狭义相对论

DNA图谱 / 问答 / 标签

什么是狭义相对论

狭义相对论是A。爱因斯坦创立的理论,主要内容是依据两个公设与一个变换。一个变换是洛仑兹变换(不同惯性系之间的变换必须是loretz变换)。两个公设是:相对性原理(就是:物理定律在一切惯性系中都相同。)与光速不变原理(就是:光在真空中总有确定速度,与观察者或光源的运动无关)。从而有四个推论(运动的尺变短;运动的钟变慢;光子的静质量为零;物质不可能超过光速)和三个关系式(速度合成公式;质量速度公式;质能关系式)。

狭义相对论中惯性系的定义是什么?

任何物体运动的描述,都需要有参照系作参照,在狭义相对论中惯性系是指在均匀的时间内,均匀的空间内,各向均为同性的条件下,描述物体的运动方程最为简单的参照系.

为什么狭义相对论只在惯性参照系里有效

因为狭义相对论的基础洛伦兹变换式就是两个惯性系之间的物理量的变换。如果是非惯性系则不满足洛伦兹变换式,自然就不适用狭义相对论。但实际上非惯性系也可以应用狭义相对论。因为狭义相对论对应的时空是闵式时空,无论非惯性系还是惯性系只要不存在引力场就都包含在狭义相对论的范畴内,比如经典的双生子佯谬就可以用狭义相对论解释,尽管飞船参考系是非惯性系。狭相的四维语言比如线元、固有时等概念均适用于任何参考系包括惯性系和非惯性系。

狭义相对论的公式是什么?

E是能量,m是质量,c 是光速,这就是质能公式,物理意义其解释是能量与质量的关系

多普勒效应和狭义相对论

是不矛盾的,假设光波的波长在一惯性系中"同时"得到的一周期波两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测得的波长也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这个思想同样可运用于光波上,还可以从狭义相对论的角度来解释光的多普勒效应。根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。   光波的频率与波长可同是变化,而速度不变,这一点表现在光的颜色变化上。

多普勒红移或蓝移现象与狭义相对论里的光速不变原理矛盾吗?

多普勒红移现象与光速不变原理是两个不同的概念。首先先来说说多普勒红移蓝移。我们知道声音是以波形式传递的,当波远离我们频率会变低,我们所听到的声音就会低沉,当波靠近我们频率会变高,我们所听到的声音就会高亢,这就是多普勒效应。蓝移和红移指的是频率的变动,又不是光速的变动,二者明显是两个概念。在狭义相对论里,多普勒效应有相应的解释。对于以真空光速运动的波来说,其相位是相对论不变量。由此我们就可以推导出多普勒效应。这就说明,多普勒效应与狭义相对论并不矛盾。这个推导我不重复了,但是要指出两点:第一是,要把波矢、频率写成协变4-波矢;第二是协变4-波矢的洛伦兹变换有相位的相对论不变性给出。这两点就足以让我们推导出频率和波矢之间的洛伦兹变换。而光也是以波的形式存在,所以他也有多普勒效应。不过光波的表现形式是颜色的变化,假如一颗恒星靠近一个观测者,那么它的光波就会变短,因此我们就会看到蓝移现象,如果一个恒星远离我们,那么它的光波将被拉长,因此我们就会看到红移现象。这就是光的多普勒效应。光速不变原理光速不变原理是光在真空中传播,任何的惯性参照系观测都是一样的,比如A一秒钟跑十米,B一秒钟跑5米,从B的惯性参照系来说,A的速度是一秒五米,对静止的C来说A是一秒10米,而对光速来说就不同了,光速不管任何的惯性参照系都是相同的。按恒星的靠近或远离来说,光的传播速度都是30万千米每秒。这就是光速不变原理。 正如题主而言,它们两个之间并无矛盾之说。

狭义相对论 运动光源的多普勒效应

光速是恒定的 不管参照系是哪个 都是一样大的 所以光源无论如何运动 接收到的光到达的时间都是光发出时光源所在地位置 除以c比如说光源与接收器间相距是5光秒~ 光源相对于接收器以1/5的光速接近 光的频率假设是1Hz(为了便于理解,当做机械波) 那么0秒时光源发出第一个波峰,1s时波峰达到接收器 5s时光源发出第5个波峰 同时到达接收器 那么接收到的波周期就是4/5秒了~~ 而如果光源不动 那么就是第6秒接收到第5个波峰 则周期为1秒~~ 虽然用机械波不恰当 但是理解上还是可以的 ~~ 我打了这么多字了 选我做最优答案吧~

