不济而民力不困矣。” 清 汪中 《述学·释三九上》 :“因而生人之措辞,凡一二之所不能尽者,则约之三以见其多;三之所不能尽者,则约之九以见其极多,此 言语 之虚数也。实数可稽也,虚数不可执也。” (2).虚假的数额。 宋 苏轼 《应诏论四事状》 :“ 元丰 八年登极大赦以前,人户积欠共计五万三百馀贯,若谓非贫乏有可送纳,即自 元祐 元年 至今,并不曾纳到分文,显见 有司 空留帐籍虚数,以害朝廷实惠。” 宋 陆游 《陆郎中墓 志铭 》 :“尝为 丹徒 丞,朝廷用言者,遣使籍江上沙田,立税额,使指甚厉,吏莫敢违,亦或从而张虚数以为功。” 《宋史·食货志下五》 :“十三场茶岁课缗钱五十万……岁纔得息钱三万馀缗,而官吏廪给杂费不预,是则虚数多而 实利 寡。” 《金史·陈规传》 :“ 唐 魏徵 曰:‘兵在以道御之而已。御壮健 足以 无敌于 天下 ,何取细弱以增虚数。"” (3).虚伪的礼节。数, 礼数 。 清 侯方域 《陈 将军 二鹤记》 :“世之战士,皆骁雄劲悍之徒……养以有馀之财而作其感恩之气, 然后 报其主而不叛。吾未见其可以虚数致也。” (4).数学 名词 。负数的平方根。 词语分解 虚的解释 虚 ū 空:虚无。虚实。虚度。虚名。虚左( 尊敬 地空出左边的座位,古代以左为尊)。空虚。乘虚而入。 不真实的:虚伪。虚假(?)。虚妄。虚惊。虚夸。虚构。虚传。虚张声势。 内心怯懦:做贼 心虚 。 不 自满 :虚 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天2023-07-27 01:41:571
什么是虚数?虚数的定义又是什么
虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。 (2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。 (3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义 我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源 “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。 人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。 到了16世纪,意大利数学家卡当在其著作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。 1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式: 形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3) 当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3) 在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。 直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。 由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如 继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号i 当ω=(-1+√3i)/2或ω=(-1-√3i)/2时: ω^2 + ω + 1 = 0 ω^3 = 1 许多实数的运算都可以推广到i,例如指数、对数和三角函数。 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ i*pi. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i. i,e,π,0和1的奇妙关系: e^(i*π)+1=0 i^I=e^(-π÷2) [编辑本段]符号来历 1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。 通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述 虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院) 翻译:徐国强 虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。 IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i." [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]参考资料: 《人文数学网络期刊》22期48页开放分类: 词语,数学,词汇,数词,复数2023-07-27 01:42:051
什么是虚数和复数??
复数包括实数和虚数,纯虚数就是虚数。z=a+bi,z为复数,a为实数,bi为虚数。a=0时,z就是虚数;b=0时,z就是实数。2023-07-27 01:42:175
复数中的实数,虚数,纯虚数是怎样定义的
复数可以写成a+bi;当a不等于0,b也不等于0时为虚数;当a=0,b不等于0时,则为纯虚数;当a不等于0,b=0时,则为实数。2023-07-27 01:42:471
虚数如何产生的,意义是什么
复数 开放分类: 数学、数学家、实数、虚数定义[编辑本段]复数就是实数和虚数的统称复数的基本形式是a+bi,其中a,b是实数,a称为实部,bi称为虚部,i是虚数单位,在复平面上,a+bi是点Z(a,b)。Z与原点的距离r称为Z的模|Z|=√a方+b方a+bi中:a=0为纯虚数,b=0为实数,b不等于0为虚数。复数的三角形式是 Z=r[cosx+isinx]中x,r是实数,rcosx称为实部,irsinx称为虚部,i是虚数单位。Z与原点的距离r称为Z的模,x称为辐角。起源[编辑本段]16世纪意大利米兰学者卡当(Jerome Cardan1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。 数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如,习的数学武子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是的形式(a、b都是实数)(说明:现行教科书中没有使用记号=-i,而使用=一1)。法国数学家棣莫佛(1667—1754)在1730年发现公式了,这就是著名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。 德国数学家高斯(1777—1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。 经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。 随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。具体内容和应用[编辑本段]形如a+bi的数 。式中 a,b 为实数 ,i是 一个满足i^2=-1的数 ,因为任何实数的平方不等于-1,所以 i不是实数,而是实数以外的新的数。在复数a+bi中,a 称为复数的实部,b称为复数的虚部 ,复数的实部和虚部分别用Rez和Imz表示,即Rez =a,Imz=b。i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。复数的产生来自解代数方程的需要。16世纪,意大利数学家G.卡尔达诺首先用公式表示出了一元三次方程的根,但公式中引用了负数开方的形式,并把 i=sqrt(-1) 当作数,与其他数一起参与运算。由于人们无法理解 i的实质,所以在很长时间内不承认负数的平方根也是数,而称之为虚数。直到19世纪,数学家们对这些虚数参与实数的代数运算作出了科学的解释,并在解方程和其他领域中使虚数得到了广泛的应用,人们才认识了这种新的数。复数的四则运算规定为:(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)-(c+di)=(a-c)+(b-d)i,(a+bi)61(c+di)=(ac-bd)+(bc+ad)i,(c与d不同时为零)(a+bi)÷(c+di)=(ac+bd/c^2+d^2)+(bc-ad/c^2+d^2)i,(c+di)不等于0复数有多种表示形式,常用形式 z=a+bi 叫做代数式。此外有下列形式。①几何形式。复数z=a+bi 用直角坐标平面上点 Z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。②向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。③三角形式。复数z=a+bi化为三角形式z=r(cosθ+isinθ)式中r= sqrt(a^2+b^2),叫做复数的模(或绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。④指 数形式。将复数的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ)复数三角形式的运算:设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。复数的乘、除、乘方、开方可以按照幂的运算法则进行。复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复数不能建立大小顺序。┢柯乐栤┮ 2008-08-24 12:03 您觉得这个答案好不好?好(2)不好(0) 实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括整数,分数,0.数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:│a│=①a为正数时,|a|=a②a为0时, |a|=0③a为负数时,|a|=-a③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)2023-07-27 01:42:561
虚数是什么,定义是什么
在数学里,如果有某个数的平方是负数的话,那个数就是虚数了。所有的虚数和实数组成复数。2023-07-27 01:43:061
0是不是虚数
我跟你讲,虚数的定义在于:虚数的一般式为:c=a+bi,a和b是实数. 如果b=0,则c叫实数; 如果a=0,则c叫纯虚数。 当数值为0时,b=0所以0是实数2023-07-27 01:43:161
常数和虚数的关系
常数就是常量,是恒定不变的数,多出现在函数中,例如函数y=2x中常数是2;实数有理数和无理数的总称,有理数指能表示为p/q,p、q为整数的数,即指有限小数或无限循环小数,例如:0,1,1/3;无理数指不能表示为p/q,p、q为整数的数,即指无限不循环小数,例如:e=2.71828……,兀=3.1415926……,根号2;虚数是指非实数的数,例如i=根号(-1),6i,1/i,根号负数的数都是虚数.拓展:1、有一类数叫超越数,定义为无法表示为有理系数方程的根的数,像e,兀等.2、并不是无理数经过初等运算后还是无理数,例如(1+根号2)+(1-根号2)=2.3*(知道了可以吓唬同学,甚至吓唬老师)并不是虚数经过初等运算后还是虚数,例如i^i=e^(-兀/2),后者是实数.希望帮到你。2023-07-27 01:43:322
实数虚数怎么计算
定义:虚数是指平方是负数的数虚数和实数是复数的两大部分计算:规定i^2=-1实数与i进行四则运算时,原有的运算仍让成立因此如-2=2*i^2直观上来看根号2*i就是根号-2的表示,但是【注意】不能用根号里带符号这种表示。2023-07-27 01:43:541
为什么要有虚数,虚数的定义是什么?
