活性污泥鼓风曝气系统的作用和主要组成是什么
曝气系统的作用是给好氧活性污泥供氧,以供微生物消耗有机物以达到去除大部分有机物及,并对硝化细菌供氧以使氮类污染物发生硝化作用(氮类污染物去除的主要反应之一)。曝气系统一般由:曝气机、管路系统、曝气系统组成曝气机一般分为鼓风曝气和机械曝气两种;管路系统包括风机出口的蝶阀、止回阀、放空阀等以及空气输送管道系统;曝气系统有多种方式,一般分为穿孔曝气和曝气器曝气,穿孔曝气即为在池底布置好曝气管,直接在管上开孔令空气通过孔眼进入池中达到曝气效果,一般只有微型和小型污水处理站为节省成本才这样设计,更多的是采用盘式曝气器等曝气器来进行曝气以达到曝气均匀,氧利用率高的效果。此外,如果采用机械曝气的话,一般是不需要曝气系统和管道系统的,机械曝气机一般为微、小型污水处理站采用,直接安装在好氧池中。
2010环保师污水生物处理——活性污泥法(11)
氧化沟 ①工艺流程与原理 氧化沟一般采用机械充氧和推动水流,污水和活性污泥的混合液在环状曝气渠道中循环流动,属于活性污泥法的一种变形,实质上相当于延时曝气活性污泥系统。由于它运行成本低,构造简单,易于维护管理,出水水质好,耐冲击负荷,运行稳定,并可脱氮除磷,日益受到关注与重视。 ②活性污泥法的特点 ⅰ氧化沟工艺结合了推流与完全混合两种流态 ⅱ氧化沟具有明显的溶解氧浓度梯度 ⅲ在工艺方面,一般不设初沉池,二次沉淀池可以与氧化沟合建,省去污泥回流,与延时曝气系统相同,耐冲击负荷,可存活世代时间长的微生物。 ⅳ氧化沟的出水水质好。 ⅴ氧化沟的整体体积功率密度较低。 ③氧化沟包括以下几种类型 ⅰ基本型 基本型氧化沟的处理规模小,一般采用卧式转刷曝气,水深约1~1.5m,氧化沟内污水的水平流速0.3~0.4m/s。混合液通过转刷后,溶解氧的浓度被提高,随后,在渠内流动过程中溶解氧又逐渐降低。氧化沟通常采用延时曝气的方式运行,水力停留时间为10~24h,污泥泥龄为20~30d,通过设置进水和出水的位置、污泥回流的位置、曝气设备的位置等可以使氧化沟完成碳化、硝化和反硝化功能。 ⅱ卡鲁塞尔式氧化沟 是一个多沟串联系统,进水与回流的活性污泥混合后在沟内不停的循环流动,采用表面机械曝气器,每沟渠的一端各安装一个,靠近曝气器下游的区段为好氧区,处于曝气器上游和外环的区段为缺氧区,混合液交替进行好氧和缺氧,这不仅提供了良好的生物脱氮条件,而且有利于生物絮凝,使活性污泥易于沉淀。 ⅲ三沟式氧化沟 由三条同容积的沟槽串联组成,两侧的池(称为A池和C池)交替作为曝气池和沉淀池,中间的池子(称为B池)一直为曝气池。原污水交替地进入两侧的A和C池,处理出水则相应地从作为沉淀池的C池或A池流出,这样提高了曝气转刷的利用率(达59%)左右,另外也有利于生物脱氮。 三沟式氧化沟基本运行方式大体分为6个阶段,工作周期是8h,它由自动控制系统根据其运行程序自动控制进、出水的方向、溢流堰的升降以及曝气转刷的开动和停止。 第一个阶段:工作时间2.5h,污水经配水井进入第一沟,沟内转刷低速运转,仅维持沟活性污泥处于悬浮状态下环流,沟内处于缺氧反硝化状态,反硝化菌将上阶段产生的硝酸盐氮还原为氮气逸出。在此过程中,原污水作为碳源,不必外加碳源。同时沟内出水堰能自动调节,混合液进入第二沟,沟内转刷在第一阶段均处于高速运行,使其沟内的混合液保持恒定环流,其溶解氧的浓度为2mg/L,在此进行有机物的降解和氨氮的硝化。处理后的混合液再进入第三沟,此时第三沟内的转刷处于闲置状态,第三沟仅用作沉淀池,使泥水分离,澄清水通过已降低的出水堰从第三沟流出。 