人类线粒体脱氧核糖核酸单倍群的简介
【英文】human mitochondrial DNA haplogroup【简写】mtDNA可使研究者追溯母系遗传的人类起源,粒线体研究显示人类是起源于非洲地区 。线粒体DNA单倍群用字母A, B, C, CZ, D, E, F, G, H, pre-HV, HV, I, J, pre-JT, JT, K, L0, L1, L2, L3, L4, L5, L6, M, N, O, P, Q, R, S, T, U, UK, V, W, X, Y和Z.来标记。线粒体夏娃则是理论上一切女性的始祖,即人类最近线粒体共同祖先。以下是最常见的线粒体DNA单倍群分划:【撒哈拉-非洲型】L0, L1, L2, L3, L4, L5, L6【西欧亚型】H,T,U,V,X,K,I,J,W【东欧亚型】A, B, C, D, E, F, G,Y【土著美洲人型】A,B,C,D,X【澳大拉西亚型】O,P,Q,S
请问一下 多肽链,氨基酸,DNA,染色体,脱氧核糖核酸之间的准确的关系
氨基酸是蛋白质的基本单位多肽是个多个氨基酸脱水缩合而成脱氧核糖核苷酸 构成DNA的单位 按照碱基互补原则合成DNA染色体的组成成分之一是DNA染色体是DNA-组蛋白复合体的一种特殊存在形式。DNA-组蛋白复合体高度螺旋化,这个状态就叫做染色体了。染色体也有一些特征,例如带纹,大小,着丝粒位置等,是区别物种和其他染色体的标志。遗传中,DNA的作用是表达基因 ,以出现形状,染色体则在细胞分裂的时候出现,起到自由组合和分离的作用。(因为DNA-组蛋白复合体松散状态非常长。。。不利于各自分离。染色体状态,他们就很短很容易配对分离了) 一种平行关系
脱氧核糖降解法为什么要加三氯乙酸呢
脱氧核糖降解法加三氯乙酸是为了破坏细胞膜和核膜,使DNA从细胞中释放出来。脱氧核糖降解法是一种常用的DNA提取方法,其中加入三氯乙酸是为了破坏细胞膜和核膜,使DNA从细胞中释放出来。三氯乙酸会使细胞膜和核膜蛋白质凝固,从而使细胞破裂并释放DNA。此外,三氯乙酸还可以使DNA中的蛋白质凝固,从而使DNA分离出来。它也可以去除DNA中的蛋白质和RNA,从而纯化DNA。因此,加入三氯乙酸可以有效地破坏细胞膜和核膜,并纯化DNA,使其适合于后续的分子生物学实验,如PCR、限制性酶切和测序等。同时,三氯乙酸也可以防止DNA在提取过程中被降解或污染。需要注意的是,三氯乙酸是一种有毒的化学物质,使用时应该注意安全操作。在使用过程中应该避免吸入、接触皮肤和食入,同时要注意通风和使用防护手套等个人防护措施。
4xdNTP是代表四种脱氧核糖核苷酸吗?那 dNTP呢
4xdNTP是四种dNTP(dATP, dGTP, dTTP, dCTP)的统称。dNTP,deoxy-ribonucleoside triphosphate(脱氧核糖核苷三磷酸而不是脱氧核糖核苷酸)的缩写,N是指含氮碱基,代表变量指代A、T、G、C等中的一种。在生物DNA合成中,以及各种PCR中起原料作用。
4种脱氧核糖核的简写
你问的是四种脱氧核糖核苷酸吧,脱氧核糖核苷酸都是只有一分子的磷酸的,所以应该是d-GMP,d-AMP等等。M代表只有一个磷酸,D代表有两个磷酸,如ADP,T代表的是三个磷酸,如d-ATP,与ATP的区别就在前者含有的是脱氧核糖,后者含有的是核糖,后者是直接的能源物质。
dna组成脱氧核糖 磷酸 碱基 蛋白质
DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP 脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP 脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP 脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP 脱氧鸟苷)所以ACD错误,所以正确答案为B
DNA复制时,游离的脱氧核糖核苷酸从哪来的?
游离的脱氧核糖核苷酸可以由氨基酸,二氧化碳,谷氨酰胺等先合成碱基,再与磷酸,核糖连接形成核糖核苷酸,核糖核苷酸再发生脱氧还原反应,得到脱氧核糖核苷酸。(其中磷酸和核糖可以由食物直接吸收利用)
DNA复制的原料的游离的脱氧核糖核苷酸从哪里来
人体内的核酸从两条途径合成。一条途径是在肝脏内,以小分子简单化合物为原料,从合成碱基(嘌呤、嘧啶)等开始来制造核酸,称之为从头合成。弗兰克博士通过20年的临床实践,发现人体发育成熟后(约20岁左右),从头合成核酸的能力随年龄增长逐渐下降。另一条途径是在脑、骨髓等部位,以含核酸的食物经消化吸收来的半成品(如单核苷酸、核苷或碱基)为原料而合成的核酸,称之为补救合成。所以,来源有两个,消化吸收原料重新加工和体内自己合成。
脱氧核糖核苷酸通过相应核糖核苷酸还原作用是在二磷酸核苷酸(NDP)水平上进行的
就是说,脱氧核糖核苷酸是由二磷酸核苷酸2"位上的羟基还原为氢,并脱掉两个磷酸集团形成的。磷酸集团是由酶来脱掉的啊。这句话的意思就是说 二磷酸核苷酸是脱氧核糖核苷酸的前体;二磷酸核苷酸通过被还原和去磷酸基团可以转变为脱氧核糖核苷酸。明白了么?