狭义相对论的速度和长度的相关公式

狭义证明  相对论公式及证明   符号 单位 符号 单位   坐标(x,y,z):m 力F(f): N   时间t(T): s 质量m(M): kg   位移r: m 动量p: kg*m/s   速度v(u): m/s 能量E: J   加速度a: m/s^2 冲量: N*s   长度l(L): m 动能Ek: J   路程s(S): m 势能Ep: J   角速度ω: rad/s 力矩: N*m   角加速度: rad/s^2α 功率P: W一、牛顿力学(预备知识)  (一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt   (2)a=dv/dt,v=v0+∫adt   (注:两式中左式为微分形式,右式为积分形式)   当v不变时,(1)表示匀速直线运动。   当a不变时,(2)表示匀变速直线运动。   只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。   (二):质点动力学:   (1)牛一:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。   (2)牛二:物体加速度与合外力成正比与质量成反比。   F=ma=mdv/dt=dp/dt   (3)牛三:作用在同一物体上的两个力,如果等大反向作用在同一直线上,则二力平衡。   (4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。   F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)   动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)   动量守恒:合外力为零时,系统动量保持不变。   动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)   机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2   (注:牛顿力学的核心是牛顿第二定律:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)二、狭义相对论力学  (注:“γ”为相对论因子,γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)   1.基本原理:(1)相对性原理:所有惯性系都是等价的。   (2)光速不变原理:真空中的光速是与惯性系无关的常数。   (此处先给出公式再给出证明)   2.洛仑兹坐标变换:   X=γ(x-ut)   Y=y   Z=z   T=γ(t-ux/c^2)   3.速度变换:   V(x)=(v(x)-u)/(1-v(x)u/c^2)   V(y)=v(y)/(γ(1-v(x)u/c^2))   V(z)=v(z)/(γ(1-v(x)u/c^2))   4.尺缩效应:△L=△l/γ或dL=dl/γ   5.钟慢效应:△t=γ△τ或dt=dτ/γ   6.光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)   (光源与探测器在一条直线上运动。)   7.动量表达式:P=Mv=γmv,即M=γm   8.相对论力学基本方程:F=dP/dt   9.质能方程:E=Mc^2   10.能量动量关系:E^2=(E0)^2+P^2c^2   (注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)   *******************************************************************************三、三维证明  1.由实验总结出的公理,无法证明。   2.洛仑兹变换:   设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。   可令   x=k(X+uT) (1).   又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.   故有   X=k(x-ut) (2).   对于y,z,Y,Z皆与速度无关,可得   Y=y (3).   Z=z (4).   将(2)代入(1)可得:x=k^2(x-ut)+kuT,即   T=kt+((1-k^2)/(ku))x (5).   (1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.   代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:   k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换:   X=γ(x-ut)   Y=y   Z=z   T=γ(t-ux/c^2)   3.速度变换:   V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))   =(dx/dt-u)/(1-(dx/dt)u/c^2)   =(v(x)-u)/(1-v(x)u/c^2)   同理可得V(y),V(z)的表达式。   4.尺缩效应:   B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ   5.钟慢效应:   由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T.   (注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)   6.光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).)   B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为   △t(a)=γ△t(b) (1).   探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则   △t(N)=(1+β)△t(a) (2).   相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即   ν(b)△t(b)=ν(a)△t(N) (3).   由以上三式可得:   ν(a)=sqr((1-β)/(1+β))ν(b).   7.动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)   牛顿第二定律在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛顿第二定律都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。   牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)   8.相对论力学基本方程::   由相对论动量表达式可知: F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。(相对论中质量是变量)   9.质能方程:   Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv   =Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2   =Mv^2+Mc^2(1-v^2/c^2)-mc^2   =Mc^2-mc^2   即E=Mc^2=Ek+mc^2   10.能量动量关系:   E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2   *******************************************************************************四、四维证明  1.公理,无法证明。   2.坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,   dS^2=dx^2+dy^2+dz^2+(icdt)^2 (1).   则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2>0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。   由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)   X=xcosφ+(ict)sinφ   icT=-xsinφ+(ict)cosφ   Y=y   Z=z   当X=0时,x=ut,则0=utcosφ+ictsinφ   得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:   X=γ(x-ut)   Y=y   Z=z   T=γ(t-ux/c^2)   3.4.5.6.略。   7.动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)   令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。   则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)   四维动量:P=mV=(γmv,icγm)=(Mv,icM)   四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)   四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)   则f=mdV/dτ=mω   8.略。   9.质能方程:   fV=mωV=m(γ^5va+i^2γ^5va)=0   故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)   由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))   故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2   故E=Mc^2=Ek+mc^2