第二阶段:工作时间0.5h,污水入流从第一沟到第二沟,此时第一沟内的转刷高速运转,第一沟由缺氧逐步转为富氧状态,第二沟内转刷仍高速运转,所以第二个阶段的第一和第二沟均处于好氧状态,都进行有机物的降解和氨氮的硝化。经第二沟处理过的混合液再进入第三沟,第三沟仍为沉淀池,沉淀后的污水通过第三沟的出水堰排出。 第三阶段:工作时间1.0h,第一沟转刷停止运转,开始进行泥水分离,需要设过度段,至该阶段末分离过程结束。在该阶段,入流污水仍进入第二沟,处理后的污水仍然通过第三沟出水堰排出。 第四阶段:工作时间2.5h,污水入流从第二沟调至第三沟,第一沟出水堰降低,第三沟出水堰升高,沟内转刷低速运转,使混合液悬浮环流,处于缺氧状态,进行反硝化脱氮。然后混合液流入第二沟,沟内转刷高速运转,使其处于好氧状态,进行有机物降解和氨氮硝化。经处理后再流入第一沟,此时第一沟作为沉淀池,澄清水通过第一沟已降低的出水堰排出。该阶段与第一阶段类似,所不同的是硝化发生在第三沟,而沉淀发生在第一沟。 第五阶段:工作时间0.5h,污水入流从第三沟转向第二沟,第三沟内转刷高速运转,以保证在该阶段末沟内有剩余氧。第一沟仍作沉淀池,处理后污水通过该沟出水堰排出,第二沟转刷高速运转,仍处于有机物降解和氨氮硝化过程。该阶段与第二个阶段相对应,所不同的是两个外沟的功能相反。 第六阶段:工作时间1.0h,该阶段基本与第三个阶段相同,第三沟内转刷停止运转,开始进行泥水分离,入流污水仍然进入第二沟,处理后的污水经第一沟出水堰排出。 三沟式氧化沟流程简单,无需设置初沉池和二沉池及污泥回流设备,处理效果稳定,管理方便,基建费用低,占地少并具有脱氮除磷的功能,在我国得到了一定应用。 ⅳ奥巴勒型氧化沟 奥巴勒型氧化沟是由多个同心的椭圆形或圆形沟渠组成,污水与回流污泥均进入最外一条沟渠,在不断循环的同时,依次进入下一个沟渠,最后混合液从内沟渠排出,进入沉淀池。 奥巴勒型氧化沟可根据需要分设两条沟渠、三条沟渠和四条沟渠,常用的为三条沟渠。外沟渠的容积约为总容积的60%~70%,中沟渠容积约为总容积的20%~30%,内沟渠容积仅占总容积的10%左右,运行中保持外沟渠、中沟渠和内沟渠的溶解氧浓度依次递增,有利于提高充氧效率,同时可以达到除碳、除氮以及节省能量的作用。曝气设备一般采用曝气转盘。 ⅴ曝气-沉淀一体化氧化沟 将二沉池建在氧化沟中,集曝气、沉淀、泥水分离和污泥回流功能为一体,无须建造单独的二沉池。在氧化沟的一个沟渠内设沉淀区,在沉淀区的两侧设隔墙,并在其底部设一排三角形导流板,同时在水面设穿孔集水管,以收集澄清水。氧化沟内的混合液从沉淀区的底部流过,部分混合液则从导流板间隙上升进入沉淀区,而沉淀下来的污泥从导流板间隙下滑回氧化沟,曝气采用机械表面曝气。 ⅵ侧渠形一体氧化沟 在氧化沟的侧面设置两座侧渠作为二次沉淀池,并交替运行和交替回流污泥,澄清水通过堰口排出,曝气采用机械表面曝气或转刷曝气。 ⅶ其他氧化沟系统 有导管式氧化沟系统和射流曝气氧化沟系统 导管式氧化沟系统中以导管式曝气器代替转刷等表面曝气机,导管式氧化沟由氧化沟(内设阻流墙)、导管式曝气器设备、导流管以及供氧系统四部分组成,污水流速由水力推进器维持,供氧由鼓风机提供,氧化沟内的混合和供氧分别由两套装置独立承担,水流从氧化沟底部推进,可避免底部污泥的淤积。 射流式曝气氧化沟采用射流曝气器,在氧化沟底设置射流曝气装置,将压缩空气与混合液在混合室充分混合,完成水、泥、气三相混合和传质,并以挟气溶气的状态向水流流动方向射出,达到氧化沟要求的曝气充氧和搅拌推流的双重功能。 ④氧化沟的构造 氧化沟的工艺设施由氧化沟沟体、曝气设备、进出口设施、系统设施等组成。 ⅰ沟体 主要分两种布置形式,即单沟式和多沟式氧化沟。一般呈环状沟渠形。其四周壁可以用钢筋混凝土建造。氧化沟的断面形式有梯形和矩形等。 ⅱ曝气设备 具有供氧、充分混合、推动混合液不停地循环流动和防止活性污泥沉淀的功能,常用的水平轴曝气转刷和垂直表面曝气器。 ⅲ进出水装置 污水和回流污泥流入氧化沟的位置应与沟内混合液流出的位置分开。 ⅳ配水井 两个以上氧化沟并行工作时,应设配水井以保证均匀配水。 ⅴ出水堰 氧化沟的出水应设出水堰,可设计成升降的,从而起着调节沟内水深的作用。 ⅵ导流槽 为保持氧化沟内具有不淤流速,减少水头损失,需在氧化沟转折处设置薄壁结构导流墙,使水流平稳转弯,维持一定流速。 ⅶ溶解氧探头 为了经济有效地运行,在氧化沟内好氧区和缺氧区应分别设置氧探头。
升流式厌氧污泥床反应器属于活性污泥吗
关于UASB的升流式厌氧污泥床反应器详解!升流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB(Up-flowAnaerobicSludgeBed/Blanket)。由荷兰Lettinga教授于1977年发明。污水自下而上通过UASB。反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。一、UASB工艺的主要特点1)利用微生物细胞固定化技术-污泥颗粒化UASB反应器利用微生物细胞固定化技术—污泥颗粒化,实现了水力停留时间和污泥停留时间的分离,从而延长了污泥泥龄,保持了高浓度的污泥。颗粒厌氧污泥具有良好的沉降性能和高比产甲烷活性,且相对密度比人工载体小,靠产生的气体来实现污泥与基质的充分接触,节省了搅拌和回流污泥的设备和能耗,也无需附设沉淀分离装置;同时反应器内不需投加填料和载体,提高了容积利用率,避免了堵塞问题,具有能耗低、成本低的特点。2)由产气和进水的均匀分布所形成的良好的自然搅拌作用在UASB反应器中,由产气和进水形成的上升液流和上窜气泡对反应区内的污泥颗粒产生重要的分级作用。这种作用不仅影响污泥颗粒化进程,同时还对形成的颗粒污泥的质量有很大的影响,同时这种搅拌作用实现了污泥与基质的充分接触。3)设计合理的三相分离器的应用三相分离器是UASB反应器中最重要的设备,它可收集从反应区产生的沼气,同时使分离器上的悬浮物沉淀下来,使沉淀性能良好的污泥能保留在反应器内。三相分离器的应用避免了辅设沉淀分离装置、脱气装置和回流污泥设备,简化了工艺,节约了投资和运行费用。4)容积负荷率高对中高浓度有机废水容积负荷可达20kgCOD/(m3u2022d),COD去除率均可稳定在80%左右。5)污泥产量低与传统好氧工艺相比,污泥产量低,污泥产率一般为0.05kgVSS/kgCOD~0.10kgVSS/kgCOD,仅为活性污泥产泥量的1/5左右。反应器产生的剩余污泥又是新厌氧系统运行所必需的菌种。6)能够回收生物能——沼气沼气是一种发热量很高的可燃气体,特大型UASB系统产生的沼气可进行发电利用,并替代或补偿废水污染治理设施的电力消耗;中、小型UASB系统可结合生产实际情况进行沼气利用,如用于炊事、采暖或作为厌氧换热的热源。二、UASB反应器组成UASB反应器主要由布水系统、三相分离器、出水收集系统、排泥系统组成。1、布水系统布水系统的合理设计对UASB反应器的良好运转是至关重要的,进水系统兼有配水和水力搅拌的功能,为了保证这两个功能的实现,设计时需要满足如下原则:a、确保各单位面积的进水量基本相同,以防止短路或表面负荷不均匀等现象发生;b、尽可能满足水力搅拌需要,保证进水有机物与污泥迅速混合;c、易观察到进水管的堵塞;d、当堵塞被发现后,易被清除。