脱氧核糖核苷酸通过相应核糖核苷酸还原作用是在二磷酸核苷酸(NDP)水平上进行的
就是说,脱氧核糖核苷酸是由二磷酸核苷酸2"位上的羟基还原为氢,并脱掉两个磷酸集团形成的。磷酸集团是由酶来脱掉的啊。这句话的意思就是说二磷酸核苷酸是脱氧核糖核苷酸的前体;二磷酸核苷酸通过被还原和去磷酸基团可以转变为脱氧核糖核苷酸。明白了么?
脱氧核糖核苷酸加酶是什么?是复制?转录?还是什么?
脱氧核糖核苷酸是DNA的组成单位,如同氨基酸是蛋白质的组成单位.脱氧核苷酸加DNA聚合酶是『复制』,即为游离的脱氧核糖核苷酸脱水缩合行成DNA单链,并不是转录
核酸核酸包括核糖核酸(RNA)和脱氧核糖核酸(DNA) 两种吗?
核酸(nucleicacid)是重要的生物大分子,它的构件分子是核苷酸(nucleotide)。天然存在的核酸可分为:╭脱氧核糖核酸(deoxyribonucleicacid,dna)╰核糖核酸(ribonucleicacid,rna)dna贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础。rna中参与蛋白质合成的有三类:╭转移rna(transferrna,trna)∣核糖体rna(ribosomalrna,rrna)╰信使rna(messengerrna,mrna)20世纪末,发现许多新的具有特殊功能的rna,几乎涉及细胞功能的各个方面。核苷酸可分为:╭核糖核苷酸:是rna的构件分子╰脱氧核糖核苷酸:是dna构件分子。细胞内还有各种游离的核苷酸和核苷酸衍生物,它们具有重要的生理功能。核苷酸由:╭核苷(nucleoside)╰磷酸核苷由:╭碱基(base)╰戊糖碱基(base):构成核苷酸中的碱基是含氮杂环化合物,由嘧啶(pyrimidine)和嘌呤(purine)构成。核酸:╭嘌呤碱:╭腺嘌呤∣╰鸟嘌呤╰嘧啶碱:╭胞嘧啶∣胸腺嘧啶╰尿嘧啶╭dna中含有腺嘌呤、鸟嘌呤和胞嘧啶,胸腺嘧啶主要存在于dna中。∣╰rna中含有腺嘌呤、鸟嘌呤和胞嘧啶,尿嘧啶主要存在于rna中。在某些trna分子中也有胸腺嘧啶,少数几种噬菌体的dna含尿嘧啶而不是胸腺嘧啶。这五种碱基受介质ph的影响出现酮式、烯醇式互变异构体。在dna和rna中,尤其是trna中还有一些含量甚少的碱基,称为稀有碱基(rarebases)稀有碱基种类很多,大多数是甲基化碱基。trna中含稀有碱基高达10%。戊糖:核酸中有两种戊糖dna中为d-2-脱氧核糖(d-2-deoxyribose),rna中则为d-核糖(d-ribose)。在核苷酸中,为了与碱基中的碳原子编号相区别核糖或脱氧核糖中碳原子标以c-1",c-2"等。脱氧核糖与核糖两者的差别只在于脱氧核糖中与2"位碳原子连结的不是羟基而是氢,这一差别使dna在化学上比rna稳定得多。核苷:核苷是戊糖与碱基之间以糖苷键(glycosidicbond)相连接而成。戊糖中c-1"与嘧啶碱的n-1或者与嘌吟碱的n9相连接,戊糖与碱基间的连接键是n-c键,一般称为n-糖苷键。rna中含有稀有碱基,并且还存在异构化的核苷。如在trna和rrna中含有少量假尿嘧啶核苷(用ψ表示),在它的结构中戊糖的c-1不是与尿嘧啶的n-1相连接,而是与尿嘧啶c-5相连接。核苷酸:核苷中的戊糖5"碳原子上羟基被磷酸酯化形成核苷酸。核苷酸分为核糖核苷酸与脱氧核糖核苷酸两大类。依磷酸基团的多少,有一磷酸核苷、二磷酸核苷、三磷酸核苷。核苷酸在体内除构成核酸外,尚有一些游离核苷酸参与物质代谢、能量代谢与代谢调节,如三磷酸腺苷(atp)是体内重要能量载体;三磷酸尿苷参与糖原的合成;三磷酸胞苷参与磷脂的合成;环腺苷酸(camp)和环鸟苷酸(cgmp)作为第二信使,在信号传递过程中起重要作用;核苷酸还参与某些生物活性物质的组成:如尼克酰胺腺嘌呤二核苷酸(nad+),尼克酰胺腺嘌呤二核苷酸磷酸(nadp+)和黄素腺嘌呤二核苷酸(fad)。核酸的分子结构:一、核酸的一级结构核酸是由核苷酸聚合而成的生物大分子。组成dna的脱氧核糖核苷酸主要是damp、dgmp、dcmp和dtmp,组成rna的核糖核苷酸主要是amp、gmp、cmp和ump。核酸中的核苷酸以3",5"磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5"末端与3"末端。5"末端含磷酸基团,3"末端含羟基。核酸链内的前一个核苷酸的3"羟基和下一个核苷酸的5"磷酸形成3",5"磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。
