区间套

DNA图谱 / 问答 / 标签

【缠论】区间套

除了最简单的笔,任何走势都是大级别套小级别的。 对于60-65这个1分钟中枢,55-60与65开始的一段之间就可以比较。 在实际操作中,65开始的走势,由于没实际走出来,所以在和55-60比较时,都可以先假设是进入背驰段。而当走势实际走出来,一旦力度大于前者,那么就可以断定背驰段不成立,也就不会出现背驰。 在没有证据否定背驰之前,就要观察从65开始的一段其内部结构中的背驰情况,这种方法可以逐次下去,这就是区间套的定位方法,这种方法,可以在当下精确地定位走势的转折点。对于65开始背驰段的内部走势,当下走到69时,并不构成任何背驰,为什么?因为背驰如果没有创新高,是不存在的。所以,只有等70点出现时,大盘才进入真正的背驰危险区。由于69-70段与67-68段比并没有盘整背驰,所以70点并没有走的理由,除非你是按线段以下级别操作的。 而71点,构成对66-69这1分钟中枢的第三类买点。按照缠论,其后无非只有两种情况,中枢级别扩展或者走出新的中枢上移。 对后者,一个基本的要求就是,从71点这第三类买点开始的向上段不能出现盘整背驰,而在实际中,不难发现,71点开始的走势力度明显比不上69-70段,而对于65-66段,69开始的走势力度也明显比不上,这从两者下面对应的MACD红柱子面积之和可以辅助判断。 因此,65开始的走势是第一重背驰段,69开始的是第二重背驰段,也就是65开始背驰段的背驰段,而71开始的是第三重背驰段,也就是65开始背驰段的背驰段的背驰段,后当下考察71开始的走势,从走势上红尖头以及MACD上红尖头可以当下知道,71的内部背驰也出现,也就是第四重的背驰段出现了。由此可见,72点这个背驰点的精确定位,是由65开始背驰段的背驰段的背驰段的背驰段构成的,这就构成一个区间套的精确定位,这一切,都可以当下地进行。 对于实际的操作,72四重背驰点出现后,卖是唯一的选择,而区别只在于卖多少。 当然,如果是按5分钟级别以及以下级别操作的,当然就全卖了,因为后面至少会形成5分钟的中枢震荡,实际上,60-69就是一个5分钟中枢。而对于大级别操作的,显然不可能因一个5分钟震荡而清仓,所以可以根据5分钟震荡可以容纳的数量进行对冲操作。 小资金的利润率,在相同操作水平下,显然要远高于大资金的,例如像这样的卖点,小资金就可以全仓操作,大资金是不可能的。 如果说72的判断有点难度,需要知道区间套的精确定位,那么74的第二类卖点,就一点难度都没有了。唯一有点需要分辨的就是,这第二类卖点,同时又是一个1分钟中枢的第三类卖点,究竟哪个中枢?显然不是70-73这个,因为这里需要满足结合律。 一个第三类买卖点,至少需要有5段次级别的,前三段构成中枢,第四段离开中枢,第5段构成第三类买卖点。 其实,这里的答案很简单,74点是69-72这个中枢的第三类卖点。也就是说,74点既是一个第二类卖点,又是一个第三类卖点,一旦出现二、三类买卖点同时出现的情况,往往后面的力度值得关注。实际上,74后面出现更大力度的下跌,这并没有任何奇怪的地方。对于60-69这个5分钟中枢,69的4244点是一个关键位置,如果在其下出现第三类卖点,那么走势至少将扩展成一个30分钟中枢,调整的幅度与压力就大了。而对于72开始的走势,73很重要,要重新走强,必须冲破73这一点,该点位置恰好也是4244点。因此,短线的4244点十分关键,重新站稳,则大盘将多是5分钟中枢的延伸震荡,否则即使不演化成5分钟级别的下跌,也将扩展成30分钟级别的中枢震荡。

用闭区间套定理证明零点定理

什么叫有界续? 函数Riemann可积的条件光用数学分析的观点是说不清的,要说清楚这个问题必须用实变函数论的观点来看:一个有限函数f(x)在有限区间[a,b]上Riemann可积的充要条件是f(x)在[a,b]上几乎处处连续(或者说间断点构成的集合是零测集).

用闭区间套定理证明,设f(x)在[a,b]上无界,证明存在x o属于[a,b]使

证明如图

求高手.证明有理数集是可列集.用闭区间套定理进行证明...