目前布水系统的形式一般可以采用一管多孔式布水,一管一孔式布水或枝状布水方式。1)对于压力流采用穿孔管布水(一管多孔或分枝状)a.进水采用重力流(管道及渠道)或压力流,后者需设逆止装置;b.当水力筛缝隙为3mm~5mm时,出水孔大于15mm,一般在15mm~25mm之间;c.需考虑设液体反冲洗或清堵装置,可以采用停水分池分段反冲,用液体反冲时,压力为1.0kg/cm2~2.0kg/cm2,流量为正常进水量的3~5倍;2)采用重力流布水方式(一管一孔)如果进水水位差仅仅比反应器的水位稍高(水位差小于10cm)会经常发生堵塞现象。因为进水水头不足以消除阻塞。当水箱中的水位(三角堰的底部)与反应器中的水位差大于30cm时很少发生堵塞现象。a.采用布水器布水时,从布水器到布水口应尽可能少地采用弯头等非直管;b.废水通过布水器进入池内时会吸入空气,直径大于2.0mm气泡会以0.2m/s~0.3m/s速度上升,在管道垂直段(或顶部)流速应低于这一数值;c.上部管径应大于下部,可适当地避免大的空气泡进入反应器;d.反应器底部较小直径可以产生高的流速,从而产生较强的扰动,使进水与污泥之间充分接触;e.为了增强底部污泥和废水之间的接触,建议进水点距反应器池底保持150mm~250mm的距离。2、三相分离器三相分离器是UASB反应器最有特点和最重要的设备,它同时具有收集从下部反应室产生的沼气、沉淀分离器上部的悬浮物、污泥回流三个功能。上述功能均要求三相分离器的设计应能避免沼气气泡上升到沉淀区,如其上升到表面将引起出水混浊,沉淀效率降低,产生沼气损失等不利影响。三相分离器的设计应注意以下几点:(1)间隙和出水面的截面积比:该面积比会影响到进入沉淀区和保持在污泥相中的絮体的沉降速度;(2)分离器相对于出水液面的位置:这个位置确定反应区(下部)和沉淀区(上部)的比例,在多数UASB反应器中内部沉淀区是总体积的15%~20%;(3)三相分离器的倾角:这个角度要使固体可滑回到反应器的反应区,在实际中是在55°~60°之间,这个角度也确定了三相分离器的高度,从而确定了所需的材料;(4)分离器下气液界面的面积:它确定了沼气单位界面面积的释放速率,合理的气体释放速率约为1m3/(m2·h)~3m3/(m2·h)(低浓度废水达不到这个速率)。速率过低可能形成浮渣层,速率过高会导致在界面上形成气沫层,两者都可能导致堵塞气体释放管。3、出水收集系统出水装置应设置在UASB反应器的顶部,尽可能保证均匀地收集处理过的废水。大部分厌氧反应器的出水堰与传统沉淀池的出水装置相同,即在水平汇水槽内一定距离间隔设三角堰。为保证出水均匀,大部分的UASB反应器采用多槽式出水方式,每个槽两侧设有三角堰。当处理的废水中含有蛋白质、脂肪或大量悬浮固体时,出水一般也夹带有大量悬浮固体或漂浮污泥,为了减少出水悬浮固体量,在出水槽前设置挡板,这样可减少出水中悬浮固体数量,有利于提高出水水质。但是设有出水挡板容易形成污渣层,此时可采用浮沫撇除装置,如刮渣机等,因此是否设挡板需根据处理废水的实际情况确定。出水设施经常出现的问题是部分出水槽即使设置浮渣挡板,也会被漂浮的固体堵塞,从而引起出水不均匀,或发生堰不是完全水平的问题,较小的水头会引起相对大的误差。为了消除或最终减少这些问题,应当要求堰上水头不小于25mm。三角堰的设计要使其可以调整高度。