脱氧核糖核酸的主要生成方式是( )。 a.由二磷酸核苷还原
正确答案:A 解析:无论脱氧嘌呤核苷酸,还是脱氧嘧啶核苷酸,都不能由核糖直接还原而成,而主要是以二磷酸核苷的形式还原产生. 很高兴为你解答,希望对你有所帮助,
在二磷酸核苷水平上还原是脱氧核糖核苷酸生成的方式吗?
答:在二磷酸核苷水平上还原是脱氧核糖核苷酸生成的方式除dTMP外,其余3种脱氧核糖核苷酸都是由相应的二磷酸核糖核苷还原而来dTMP可由dUMP甲基化而来,也可由脱氧胸苷在胸苷激酶的作用下磷酸化而生成。
磷酸戊糖途径生成的是核糖还是脱氧核糖
磷酸戊糖途径生成的是核糖,不是脱氧核糖。确切地说,生成的是5-磷酸核糖。
atp中是核糖还是脱氧核糖
atp既不是脱氧核糖也不是核糖,它是能量通货,即:三磷酸腺苷,它其中含有一个核糖成分,所以说,atp中含有核糖~
有没有脱氧核糖组成的腺苷三磷酸?
有,叫三磷酸脱氧核苷酸
脱氧核糖核酸,核糖酸,核苷酸,核糖核苷酸,脱氧核苷酸是什么关系
对的。一个脱氧核苷酸分子由三个分子组成:一分子含氮碱基、一分子脱氧核糖、一分子磷酸。脱氧核苷酸是脱氧核糖核酸的基本单位。核糖核苷酸是核糖核酸的构成物质,由一分子碱基,一分子五碳糖,一分核糖核苷酸子磷酸构成。而四种核糖核酸(RNA)就是由四种核糖核苷酸碱基(腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U))来区别的。当然RNA也是由这四种核糖核苷酸构成的核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位。尿嘧啶是RNA特有的碱基,相当于DNA中的胸腺嘧啶(T)。
生物里面的脱氧核糖核酸,脱氧核苷酸,核糖核苷酸是什么?
生物中核酸是一种大分子的有机物,包括两种:脱氧核糖核酸(DNA),核糖核酸(RNA)核酸的基本组成单位称为:核苷酸,包括两种:脱氧核糖核苷酸、核糖核苷酸;每一个核苷酸都是有三个部分组成的,一分子磷酸,一分子五碳糖,一分子含氮碱基,五碳糖有两种:核糖和脱氧核糖;含氮碱基有5种(A、G、C、T、U);这些是高中生物科的知识,不知道能不能解决你的疑问。顺祝愉快!
脱氧核糖核苷酸和核糖核苷酸分别是什么?
脱氧核糖核苷酸(脱氧核苷酸)是组成脱氧核糖核酸的基本单位,由碱基-脱氧核糖-磷酸构成,而脱氧核糖核酸是由四种脱氧核苷酸通过化学键组成的双螺旋结构,就是通常意义上的DNA。脱氧核糖核苷酸的碱基有:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。核糖核苷酸是核糖核酸的构成物质,由一分子碱基,一分子五碳糖,一分子磷酸构成。而四种核糖核酸(RNA)就是由四种核糖核苷酸碱基(腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U))来区别的。当然RNA也是由这四种核糖核苷酸构成的。核糖核苷酸一般存在于细胞质中,包括了核糖体中的tRNA和rRNA、线粒体和叶绿体中的遗传物质RNA、细胞质和细胞核中的mRNA。 由许多核苷核糖核苷酸是核糖核酸的构成物质,由一分子碱基,一分子五碳糖,一分 核糖核苷酸子磷酸构成。而四种核糖核酸(RNA)就是由四种核糖核苷酸碱基(腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U))来区别的。当然RNA也是由这四种核糖核苷酸构成的。核糖核苷酸一般存在于细胞质中,包括了核糖体中的tRNA和rRNA、线粒体和叶绿体中的遗传物质RNA、细胞质和细胞核中的mRNA。 由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。最早由米歇尔于1868年在脓细胞中发现和分离出来。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。酸聚合而成的生物大分子化合物,为生命的最基本物质之一。最早由米歇尔于1868年在脓细胞中发现和分离出来。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。
核糖核苷酸有哪四种?脱氧核糖核苷酸有哪四种?