个人观点;有理数集不是连续的,闭区间套用于区间,区间这个概念是连续的。要解决你这个问题,应该首先给出可列集上类似闭区间套的概念,否则恐怕无法证明。可以利用闭区间套证明实数集不可列,这是因为实数集是连续的,区间套可以作用在它身上。

聚点定理证明区间套定理。

连续区间内有聚点,也必有极限——界点证阴,先分出1/10的区域,再分出i/9区域,再分下去会有(a,b)必有一个聚点被覆盖。从而有极限。 个人观点望慎重

闭区间套定理中,区间长度趋于0是必须的吗

区间长度是单调有界的, 一定会收敛. 如果区间长度趋于0, 那么闭区间套的交集是单点集;如果区间长度趋于一个正数L, 那么闭区间套的交集是一个长度为L的区间. 两者的区别不是最重要, 重要的是闭区间套的交集一定非空, 这是闭区间套定理的价值.

闭区间套定理的一个问题

不矛盾。区间套里每个区间都是确定的,比如[ai,bi](脚标i为一个正整数),它包含了无穷多个点,且这些点都在[a,b]内。‘只有唯一一个点属于[an,bn],n=1,2,3,... "可这样考虑:设这点为c,在[a,b]任选一点d≠c,则总能找到足够大的n,使得区间[an,bn]的半径小于│d-c│/2,所以点d就不在[an,bn]内。即只有唯一一个点c属于[an,bn],n=1,2,3,...

如何用区间套定理证聚点定理

有界无限点集,取其上下界的中点,则构成两个闭区间,至少有一个闭区间中含有无限多个点,再取这个闭区间的一半,使它含有无限多个点,再取一半,依此类推...根据区间套定理,有唯一一个点在所有这些闭区间中,则这个点的任意一个临域都存在无穷多个点集中的点.即它是聚点.思路如上,具体过程自己写吧.

使用区间套定理证明dini定理.

你不说哪个Dini定理,我就暂时先给你下面这个dini定理的证明。如果你要的是Abel-Dini定理,请再说明。若连续函数列{Fn(x)}在闭区间[a,b]上收敛于连续函数f(x),且对任意x∈[a,b],{Fn(x)}为单调数列,则{Fn(x)}在[a,b]上一致收敛于f(x)。用闭区间套定理只能反证。因为Dini定理是有限覆盖的正面应用,而有限覆盖是闭区间套的逆否,所以只能反证。使用二分区间法。假设{Fn(x)}在[a,b]上不一致收敛于f(x)。将区间[a,b]二等分,则在其中一个小区间上,{Fn(x)}不一致收敛于f(x)。因此得到递缩区间套。挤出唯一点,设为t。任何含有t的足够小的闭区间,函数列{Fn(x)}都不会一致收敛于f(x)。然而我们下面将证明并非如此。现在考察t点。由于在t点,函数列{Fn(t)}收敛到f(t),故从足够大的项N以后,Fn(t)就不超过f(t)的正负c偏差,c是任给的正数。[FN(t)-f(t)]之绝对值<c现在N是跟随c给定的。考察FN(x)-f(x)这个函数。我们知道FN(x)-f(x)在t点连续,因而对于t点为中心的某个邻域Q(如果t是端点,则Q是某个半邻域),在这个邻域内,[FN(x)-f(x)]之绝对值仍<c。然而,对于[a,b]上每一点x,因为{Fn(x)}收敛到f(x),并且{Fn(x)}对每个x都是单调的,那么f(x)必然是Fn(x)的确界,是上确界还是下确界,要看在x点{Fn(x)}是递增还是递减。但不管Sup还是Inf,总之只要{Fn(x)}的某一项和f(x)的偏差不超过正负c,则后面的项和f(x)的偏差也不超过正负c。于是,在邻域Q内,[FN(x)-f(x)]之绝对值<c将推出,所有n>N,[Fn(x)-f(x)]之绝对值<c。这样,我们就得到了,在t点,有这样一个开区域Q,在这个区域里,任何的正数c,存在一个N,只要n>N,就有[Fn(x)-f(x)]之绝对值<c,换句话说,{Fn(x)}在Q内一致收敛到f(x)。而任何含有t的足够小的闭区间将会是Q的真子集,这样的闭区间{Fn(x)}又不一致收敛到f(x)。因此,我们看到了矛盾。

用区间套证明确界定理

证明:首先用确界定理找到一个数a,其次证明这个数a就是数列{an}的极限。如:已知数列{ann∈Z+}有界,根据确界定理,它存在上确界。设Sup{ann∈Z+}=a。由上确界的定义,任意取ε>0,存在n∈□则有a-ε<an<a.已知数列{an}单调增加,对于任意n>N则有a-ε<aN<=an<=a或(an-a)的绝对值<ε,即单调增加有界数列{an}存在极限.