4、排泥系统厌氧反应器内保持足够的污泥量,是保证反应器高效运行的基础。但经过较长时间的运行后,污泥量过度时,会因污泥沉淀使有效容积缩小而降低处理效率,甚至会因堵塞而影响正常运行,或使出水中夹带大量污泥,影响出水水质,因此必须定期对厌氧反应器进行适量的排泥。UASB反应器排泥一般采用重力方式排泥,排出量由污泥界面仪控制。反应器的排泥频率根据污泥浓度分布曲线确定。即在反应器全高上设置若干(5个~6个)取样管,可以取反应器内的污泥样品,以获得污泥浓度沿深度的分布曲线,并可计算反应器的存泥总量,以确定是否需要排泥。排泥点宜设在污泥区中上部和底部两点。一般在污泥床的底层宜形成浓污泥,浓污泥由于颗粒和小砂粒积累等原因活性变低,因此建议从反应器的底部排泥,这样可以避免或减少在反应器内积累砂砾;中上部排泥点宜保持在距清水区0.5m~1.5m的位置,这样既可保证水力运行的畅通,又可使悬浮污泥有沉降的空间。三、UASB工艺的启动1、反应器启动1.污泥颗粒化对于一个新建的UASB反应器,启动过程主要是用未经驯化的絮状污泥对其进行接种,并经过一定时间的启动调试运行,使反应器达到设计负荷并实现有机物的去除,通常这一过程会伴随污泥颗粒化的实现,因此也称之为污泥颗粒化,污泥颗粒化是大多数UASB反应器启动的目标和启动成功的标志。颗粒污泥的形成使UASB反应器内可以保留高浓度的厌氧污泥。絮状污泥沉降性能较差,当产气量较高、废水上升流速度略高时,絮状污泥则容易被冲出反应器。产气与水流的剪切力也易于使絮状污泥进一步分散,这加剧了絮状污泥的洗出。颗粒污泥有良好的沉降性能,它能在很高的产气量和高上升流速下保留在厌氧反应器内。因此,污泥的颗粒化可以使UASB反应器允许具备更高的有机容积负荷和水力负荷。2.启动时间利用絮状污泥作为接种物首次启动UASB反应器,在形成明显的颗粒污泥床之前可能会需要几个月的时间。厌氧反应器的启动之所以需要较长的时间,除了甲烷菌生长速率较慢外,接种污泥低的比甲烷活性和在反应器启动初期相对高的污泥流失也是重要的影响因素。但是,当UASB正常运行后反应器内可以产生大量的颗粒污泥,这些颗粒污泥可以在常温下保存很长时间而不损失其活性,因此在停止运行后的再次启动可以迅速完成。3.接种污泥UASB反应器可采用絮状污泥或颗粒污泥进行启动。接种污泥的数量和活性是影响反应器成功启动的重要因素。一般絮状接种污泥浓度控制在30gVSS/L~40gVSS/L,颗粒污泥接种浓度控制在20gVSS/L~30gVSS/L。采用絮状污泥接种时,为缩短启动时间,可在污泥中添加少量破碎的颗粒污泥,促进颗粒化过程。添加少量的颗粒污泥至少有两个优点:一是颗粒污泥里含有大量活的甲烷微生物,而絮状污泥仅含大约2%甲烷污泥(通过比活性估计),添加少量颗粒污泥可使甲烷活性有较大的提高;二是通过将颗粒污泥破碎为大量小的颗粒碎片,颗粒碎片会作为新的颗粒污泥“前体”,为新的颗粒提供了大量生长核心。采用颗粒污泥启动允许有较大的接种量,启动时间的长短很大程度上取决于颗粒污泥的来源,即颗粒污泥在原反应器中的培养条件以及原来处理的废水种类。新启动的反应器在选择种泥时应尽量使种泥的原处理废水种类与拟处理的废水种类一致,废水种类与性质越接近,驯化所需时间则越少,可大大缩短启动时间。在实践中,有时难以得到从同一种废水培养的颗粒污泥,但只要在启动的第一星期将初始污泥负荷控制在最大污泥负荷能力的50%之下也可顺利启动。采用絮状污泥和颗粒污泥启动中,可能遇到的问题及解决方法可参考表1。4.启动过程启动中会洗出接种污泥中较轻的污泥,保存较重的污泥,以推动颗粒污泥在反应器中的形成。