尿嘧啶核糖核苷酸(U) 胞嘧啶核糖核苷酸(C) 腺嘌呤核糖核苷酸(A) 鸟嘌呤脱氧核糖核苷酸(G) 胸腺嘧啶脱氧核糖核苷酸(T)胞嘧啶脱氧核糖核苷酸(C)
组成核糖核酸和脱氧核糖核酸的核苷酸种类分别有几种
成脱氧核糖核酸的有:腺嘌呤脱氧核糖核苷酸;胸腺嘧啶脱氧核糖核苷酸;胞嘧啶脱氧核糖核苷酸;鸟嘌呤脱氧核糖核苷酸;组成核糖核酸的有:腺嘌呤核糖核苷酸;尿嘧啶核糖核苷酸;胞嘧啶核糖核苷酸;鸟嘌呤核糖核苷酸;
什么是核酸 核苷酸 核糖 脱氧核糖 脱氧核糖核苷酸 高中生物
(1)核酸:由核苷酸或脱氧核苷酸通过3′,5′-磷酸二酯键连接而成的一类生物大分子。具有非常重要的生物功能,主要是贮存遗传信息和传递遗传信息。包括核糖核酸(RNA)和脱氧核糖核酸(DNA)两类。(2)核糖:自然界中最重要的一种戊糖,主要以D型形式存在,是核糖核酸(RNA)的主要组分,并出现在许多核苷和核苷酸以及其衍生物中。(五碳糖)(3)脱氧核糖:核糖中一些羟基被氢取代后的衍生物。通常在核糖的C-2位脱氧,2-脱氧核糖是DNA的组成成分。(4)脱氧核糖核苷酸:组成DNA的基本单位,有4种,A、G、T、C。核酸包括:DNA(脱氧核糖核酸)和RNA(核糖核酸)。DNA由脱氧核糖核苷酸(AGTC:腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶脱氧核糖核苷酸)组成;RNA由核糖核苷酸组成(AGUC:腺嘌呤、鸟嘌呤、尿嘧啶、胞嘧啶核糖核苷酸)组成。而脱氧核糖核苷酸中,含有脱氧核糖;核糖核苷酸中,含有核糖。
核糖核苷酸,脱氧核糖核苷酸的组成是什么?
核糖核苷酸由核糖,含氮碱基,磷酸构成,脱氧核糖核酸由脱氧核糖,含氮碱基,磷酸构成。核糖核苷酸比脱氧核糖核苷酸多一个O,组成元素都是CHONP都有五碳糖,只不过五碳糖不同,核糖核苷酸五碳糖多一个氧
DNA和RNA有什么区别呢?同样是遗传物质,脱氧核糖核酸,和核糖核酸
一:分布不同,即DNA主要在细胞核内,RNA主要在细胞质中; 二:数量不同,DNA是由两条脱氧核苷酸链组成,RNA只有一条核糖核苷酸链组成! 三:它们的核糖不同! DNA是双螺旋结构,RNA是单螺旋结构的. 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链.分子量比DNA小,但在大多数细胞中比DNA丰富.RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA).这3类RNA分子都是单链,但具有不同的分子量、结构和功能. 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA.近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒.类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA).hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程).自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进.目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸. DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分.遗传信息的绝大部分贮存在DNA分子中. 分布和功能 原核细胞的染色体是一个长DNA分子.真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子.不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起.DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中.DNA病毒的遗传物质也是DNA. 结构:DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链.大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基.在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%.在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶.40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和.一般用几个层次描绘DNA的结构. 一级结构 DNA的一级结构即是其碱基序列.基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中.1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖.自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立.如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等.现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来. 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程.经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表. 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近.Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名.这种构型适合多核苷酸链的嘌呤嘧啶交替区.1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA.