为什么开区间不适合区间套定理 主要是这样:我看了一下教材,我用的是复旦大学的数学分析,然后他上面的

区间套定理:在证明ξ∈所有闭区间时用到条件,否则(1-1/n,1),满足定理条件,且两端点极限是1,但是1不属于任何一个开区间。有限覆盖定理:

请问区间套是在高中或大学高数的哪个学期里学过?

在大学,如果是数学分析(华师版)上册的在第七章的,实数的完备性,那一节有相关内容 (160多页)如果是高等数学,应该在:在闭区间上连续函数的性质。这一节能找得到

用区间套定理怎么证明介值定理

用反证法,设介值为u,对区间2等分,取同时包含大于u和小于u的值的区间(如果没有这样的区间,说明中间分界处的值为u,则直接得证),按上述取法一直划分,利用区间套定理,可知有且仅有一个x0在所有区间内,若f(x0)不为u,不妨令f(x0)>u,由连续性,对任意ε>0,存在δ>0,使得U(x0,δ)中,|f(x)-f(x0)|<ε,取ε=|f(x0)-u|/2,则在U(x0,δ)中,f(x)-u>0,而由于x0在上述构造的任意区间内,且区间长趋于0,取区间长<δ/2的区间,则区间在U(x0,δ)内,这与区间的选取矛盾,所以利用反证法可知,f(x0)=u,证毕

用闭区间套定理证明零点定理

不妨设f(a)<0<f(b)。记c=(a+b)/2,若f(c)=0,结论成立。若f(c)>0,则记[a1,b1]=[a,c];若f(c)<0,则记[a1,b1]=[c,b]。再记c1=(a1+b1)/2,若f(c1)=0,结论成立;若f(c1)>0,则记[a2,b2]=[a1,c1];若f(c1)<0,则记[a2,b2]=[c1,b1]。继续下去,或者到某一步有f(ck)=f[(ak+bk)/2]=0,此时结论成立。或者此过程可无限做下去,因此得到一区间套序列{[an,bn]},满足:(1),[a1,b1]包含[a2,b2]包含[a3,b3]包含...,(2),bn-an=(b-a)/2^n趋于0,当n趋于无穷;(3),f(an)<0<f(bn),n=1,2,3,...。由闭区间套定理,存在c位于所有的区间,即an<=c<=bn,对n都成立,且an和bn都趋于c。由f(x)在c的连续性有f(c)=lim f(an)<=0,f(c)=lim f(bn)>=0,因此f(c)=0。显然由于f(a)<0<f(b)知道c不是a,b。因此a<c<b。证毕。

区间套定理证明单调有界定理

ms这么证明没有什么意义,因为用确界定理证明更简单直截一些我来试试,大家一起研究一下用区间套定理证明单调有界定理:首先还要用到确界定理,单调有界必有确界不妨设数列{an}单调滴递增,则有上确界M存在则an≤M,从而[an,M]为一闭区间1、有[a1,M]≥[a2,M]≥……≥[an,M]≥……(不会输入那个符号,这里用≥表示“包含”),则{[an,M]}构成一个闭区间套;2、又因为M为上确界,故当n->∞时lim(M-an)=0;以上1、2使得{[an,M]}满足闭区间套定理,所以n->∞时,[an,M]套住一个实数,即M,从而有n->∞时lim(an)=M,说明有界单调数列收敛。〔 证毕 〕

用闭区间套定理证明闭区间连续函数最值性

若f(x)是闭区间[a,b]上的连续函数,U=sup{f(x)},那么把区间二等分之后至少有一个闭区间以为上确界,如此一直等分下去得到一个闭区间套,其交集为单点集,记t属于这组闭区间套的交,那么f(t)=U。

Cantor闭区间套定理 开区间,半开区间为什么没有聚点?

首先你的问题表述是错的.相反开区间、半开区间都有聚点.概念问题.什么是聚点?点P(属于S)称为集合S的聚点,如果存在S中互异序列以点P为极限.与聚点相对的是孤立点.事实上开区间和半开区间的任何一个点都是聚点. 你的理解有误,你是想说为什么闭区间套定理不能把闭区间换成开区间或者半开区间.定理的证明(不管用哪种方法证的)都要用到闭区间,而对不闭的区间我们可能举出反例来(如对全体自然数n,开集族(0, 1/n)的交为空).