启动过程中应注意以下几点:1)UASB反应器的启动负荷应小于1kgCOD/(m3·d),上升流速应小于0.2m/h,进水COD浓度大于5000mg/L或有毒废水应进行适当稀释。2)应逐步升温(以每日升温2℃为宜)使UASB反应器达到设计的运行温度。3)当出水COD去除率达80%以上,或出水有机酸浓度低于200mg/L~300mg/L后,可逐步提高进水容积负荷;负荷的提高幅度一般在设计负荷的20%~30%为宜,直至达到设计负荷和设计去除率。4)当直接采用颗粒污泥启动时,因采用的接种量较大,同时颗粒污泥的活性比其它种泥要高得多,启动的初始负荷可提高至3kgCOD/(m3·d)。5.环境因素1)常温厌氧的温度应保持在20℃~25℃,中温厌氧应保持在30℃~35℃,高温厌氧应保持在50℃~55℃。2)UASB反应器内pH值保持在6.5~7.8之间。3)适宜的营养,保持COD:N:P=200:5:1。4)严格控制有毒物质浓度,使其在允许浓度以下。5)厌氧反应池中碱度(以CaCO3计)宜高于2000mg/L,挥发性脂肪酸(VFA)宜控制在2000mg/L以内,氧化还原电位(ORP)应在+100mV~-400mV之间。6)N、P、S等营养物质和微量元素应当满足微生物生长的需要。四、UASB工艺的运行与维护1、运行控制启动后厌氧反应器系统运行,应控制好各项工艺参数,保持厌氧系统的平衡性,使系统的设计负荷效率稳定。UASB厌氧反应器正常运行控制的工艺条件如下:1)严禁进水有机负荷过高或过低、温度骤升或骤降等情况发生。常温厌氧的温度应保持在20℃~25℃,中温厌氧应保持在30℃~35℃,高温厌氧应保持在50℃~55℃。UASB反应器内pH值保持在6.5~7.8之间。适宜的营养,保持COD:N:P=200:5:1。¥5.9百度文库VIP限时优惠现在开通,立享6亿+VIP内容立即获取关于UASB的升流式厌氧污泥床反应器详解关于UASB的升流式厌氧污泥床反应器详解!升流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB(Up-flowAnaerobicSludgeBed/Blanket)。由荷兰Lettinga教授于1977年发明。污水自下而上通过UASB。反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。
活性污泥鼓风曝气系统的作用和主要组成是什么
1、首先活性污泥法是以活性污泥为主体的废水生物处理的主要方法。2、活性污泥是经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。3、活性污泥是在人工充氧条件下,对污水和各种微生物群体进行连续混合培养,形成。所以要曝气系统。组成:1、根据需氧量,选出所需的鼓风机,一般几用几备;(风机上配有压力表,消音器)2、相关风管管道,一般镀锌,小项目可用PVC;(管道上配有阀门,一般各种蝶阀)3、软接(风机与风管管道需要有软接连接,防震)4、单向阀(避免工作中的风机鼓出来的风窜向旁边不工作的风机)5、定流量阀或者空气流量计,控制流量6、微孔曝气管或者硅橡胶曝气头曝气器,均匀的布在水池底部。
活性污泥VSI和VSS的测定方法