脱氧核糖核苷酸的数目怎么求
DNA为脱氧核糖核酸,单体为脱氧核糖核苷酸,每个核苷酸由1个脱氧核糖+1个磷酸分子+1个含氮碱基组成(有A,T,G,C四种),所以只要知道DNA分子中含多少个核苷酸,就可以知道有多少个上述组分。核糖核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。使用预先形成的脱氧核苷酸和一系列的脱氧核苷激酶、脱氧核苷一磷酸激酶和核苷二磷酸激酶,生成脱氧核苷三磷酸。这两个合成途径提供特定脱氧核苷酸用于DNA合成和修复的能力不同。扩展资料:在细胞分裂之前,DNA复制过程复制了遗传信息,这避免了在不同细胞世代之间的转变中遗传信息的丢失。 在真核生物中,DNA存在于细胞核内称为染色体的结构中。在没有细胞核的其它生物中,DNA要么存在于染色体中要么存在于其它组织(细菌有单环双链DNA分子,而病毒有DNA或RNA基因组)。在染色体中,染色质蛋白如组蛋白、共存蛋白和凝聚蛋白将DNA在一个有序的结构中。这些结构指导遗传密码和负责转录的蛋白质之间的相互作用,有助于控制基因的转录。两条核苷酸链沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基。DAN双螺旋是右旋螺旋。不同磷酸盐基团之间的凹槽仍然暴露在外。参考资料来源:百度百科--脱氧核糖核苷酸参考资料来源:百度百科--脱氧核糖核酸
腺嘌呤 腺苷 腺苷酸 腺苷三磷酸 脱氧三磷酸腺苷 腺嘌呤脱氧核苷酸 核糖 脱氧核糖的区别?
核糖脱氧核糖都是五碳糖,两者差一个氧。腺嘌呤是碱基。腺苷是腺嘌呤和核糖组成的。腺苷三磷酸是腺苷和三个磷酸组成的。腺嘌呤脱氧核苷酸是由腺嘌呤和脱氧核糖还有磷酸组成的,三者都是一个。由名子类推就知道了。
下列关于脱氧核糖核苷酸生物合成的叙述哪一个是正确的?( )
【答案】:C脱氧核糖核苷酸生物合成还原反应多发生在核苷二磷酸水平上。脱氧核苷酸的从头合成核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。
在“脱氧核糖核酸”中, “脱氧”是什么意思?
脱氧核糖是一种有机物,化学式为C4H9O3CHO (C5H10O4)。一种存在于一切细胞内的戊糖衍生物,是分子中氢原子数与氧原子数不符合2:1的糖类。天然存在的是D-2-脱氧核糖,比D-核糖在2-位少一个氧原子。D-2-脱氧核糖在晶体中以五元环半缩醛存在,有α-型和β-型两种异构体。它是多核苷酸脱氧核糖核酸的一个组成成分。在DNA中,脱氧核糖磷酸分子由磷酸二酯键连接成链,构成多核苷酸纤维的骨架。中文名脱氧核糖外文名Deoxyribose别名D-脱氧核糖、2-脱氧-D-核糖、胸腺糖化学式C4H9O3CHO (C5H10O4)CAS登录号533-67-5快速导航性能 合成定义中文名称:脱氧核糖别名:D-脱氧核糖、2-脱氧-D-核糖、胸腺糖英文名称:Deoxyribose分子式:C4H9O3CHO (C5H10O4)CAS: 533-67-5MDL: MFCD00135904EINECS: 208-573-0[1]脱氧核糖(醛糖)是重要的五碳糖之一DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌,噬菌体等。有的DNA为环形,有的DNA为线形。不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G≡C)。D-2-脱氧核糖是核糖的一个2位羟基被氢取代的衍生物 。它在细胞中作为脱氧核糖核酸DNA的组分,十分重要。最早由胸腺核苷中析离得到。性能α-D-2-脱氧核呋喃糖的熔点78~82℃,β-异构体熔点96~98℃ ,D-2-脱氧核糖与苯胺形成结晶的半缩醛 ,熔点 175~177℃。它常用于D-2-脱氧核糖的分离提纯和贮存,需要时将半缩醛胺与苯甲醛反应,即得2-脱氧核糖。2-脱氧核糖可进行多种特殊颜色反应,并可进行定量测定。常用的方法是2-脱氧核糖在硫酸和乙酸存在下与二苯胺反应得蓝色,与硫酸亚铁反应也得蓝色 ,称为凯勒-基连尼反应。D-2-脱氧核糖很易与乙醇-HCl作用形成糖苷,这种糖苷很易水解。合成脱氧核糖一般由脱氧核糖核酸制备。生物体从核糖核苷酸合成脱氧核苷酸的过程是被核糖核苷酸还原酶催化的。已发现有三种不同的核糖核苷酸还原酶,以真核生物中的非血红素铁(Ⅲ)酶为例,该反应机理为:首先,酶半胱氨酸残基的-S,夺取C3的氢,生成C3的自由基。接着C2的羟基被一对半胱氨酸残基之一的-SH质子化,碱夺取C2的羟基质子,电子转移形成C2的C=O双键,C3的水离去,C2的自由基转移到C3上,形成一个新的在C3的自由基。这时上面一对半胱氨酸残基的另一个-SH向C3的自由基转移一个氢原子,自身与另一个-S-形成二硫键,但其中一个硫原子仍为自由基负离子。然后该硫负离子对C2的酮基进行还原,生成的氧负被质子化,形成C2的自由基。该自由基再从第一步中生成的半胱氨酸残基-SH夺取一个氢原子,得到脱氧核苷酸的同时,使酶半胱氨酸的-S。得到再生,进行下一个循环。[2]生物体主要用脱氧核糖而非核糖的一个原因是,如果五元糖的2"-位有一个羟基(核糖),在碱的作用下,这个羟基生成的醇负离子很容易进攻与3"-碳相连的磷原子,使另一个糖的5"-氧负离去,从而破坏核酸的聚合结构。这便是RNA比DNA容易在碱存在下水解的缘故。因此生物体宁可多花能量合成脱氧核苷,也要保证DNA的稳定性。该脱氧化过程也使环的构象从C3"-内式变为C2"-内式。[3]