用有限覆盖定理证明闭区间套定理

an和bn会收敛于一个数这是很容易就可以得到的——因为an单调有上界,bn单调有下界,而他们的差的极限为零,从而他们极限相等。重要的是这个极限(设它为t)是所有区间的唯一公共点。唯一性也可以由极限的唯一性得到,剩下的就是它是所有区间的公共点了。用反证法。我们先构造一个开区间集,它能覆盖【a0,b0】:对某一x属于【a0,b0】,它若不属于某一个子区间【an0,bn0】,从而当n>n0,有x亦不会属于【an,bn】,从而就存在x的某一个邻域Ex,它与所有n>n0的【an,bn】的交集为空(这里n>n0,而n0的取值跟x的取值有关)。假设这些子区间没有公共点,即所有的x属于【a0,b0】都有这样的结论了,那么所有属于[a0,b0]的x都可以有这样的邻域,所有的邻域放在一起就成为了[a0,b0]的一个开覆盖,按有限覆盖定理,那这些无限个邻域中存在[a0,b0]的有限覆盖,既然是有限个,那就是有有限个x,那与x有关的n0也就只有有限个了,取在这有限个n0的最大值nm,那当n>nm时,[an,bn]就会与这有限个开区间的交集都为空,而那些开区间是整个[a0,b0]的覆盖,当然会覆盖【an,bn】,矛盾,这就说明并不是所有的x都不属于某一个子区间【an0,bn0】,这些所有的子区间是有公共点的(设为s)。接着就证明这个点就是t就行了:利用夹逼定理,an<s<bn,对所有的n都成立,自然就是s=t了。希望能解决您的问题。

如何利用闭区间套定理来证明单调有界定理

设S是有上界集合,不妨设b是的一个上界,取a∈S构造区间[a,b]。定义性质P: 闭区间E,满足存在x1∈E,x1∈S且存在x2∈E,x2不属于S。用二等分法构造区间套:将[a,b]等分为两个子区间,则至少有一个具有性质P,不妨记该区间为[a1,b1],则[a1,b1]含于[a,b] 。闭区间上连续函数的三大性质:介值定理,最大值定理,一致连续性定理,都是在他们需要出现的时候才出现,而且它们的证明都是用实数连续性定理证明的。整个体系可以用下图表示出来。扩展资料:闭区间套定理由于具有较好的构造性,因此在实数相关的命题中有广泛的应用,故闭区间套定理不仅有重要的理论价值,而且具有很好的应用价值。例如用来证明单调有界定理,闭区间上的连续函数的性质(有界性、最值性、零点存在性、一致连续性等),拉格朗日中值定理等微分学上常用的定理。作为介绍,在这里给出用闭区间套定理证明单调有界定理和拉格朗日中值定理的过程。单调递增有上界,或单调递减有下界的数列必定收敛。证明:以单调递增有上界的数列为例。设数列{xn}单调递增有上界b,如果数列从某一项开始,所有的项都等于某个常数a,那么a就是{xn}的极限。如果不是这样,即{xn}严格单调,参考资料来源:百度百科-闭区间套定理

怎样用柯西收敛原理直接证明区间套定理?(不能用其他的定理。)

你说的柯西定理是柯西中值定理吧?柯西中值定理:设函数f(x),g(x)满足是在[a,b]连续,(a、b)可导,g"(x)≠0(x∈(a,b))  则至少存在一点,ξ∈(a,b),使f"(ξ)/g"(ξ)=[f(b)-f(a)]/[g(b)-g(a)]成立设f(x)=1/2*x^2,g(x)=x,定义域为R[a(n),b(n)],n=1,2,3....为一个闭区间套在[a(n),b(n)]上根据柯西中值定理,存在ξ∈(a(n),b(n)),使f"(ξ)/g"(ξ)=[f(b)-f(a)]/[g(b)-g(a)]成立这里f"(x)=x,g"(x)=1,则有ξ=0.5[b(n)^2-a(n)^2]/[b(n)-a(n)],即ξ=0.5[b(n)+a(n)]显然ξ=0.5[b(n)+a(n)]<=0.5[b(n)+b(n)]=b(n),ξ=0.5[b(n)+a(n)]>=0.5[a(n)+a(n)]=a(n)即a(n)=<ξ<=b(n)

“闭区间套定理”的内容是什么?