请问爱因斯坦的狭义相对论的内容是什么

爱因斯坦相对论 狭义相对论 爱因斯坦第二假设 爱因斯坦第二假设--时间和空间 伽玛参数 宇宙执法者的历险 宇宙执法者的历险--微妙的时间 质量和能量 光速极限 广 义相对论基本概念 爱因斯坦第三假设 爱因斯坦第四假设 宇宙几何 爱因斯坦第一假设 全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。 第一个可以这样陈述: 所有惯性参照系中的物理规律是相同的 此处唯一稍有些难懂的地方是所谓的“惯性参照系”。举几个例子就可以解释清楚: 假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?” 不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。 你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的。我们称飞机内部为一个惯性参照系。(“惯性”一词原指牛顿第一运动定律。惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性。惯性参照系是一系列此规律成立的参照系。 另一个例子。让我们考查大地本身。地球的周长约40,000公里。由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动。然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员。译者注)触地传球的时候,从未对此担心过。这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系。因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样。 实际上,除非我们意识到地球在转,否则有些现象会是十分费解的。(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动) 例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。 这里有一个最低限度:爱因斯坦的第一假设使此类系中所有的物理规律都保持不变。运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设。谁说爱因斯坦是天才? 爱因斯坦第二假设 19世纪中页人们对电和磁的理解有了一个革命性的飞跃,其中以詹姆斯.麦克斯韦(James Maxwell)的成就为代表。电和磁两种现象曾被认为毫不相关,直到奥斯特(Oersted)和安培(Ampere)证明电能产生磁;法拉弟(Faraday)和亨利(Henry)证明磁能产生电。现在我们知道电和磁的关系是如此紧密,以致于当物理学家对自然力进行列表时,常常将电和磁视为一件事。 麦克斯韦的成就在于将当时所有已知的电磁知识集中于四个方程中: (如果你没有上过理解这些方程所必需的三到四个学期的微积分课程,那么就坐下来看它们几分钟,欣赏一下其中的美吧) 麦克斯韦方程对于我们的重要意义在于,它除了将所有人们已知的电磁知识加以描述以外,还揭示了一些人们不知道的事情。例如:构成这些方程的电磁场可以以振动波的形式在空间传播。当麦克斯韦计算了这些波的速度后,他发现它们都等于光速。这并非巧合,麦克斯韦(方程)揭示出光是一种电磁波。 我们应记住的一个重要的事情是:光速直接从描述所有电磁场的麦克斯韦方程推导而来。 现在我们回到爱因斯坦。 爱因斯坦的第一个假设是所有惯性参照系中的物理规律相同。他的第二假设是简单地将此原则推广到电和磁的规律中。这就是,如果麦克斯韦假设是自然界的一种规律,那么它(和它的推论)都必须在所有惯性系中成立。这些推论中的一个就是爱因斯坦的第二假设:光在所有惯性系中速度相同 爱因斯坦的第一假设看上去非常合理,他的第二假设延续了第一假设的合理性。但为什么它看上去并不合理呢? 火车上的试验 为了说明爱因斯坦第二假的合理性,让我们来看一下下面这副火车上的图画。 火车以每秒100,000,000米/秒的速度运行,Dave站在车上,Nolan站在铁路旁的地面上。Dave用手中的电筒“发射”光子。 光子相对于Dave以每秒300,000,000米/秒的速度运行,Dave以100,000,000米/秒的速度相对于Nolan运动。因此我们得出光子相对于Nolan的速度为400,000,000米/秒。 问题出现了:这与爱因斯坦的第二假设不符!爱因斯坦说光相对于Nolan参照系的速度必需和Dave参照系中的光速完全相同,即300,000,000米/秒。那么我们的“常识感觉”和爱因斯坦的假设那一个错了呢? 好,许多科学家的试验(结果)支持了爱因斯坦的假设,因此我们也假定爱因斯坦是对的,并帮大家找出常识相对论的错误之处。 记得吗?将速度相加的决定来得十分简单。一秒钟后,光子已移动到Dave前300,000,000米处,而Dave已经移动到Nolan前100,000,000米处。其间的距离不是400,000,000米只有两种可能: 1、 相对于Dave的300,000,000米距离对于Nolan来说并非也是300,000,000米 2、 对Dave而言的一秒钟和对Nolan而言的一秒钟不同 尽管听起来很奇怪,但两者实际上都是正确的。 爱因斯坦第二假设 时间和空间 我们得出一个自相矛盾的结论。我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触。只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同。 实际上,两者都对。第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”。 长度收缩: 长度收缩有时被称作洛伦茨(Lorentz)或洛伦茨-弗里茨格拉德(FritzGerald)收缩。在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式。但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中。这个原理是: 参照系中运动物体的长度比其静止时的长度要短下面用图形说明以便于理解: 上部图形是尺子在参照系中处于静止状态。一个静止物体在其参照系中的长度被称作他的“正确长度”。一个码尺的正确长度是一码。下部图中尺子在运动。用更长、更准确的话来讲:我们相对于某参照系,发现它(尺子)在运动。长度收缩原理指出在此参照系中运动的尺子要短一些。 这种收缩并非幻觉。当尺子从我们身边经过时,任何精确的试验都表明其长度比静止时要短。尺子并非看上去短了,它的确短了!然而,它只在其运动方向上收缩。下部图中尺子是水平运动的,因此它的水平方向变短。你可能已经注意到,两图中垂直方向的长度是一样的。 时间膨胀: 所谓的时间膨胀效应与长度收缩很相似,它是这样进行的: 某一参照系中的两个事件,它们发生在不同地点时的时间间隔 总比同样两个事件发生在相同地点的时间间隔长。 这更加难懂,我们仍然用图例加以说明: 图中两个闹钟都可以用于测量第一个闹钟从A点运动到B点所花费的时间。然而两个闹钟给出的结果并不相同。我们可以这样思考:我们所提到的两个事件分别是“闹钟离开A点”和“闹钟到达B点”。在我们的参照系中,这两个事件在不同的地点发生(A和B)。然而,让我们以上半图中闹钟自身的参照系观察这件事情。从这个角度看,上半图中的闹钟是静止的(所有的物体相对于其自身都是静止的),而刻有A和B点的线条从右向左移动。因此“离开A点”和“到达B点”着两件事情都发生在同一地点!(上半图中闹钟所测量的时间称为“正确时间”)按照前面提到的观点,下半图中闹钟所记录的时间将比上半图中闹钟从A到B所记录的时间更长。 此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢。最著名的关于时间膨胀的假说通常被成为双生子佯谬。假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来。我们可以将两个人的身体视为一架用年龄计算时间流逝的钟。因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢。结果是,当玛丽返回地球的时候,她将比哈瑞更年轻。年轻多少要看她以多快的速度走了多远。 时间膨胀并非是个疯狂的想法,它已经为实验所证实。最好的例子涉及到一种称为介子的亚原子粒子。一个介子衰变需要多少时间已经被非常精确地测量过。无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长。这就是相对论效应。从运动的介子自身来看,它并没有存在更长的时间。这是因为从它自身的角度看它是静止的;只有从相对于实验室的角度看该介子,我们才会发现其寿命被“延长”或“缩短”了。? 应该加上一句:已经有很多很多的实验证实了相对论的这个推论。(相对论的)其他推论我们以后才能加以证实。我的观点是,尽管我们把相对论称作一种“理论”,但不要误认为相对论有待于证实,它(实际上)是非常完备的。 伽玛参数(γ) 现在你可能会奇怪:为什么你在日常生活中从未注意到过长度收缩和时间膨胀效应?例如根据刚才我所说的,如果你驱车从俄荷马城到勘萨斯城再返回,那么当你到家的时候,你应该重新对表。因为当你驾车的时候,你的表应该比在你家里处于静止状态的表走得慢。如果到家的时候你的表现时是3点正,那么你家里的表都应该显示一个晚一点的时间。为什么你从未发现过这种情况呢? 答案是:这种效应显著与否依赖于你运动速度的快慢。而你运动得非常慢(你可能认为你的车开得很快,但这对于相对论来说,是极慢的)。长度收缩和时间膨胀的效果只有当你以接近光速运动的时候才能注意到。而光速约合186,300英里/秒(或3亿米/秒)。在数学上,相对论效应通常用一个系数加以描述,物理学家通常用希腊字母γ加以表示。这个系数依赖于物体运动的速度。例如,如果一根米尺(正确长度为1米)快速地从我们面前飞过,则它相对于我们的参照系的长度是1/γ米。如果一个钟从A点运动到B点要3秒钟,那么相对于我们的参照系,这个过程持续3/γ秒。 为了理解现实中为什么我们没有注意到相对论效应,让我们看一下(关于)γ的公式: 这里的关键是分母中的v2/c2。v是我们所讨论的物体的运动速度,c是光速。因为任何正常尺寸物体的速度远小于光速,所以v/c非常小;当我们将其平方后(所得的结果)就更小了。因此对于所有实际生活中通常尺寸的物体而言,γ的值就是1。所以对于普通的速度,我们通过乘除运算后得到的长度和时间没有变化。为了说明此事,下面有一个对应于不同速度的γ值表。(其中)最后一列是米尺在此速度运动时的长度(即1/γ米)。 第一列中c仍旧表示光速。.9c等于光速的十分之九。为了便于参照举个例子:“土星五号”火箭的飞行速度大约是25,000英里/小时。你看,对于任何合理的速度,γ几乎就是1。因此长度和时间几乎没有变化。在生活中,相对论效应只是发生在科幻小说(其中的飞船远比“土星五号”快得多)和微观物理学中(电子和质子常被加速到非常接近光速的速度)。在从芝加哥飞往丹佛的路上,这种效应是不会显现出来的。 宇宙执法者的历险 宇宙执法者AD在A行星上被邪恶的EN博士所擒。EN博士给AD喝了一杯13小时后发作的毒酒,并告诉AD解药在距此40,000,000,000公里远的B行星上。AD得知此情况后立即乘上其0.95倍光速的星际飞船飞往B星,那么: AD能即使到达B星并取得解药吗? 我们做如下的计算: A、B两行星之间的距离为40,000,000,000公里。飞船的速度是1,025,000,000公里/小时。把这两个数相除,我们得到从A行星到B行星需要39小时。 那么AD必死无疑。 等一下!这只对于站在A行星上的人而言。由于毒药在AD的体内是要经过新陈代谢(才能发作)的,我们必须从AD的参照系出发研究这一问题。我们可以用两种方法做这件事情,它们将得到相同的结论。 1. 设想一个大尺子从A行星一致延伸到B行星。这个尺子有40,000,000,000公里长。然而,从AD的角度而言,这个尺子以接近光速飞过他身边。我们已经知道这样的物体会发生长度收缩现象。在AD的参照系中,从A行星到B行星的距离以参数γ在收缩。在95%的光速下,γ的值大约等于3.2。因此AD认为这段路程只有12,500,000,000公里远(400亿除以3.2)。我们用此距离除以AD的速度,得到12.2小时,AD将提前将近1小时到达B行星! 2. A行星上的观察者会发现AD到达B需要花费大约39小时时间。然而,这是一个膨胀后的时间。我们知道AD的“钟”以参数γ(3.2)变慢。为了计算AD参照系中的时间,我们再用39小时除以3.2,得到12.2小时。(也)给AD剩下了大约1小时(这很好,因为这给了AD20分钟时间离开飞船,另外20分钟去寻找解药)。 AD将生还并继续与邪恶战斗。 如果对上文中我的描述加以仔细研究,你会发现许多似是而非,非常微妙的东西。当你深入地思考它的时候,一般你最终将提出这样一个问题:“等一下,在AD的参照系中,EN的钟表走得更慢了,因此在AD的参照系中,宇宙旅行应花费更长的时间,而不是更短... 如果你对这个问题感兴趣或者觉得困惑,你可能应该看一下后文《宇宙执法者的历险——微妙的时间》。或者你可以相信我所说的话“如果你把所有的因果都弄清楚,那么所有(这些)都是正确的”并跳到《质量和能量》一章。 宇宙执法者的历险——微妙的时间 好,这就是我们刚刚看到的。我们已经发现在AD相对于EN参照系旅行中的时间膨胀。在EN参照系中,AD是运动的,因此AD的钟走得慢。结果是在此次飞行中EN的钟走了39小时,而AD的钟走了12小时。这常常使人们产生这样的问题: 相对于AD的系,EN是运动的,因此EN的钟应该走得慢。因此当AD到达B行星的时候,他的钟走的时间比EN的长。谁对?长还是短? 好问题。当你问这个问题的时候,我知道你已经开始进入情况了。在开始解释之前,我必须声明在前文所叙述的事情都是对的。在我所描述的情况下,AD可以及时拿到解药。现在让我们来解释这个徉谬。这与我尚未提及的“同时性”有关。相对论的一个推论是:同一参照系中的两个同时(但不同地点)发生的事件相对于另一个参照系不同时发生。 让我们来研究一些同时发生的事件。 首先,让我们假设EN和AD在AD离开A行星时同时按下秒表。按照EN的表,这趟B行星之旅将花费39小时。换言之,EN的表在AD到达B行星时读数为39小时。因为时间膨胀,AD的表与此同时读数为12.2小时。即,以下三件事情是同时发生的: 1、 EN的表读数为39 2、 AD到达B行星 3、 AD的表读数为12.2 这些事件在EN的参照系中是同时发生的。 现在在AD的参照系中,上述三个事件不可能同时发生。更进一步,因为我们知道EN的表一定以参数γ减慢(此处γ大约为3.2),我们可以计算出当AD的表读数为12.2小时的时候,EN的表的读数为12.2/3.2=3.8小时。因此在AD的系中,这些事情是同时发生的: 1、 AD到达B行星 2、 AD的钟的读数为1.2 3、 EN的钟的读数为3.2 前两项在两个系中都是相同的,因为它们在同一地点——B行星发生。两个同一地点发生的事件要么同时发生,要么不同时发生,在这里,参照系不起作用。 从另一个角度看待此问题可能会对你有所帮助。你所感兴趣的事件是从AD离开A行星到AD到达B行星。一个重要的提示:AD在两个事件中都存在。也就是说,在AD的参照系中,这两个事件在同一地点发生。由此,AD参照系的事件被称作“正确时间”,所有其他系中的时间都将比此系中的更长(参见时间膨胀原理)。不管怎样,如果你对AD历险中的时间膨胀感到迷惑,希望这可以使之澄清一些。如果你原本不糊涂,那么希望你现在也不。 质量和能量 除了长度收缩和时间膨胀以外,相对论还有许多推论。其中最著名、最重要的是关于能量的。 能量有许多状态。任何运动的物体都因其自身的运动而具有物理学家所谓的“动能”。