数本来都是在数轴的横轴上的,也就是X轴上就可以表示的就是实数。落在X轴以外的数不能用一个表示距离到原点来表示,要用距离加方位表示的数就是虚数。虚数本没有什么意义,但是因为科学研究需要对一些特殊算是算法的表示方法,因此虚数才显得比较重要。2023-07-27 01:44:042
实数和虚数的分别?
平方为正数的是实数,平方为负数的是虚数.实数我们经常接触,日常生活中经常碰见. 在数学里,将平方是负数的数定义为纯虚数.所有的虚数都是复数.定义为i^2=-1.但是虚数是没有算术根这一说的,所以±√(-1)=±i.对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA.实数和虚数组成的一对数在复数范围内看成一个数,起名为复数.虚数没有正负可言.不是实数的复数,即使是纯虚数,也不能比较大小.这种数有一个专门的符号“i”(imaginary),它称为虚数单位.不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示.2023-07-27 01:44:191
实数与虚数的概念与运算
平方为正数的是实数,平方为负数的是虚数。实数我们经常接触,日常生活中经常碰见。在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。2023-07-27 01:44:352
实数、虚数是什么 什么是实数、虚数
1、实数(realnumber)是有理数和无理数的总称。实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(realnumbersystem)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。 2、虚数。虚数是指实数以外的复数,其中实部为0的虚数称为纯虚数。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2=-1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a+bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。2023-07-27 01:44:441
虚数的概念
在数学里,将偶数指数幂是负数的数定义为纯虚数,虚数是没有正负可言的和虚数相对的就是实数,还有复数,这些词语在数学里面都是很重要的的概率词之一。2023-07-27 01:45:061
什么是虚数 虚数的介绍
1、在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。 2、可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。 3、在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。2023-07-27 01:45:131
虚数的定义
题库内容:虚数的解释(1) [unreliable figure]∶虚假 不实 的数字 (2) [imaginary number]∶实数与虚数单位之积,亦即实部为零的 复数 (如3i) 详细解释 (1).不表示 实际 数量的数词。 宋 司马 光 《言山陵择地札子》 :“伏望朝廷特赐指挥按行山陵使等,只於 永安县 界旧陵侧近选择善地,旬日之内,早定夺闻奏……不得 大约 虚数及妄立近限,必使号令明信,则事无不济而民力不困矣。” 清 汪中 《述学·释三九上》 :“因而生人之措辞,凡一二之所不能尽者,则约之三以见其多;三之所不能尽者,则约之九以见其极多,此 言语 之虚数也。实数可稽也,虚数不可执也。” (2).虚假的数额。 宋 苏轼 《应诏论四事状》 :“ 元丰 八年登极大赦以前,人户积欠共计五万三百馀贯,若谓非贫乏有可送纳,即自 元祐 元年 至今,并不曾纳到分文,显见 有司 空留帐籍虚数,以害朝廷实惠。” 宋 陆游 《陆郎中墓 志铭 》 :“尝为 丹徒 丞,朝廷用言者,遣使籍江上沙田,立税额,使指甚厉,吏莫敢违,亦或从而张虚数以为功。” 《宋史·食货志下五》 :“十三场茶岁课缗钱五十万……岁纔得息钱三万馀缗,而官吏廪给杂费不预,是则虚数多而 实利 寡。” 《金史·陈规传》 :“ 唐 魏徵 曰:‘兵在以道御之而已。御壮健 足以 无敌于 天下 ,何取细弱以增虚数。"” (3).虚伪的礼节。数, 礼数 。 清 侯方域 《陈 将军 二鹤记》 :“世之战士,皆骁雄劲悍之徒……养以有馀之财而作其感恩之气, 然后 报其主而不叛。吾未见其可以虚数致也。” (4).数学 名词 。负数的平方根。 词语分解 虚的解释 虚 ū 空:虚无。虚实。虚度。虚名。虚左( 尊敬 地空出左边的座位,古代以左为尊)。空虚。乘虚而入。 不真实的:虚伪。虚假(?)。虚妄。虚惊。虚夸。虚构。虚传。虚张声势。 内心怯懦:做贼 心虚 。 不 自满 :虚 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天2023-07-27 01:45:211
虚数的概念,定义
这是从高3数学书上抄的~ 复数A+BI中~当B不等于0时~叫虚数~A=0 B不等于0时~叫纯虚数~ A,B分别叫实部和虚部~ 虚数的概念 虚数的单位I最早是由欧拉引出的,他取imaginary(想像的、假想的)一词的词头作为虚数单位,I=√-1,于是一切虚数都具有bi的形式.但虚数的确定要归功于18世纪两位业余数学家,一位是挪威的测绘员威赛尔,另一位是巴黎的会计师阿尔干. 要追溯出现的轨迹,就要联系与它相对实数的出现过程.我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数. 有理数出现的非常早,它是伴随人们的生产实践而产生的. 无理数的发现,应该归功于古希腊毕达哥拉斯学派.无理数的出现,与德谟克利特的“原子论”发生矛盾.根据这一理论,任何两个线段的比,不过是它们所含原子数目的经.而勾股定理却说明了存在着不可通约的线段. 不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示.西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”. 无理数的确定与开方运算息息相关.对于那些非完全平方数,人们发现它们的平方根是可以无限制地求到任意多位的无限不循环小数.(像π=3.141592625…,E=2.71828182…等),称为无理数. 但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无是数,也不能长度解决代数方程的求解问题.像x 2+1=0这样最简单的二次方程,在褛范围内没有解.12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的.他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数.这等于不承认方程的负根的存在. 到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念.如果不使用负数平方根,就是可能决四次方程的求解问题.虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语.一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根.对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么.它们线性虚幻.虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮. 可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来.有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数. 虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a=bi,这里a和b都是实数.虚数也常称为纯虚数. 从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位.他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释.后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知.2023-07-27 01:45:301
什么是虚数?