脱氧核糖是什么东西
脱氧核糖是一种有机物,化学式为C5H10O4。一种存在于一切细胞内的戊糖衍生物,是分子中氢原子数与氧原子数不符合2:1的糖类。天然存在的是D-2-脱氧核糖,比D-核糖在2-位少一个氧原子。性能α-D-2-脱氧核呋喃糖的熔点78~82℃,β-异构体熔点96~98℃,D-2-脱氧核糖与苯胺形成结晶的半缩醛,熔点175~177℃。它常用于D-2-脱氧核糖的分离提纯和贮存,需要时将半缩醛胺与苯甲醛反应,即得2-脱氧核糖。2-脱氧核糖可进行多种特殊颜色反应,并可进行定量测定。常用的方法是2-脱氧核糖在硫酸和乙酸存在下与二苯胺反应得蓝色,与硫酸亚铁反应也得蓝色,称为凯勒-基连尼反应。D-2-脱氧核糖很易与乙醇-HCl作用形成糖苷,这种糖苷很易水解。合成脱氧核糖一般由脱氧核糖核酸制备。生物体从核糖核苷酸合成脱氧核苷酸的过程是被核糖核苷酸还原酶催化的。已发现有三种不同的核糖核苷酸还原酶。
生物体内脱氧核糖核苷酸是怎样合成的
脱氧核糖核苷酸是通过相应核糖核苷酸还原,以H取代其核糖分子中C2上的羟基而生成,而非从脱氧核糖从头合成。此还原作用是在二磷酸核苷酸(NDP)水平上进行的。
脱氧核糖核苷酸的数目怎么求
DNA为脱氧核糖核酸,单体为脱氧核糖核苷酸,每个核苷酸由1个脱氧核糖+1个磷酸分子+1个含氮碱基组成(有A,T,G,C四种),所以只要知道DNA分子中含多少个核苷酸,就可以知道有多少个上述组分。核糖核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。使用预先形成的脱氧核苷酸和一系列的脱氧核苷激酶、脱氧核苷一磷酸激酶和核苷二磷酸激酶,生成脱氧核苷三磷酸。这两个合成途径提供特定脱氧核苷酸用于DNA合成和修复的能力不同。扩展资料:在细胞分裂之前,DNA复制过程复制了遗传信息,这避免了在不同细胞世代之间的转变中遗传信息的丢失。 在真核生物中,DNA存在于细胞核内称为染色体的结构中。在没有细胞核的其它生物中,DNA要么存在于染色体中要么存在于其它组织(细菌有单环双链DNA分子,而病毒有DNA或RNA基因组)。在染色体中,染色质蛋白如组蛋白、共存蛋白和凝聚蛋白将DNA在一个有序的结构中。这些结构指导遗传密码和负责转录的蛋白质之间的相互作用,有助于控制基因的转录。两条核苷酸链沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基。DAN双螺旋是右旋螺旋。不同磷酸盐基团之间的凹槽仍然暴露在外。参考资料来源:百度百科--脱氧核糖核苷酸参考资料来源:百度百科--脱氧核糖核酸
核糖和脱氧核糖是还原糖吗
所有的单糖都是还原糖,核糖和脱氧核糖是单糖且两者都具有醛基,所以是还原性糖。还原糖是指具有还原性的糖类。在糖类中,分子中含有游离醛基或酮基的单糖和含有游离醛基的二糖都具有还原性。还原性糖主要有葡萄糖、果糖、半乳糖、乳糖、麦芽糖等。 脱氧核糖是怎么合成的 脱氧核糖一般由脱氧核糖核酸制备。生物体从核糖核苷酸合成脱氧核苷酸的过程是被核糖核苷酸还原酶催化的。已发现有三种不同的核糖核苷酸还原酶,以真核生物中的非血红素铁(Ⅲ)酶为例,该反应机理为:首先,酶半胱氨酸残基的-S,夺取C3的氢,生成C3的自由基。接着C2的羟基被一对半胱氨酸残基之一的-SH质子化,碱夺取C2的羟基质子,电子转移形成C2的C=O双键,C3的水离去,C2的自由基转移到C3上,形成一个新的在C3的自由基。这时上面一对半胱氨酸残基的另一个-SH向C3的自由基转移一个氢原子,自身与另一个-S-形成二硫键,但其中一个硫原子仍为自由基负离子。然后该硫负离子对C2的酮基进行还原,生成的氧负被质子化,形成C2的自由基。该自由基再从第一步中生成的半胱氨酸残基-SH夺取一个氢原子,得到脱氧核苷酸的同时,使酶半胱氨酸的-S。得到再生,进行下一个循环。
DNA合成时生物体如何提供合适比例的脱氧核糖核苷酸
简要的说就是ATP,GTP,CTP,TTP和ADP,CDP,TDP,GDP量此消彼长之间的相互促进和阻遏。一种NTP的积累量多了就会反馈抑制酶的合成并促进其他的合成。一种NTP的不足会促进酶使其合成增加。当某种NDP积累多了会促进酶合成NTP。
从核糖变为脱氧核糖为什么是在2号位上脱氧?为什么不是其他位置上脱氧呢?