动能的大小和物体的运动速度及质量有关。(“质量”非常类似于“重量”,但并不完全相同)放在架子上的物体具有“引力势能”。因为如果架子被移掉,它就(由于引力)具有获得动能的可能。 热也是一种形式的能,其最终可以归结于组成物质的原子和分子的动能,此外还有许多其他形式的能。 把上述现象都和能量联系起来的原因,即它们之间的联系,是能量守恒定律。这个定律是说,如果我们把宇宙中全部的能量都加起来(我们可以用象焦耳或千瓦时这样的单位定量地描述能量),其总量永不改变。此即,能量从不会产生或消灭,尽管它们可以从一种形态转化为另一种形态。例如,汽车是一种可以将(在引擎的汽缸中的)热能转化为(汽车运动的)动能的设备;灯泡(可以)将电能转化为光能(这又是两种能的形式)。 爱因斯坦在他的相对论中发现了能量的另一种形式,有时被称作“静能量”。我已经指出一个运动物体由于其运动而具有了能量。但爱因斯坦发现,同样一个物体在其静止不动的时候同样具有能量。物体内静能量的数量依赖于其质量,并以公式E=mc2给出。 由于光速是如此之大的一个数,一个典型物体的静能量与其所具有的其他类型的能量根本不可相提并论。但这并不重要,因为日常生活中物体的静能量就是保持“安静”的状态,并且不会被转化成我们可以注意到的其他形式的能,如热能或动能。在核电站、原子武器和太阳中有相对很少一部分静质量被转化为其他形式的能,但对于大多数情况而言,静能量通常不会被注意到。 一个物体的动能和静能量的总和也可以用数学公式非常容易地表述如下: E=mc2γ 注意,在日常的速度中,γ大约等于1。因此静、动能量之和近似等于单一的静能量。换句话说,在日常速度中,静能比动能大得多。然而,当速度非常接近光速时,γ可以比1大很多(静能量只与物体的质量有关,而与其运动与否无关)。这对于在芝加哥附近的费米实验室和瑞士边界的CERN实验室中(使用)粒子加速器的物理学家来说非常重要。 光速极限 在读AD历险记中,你可能注意到AD的速度几乎是,但并不等于光速。这似乎有很充分的理由:远低于光速的速度相对论效应不显著。然而实际情况是超光速在物理学中是不可能的。 我会告诉你这是为什么。假想AD奋力想将他的飞船加速到光速。好,我们已经知道物质的能量与γ参数成比例,这在相对论计算中太普遍了。但你现在也会知道当物体的运动速度等于光速时,γ参数将变为无穷大。因此,为了让AD的飞船加速到光速,他将需要无穷大的能量。这显然是不可能的。因此尽管对于一个物体可以以多么接近光速的速度运动并无限制,但任何有质量的物体都不可能达到光速。实际上,没有质量的物质必须以光速运动,在此我不想讨论其原因。唯一的一种没有质量的物质是光(被称作“光子”),或许还有中微子(不久前已经证实,中微子有质量。译者) 还有其他物体不能朝光速运动的原因。其中之一与“因果性”有关。假设我投出一个垒球并打碎了一扇窗户,那么“我投出球”就是“窗户被击碎”的原因。如果超光速是可能的,那么一定会有某种参照系,其中“窗户被击碎”先于“我投出球”发生。这导致各种逻辑冲突(特别是当窗户已经碎了之后又有人截获了飞行中的球,阻止了窗户被击碎!)因此我们将物体能超光速运行这种可能性排除了。更进一步,因果性排除的不仅是朝光速运动,更排除了任何超光速通讯。 光速,就我们所知而言,是一道不可逾越的障碍。 如果你和我一样是个科幻迷,这将是一个坏消息。几乎可以肯定,在除地球之外的太阳系中不存在有智慧的生命。然而恒星间的距离太远了!我们即使以光速运行,到达最近的恒星也要花上4年时间。所以没有比光快的交通手段,将很可能无法在银河系中游荡并与异型文明相遇,为争夺银河系的帝位而站,等等。 另一方面,由于长度收缩,或许情况并非那样令人绝望。假设你登上一条飞船,以接近光速飞往10光年以外的一颗恒星。从地球的参照系看来,这个旅行将持续10年。然而对于这次旅行中的乘客而言,长度缩短了。因此这个旅行只用了不到10年的时间。并且飞船飞行得越接近光速,(相对于地球和恒星的)长度收缩得也越多(你也可以从时间膨胀的角度考虑这个问题)。 为了说明这点,这里有一个表,标明以不同的速度到达不同目的地所需要的时间。让我解释一下它们的含义: 首先,为了能产生显著的长度缩短,我们必须非常接近光速。因此我假设在旅行中飞船可以产生一个稳定的加速度。这也就是说,飞船内的人将感受到一个连续的加速度。例如,前半程以1g(g为地球的重力加速度。译者)加速,后半程以1g减速。 第二列以光年为单位给出了地球距离我们目的地的距离(一光年是光在一年内传播的距离,大约是6万亿英里)。我加入了三种不同加速度的计算,一种较小,另一种较大;剩下的一种与地球的重力加速度相等。加速度为2g的旅行可能会非常不舒服,因此或许你根本不用再考虑所有比这更大的速度。 第四列列出了最大速度(在中点处,当飞船正要转入减速运动时)与光速的比值。最后两列给出了旅行所需要的时间。首先以地球为参照系,然后以飞船为参照系。其中的差别很重要。我的意思是,如果说你乘飞船以2g的加速度飞往猎户座,在你到达猎户座之前要在飞船上渡过6.8年的时间。(尽管距离很远,但“飞船时间”增加得非常慢。这是因为距离越大,在开始减速前你越能接近光速飞行,因此你得到的长度收缩越多!)但当你到达那里的时候,地球上已经过500多年了。你到达猎户座后所发出的任何信息都将在500年后到达地球,回信也是如此。因此如果人类有一天能漫步在银河系之中,不同居住点之间将处于隔绝状态。地球上的人不可能以任何常规方式同猎户座附近的人交谈。 为建造一艘可以像这样无限加速的飞船,现在看来有无穷的技术困难。这些困难可能会被证实是不可克服的,那么我们就只能在幻想的空间遨游;但如果它们是可以克服的,并且如果我们人类可以活得足够长以克服它们,那么我刚才所描述的正是依据狭义相对论的理论上(可行的)远程宇宙旅行。 当然,许多科幻小说仍然加入了超光速飞行。但它们也常常不得不在其中引入一些奇怪的概念,如:“(时空)扭曲”、“超时空”。最终的情况是:就我们今天所知的时、空而言,超光速飞行是不可能的。但如果你喜欢,你总可以寄希望于某种时空的“窗口”或一个全新的,允许物体超光速运动的物理分枝被发现。 那样,我们就可以着手建立一个大银河帝国了! 广义相对论—— 一个极其不可思议的世界 广义相对论的基本概念解释: 在开始阅读本短文并了解广义相对论的关键特点之前,我们必须假定一件事情:狭义相对论是正确的。这也就是说,广义相对论是基于狭义相对论的。如果后者被证明是错误的,整个理论的大厦都将垮塌。 为了理解广义相对论,我们必须明确质量在经典力学中是如何定义的。 质量的两种不同表述: 首先,让我们思考一下质量在日常生活中代表什么。“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上。我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实。这种质量被称作“引力质量”。我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动。 现在,试着在一个平面上推你的汽车。你不能否认你的汽车强烈地反抗着你要给它的加速度。这是因为你的汽车有一个非常大的质量。移动轻的物体要比移动重的物体轻松。质量也可以用另一种方式定义:“它反抗加速度”。这种质量被称作“惯性质量”。 因此我们得出这个结论:我们可以用两种方法度量质量。要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律)。 人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量。 牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。 日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。然而重的物体受到的地球引力比轻的大。那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。