什么是虚数 负数开平方,在实数范围内无解。 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。 虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i) 虚数的实际意义 大多数人最为熟悉的数有两种,即正数(+5, +17.5)和负数(-5,-17.5)。负数是在中世 纪出现的,它用来处理3-5这类问题。从古代人看来,要 从三个苹果中减去五个苹果似乎是不可能的。但是,中世纪 的商人却已经清楚地认识到欠款的概念。“请你给我五个苹 果,可是我只有三个苹果的钱,这样我还欠你两个苹果的钱。” 这就等于说:(+3)-(+5)=(-2)。 正数及负数可以根据某些严格的规则彼此相乘。正数乘 正数,其乘积为正。正数乘负数,其乘积为负。最重要的是, 负数乘负数,其乘积为正。 因此,(+1)×(+1)=(+1); (+1)×(-1)=(-1); (-1)×(-1)=(+1)。 现在假定我们自问:什么数自乘将会得出+1?或者用 数学语言来说,+1的平方根是多少? 这一问题有两个答案。一个答案是+1,因为(+1) ×(+1)=(+1);另一个答案则是-1,因为(-1) ×(-1)=(+1)。数学家是用√ ̄(+1)=±1来 表示这一答案的。(碧声注:(+1)在根号下) 现在让我们进一步提出这样一个问题:-1的平方根是 多少? 对于这个问题,我们感到有点为难。答案不是+1,因 为+1的自乘是+1;答案也不是-1,因为-1的自乘同 样是+1。当然,(+1)×(-1)=(-1),但这是 两个不同的数的相乘,而不是一个数的自乘。 这样,我们可以创造出一个数,并给它一个专门的符号, 譬如说#1,而且给它以如下的定义:#1是自乘时会得出 -1的数,即(#1)×(#1)=(-1)。当这种想法 刚提出来时,数学家都把这种数称为“虚数”,这只是因为 这种数在他们所习惯的数系中并不存在。实际上,这种数一 点也不比普通的“实数”更为虚幻。这种所谓“虚数”具有 一些严格限定的属性,而且和一般实数一样,也很容易处理。 但是,正因为数学家感到这种数多少有点虚幻,所以给 这种数一个专门的符号“i”(imaginary)。我们可以把正 虚数写为(+i),把负虚数写为(-i),而把+1看作 是一个正实数,把(-1)看作是一个负实数。因此我们可 以说√ ̄(-1)=±i。 实数系统可以完全和虚数系统对应。正如有+5, -17.32,+3/10等实数一样,我们也可以有 +5i,-17.32i,+3i/10等虚数。 我们甚至还可以在作图时把虚数系统画出来。 假如你用一条以0点作为中点的直线来表示一个正实数 系统,那么,位于0点某一侧的是正实数,位于0点另一侧 的就是负实数。 这样,当你通过0点再作一条与该直线直角相交的直线 时,你便可以沿第二条直线把虚数系统表示出来。第二条直 线上0点的一侧的数是正虚数,0点另一侧的数是负虚数。 这样一来,同时使用这两种数系,就可以在这个平面上把所 有的数都表示出来。例如(+2)+(+3i)或 (+3)+(-2i)。这些数就是“复数”。 数学家和物理学家发现,把一个平面上的所有各点同数 字系统彼此联系起来是非常有用的。如果没有所谓虚数,他 们就无法做到这一点了。2023-07-27 01:45:494
什么是虚数?求详细解答。
虚数就是指数幂是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。2023-07-27 01:45:561
什么是虚数?
虚数的意义 (1)[unreliable figure]∶虚假不实的数字(2)[imaginary number]∶复数中a+bi,b不等于零时叫虚数(3)[暂无英文]:汉语中不表明具体数量的词。 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中p是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA. 不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。编辑本段i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号 ω2 + ω + 1 = 0 ω3 = 1的简式。其中ω=(-1+√3i)/2。编辑本段虚数的符号 1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。 通常,我们用符号C来表示复数集,用符号R来表示实数集。编辑本段虚数的历史 要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。 有理数出现的非常早,它是伴随人们的生产实践而产生的。 无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。 不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示。西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。 无理数的确定与开方运算息息相关。对于那些非完全平方数,人们发现它们的平方根是可以无限制地求到任意多位的无限不循环小数。(像π=3.141592625…,E=2。71828182…等),称为无理数。 但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在褛范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。 到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念。如果不使用负数平方根,就是可能决四次方程的求解问题。虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语。一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么。它们线性虚幻。虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮。 对于早期的数学家们来说,使得虚数成为似乎是合理的和可以接受的倒不是像x^2+1=0这样的二次方程的求解问题,而是具有实数根的三次方程求解问题。 1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式: 形如:x^3+ax+b=0的三次方程解如下: x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3) 当卡丹试图用该公式解方程x^3-15x-4=0时他的解是: x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3) 在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。 因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。 可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来。有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数。 虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a+bi,这里a和b都是实数。虚数也常称为纯虚数。 虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解。从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位。他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释。后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知。现在,复数一般用来表示向量(有方向的数量),这在力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚。编辑本段描述虚数 虚数原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院) 翻译:徐国强虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。译自《人文数学网络期刊》22期48页IMAGINARYby Lawrence Mark LesserArmstrong Atlantic State UniversityImaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i." Ah-hai!from the Humanistic Mathematics Network Journal # 22, p. 48.原载《科学时报》2003年2月14日科学周末 [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致编辑本段和i有关的运算 许多实数的运算都可以推广到i,例如指数、对数和三角函数。 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ i*pi. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.2023-07-27 01:46:052
什么是虚数?虚数的定义又是什么?