闭区间套定理或者更高维的闭球套定理常常用来证明或者说明某个空间(集合)具有一种“稠密”的性质。在这个空间中构造出一列(无穷多个)闭球,使这些闭球一个比一个更小而且后一个总被套在前一个里面,目的是使得这列闭球的直径最终趋于零,即无限小,这时候,“最里面”的闭球要么是一个点要么是空集,如果最里面的闭球是一个点,那么这个点必定包含于所有的这一列闭球,我们就说这个空间具有这种“稠密”的性质;反之,如果这个空间具有“稠密的”性质,必定可以构造出一列直径越来越小最终为无穷小的闭球套,它们有唯一的公共点!

怎样用闭区间套定理证明有限覆盖定理?

所谓有限覆盖定理,是指:对于有界闭区间[a,b]的一个(无限)开覆盖H中,总能选出有限个开区间来覆盖[a,b]。这一问题可用区间套定理来证明。(区间套定理:若[an,bn]是一个区间套,则在实数系中存在唯一一点C,使对任何n都有c属于[an,bn].{an}单调递增,{bn}单调递减,都以c为极限。)证明:用反证法 假定不能用H中有限个开区间来覆盖[a,b].将[a,b]等分为两个子区间,则其中至少有一个子区间不能用H中有限个开区间来覆盖。记这个子区间为[a1,b1],则[a1,b1]包含于[a,b],且b1-a1=(b-a)/2.再将[a1,b1]等分为两个子区间,同样,其中至少有一个不能用H中有限个开区间覆盖。记这个子区间为[a2,b2],则[a2,b2]包含于[a1,b1],且b2-a2=(b-a)/2^2.重复以上步骤并不断进行下去,则可得到区间列{[an,bn]},它满足区间套条件,且其中每一个闭区间都不能用H中有限个开区间来覆盖。但,由区间套定理,存在唯一点c属于所有区间[an,bn].由于H是[a,b]的开覆盖,一定存在H中的一个开区间(a0,b0),使c属于(a0,b0).即a0<c<b0.而{an},{bn}都以c为极限,即知,存在N,当n>N时,a0<an<=c<=bn<b0.这表明,只用开区间(a0,b0)就覆盖了区间[an,bn].这与挑选[an,bn]时假设“[an,bn]不能用H中有限个开区间覆盖”矛盾。从而证得,必存在H中有有限个开区间能覆盖[a,b].

关于缠论第61课的区间套,请各位提供分析思维。

你最后的分析是对的,正是基于同级别分解的角度来找区间套的。这里是把60-65当成一个走势类型看待的,特别是在5分钟图MACD上一定表现为回拉或穿越0轴,正好是前面5分钟中枢的3买,这是5分钟级别趋势的第二个中枢的3买,又处于530后的敏感时期,后面大概率会趋势背驰,这才是找区间套的理由。假如是第一个中枢,区间套就没多大意义,因为很可能由于小级别的延伸而破坏背驰段发展成趋势走势。如果单纯从中枢的角度来看,63-69都只是属于60-63这个1分中枢的延续,没有出现第三类买卖点前是不需要也无法考虑区间套的。很多课的内容都表明,同级别分解和非同级别分解是可以混搭来分解走势的,以后再遇到类似的疑惑,不妨从多角度去思考下。

如何用区间套定理证明连续函数的有界性

题设:设f(x)在【a,b】上连续,证明:f(x)在【a,b】一定有界。证明:假设f(x)在【a,b】上无界。【a,b】= [a, (a + b) / 2] + [(a + b) / 2, b]上述两个子区间有【a1, b1】使得f(x)无界。【a1,b1】= [a1, (a1 + b1) / 2] + [(a1 + b1) / 2, b1]上述两个子区间也至少有一个子区间【a2, b2】使得f(x)无界。由将【a2, b2】分成两个相等区间,至少有一个【a3, b3】使得f(x)在其上无界。如此下去得到一串闭区间【an, bn】n = 1,2,3,4...使f(x)在其上无界。易见:...包含于【an, bn】包含于...包含于【a3, b3】包含于【a2, b2】包含于【a1, b1】包含于【a, b】由收敛准则Ⅱ有:lim an(n→∞)和lim bn(n→∞)存在。又bn - an = (b - a)/ 2^n,所以,lim (bn - an) = 0(其中n→∞),从而推出lim bn = lim an = §(an≤§≤bn,§∈【a,b】)那么由f(x)在【a,b】上连续推出lim f(x)= f(§)(x→§ )取§ = 1,69σ > 0当∣x - §∣< σ时,有f(§) - 1 < f(x) < f(§) + 1。对σ > 0,69N,当n > N时有§ - σ < an < bn < § + σ 所以,当x ∈【an, bn】时,有f(§) - 1 < f(x) < f(§) + 1从而推出f(x)在【an, bn】上有界,这与假设矛盾,假设不成立,所以定理得证。