还真不知道怎么回答你 发现脱氧核糖的时候他就是在二号位脱去了氧,可能与DNA的稳定性有关吧或者3,5磷酸二之间比2,5磷酸二脂键稳定。
下列关于脱氧核糖核苷酸生物合成的叙述哪一个是正确的?( )
【答案】:C脱氧核糖核苷酸生物合成还原反应多发生在核苷二磷酸水平上。脱氧核苷酸的从头合成核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。
人吃了脱氧核糖会怎样
什么事都没有。脱氧核糖一般指D-2-脱氧核糖,是核糖的一个2位羟基被氢取代的衍生物 。从化学本质说,脱氧核糖与葡萄糖、果糖等没有多少区别,也是白色粉末状固体或结晶状固体。只不过葡萄糖、果糖等六碳单糖,而脱氧核糖是五碳单糖,并且没有多少甜味。进入人体后,脱氧核糖比葡萄糖、果糖等糖类多一条代谢路径,就是它既可以像葡萄糖、果糖那样继续分解,产生能量,也可以用来形成脱氧核糖核苷酸,或用来合成DNA。
每个脱氧核糖都连接两个磷酸基团对的错的
一种存在于一切细胞内的戊糖衍生物,是分子中氢原子数与氧原子数不符合2:1的糖类。天然存在的是D-2-脱氧核糖,比D-核糖在2-位少一个氧原子。D-2-脱氧核糖在晶体中以五元环半缩醛存在,有α-型和β-型两种异构体。它是多核苷酸脱氧核糖核酸的一个组成成分。在DNA中,脱氧核糖磷酸分子由磷酸二酯键连接成链,构成多核苷酸纤维的骨架。脱氧核糖一般由脱氧核糖核酸制备。生物体从核糖核苷酸合成脱氧核苷酸的过程是被核糖核苷酸还原酶催化的。已发现有三种不同的核糖核苷酸还原酶,以真核生物中的非血红素铁(Ⅲ)酶为例,该反应机理为:首先,酶半胱氨酸残基的-S,夺取C3的氢,生成C3的自由基。接着C2的羟基被一对半胱氨酸残基之一的-SH质子化,碱夺取C2的羟基质子,电子转移形成C2的C=O双键,C3的水离去,C2的自由基转移到C3上,形成一个新的在C3的自由基。这时上面一对半胱氨酸残基的另一个-SH向C3的自由基转移一个氢原子,自身与另一个-S-形成二硫键,但其中一个硫原子仍为自由基负离子。然后该硫负离子对C2的酮基进行还原,生成的氧负被质子化,形成C2的自由基。该自由基再从第一步中生成的半胱氨酸残基-SH夺取一个氢原子,得到脱氧核苷酸的同时,使酶半胱氨酸的-S。得到再生,进行下一个循环。[2]生物体主要用脱氧核糖而非核糖的一个原因是,如果五元糖的2"-位有一个羟基(核糖),在碱的作用下,这个羟基生成的醇负离子很容易进攻与3"-碳相连的磷原子,使另一个糖的5"-氧负离去,从而破坏核酸的聚合结构。
吃脱氧核糖是什么意思
并没有吃脱氧核糖的说法,但脱氧核糖本身是遗传物质DNA的重要组成部分。脱氧核糖最早由胸腺核苷中析离得到。它是核糖的一个2位羟基被氢替代的衍生物 ,一般是指2-脱氧-D-核糖。脱氧核糖多见于生物体中,它是以脱氧核糖核苷酸的形态由对应的核糖核苷酸的还原所形成。
脱氧核糖核苷酸简介
目录 1 拼音 2 英文参考 3 注解 1 拼音 tuō yǎng hé táng hé gān suān 2 英文参考 deoxyribonucleotide 3 注解 脱氧核糖核苷酸是指戊糖部分由2′脱氧核糖组成的核苷酸的总称分别对应于腺嘌呤,鸟便嘌呤,胸腺嘧啶和尿嘧啶等堿基的各种脱氧核糖核苷酸,是合成 DNA的前体物质。在非增殖中的细胞内核苷酸的浓度一般较低,但在增殖细胞内的浓度明显地增高。主要由核苷酸还原酶的作用由核苷酸生成。在增殖细胞内,经补救途径由脱氧核苷的磷酸化合成。
脱氧核糖是什么