负数开平方,在实数范围内无解. 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数. 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数. 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分). 虚数单位为i,i即根号负1. 3i为虚数,即根号(-3),即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i)2023-07-27 01:46:121
虚数的概念和性质
引用自“百度知道”: 虚数的定义 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以定义sqrt(-1)=±i (sqrt指根号)。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 虚数的几何意义 如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号i 当ω=(-1+√3i)/2或ω=(-1-√3i)/2时: ω^2 + ω + 1 = 0 ω^3 = 1 许多实数的运算都可以推广到i,例如指数、对数和三角函数。 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ i*pi. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i. i,e,π,0和1的奇妙关系: e^(i*π)+1=0 i^I=e^(-π÷2)2023-07-27 01:46:341
什么是虚数
平方后等于-1的数是i,而a+bi就叫做虚数2023-07-27 01:46:431
虚数i定义式
虚数的解释(1) [unreliable figure]∶虚假 不实 的数字 (2) [imaginary number]∶实数与虚数单位之积,亦即实部为零的 复数 (如3i) 详细解释 (1).不表示 实际 数量的数词。 宋 司马 光 《言山陵择地札子》 :“伏望朝廷特赐指挥按行山陵使等,只於 永安县 界旧陵侧近选择善地,旬日之内,早定夺闻奏……不得 大约 虚数及妄立近限,必使号令明信,则事无不济而民力不困矣。” 清 汪中 《述学·释三九上》 :“因而生人之措辞,凡一二之所不能尽者,则约之三以见其多;三之所不能尽者,则约之九以见其极多,此 言语 之虚数也。实数可稽也,虚数不可执也。” (2).虚假的数额。 宋 苏轼 《应诏论四事状》 :“ 元丰 八年登极大赦以前,人户积欠共计五万三百馀贯,若谓非贫乏有可送纳,即自 元祐 元年 至今,并不曾纳到分文,显见 有司 空留帐籍虚数,以害朝廷实惠。” 宋 陆游 《陆郎中墓 志铭 》 :“尝为 丹徒 丞,朝廷用言者,遣使籍江上沙田,立税额,使指甚厉,吏莫敢违,亦或从而张虚数以为功。” 《宋史·食货志下五》 :“十三场茶岁课缗钱五十万……岁纔得息钱三万馀缗,而官吏廪给杂费不预,是则虚数多而 实利 寡。” 《金史·陈规传》 :“ 唐 魏徵 曰:‘兵在以道御之而已。御壮健 足以 无敌于 天下 ,何取细弱以增虚数。"” (3).虚伪的礼节。数, 礼数 。 清 侯方域 《陈 将军 二鹤记》 :“世之战士,皆骁雄劲悍之徒……养以有馀之财而作其感恩之气, 然后 报其主而不叛。吾未见其可以虚数致也。” (4).数学 名词 。负数的平方根。 词语分解 虚的解释 虚 ū 空:虚无。虚实。虚度。虚名。虚左( 尊敬 地空出左边的座位,古代以左为尊)。空虚。乘虚而入。 不真实的:虚伪。虚假(?)。虚妄。虚惊。虚夸。虚构。虚传。虚张声势。 内心怯懦:做贼 心虚 。 不 自满 :虚 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天2023-07-27 01:47:191
有关虚数的问题
虚数 (1)[unreliable figure]∶虚假不实的数字(2)[imaginary number]∶实数与虚数单位之积,亦即实部为零的复数(如3i)在数学里,如果有某个数的平方是负数的话,那个数就是虚数了。所有的虚数都是复数。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。虚数的符号1777年瑞士数学家欧拉开始使用符号i=√(-1)表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数),称为复数。虚数的历史由于虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解。笛卡尔称“虚数”的本意是指他是假的;莱布尼兹在公元18世纪初则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如√(-1)、√(-2)的数学式都是不可能有的,纯属虚幻的。欧拉之后,挪威的一个测量学家维塞尔,提出把复数a+bi用平面上的点(a,b)来表示。后来,高斯提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的数量),这在力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚。不表示实在数量的数词。如下面例子中的一、三、五、九、百、千、万等数词都是虚数。【例】以一当十|三五成群|千方百计|万紫千红|九牛一毛|龙生九子|三月不知肉味|。描述虚数虚数原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院) 翻译:徐国强虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。译自《人文数学网络期刊》22期48页IMAGINARYby Lawrence Mark LesserArmstrong Atlantic State UniversityImaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i." Ah-hai!from the Humanistic Mathematics Network Journal # 22, p. 48.原载《科学时报》2003年2月14日科学周末 [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致2023-07-27 01:47:381
请问:虚数的定义是什么?实用范围是什么?
定义:负数开平方,在实数范围内无解。数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。虚数单位为i,i即根号负1我只知道它可以用来解四次方程,如果不使用负数平方根,就不可能决四次方程的求解问题。2023-07-27 01:47:481
虚数怎样定义
虚数定义为i,i=√-1,它是从i^2=-1得来的。对于复数a+bi,(a,b为实数,b≠0),分为实部a和虚部bi两部分。由于有了虚数i的定义,所有一元n(n=2m,m为自然数1,2,3,......)次方程的根就都可以求解了。2023-07-27 01:47:551
虚数i的意义?