区间套,求助

你把E作2等分,第1次分出的两个集合,肯定有一个是无限集,第2次对上次分出的无限集再作2等分,得到两个集合,其中一个肯定还是无限集,。。。这样不断分下去,如果有限次分割后能得到空集,说明E不是无限集,和题设矛盾,因此无限分下去一定能得到一个点,根据区间套,这个点就是极限点c,c的任何一个去心邻域里一定包含E中的点,否则说明上面所做的2等分是不能无限做下去的,也就是说E不是无限集,跟题设矛盾。

区间套定理的叙述改成开区间套对不对

区间套定理的叙述改成开区间套对区间套定理成立,因为此类开区间内均可造出一个闭区间来,因此仍可得一闭区间套如[2-1/2n,2+1/2n],该区间套内存在唯一一点2,属于所有闭区间[2-1/2n,2+1/2n],当然2也属于所有开区间(2-1/n,2+1/n).

缠中说禅区间套

缠论的区间套定理缠论的区间套定理也就是缠中说禅精确大转折点寻找程序定理:某大级别的转折点,可以通过不同级别背驰段的逐级收缩范围而确定。换言之,某大级别的转折点,先找到其背驰段,然后在次级别图里,找出相应背驰段在次级别里的背驰段,将该过程反复进行下去,直到最低级别,相应的转折点就在该级别背驰段确定的范围内。如果这个最低级别是可以达到每笔成交的,理论上,大级别的转折点,可以精确到笔的背驰上,甚至就是唯一的一笔。数学的区间套定理区间套定理:设一无穷闭区间列{[a(n) ,b(n)]}适合下面两个条件:(1)后一区间在前一区间之内,既对任一正整数n,有a(n)<=a(n+1)<b(n+1)<=b(n),(2)当n->无穷时,区间列的长度{(b(n)-a(n))}所成的数列收敛于零,则区间的端点所成的两数列{a(n)}及{b(n)}收敛于同一极限$,并且$是所有区间的唯一公共点。(a(n)的意思是:a下标n)闭区间套定理或者更高维的闭球套定理常常用来证明或者说明某个空间(集合)具有一种“稠密”的性质。在这个空间中构造出一列(无穷多个)闭球,使这些闭球一个比一个更小而且后一个总被套在前一个里面,目的是使得这列闭球的直径最终趋于零,即无限小,这时候,“最里面”的闭球要么是一个点要么是空集,如果最里面的闭球是一个点,那么这个点必定包含于所有的这一列闭球,我们就说这个空间具有这种“稠密”的性质;反之,如果这个空间具有“稠密的”性质,必定可以构造出一列直径越来越小最终为无穷小的闭球套,它们有唯一的公共点!缠论的区间套最后定位在走势结束的最低(高)的那一个价位上,这个价位逐级从最高级别(背驰发生的级别可能是日线也可能是30分钟等)到最低级别,逐步去找这个点,放大镜的倍数越来越大,越来越清晰的去定位。当各个级别都走入背驰段发生共振很可能1分钟甚至更低级别的背驰导致大级别的背驰确认。通过小级别来确认大级别的背驰,通过大级别背驰来找小级别的背驰,在大级别没有背驰发生的情况下,小级别的背驰不要轻举妄动很可能一个小的调整把背驰消灭继续原来的走势。大级别背驰,小级别的一个微小的变化都可能引起大的情况,这个时候,小级别的背驰就要注意了

为什么开区间不适用闭区间套定理?