脱氧核糖(Deoxyribose)是核糖的2-位羟基被氢取代后形成的脱氧糖衍生物,是重要的五碳糖之一,于1929年由菲巴斯·利文首先发现。 脱氧核糖是脱氧核糖核酸(DNA)的组分,因此在生物体内十分重要。合成脱氧核糖一般由脱氧核糖核酸制备。生物体从核糖核苷酸合成脱氧核苷酸的过程是被核糖核苷酸还原酶催化的。已发现有三种不同的核糖核苷酸还原酶,以真核生物中的非血红素铁(Ⅲ)酶为例,该反应机理为:首先,酶半胱氨酸残基的-S· 夺取C3的氢,生成C3的自由基。接着C2的羟基被一对半胱氨酸残基之一的-SH质子化,碱夺取C2的羟基质子,电子转移形成C2的C=O双键,C3的水离去,C2的自由基转移到C3上,形成一个新的在C3的自由基。这时上面一对半胱氨酸残基的另一个-SH向C3的自由基转移一个氢原子,自身与另一个-Su2212形成二硫键,但其中一个硫原子仍为自由基负离子。然后该硫负离子对C2的酮基进行还原,生成的氧负被质子化,形成C2的自由基。该自由基再从第一步中生成的半胱氨酸残基-SH夺取一个氢原子,得到脱氧核苷酸的同时,使酶半胱氨酸的-S·得到再生,进行下一个循环。生物体主要用脱氧核糖而非核糖的一个原因是,如果五元糖的2"-位有一个羟基(核糖),在碱的作用下,这个羟基生成的醇负离子很容易进攻与3"-碳相连的磷原子,使另一个糖的5"-氧负离去,从而破坏核酸的聚合结构。这便是RNA比DNA容易在碱存在下水解的缘故。因此生物体宁可多花能量合成脱氧核苷,也要保证DNA的稳定性。该脱氧化过程也使环的构象从C3"-内式变为C2"-内式。
生物体内脱氧核糖核苷酸是如何形成的?
核苷二磷酸在核糖核苷酸还原酶催化下生成脱氧核苷二磷酸,后者再经核苷二磷酸激酶的磷酸化,生成脱氧核苷三磷酸。 脱氧核苷酸生物合成的补救途径脱氧核苷一磷酸激酶和核苷二磷酸激酶,生成脱氧核苷三磷酸。 这两个合成途径提供特定脱氧核苷酸用于DNA合成和修复的能力不同。
核糖与脱氧核糖能互相转化吗
可以的,体内通过核糖核苷酸还原酶,NDP可以转化为dNDP,并产生水
脱氧核糖核苷酸是由什么水平直接还原生成的
脱氧核苷酸是在二磷酸核苷(NDP)的水平上经去氧还原作用而生成的。
据法国《科学与未来》杂志报道,美国科学家最近在实验室中合成了与脱氧核糖核酸(DNA)分子结构相近的苏
A.同系物中官能团的数目相同,葡萄糖中含5个-OH,二者不互为同系物,故A错误;B.苏糖与甲酸甲酯的结构简式均为CH2O,则含碳的质量分数相同,故B正确;C.含-OH,可发生取代反应,含-CHO,可发生加成反应,故C正确;D.含-CHO,可发生银镜反应,故D正确;故选A.
据法国《科学与未来》杂志报道,美国科学家在实验室中合成了与脱氧核糖核酸(DNA)分子结构相近的苏糖核
A.同系物中官能团的数目相同,葡萄糖中含5个-OH,二者不互为同系物,故A错误;B.苏糖与甲酸甲酯的结构简式均为CH 2 O,则含碳的质量分数相同,故B正确;C.含-OH,可发生取代反应,含-CHO,可发生加成反应,故C正确;D.含-CHO,可与Cu(OH) 2 反应,故D正确;故选A.
据法国《科学与未来》杂志报道,美国科学家在实验室中合成了与脱氧核糖核酸(DNA)分子结构相近的苏糖核
A.同系物中官能团的数目相同,葡萄糖中含5个-OH,二者不互为同系物,故A错误;B.苏糖与甲酸甲酯的结构简式均为CH2O,则含碳的质量分数相同,故B正确;C.含-OH,可发生取代反应,含-CHO,可发生加成反应,故C正确;D.含-CHO,可与Cu(OH)2反应,故D正确;故选A.