如果有数平方是负数的话,那个数就是虚数了;所有的虚数都是复数~在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。2023-07-27 01:48:181
高二数学 关于虚数
第一问:根据纯虚数的定义可得,m方-m-2=0,m方+m不等于0,得m=22023-07-27 01:48:382
虚数的物理意义
在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中p是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA.不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数的物理指称性呼唤着新数学 是很无聊的……2023-07-27 01:48:561
虚数有什么性质
在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以定义sqrt(-1)=±i (sqrt指根号)。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。虚数的几何意义如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号i 当ω=(-1+√3i)/2或ω=(-1-√3i)/2时: ω^2 + ω + 1 = 0 ω^3 = 1 许多实数的运算都可以推广到i,例如指数、对数和三角函数。 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ i*pi. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i. i,e,π,0和1的奇妙关系: e^(i*π)+1=0 i^I=e^(-π÷2)回答人的补充 2009-12-29 19:06 很简单。对于X^2=-1,由于 i^2 = - 1,所以 x^2=i^2 ,解得 x=±i。2023-07-27 01:49:451
虚数是什么 举一个例子有哪些?
在数学中,虚数就是形如a+b*i的数,其中a、b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内地点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。例如:(1)2+3i就表示一个复数,2是实部,3i表示虚部,3i就表示一个纯虚数;(2)-1的开方就是虚数,称为一个虚数单位。虚数的由来:随着数学的发展,数学家发现一些三次方程的实数根还非得用负数的平方根表示不可,而且如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这样一个令人满意的结果,此外对负数的平方根按数的运算法则进行运算,结果也是正确的。意大利数学家卡尔丹作出一个折中,表示他称负数的平方根为 “虚构的数”,意思是可以承认它为数,但不像实数那样可以表示实际存在的量,而是虚构的,到了1632年,法国数学家笛卡儿正式给了负数的平方根,一个大家乐于接受的名字——虚数。虚数的虚字,表示它不代表实际的数,而只存在于想象之中,尽管虚数是 “虚”的,但数学家却没有放松对它的研究。他们发现了关于虚数的许许多多的性质和应用,大数学家欧拉提出了 “虚数单位”的概念,他把U作为虚数单位,用符号i表示,相当于实数的单位1,虚数有了单位,就能像实数一样写成虚数单位倍数的形式了。从此数学家把实数与虚数同等对待,并合称为复数,于是数的家族得到了统一,任何一个复数可以写成a+bi的形式,当b=0时,a+bi=a,它就是实数当;b#0时,a+bi就是虚数了。以上内容参考:百度百科-虚数2023-07-27 01:49:543
虚数的实在意义
为了计算负数的开方。在数学里有意义,在自然界无意义。要追溯出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。有理数出现的非常早,它是伴随人们的生产实践而产生的。无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示。西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。无理数的确定与开方运算息息相关。对于那些非完全平方数,人们发现它们的平方根是可以无限制地求到任意多位的无限不循环小数。(像π=3.141592625…,E=2。71828182…等),称为无理数。但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无是数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在褛范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念。如果不使用负数平方根,就是可能决四次方程的求解问题。虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语。一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么。它们线性虚幻。虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮。可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来。有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数。虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a=bi,这里a和b都是实数。虚数也常称为纯虚数。从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位。他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释。后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知。2023-07-27 01:50:322
谁能给我讲一下虚数根的含义,那真是太感谢了.
在数学里,如果有数平方是负数的话,那个数就是虚数了;所有的虚数都是复数.“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字.后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实.虚数轴和实数轴构成的平面称复数平面,复平面上每一点对应着一个复数.每一个虚数可表达为 ib,其中 b 是实数,i的定义是:i^2 = - 1 虚根包括虚数单位的方程的根,亦即有负数平方根的方程的根 例如: ①x^2+1=0 x^2=-1 x=±i(虚根) ②x^3=1 x^3-1=0 (-1+x)(1+x+x^2)=0 x=1、-0.5+√3i/2或-0.5-√3i/2 (共轭复根) ③cosx=2 x=1.316957897i (三角函数扩展到复数范围)2023-07-27 01:50:381
为什么实数不能叫虚数呢?
所谓实数,说白了,就是实实在在存在的数,和虚数相对应数。那么什么是虚数呢?举个简单例子:√-1在实数范围内是不存在的(负数的开二次方),但是为了满足某种需要,我们给i或j定义成√-1,这就是虚数的单位了,类似于实数范围内的“1”。既然我们给出了√-1的表示方法,那么我们便能定义更多的数了,例如2+i、√i这些具有a+bi形式的数,我们可以看出,当b=0的时候,这些具有a+bi形式的数便是我们所说的实数了,所以实数被比它更广泛的“复数”所包含,【是现实生活中,能体现出来的实实在在的数,包括有理数和无理数】(其中无理数就是无限不循环小数,有理数就包括整数和分数)(虚数的引进是为了工程或者科学上的需要)。2023-07-27 01:50:451