是因为极限和闭区间的性质。当n趋向∞时,区间两端收敛于同一极限,显然这个极限在最初的区间[a,b]之间,并且由于闭区间性质,区间内的所有值都能取到,这个极限就是区间的公共点。但是换成开区间就不一样了,区间端点是取不到的,可根据极限的性质(描述一种趋势),(a,b)间的点列完全可以以端点作为极限,所以当证明区间端点收敛于同一极限时,你就不能得出这个极限一定在区间内,更不能说它是所有区间的公共点。定义直线上介于固定的两点间的所有点的集合(不包含给定的两点),用(a,b)来表示(不包含两个端点a和b)。开区间的实质仍然是数集,该数集用符号(a,b)表示,含义一般是在实数a和实数b之间的所有实数,但不包含a和b。相当于{x|a<x<b},记作(a,b) 取值不包括a、b。

闭区间套定理

区间套定理:设一无穷闭区间列{[a(n),b(n)]}适合下面两个条件:(1)后一区间在前一区间之内,既对任一正整数n,有a(n)<=a(n+1)<b(n+1)<=b(n),(2)当n->无穷时,区间列的长度{(b(n)-a(n))}所成的数列收敛于零,则区间的端点所成的两数列{a(n)}及{b(n)}收敛于同一极限$,并且$是所有区间的唯一公共点。闭区间套定理通常是和“二分法”配合使用的,即区间[a,b]从中点一分为二,通常得到的这两个区间中有且仅有一个区间具有某种性质(和我们要证明的具体问题有关),把这个符合要求的区间[a1,b1]再分为两半,再找出我们感兴趣(具有某种性质)的那个小区间[a2,b2]。依次类推,这样每分一次,我们找到的区间长度就变为原来的一半,第n次得到的区间长度就是(b-a)/2^n,这样当n趋于∞时,区间长度趋于0,这样我们得到了一个闭区间套[ai,bi],并且有lim(bn-an)=0,满足闭区间套定理的条件。因此存在唯一的实数ξ=liman=limbn,这样我们就把每次找到的小区间[ai,bi]具有的性质“传递”到了实数ξ上,而这一步正是用闭区间套定理证明问题的关键。

怎样用区间套定理证数列的柯西准则?

只需用闭区间套定理证明结论:Cauchy列是收敛的。首先,Cauchy列必有界,设a<=an<=b。将[a,b]均分为3份,分点为c=(2a+b)/3,d=(a+2b)/3。下面证明[a,c]和[d,b]中有一个区间最多含有数列中的有限多项。若两个区间中都含有数列中的无穷多项,则对e=(b--a)/3>0,存在N,当m>n>N时,有|am--an|<e,在[a c]中必有一项ak,k>N。在[d,b]中必有一项al,l>N,则|ak--al|>=(b--a)/3。矛盾,因此两个区间中有一个最多含有有限多项。将含有有限多项的一个去掉(若两个都是有限多项,则去掉左边的那个区间),剩下的区间记为[c1,db1]。然后再将[c1,d1]均分为三份,类似去掉一个,依次进行下去得到一个闭区间列,1、[cn,dn]包含[c(n+1), c(n+1)],且区间长度为(b--a)/3^n。2、[cn, dn]的外面含有数列{an}中的有限多项。由定理,存在cn和dn的共同的极限值x,位于所有的闭区间中。下面证明x是{an}的极限。对任意的e>0,存在K,使得ck<=x<=dk,当k>=K时,注意到第二个性质,[cK,dK]外有{an}的有限多项,记最大指标为N,即n>N时,有an位于[cK, dK]中,于是|an--x|<=dK--cK<e。由定义,{an}收敛于x。证毕。扩展资料函数的柯西收敛准则性质1、充分性:由于函数极限和数列极限可以通过归结原则联系起来,所以要证明函数收敛,可以转化为证明数列收敛。而数列收敛的柯西准则已经证明了,所以把已知条件转化为求数列极限是证明的重心。2、归结原则(或称海涅定理):设f(x)在x0的某个去心邻域(或|x|大于某个正数时)有定义,那么充要条件是,对在x0的某个去心邻域内的任意收敛于x0并且满足xn≠x0的数列{xn}(或绝对值大于某个正数的任意发散到无穷大的数列{xn}),都有数列{f(xn)}收敛到A。参考资料来源:百度百科—柯西极限存在准则参考资料来源:百度百科—区间套定理

哪位朋友知道区间套定理是什么?谢谢!

就是图中的定理1

什么是区间套定理?怎么证明?