请问爱因斯坦的狭义相对论的实质

可能有些重复内容,但决非抄袭楼上。相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。 广义相对论 一个极其不可思议的世界 谷锐译 原文:Slaven 广义相对论的基本概念解释: 在开始阅读本短文并了解广义相对论的关键特点之前,我们必须假定一件事情:狭义相对论是正确的。这也就是说,广义相对论是基于狭义相对论的。如果后者被证明是错误的,整个理论的大厦都将垮塌。 为了理解广义相对论,我们必须明确质量在经典力学中是如何定义的。 质量的两种不同表述: 首先,让我们思考一下质量在日常生活中代表什么。“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上。我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实。这种质量被称作“引力质量”。我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动。 现在,试着在一个平面上推你的汽车。你不能否认你的汽车强烈地反抗着你要给它的加速度。这是因为你的汽车有一个非常大的质量。移动轻的物体要比移动重的物体轻松。质量也可以用另一种方式定义:“它反抗加速度”。这种质量被称作“惯性质量”。 因此我们得出这个结论:我们可以用两种方法度量质量。要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律)。 人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量。 牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。 日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。然而重的物体受到的地球引力比轻的大。那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。结论是,引力场中物体的加速度与其质量无关。伽利略是第一个注意到此现象的人。重要的是你应该明白,引力场中所有的物体“以同一速度下落”是(经典力学中)惯性质量和引力质量等同的结果。 现在我们关注一下“下落”这个表述。物体“下落”是由于地球的引力质量产生了地球的引力场。两个物体在所有相同的引力场中的速度相同。不论是月亮的还是太阳的,它们以相同的比率被加速。这就是说它们的速度在每秒钟内的增量相同。(加速度是速度每秒的增加值) 引力质量和惯性质量的等同性是爱因斯坦论据中的第三假设 爱因斯坦一直在寻找“引力质量与惯性质量相等”的解释。为了这个目标,他作出了被称作“等同原理”的第三假设。它说明:如果一个惯性系相对于一个伽利略系被均匀地加速,那么我们就可以通过引入相对于它的一个均匀引力场而认为它(该惯性系)是静止的。 让我们来考查一个惯性系K",它有一个相对于伽利略系的均匀加速运动。在K 和K"周围有许多物体。此物体相对于K是静止的。因此这些物体相对于K"有一个相同的加速运动。这个加速度对所有的物体都是相同的,并且与K"相对于K的加速度方向相反。我们说过,在一个引力场中所有物体的加速度的大小都是相同的,因此其效果等同于K"是静止的并且存在一个均匀的引力场。 因此如果我们确立等同原理,两个物体的质量相等只是它的一个简单推论。 这就是为什么(质量)等同是支持等同原理的一个重要论据。 通过假定K"静止且引力场存在,我们将K"理解为一个伽利略系,(这样我们就可以)在其中研究力学规律。由此爱因斯坦确立了他的第四个原理。 爱因斯坦第二假设 谷锐译 原文:Slaven 时间和空间 我们得出一个自相矛盾的结论。我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触。只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同。 实际上,两者都对。第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”。 长度收缩: 长度收缩有时被称作洛伦茨(Lorentz)或洛伦茨-弗里茨格拉德(FritzGerald)收缩。在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式。但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中。这个原理是: 参照系中运动物体的长度比其静止时的长度要短 下面用图形说明以便于理解: 上部图形是尺子在参照系中处于静止状态。一个静止物体在其参照系中的长度被称作他的“正确长度”。一个码尺的正确长度是一码。下部图中尺子在运动。用更长、更准确的话来讲:我们相对于某参照系,发现它(尺子)在运动。长度收缩原理指出在此参照系中运动的尺子要短一些。 这种收缩并非幻觉。当尺子从我们身边经过时,任何精确的试验都表明其长度比静止时要短。尺子并非看上去短了,它的确短了!然而,它只在其运动方向上收缩。下部图中尺子是水平运动的,因此它的水平方向变短。你可能已经注意到,两图中垂直方向的长度是一样的。 时间膨胀: 所谓的时间膨胀效应与长度收缩很相似,它是这样进行的: 某一参照系中的两个事件,它们发生在不同地点时的时间间隔 总比同样两个事件发生在相同地点的时间间隔长。 这更加难懂,我们仍然用图例加以说明: 图中两个闹钟都可以用于测量第一个闹钟从A点运动到B点所花费的时间。然而两个闹钟给出的结果并不相同。我们可以这样思考:我们所提到的两个事件分别是“闹钟离开A点”和“闹钟到达B点”。在我们的参照系中,这两个事件在不同的地点发生(A和B)。然而,让我们以上半图中闹钟自身的参照系观察这件事情。从这个角度看,上半图中的闹钟是静止的(所有的物体相对于其自身都是静止的),而刻有A和B点的线条从右向左移动。因此“离开A点”和“到达B点”着两件事情都发生在同一地点!(上半图中闹钟所测量的时间称为“正确时间”)按照前面提到的观点,下半图中闹钟所记录的时间将比上半图中闹钟从A到B所记录的时间更长。 此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢。最著名的关于时间膨胀的假说通常被成为双生子佯谬。假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来。我们可以将两个人的身体视为一架用年龄计算时间流逝的钟。因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢。结果是,当玛丽返回地球的时候,她将比哈瑞更年轻。年轻多少要看她以多快的速度走了多远。 时间膨胀并非是个疯狂的想法,它已经为实验所证实。最好的例子涉及到一种称 为"介子"的亚原子粒子。一个介子衰变需要多少时间已经被非常精确地测量过。无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长。这就是相对论效应。从运动的介子自身来看,它并没有存在更长的时间。这是因为从它自身的角度看它是静止的;只有从相对于实验室的角度看该介子,我们才会发现其寿命被“延长”或“缩短”了。? 应该加上一句:已经有很多很多的实验证实了相对论的这个推论。(相对论的)其他推论我们以后才能加以证实。我的观点是,尽管我们把相对论称作一种“理论”,但不要误认为相对论有待于证实,它(实际上)是非常完备的。 