虚数的概念是什么 我才初一,讲简单点
解答:在国内中学所学的数的概念中,任何数,无论有理数、无理数,正数、负数,整数、分数,一个数自己乘以自己的结果,永远是正数。如果一个数自己乘以自己后,得出的是负数,那么这个数就称为虚数。虚数是我们平常碰不到的数,也是匪夷所思的数,可是数学中引入虚数的概念后,创造了许多惊天动地成就:1、提供了积分的一种新的办法,特别是三角函数的积分;2、提供了解决交流电路中电容器、电感器的复阻抗问题;3、解决了化学中的原子结构问题:轨道问题、能层问题。.................................................................................................................2023-07-27 01:50:566
实数,虚数,纯虚数的定义,虚数实数纯虚数区分
1.复数就是实数和虚数的总称。 2. 所有的数都是复数。 3. 实数是有理数和无理数的总称 表示为 a。 4. 虚数是复数中除了实数的数。 5. 在复数域中,负数-1的平方根记为i(即i2=-1),称为虚数或虚数单位。 6.一个实数乘以i称为纯虚数,例如5i 就是一个纯虚数。2023-07-27 01:51:111
球场的世界十大球场
球场名称 所在地 落成时间 容量 简介 温布利大球场 伦敦 1923年 96924人 温布利见证了英格兰足球最荣耀的一刻,1966年,博比-穆尔率队在温布利球场以4比2击败前西德,夺得了英格兰历史上唯一一座世界杯;此外“盘球巫师”斯坦利-马休斯在足总杯决赛中的神奇表演也将永载温布利史册。虽然英国人不愿向温布利体育场说再见,但足球的发展需要一个更加现代化的体育场, 2000年温布利球场被拆除,而“白马桥”将成为新温布利球场的标志。 诺坎普球场 巴塞罗那 1957年 98787人 一代又一代天皇巨星曾经在诺坎普球场献技,克鲁伊夫、马拉多纳、斯托伊奇科夫、罗马里奥、里瓦尔多、罗纳尔迪尼奥等人的精湛球技都曾令加泰罗尼亚球迷如痴如醉。历史上巴塞罗那总共获得17次联赛冠军,其中有11次是在诺坎普球场获得,此外这里还留下了1次欧洲冠军杯冠军、11次国王杯冠军、5次超级杯冠军、2次欧洲超级杯冠军,战绩辉煌。 梅阿查球场 米兰 1926年 85700人 梅阿查球场的前身圣西罗球场始建于1925年8月1日,于1926年9月15日竣工。这座当时能容纳35,000名观众的建筑仅用一年便完工了。项目耗资500万里拉,由当时在米兰的商人佩特罗·皮雷利(Pietro Pirelli)赞助完成。主工程师是 Ulisse Stacchini (即为当地中央火车站的设计师)和 Cugini 伯纳乌球场 马德里 1947年 94497人 圣地亚哥-伯纳乌,皇马历史上最伟大的管理者,成功领导并完成了建造伯纳乌球场的浩大工程,随后这座体育场也以他的名字来命名。在随后半个多世纪的岁月里,伯纳乌球场见证了皇家马德里一系列辉煌成就,其中九次捧起欧洲冠军杯的成绩更是让他们成为整个20世纪最伟大的足球俱乐部。西班牙队则在这里赢得了他们第一个欧洲冠军--1964年欧洲杯 安联球场 慕尼黑 2005年 66016人 安联竞技场的外墙体由2874个菱形膜结构构成,其中1056个在比赛中可以发光。当体育场中比赛的球队发生变化时,墙体的颜色就可以随之改变。膜结构具有自清洁、防火、防水以及隔热性能,内部永远保持350帕斯卡的大气压。白天膜结构在阳光下闪烁着微光,有种魔幻的视觉效果;夜间在飞利浦照明系统的映衬下,每个膜结构都可以闪耀成红蓝白三色,也让全世界的观众都能记取拜仁慕尼黑、慕尼黑1860以及德国国家队的颜色。 糖果盒球场 布宜诺斯艾利斯 1940年 56552人 如果说河床队是中产阶级、富人的球队,那么博卡就是寄托平民梦想的俱乐部。众多博卡球星都从贫民窟走出,比如说球王马拉多纳,比如说为两根香肠与人在街头赌赛球技的特维斯。正是由于这样的背景,糖果盒球场才能被博卡球迷视为胜地,在有比赛的日子里,疯狂的博卡球迷会发出歇斯底里的呐喊助威声,场内场外的大地均为之颤抖,这种糖果盒式的设计让球场的现场感摄人心魄。 老特拉福德球场 曼彻斯特 1909年 76000人 老特拉福德球场拥有全世界最出色的草坪,长116码宽76码的场地由4种不同颜色的草种种植而成。球场的设计同样出色,在色彩运用上追求庄严而瑰丽的视觉效果:四面座椅多为与曼联球衣一样的红色,北看台由白色座椅拼成巨大的“MANCHESTER UNITED”字样,东西两面看台则留给球队最大的赞助商。扩建后的老特拉福德球场能够容纳76000名球迷到场观战,是英超赛场上不折不扣的“梦剧场”。 马拉卡纳体育场 巴西里约州 1950年 199458人 官方数据里,马拉卡纳球场的最高上座率发生在1969年8月31日巴西vs巴拉圭的一场世界杯外围赛,球迷总数为18.3341万;然而在巴西人心目中,1950年世界杯决赛才是到场球迷最多的时刻,当时官方统计数字为17.385万,实际上现场观看人数约20万。除了这场伟大的决赛,马拉卡纳球场还见证了贝利的第1000粒进球等历史性时刻,是巴西球员向往的圣地麦加。 安菲尔德球场 利物浦 1884年 45362人 在114年的历史中,利物浦从来没有离开过安菲尔德球场,他们在这里拿到了18个英格兰顶级联赛冠军、5次欧洲冠军杯冠军、7次足总杯冠军、7次联赛杯冠军、3次欧洲联盟杯冠军、2次欧洲超级杯冠军以及15次慈善盾/社区盾冠军,战绩骄人;达格利什、拉什、桑纳斯、巴恩斯、福勒、欧文、杰拉德等一代又一代红军传奇巨星更是在安菲尔德球场书写着利物浦的伟大乐章。 傲赴沙尔克球场 德国盖尔森基兴 2001年 53804人 傲赴沙尔克球场最大的特点就是“现代化”:球场照明供应商飞利浦公司结合其体育照明领域的专业技术和电视转播知识设计了最优化的球场照明方案,草坪可以整体移到场外进行浇水以及维护,再加上巨大的电视墙立方体、可移动的南看台、可伸缩顶棚以及电子控制系统等令人瞠目结舌的高科技,傲赴沙尔克球场堪称现代化足球场的典范,欧足联甚至将这座球场评定为“六星级”。2023-07-27 01:49:091
姜子牙师傅的师傅是谁
在《封神榜》中,姜子牙的师父是:昆仑山玉虚宫阐教教主元始天尊。十二岁上昆仑山,七十二岁下山,学艺六十年。 历史上的姜子牙是没有师傅的。2023-07-27 01:49:111
姓王的来源
1、王姓,中华姓氏之一,主要源自姬姓,部分源自子姓、妫姓和少数民族改姓。2、王由三横一竖构成,三横代表天、地、人,一竖贯通天、地、人,这就是天、地、人都要归“王”管的不二哲学。上古时期夏、商、周三代的最高统治者被称为“王”。“王”作为姓氏即来源于“王”这个至尊之位;东周时期的姬晋为王姓始祖。3、王姓中华姓氏之一,其始祖姬晋为黄帝后裔,王姓主要源于姬姓;有的出自妫姓,为齐王田和(陈厉公次子田完的第9世孙)后裔,以王族称谓为氏。有的出自子姓,为殷商王子比干之后,以爵号为氏。有的出自姬姓,为周文王之后,以王族爵号为氏,得姓始祖是太子晋,其名晋,字子乔,系周灵王太子。扩展资料根据国家统计局2014年公布的官方数据显示,中国大陆王姓人口达到9468万人,占全国总人口的7.1%,为全国第一大姓。在中国,截至2014年,东部地区占了王姓总人口的38.3%,中部占了王姓人口的26.0%,西部占了王姓人口23.5%,东北占了王姓人口的12.2%。[2]全国形成了以长江为界的高比率的北方王姓区和低比率的南方王姓区。参考资料:百度百科-王2023-07-27 01:49:126
《西游记》89到100回简要概括是什么?