什么是闭区间:数轴上任意两点和这两点间所有点组成的线段为一个闭区间。闭区间套定理:有无穷个闭区间,第二个闭区间被包含在第一个区间内部,第三个被包含在第二个内部,以此类推(后一个线段会被包含在前一个线段里面),这些区间的长度组成一个无穷数列,如果数列的极限趋近于0(即这些线段的长度最终会趋近于0),则这些区间的左端点最终会趋近于右端点,即左右端点收敛于数轴上唯一一点,而且这个点是此这些区间的唯一公共点。(开区间同理)

区间套原理

区间套定理是数学分析中一个非常重要的定理,它同确界原理、单调有界原理、聚点定理、柯西收敛准则及有限覆盖定理合称为实数完备性的6个基本定理.由于这些定理的等价性,只要能用其中一个定理可以证明的命题,原则上用其它定理也能证明,但证明的难易程度往往有较大差别.本文分析区间套定理的特点,通过应用实例说明数学分析中的许多重要结论,特别是涉及到由整体到局部的命题,往往都能够用区间套定理来证明.不难看出,区间套定理说的是一个大区间里套一个小区间,小区间里再套一个更小区间,如此下去,最后套出一个公共点,其特点是由点集的整体性质得到某一点的局部性质.因此,凡涉及到由整体到局部的命题,特别是要证明在一定条件下存在一个点具有某种性质时,常常适合用区间套定理来证明[2-4].此外,区间套定理还可以用来证明闭区间上连续函数的性质[5]

区间套定理如何理解?

数轴上任意两点和这两点间所有点组成的线段为一个闭区间。闭区间套定理:有无穷个闭区间,第二个闭区间被包含在第一个区间内部,第三个被包含在第二个内部,以此类推(后一个线段会被包含在前一个线段里面),这些区间的长度组成一个无穷数列,如果数列的极限趋近于0(即这些线段的长度最终会趋近于0),则这些区间的左端点最终会趋近于右端点,即左右端点收敛于数轴上唯一一点,而且这个点是此这些区间的唯一公共点。(开区间同理)

区间套定理的内容是什么?

先定义什么是区间套:设闭区间列{ [an, bn] } 具有如下性质:① [an, bn]包含[an+1,bn+1 ], n=1,2,...; (其中的意思是[an+1,bn+1 ]是[an, bn]的子集)② lim (bn-an)=0 (n→∞),则称{ [an, bn] } 为闭区间套,或简称区间套。下面是区间套定理:若{ [an, bn] } 是一个区间套,则在实数R中存在唯一的点ξ,使得ξ∈[an, bn],n=1,2,..., 即 an≤ξ≤bn, n=1,2,... 注:这个定理实际上表明了实数的完备性,实数是连续地充满整个数直线而没有间隙,而有理数就不具备这个性质。

怎样用区间套定理证数列的柯西准则?

只需用闭区间套定理证明结论:Cauchy列是收敛的。首先,Cauchy列必有界,设a<=an<=b。将[a,b]均分为3份,分点为c=(2a+b)/3,d=(a+2b)/3。下面证明[a,c]和[d,b]中有一个区间最多含有数列中的有限多项。若两个区间中都含有数列中的无穷多项,则对e=(b--a)/3>0,存在N,当m>n>N时,有|am--an|<e,在[a c]中必有一项ak,k>N。在[d,b]中必有一项al,l>N,则|ak--al|>=(b--a)/3。矛盾,因此两个区间中有一个最多含有有限多项。将含有有限多项的一个去掉(若两个都是有限多项,则去掉左边的那个区间),剩下的区间记为[c1,db1]。然后再将[c1,d1]均分为三份,类似去掉一个,依次进行下去得到一个闭区间列,1、[cn,dn]包含[c(n+1), c(n+1)],且区间长度为(b--a)/3^n。2、[cn, dn]的外面含有数列{an}中的有限多项。由定理,存在cn和dn的共同的极限值x,位于所有的闭区间中。下面证明x是{an}的极限。对任意的e>0,存在K,使得ck<=x<=dk,当k>=K时,注意到第二个性质,[cK,dK]外有{an}的有限多项,记最大指标为N,即n>N时,有an位于[cK, dK]中,于是|an--x|<=dK--cK<e。由定义,{an}收敛于x。证毕。扩展资料函数的柯西收敛准则性质1、充分性:由于函数极限和数列极限可以通过归结原则联系起来,所以要证明函数收敛,可以转化为证明数列收敛。而数列收敛的柯西准则已经证明了,所以把已知条件转化为求数列极限是证明的重心。2、归结原则(或称海涅定理):设f(x)在x0的某个去心邻域(或|x|大于某个正数时)有定义,那么充要条件是,对在x0的某个去心邻域内的任意收敛于x0并且满足xn≠x0的数列{xn}(或绝对值大于某个正数的任意发散到无穷大的数列{xn}),都有数列{f(xn)}收敛到A。参考资料来源:百度百科—柯西极限存在准则参考资料来源:百度百科—区间套定理