污泥体积指数(SVI)的测量方法:取浓度约2克TSS/升的污泥悬浮液,均匀混合后置于1000毫升带刻度的锥形量筒中,经30分钟沉降后,污泥和上清液出现明显界面。假定此时的污泥体积为V(毫升),污泥的精确质量为m(克TSS),则SVI=V/m(毫升/克TSS)污泥中可挥发性固体(VSS)的测定:VSS指污泥中在600摄氏度的燃烧炉之能够能被燃烧,并以气体逸出的那部分固体。它通常用于表示污泥中的有机物的量,常用mg/L表示,有时也重量百分数表示。仪器和实验用品1.定量滤纸2.马弗炉3.烘箱4.干燥器,备有以颜色指示的干燥剂5.分析天平,感量0.1mg实验步骤(括号内为实际操作)1.定量滤纸在103-105℃烘干,干燥期内冷却,称重,反复直至获得恒重或称重损失小于前次称重的4%;重量为m0;(干燥8小时后放入干燥器冷却后称重为最终值或Φ12.5的滤纸直接以1g计)2.将样品100ml用1中的滤纸过滤,放入103-105℃的烘箱中烘干取出在干燥器中冷却至平衡温度称重,反复干燥制恒重或失重小于前次称重的5%或0.5mg(取较小值),重量为m1;SS=(m1-m0)/0.1(干燥8小时后放入干燥器冷却后称重为最终值)3.将干净的坩埚放入烘箱中干燥一小时,取出放在干燥其中冷却至平衡温度,称重,重量为m2;4.将2中的滤纸和泥放在3中的坩埚中,然后放入冷的马弗炉中,加热到600℃灼烧60分钟,在干燥器中冷却并称重,m3;(从温度达到600℃开始计时)vss=[(m1+m2-m0)-m3]/0.1
sbr工艺与连续流活性污泥工艺相比有哪些优点
SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。优点:1、 理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。 2、 运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。 3、 耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。 4、 工艺过程中的各工序可根据水质、水量进行调整,运行灵活。 5、 处理设备少,构造简单,便于操作和维护管理。 6、 反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。 7、 SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。 8、 脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。 9、 工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。缺点:1、自动化控制要求高。 2、排水时间短(间歇排水时),并且排水时要求不搅动沉淀污泥层,因而需要专门的排水设备(滗水器),且对滗水器的要求很高。 3、后处理设备要求大:如消毒设备很大,接触池容积也很大,排水设施如排水管道也很大。 4、滗水深度一般为1~2m,这部分水头损失被白白浪费,增加了总扬程。 5、由于不设初沉池,易产生浮渣,浮渣问题尚未妥善解决。SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。随着好氧进程的深入,有机物浓度降低,供氧速率开始大于耗氧速率,溶解氧开始出现,微生物开始可以得到充足的氧气供应,有机物浓度的高低成为影响有机物降解速率的一个重要因素。从耗氧与供氧的关系来看,在反应初期SBR反应池保持充足的供氧,可以提高有机物的降解速度,随着溶解氧的出现,逐渐减少供氧量,可以节约运行费用,缩短反应时间。 SBR反应池通过曝气系统的设计,采用渐减曝气更经济、合理一些请参考百度百科