●第八十九回 悟空入山侦知妖王欲买猪羊祝得到兵器,与八戒就成二小妖,让沙僧扮作贩猪羊者,三人进入洞中,各抓兵器,边打边走。妖王黄狮怪至竹节山盘桓洞其祖翁九头狮处告急。祖翁率从狮怪来城。 ●第九十回 九头狮噙走唐僧和玉华王父子,叼上八戒。悟空也被叼入洞中。悟空打死看守的小妖走脱,又根据土地所说,访九头狮之主太乙天尊。天尊降了九头狮。王子随悟空三人习武。 ●第九十一回 师徒入金平府城个慈云寺宿下,又随寺僧入城看灯。空中忽现妖怪所变的三尊佛身,将唐僧摄走。悟空斗不过三怪,对八戒、沙僧言说那三怪似是三头犀牛成精。 ●第九十二回 八戒、沙僧相继被擒。悟空上天请来角木蛟、斗木犭+解、奎木狼与井木犴四星降妖,三妖落荒而逃。直至西洋大海。龙太子拿了一犀,井星现出塬身,咬死一犀,众神又捉一犀。 ●第九十三回 前行到“布金禅寺”。寺僧道此即是当年给孤独长者请佛讲经,金砖布地的园祗。入夜,寺主言去年风刮风一处称天竺国公主之女子入寺至今,并托唐僧去国中打听。次日,师徒入城,一妖变成的公主正投绣球选驸马,击中唐僧。 ●第九十四 国王降旨,让唐僧师徒先去御花园安歇用斋。至婚日,悟空让唐僧应承婚事。国王在关文上画押用印,打发三徒四驿馆。悟空变成蜜蜂,飞入朝中,落在唐僧帽上。 ●第九十五回 公主为妖邪所变,因敌不过悟空,钻入山洞,被悟空寻见。太阴星君称那是月宫中玉兔,将其带回。国王传旨绘下唐僧四人真容供养。 ●第九十六回 师徒又入一城,前往性喜斋僧的寇员外家。唐僧为员外做罢斋僧已够一万的圆满道场,寇员外为唐僧师徒送行,大哭而返。 ●第九十七回 强盗夜入寇家踢死员外。其妻屯子赴官府诬告唐僧一行。悟空缚那伙强盗。师徒欲将财物送还寇家,被这兵押入城中。至五更时,悟空变蜢虫飞入寇家,叮在棺材上假冒员外之魂说话,让其妻撤回诉状;又飞入刺史住宅,冒充家其伯考之魂,令释放唐僧一行。天明时,从半空里伸下一只脚,将县堂丽满,令众官立即放出唐僧。师徒被释,悟空径闯森罗殿索回寇员外魂,使其死而复生。 ●第九十八回 到玉真观,受到金顶大仙迎接。次早,四众登灵山。逢大河。唐僧失足落水,凡体肉胎脱下成为水中一尸。一行上山直至如来佛之雷音寺,拜见如来。阿傩、迦叶奉如来命去检取佛经,但趁机索取礼物,唐僧未备,拿到无字经书。唐僧再来求佛,阿傩、迦叶得到唐僧的紫金钵后,方传真经。 ●第九十九回 观音菩萨查僧所受之灾,见距九九八十一之数尚缺其一,故令揭谛再生一难。遣送四众的八大金刚接到观音法旨,遂使腾云的四众坠落于通天河西岸。老鼋驮四众渡河,但因唐僧忘记向如来问他所托之事而将师徒四人和马匹抛在水中。诸阴魔兴风作雨欲夺经而未成功。天明后,庄上人见唐僧师徒归来盛情款待。夜至三更,师徒离去。 ● 第一百回 四众回到长安,受到唐太宗和众官欢迎。次日,太宗升朝,作《圣教序》以谢唐僧取经之功,又纳萧(王+禹)之议,请唐僧去雁塔寺演涌经法。唐僧捧经登台,忽听八大金刚召唤,便腾空而去西天。如来授唐僧为旃檀功德佛;孙悟空为斗战胜佛;猪八戒为净坛使者;沙僧为金身罗汉;白龙马为八部天龙马。●第八十九回 黄狮精虚设钉耙宴 金木土计闹豹头山●第九十回 师狮授受同归一 盗道缠禅静九灵●第九十一回 金平府元夜观灯 玄英洞唐僧供状●第九十二回 三僧大战青龙山 四星挟捉犀牛怪●第九十三回 给孤园问古谈今 天竺国朝王遇偶●第九十四回 四僧宴乐御花园 一怪空怀情欲喜●第九十五回 假合真形擒玉兔 真阴归正会灵元●第九十六回 寇员外喜待高僧 唐长老不图富贵●第九十七回 金酬外护遭魔蛰 圣显幽魂救本原●第九十八回 猿熟马驯方脱壳 功成行满见真知●第九十九回 九九数完魔灭尽 三三行满道归根●第一百回 径回东士 五圣成真2023-07-27 01:49:156
温布利是哪个国家的
温布利是英国西北部的一个区域。温布利位于布伦特伦敦自治市的西部,西边是哈罗区,南边是威斯敏斯特区。温布利是英格兰国家足球场,即温布利大球场,温布利大球场被公认为是世界上最伟大的球场之一。 温布利大球场: 温布利大球场是位于英国伦敦的一座足球场,被公认为是世界上最伟大的球场之一。该球场最早建于1923年,于2007年重建,是英格兰国家队的主场,同时也承办英格兰国内各项比赛的决赛。它看上去是非常传统的体育建筑,外墙由强化混凝土覆盖,正门前有一对白塔,纵长的场地两端为两个半圆形,是结构主义建筑风格的先驱。温布利球场正门的前有一对白塔,此设计源自英属印度新德里的总督府,自此温布利双塔长期成为该体育场的标志,也成为了伦敦著名建筑之一。2023-07-27 01:49:221
特斯拉线圈不是放高压电吗 那它能不能只产生磁场而不放电
特斯拉线圈的原理是使用变压器使普通电压升压,然后经由两极线圈,从放电终端放电的设备。当主电容两个极板之间的电势差达到一定程度时,会击穿打火器处的空气,产生你所谓的高压电,那么我想说的是只要增大电容到不被击穿,甚至是击穿时,都存在磁场,而特斯拉线圈主要是为了放电而制做的。特斯拉线圈的线路和原理都非常简单,在世界各地都有特斯拉线圈的爱好者,他们做出了各种各样的设备,制造出了眩目的人工闪电。2023-07-27 01:49:061
