泊松分布

DNA图谱 / 问答 / 标签

排队论中,服从泊松分布,服务强度大于一时,空闲的概率如何计算?

取一段t时间,期间内有x名顾客光顾的概率=[(λt)^x ]e^(-λt)/x! t时段内空闲即x=0 P=e^(-λt) λ,t你就代入就行了 不给t的话不知道 还可以看出t若是无期限这个概率肯定是0了,永远没有顾客生意就别做了

排队论中,服从泊松分布,服务强度大于一时,空闲的概率如何计算?

取一段t时间,期间内有x名顾客光顾的概率=[(λt)^x ]e^(-λt)/x!t时段内空闲即x=0P=e^(-λt)λ,t你就代入就行了不给t的话不知道还可以看出t若是无期限这个概率肯定是0了,永远没有顾客生意就别做了

排队论中,服从泊松分布,服务强度大于一时,空闲的概率如何计算?

取一段t时间,期间内有x名顾客光顾的概率=[(λt)^x ]e^(-λt)/x! t时段内空闲即x=0 P=e^(-λt) λ,t你就代入就行了 不给t的话不知道 还可以看出t若是无期限这个概率肯定是0了,永远没有顾客生意就别做了

指数分布和泊松分布特点

  指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t≥0时有P(T>s+t|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等  泊松分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。泊松分布的期望和方差均为λ。

泊松分布和指数分布之间有何关系

如果单位时间发生的次数(如到达的人数)服从参数为r的泊松分布,则任连续发生的两次时间的间隔时间序列服从参数为r的指数分布

指数分布和泊松分布的区别?

1、分布不同泊松分布参数是单位时间(或单位面积)随机事件发生的平均次数。泊松分布适用于描述单位时间内的随机事件数。指数分布可以用来表示独立随机事件的时间间隔,如旅客进入机场的时间间隔、中文维基百科新条目出现的时间间隔等。许多电子产品的寿命分布一般服从指数分布。一些系统的寿命分布也可以用指数分布来近似。它是可靠性研究中最常用的分布形式。指数分布是伽马分布和威布尔分布的特例。当产品失效是偶然的时,其寿命服从指数分布。2、应用不同指数分布被广泛使用。在日本工业标准和美国军用标准中,半导体器件的采样方案采用指数分布。此外,还用指数分布描述了大型复杂系统(如计算机)平均故障间隔时间的平均无故障时间分布。然而,由于指数分布内存不足,其在机械可靠性研究中的应用受到限制。泊松分布适用于描述每单位时间(或空间)的随机事件数。例如,某一时间到达服务设施的人数、电话交换所接到的呼叫数、公共汽车站等候的客人数、机器故障数、自然灾害数、产品缺陷数、B数。在显微镜下分布在单位面积的细菌等。扩展资料:泊松分布命名原因:泊松分布,台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是统计学和概率论中的一种常见现象。泊松分布是以18世纪到19世纪的法国数学家西莫恩·德尼·泊松命名的,于1838年出版了这本书。这个分布在更早些时候由贝努里家族的一个人描述过。参考资料来源:百度百科-指数分布参考资料来源:百度百科-泊松分布