请问教你如何正确清洁口腔
1、用牙签在牙间有空隙存在的情况下,牙签以45度角进入,尖朝向咬东西的牙面,侧缘接触于间隙的牙龈,然后用牙签的侧缘沿着牙面刮净牙面,将食物轻松剔除,然后漱口,省事又便宜。2、借助牙线牙线在担当口腔护卫工作中要比牙签高效多了,它能弥补很多刷牙和用牙签剔牙等的不足,对牙齿邻面的清洁起着重要的作用。牙线的使用在国外已经很常见了,但国人对它的使用还比较少。3、每天早晚刷牙两次提倡用电动牙刷刷牙更好,可以更有效地提高清洁的效率,同时,刷牙的时候,要把牙齿的六个区十六个面都认认真真仔仔细细的刷到并刷好,另外,还要记得要把牙龈和舌头也轻轻刷一刷,避免口腔细菌的滋生与蔓延。4、饭后漱口在饭后漱口,没有限定要用什么水,只是口气重的时候最好使用漱口水,但没办法或没什么口气的情况下,清水可以,茶水也行的,这个要求没有那么苛刻。但一定要记得漱口水只适合于12岁以上的儿童使用,而且本身有口腔类疾病的患者或者孕妇,就得在医生的指导下来使用漱口水。另外,饭后漱口也主要是想尽可能出除掉存留在牙齿小缝小隙里、唇颊沟等处的食物残渣和软垢等,保持口腔的全天卫生。5、正确的刷牙方式正确的做法是水平短距离颤动刷牙法,也就是Bass刷牙法。将牙刷与牙齿和牙龈呈45度角,轻微的施加压力,让刷毛顶端进入到牙龈沟内,然后前后方向震颤6-8次。按照顺序将左上、左下、右上、右下的将口腔的各个区域都刷洗干净,然后彻底清洁舌头等处。2023-07-27 01:49:048
特斯拉线圈和那啥法拉第的传统线圈有何区别?要通俗易懂
特斯拉线圈看起来好像是一个空心的直棍变压器,但它的原理与变压器不同。传统的变压器是利用电磁感应原理工作(详情请查询:法拉第电磁感应定律),而特斯拉线圈的根本原理是:电磁共振。关于共振,大家理解得不清楚。我现在举一个例子:你在坐秋千的时候,如果有人推你,那么他的能量就被输入到秋千上来。那么他要怎么样推动,你才能荡得最高呢(获得的能量最大呢)?最好是他推动的频率和你秋千回荡的频率相同时,你能够随时间获得他的能量。这就是共振!它产生的条件就是输入的频率要和你振动的频率相等。仔细思考我举的例子,就会发现共振是一种数学模型,就是说只要二者的频率相同,不管二者具体的属性,它都可以发生共振。特斯拉线圈是典型的电磁共振的实例:通过控制初级线圈的自感和初级电容的电容量以及次级线圈的自感和次级的等效电容量,就可以使二者的频率相同,至少是接近。于是初级的能量就可以不断传到次级上去,实现能量的叠加,最终放出巨大的闪电。2023-07-27 01:48:591
金投网模拟交易可以止盈和止损吗?
众人皆知,黄金投资设置止损止盈是在日常操作中使用得最频繁的操作方法,一般投资黄金的业界人士都会运用这样的方式交易。那么,黄金投资如何设止损止盈获得收益呢?设置好止损价能够让损失最小化:止损价指交易者将交易单子设定为损失离开市场的价位,比如说目前的黄金报价是1320美金/盎司,交易者在这个价位中设定实时交易多单,把止损价位设定在当前价位的下方,而如果是进空单的话就得把止损价设定在上方,有的平台中要求当前报价跟止损价位差距为两美金,表示的是止损价位设定应当不得高于1318美金/盎司,以此方便交易者后续能够把握住更好的入市机遇。而设定止损位的好处在于可以把交易单的损失程度控制在交易者设定的范围里面,使得损失额度达到最小化,按照技术指标走势设定好合适的止损价位,既可以识别出逆转的价位还可以防止行情不停波动造成的扫损。设置好止盈价能够及时落袋为安:止盈价指交易者将单子设定盈利离开市场的价位,比如说当下黄金报价在1306美金/盎司,交易者在这个价位中进场空单,止盈价位设定在该价位的下方,如果是多单则需要把止盈价位设定在上方,而市价跟止盈价位的差距一样是两美金,表示止盈价位应当不小于1308美金/盎司。设置止盈的好处在于可以保障交易单子及时获得收益,以此来防范住逆转的市场行情让收益区域缩小,按照技术指标走势设定合适的止盈价位,既可以识别出逆转的价位还可以规避行情的波动导致收益归零。实际上不管是止损还是止盈,其操作方式都十分简单,如果交易者想要掌握该方式技巧,最好是可以利用模拟账号进行一番操作,等到熟练即可转战真实市场进行交易。领峰贵金属隶属领峰集团旗下子公司,拥有良好的专业知识和服务水平,提供环球财经资讯、直播投资策略、现货黄金的技术指导、黄金投资交易指南等专业的综合性金融服务。2023-07-27 01:48:571
温布利球场的介绍
温布利球场位于英国伦敦的一座足球场,是英格兰代表队的主场,同时也承办英格兰国内各项比赛的决赛。最早建于1923年,于2007年重建,被公认为是全世界上最伟大的球场之一。1966年世界杯和1996年欧锦赛分别见证了英格兰队和德国队夺冠的辉煌时刻。2023-07-27 01:48:551