爱因斯坦第一假设 全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。 第一个可以这样陈述: 所有惯性参照系中的物理规律是相同的 此处唯一稍有些难懂的地方是所谓的“惯性参照系”。举几个例子就可以解释清楚: 假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?” 不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。 你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的。我们称飞机内部为一个惯性参照系。(“惯性”一词原指牛顿第一运动定律。惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性。惯性参照系是一系列此规律成立的参照系。 另一个例子。让我们考查大地本身。地球的周长约40,000公里。由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动。然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员。译者注)触地传球的时候,从未对此担心过。这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系。因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样。 实际上,除非我们意识到地球在转,否则有些现象会是十分费解的。(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动) 例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。 这里有一个最低限度:爱因斯坦的第一假设使此类系中所有的物理规律都保持不变。运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设。谁说爱因斯坦是天才? 爱因斯坦第二假设 19世纪中页人们对电和磁的理解有了一个革命性的飞跃,其中以詹姆斯.麦克斯韦(James Maxwell)的成就为代表。电和磁两种现象曾被认为毫不相关,直到奥斯特(Oersted)和安培(Ampere)证明电能产生磁;法拉弟(Faraday)和亨利(Henry)证明磁能产生电。现在我们知道电和磁的关系是如此紧密,以致于当物理学家对自然力进行列表时,常常将电和磁视为一件事。 麦克斯韦的成就在于将当时所有已知的电磁知识集中于四个方程中: (如果你没有上过理解这些方程所必需的三到四个学期的微积分课程,那么就坐下来看它们几分钟,欣赏一下其中的美吧) 麦克斯韦方程对于我们的重要意义在于,它除了将所有人们已知的电磁知识加以描述以外,还揭示了一些人们不知道的事情。例如:构成这些方程的电磁场可以以振动波的形式在空间传播。当麦克斯韦计算了这些波的速度后,他发现它们都等于光速。这并非巧合,麦克斯韦(方程)揭示出光是一种电磁波。 我们应记住的一个重要的事情是:光速直接从描述所有电磁场的麦克斯韦方程推导而来。 现在我们回到爱因斯坦。 爱因斯坦的第一个假设是所有惯性参照系中的物理规律相同。他的第二假设是简单地将此原则推广到电和磁的规律中。这就是,如果麦克斯韦假设是自然界的一种规律,那么它(和它的推论)都必须在所有惯性系中成立。这些推论中的一个就是爱因斯坦的第二假设:光在所有惯性系中速度相同 爱因斯坦的第一假设看上去非常合理,他的第二假设延续了第一假设的合理性。但为什么它看上去并不合理呢? 火车上的试验 为了说明爱因斯坦第二假的合理性,让我们来看一下下面这副火车上的图画。 火车以每秒100,000,000米/秒的速度运行,Dave站在车上,Nolan站在铁路旁的地面上。Dave用手中的电筒“发射”光子。 光子相对于Dave以每秒300,000,000米/秒的速度运行,Dave以100,000,000米/秒的速度相对于Nolan运动。因此我们得出光子相对于Nolan的速度为400,000,000米/秒。 问题出现了:这与爱因斯坦的第二假设不符!爱因斯坦说光相对于Nolan参照系的速度必需和Dave参照系中的光速完全相同,即300,000,000米/秒。那么我们的“常识感觉”和爱因斯坦的假设那一个错了呢? 好,许多科学家的试验(结果)支持了爱因斯坦的假设,因此我们也假定爱因斯坦是对的,并帮大家找出常识相对论的错误之处。 记得吗?将速度相加的决定来得十分简单。一秒钟后,光子已移动到Dave前300,000,000米处,而Dave已经移动到Nolan前100,000,000米处。其间的距离不是400,000,000米只有两种可能: 1、 相对于Dave的300,000,000米距离对于Nolan来说并非也是300,000,000米 2、 对Dave而言的一秒钟和对Nolan而言的一秒钟不同 尽管听起来很奇怪,但两者实际上都是正确的。 爱因斯坦第二假设 时间和空间 我们得出一个自相矛盾的结论。我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触。只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同。 实际上,两者都对。第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”。 长度收缩: 长度收缩有时被称作洛伦茨(Lorentz)或洛伦茨-弗里茨格拉德(FritzGerald)收缩。在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式。但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中。这个原理是: 参照系中运动物体的长度比其静止时的长度要短下面用图形说明以便于理解: 上部图形是尺子在参照系中处于静止状态。一个静止物体在其参照系中的长度被称作他的“正确长度”。一个码尺的正确长度是一码。下部图中尺子在运动。用更长、更准确的话来讲:我们相对于某参照系,发现它(尺子)在运动。长度收缩原理指出在此参照系中运动的尺子要短一些。 这种收缩并非幻觉。当尺子从我们身边经过时,任何精确的试验都表明其长度比静止时要短。尺子并非看上去短了,它的确短了!然而,它只在其运动方向上收缩。下部图中尺子是水平运动的,因此它的水平方向变短。你可能已经注意到,两图中垂直方向的长度是一样的。 时间膨胀: 所谓的时间膨胀效应与长度收缩很相似,它是这样进行的: 某一参照系中的两个事件,它们发生在不同地点时的时间间隔 总比同样两个事件发生在相同地点的时间间隔长。 这更加难懂,我们仍然用图例加以说明: 图中两个闹钟都可以用于测量第一个闹钟从A点运动到B点所花费的时间。然而两个闹钟给出的结果并不相同。我们可以这样思考:我们所提到的两个事件分别是“闹钟离开A点”和“闹钟到达B点”。在我们的参照系中,这两个事件在不同的地点发生(A和B)。然而,让我们以上半图中闹钟自身的参照系观察这件事情。从这个角度看,上半图中的闹钟是静止的(所有的物体相对于其自身都是静止的),而刻有A和B点的线条从右向左移动。因此“离开A点”和“到达B点”着两件事情都发生在同一地点!(上半图中闹钟所测量的时间称为“正确时间”)按照前面提到的观点,下半图中闹钟所记录的时间将比上半图中闹钟从A到B所记录的时间更长。 此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢。最著名的关于时间膨胀的假说通常被成为双生子佯谬。假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来。我们可以将两个人的身体视为一架用年龄计算时间流逝的钟。因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢。结果是,当玛丽返回地球的时候,她将比哈瑞更年轻。年轻多少要看她以多快的速度走了多远。 时间膨胀并非是个疯狂的想法,它已经为实验所证实。最好的例子涉及到一种称为介子的亚原子粒子。一个介子衰变需要多少时间已经被非常精确地测量过。无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长。这就是相对论效应。从运动的介子自身来看,它并没有存在更长的时间。这是因为从它自身的角度看它是静止的;只有从相对于实验室的角度看该介子,我们才会发现其寿命被“延长”或“缩短”了。? 应该加上一句:已经有很多很多的实验证实了相对论的这个推论。(相对论的)其他推论我们以后才能加以证实。我的观点是,尽管我们把相对论称作一种“理论”,但不要误认为相对论有待于证实,它(实际上)是非常完备的。 伽玛参数(γ) 现在你可能会奇怪:为什么你在日常生活中从未注意到过长度收缩和时间膨胀效应?例如根据刚才我所说的,如果你驱车从俄荷马城到勘萨斯城再返回,那么当你到家的时候,你应该重新对表。因为当你驾车的时候,你的表应该比在你家里处于静止状态的表走得慢。如果到家的时候你的表现时是3点正,那么你家里的表都应该显示一个晚一点的时间。为什么你从未发现过这种情况呢? 答案是:这种效应显著与否依赖于你运动速度的快慢。而你运动得非常慢(你可能认为你的车开得很快,但这对于相对论来说,是极慢的)。长度收缩和时间膨胀的效果只有当你以接近光速运动的时候才能注意到。而光速约合186,300英里/秒(或3亿米/秒)。在数学上,相对论效应通常用一个系数加以描述,物理学家通常用希腊字母γ加以表示。这个系数依赖于物体运动的速度。例如,如果一根米尺(正确长度为1米)快速地从我们面前飞过,则它相对于我们的参照系的长度是1/γ米。如果一个钟从A点运动到B点要3秒钟,那么相对于我们的握障担飧龉坛中?/γ秒。 为了理解现实中为什么我们没有注意到相对论效应,让我们看一下(关于)γ的公式: 这里的关键是分母中的v2/c2。v是我们所讨论的物体的运动速度,c是光速。因为任何正常尺寸物体的速度远小于光速,所以v/c非常小;当我们将其平方后(所得的结果)就更小了。因此对于所有实际生活中通常尺寸的物体而言,γ的值就是1。所以对于普通的速度,我们通过乘除运算后得到的长度和时间没有变化。为了说明此事,下面有一个对应于不同速度的γ值表。(其中)最后一列是米尺在此速度运动时的长度(即1/γ米)。 第一列中c仍旧表示光速。.9c等于光速的十分之九。为了便于参照举个例子:“土星五号”火箭的飞行速度大约是25,000英里/小时。你看,对于任何合理的速度,γ几乎就是1。因此长度和时间几乎没有变化。在生活中,相对论效应只是发生在科幻小说(其中的飞船远比“土星五号”快得多)和微观物理学中(电子和质子常被加速到非常接近光速的速度)。在从芝加哥飞往丹佛的路上,这种效应是不会显现出来的。 宇宙执法者的历险 宇宙执法者AD在A行星上被邪恶的EN博士所擒。EN博士给AD喝了一杯13小时后发作的毒酒,并告诉AD解药在距此40,000,000,000公里远的B行星上。AD得知此情况后立即乘上其0.95倍光速的星际飞船飞往B星,那么: AD能即使到达B星并取得解药吗? 我们做如下的计算: A、B两行星之间的距离为40,000,000,000公里。飞船的速度是1,025,000,000公里/小时。把这两个数相除,我们得到从A行星到B行星需要39小时。 那么AD必死无疑。 等一下!这只对于站在A行星上的人而言。由于毒药在AD的体内是要经过新陈代谢(才能发作)的,我们必须从AD的参照系出发研究这一问题。我们可以用两种方法做这件事情,它们将得到相同的结论。 1. 设想一个大尺子从A行星一致延伸到B行星。这个尺子有40,000,000,000公里长。然而,从AD的角度而言,这个尺子以接近光速飞过他身边。我们已经知道这样的物体会发生长度收缩现象。在AD的参照系中,从A行星到B行星的距离以参数γ在收缩。在95%的光速下,γ的值大约等于3.2。因此AD认为这段路程只有12,500,000,000公里远(400亿除以3.2)。我们用此距离除以AD的速度,得到12.2小时,AD将提前将近1小时到达B行星! 2. A行星上的观察者会发现AD到达B需要花费大约39小时时间。然而,这是一个膨胀后的时间。我们知道AD的“钟”以参数γ(3.2)变慢。为了计算AD参照系中的时间,我们再用39小时除以3.2,得到12.2小时。(也)给AD剩下了大约1小时(这很好,因为这给了AD20分钟时间离开飞船,另外20分钟去寻找解药)。 AD将生还并继续与邪恶战斗。 如果对上文中我的描述加以仔细研究,你会发现许多似是而非,非常微妙的东西。当你深入地思考它的时候,一般你最终将提出这样一个问题:“等一下,在AD的参照系中,EN的钟表走得更慢了,因此在AD的参照系中,宇宙旅行应花费更长的时间,而不是更短... 如果你对这个问题感兴趣或者觉得困惑,你可能应该看一下后文《宇宙执法者的历险——微妙的时间》。或者你可以相信我所说的话“如果你把所有的因果都弄清楚,那么所有(这些)都是正确的”并跳到《质量和能量》一章。 宇宙执法者的历险——微妙的时间 好,这就是我们刚刚看到的。我们已经发现在AD相对于EN参照系旅行中的时间膨胀。在EN参照系中,AD是运动的,因此AD的钟走得慢。结果是在此次飞行中EN的钟走了39小时,而AD的钟走了12小时。这常常使人们产生这样的问题: 相对于AD的系,EN是运动的,因此EN的钟应该走得慢。因此当AD到达B行星的时候,他的钟走的时间比EN的长。谁对?长还是短? 好问题。当你问这个问题的时候,我知道你已经开始进入情况了。在开始解释之前,我必须声明在前文所叙述的事情都是对的。在我所描述的情况下,AD可以及时拿到解药。现在让我们来解释这个徉谬。这与我尚未提及的“同时性”有关。相对论的一个推论是:同一参照系中的两个同时(但不同地点)发生的事件相对于另一个参照系不同时发生。 让我们来研究一些同时发生的事件。 首先,让我们假设EN和AD在AD离开A行星时同时按下秒表。按照EN的表,这趟B行星之旅将花费39小时。换言之,EN的表在AD到达B行星时读数为39小时。因为时间膨胀,AD的表与此同时读数为12.2小时。即,以下三件事情是同时发生的: 1、 EN的表读数为39 2、 AD到达B行星 3、 AD的表读数为12.2 这些事件在EN的参照系中是同时发生的。 现在在AD的参照系中,上述三个事件不可能同时发生。更进一步,因为我们知道EN的表一定以参数γ减慢(此处γ大约为3.2),我们可以计算出当AD的表读数为12.2小时的时候,EN的表的读数为12.2/3.2=3.8小时。因此在AD的系中,这些事情是同时发生的: 1、 AD到达B行星 2、 AD的钟的读数为1.2 3、 EN的钟的读数为3.2 前两项在两个系中都是相同的,因为它们在同一地点——B行星发生。两个同一地点发生的事件要么同时发生,要么不同时发生,在这里,参照系不起作用。 从另一个角度看待此问题可能会对你有所帮助。你所感兴趣的事件是从AD离开A行星到AD到达B行星。一个重要的提示:AD在两个事件中都存在。也就是说,在AD的参照系中,这两个事件在同一地点发生。由此,AD参照系的事件被称作“正确时间”,所有其他系中的时间都将比此系中的更长(参见时间膨胀原理)。不管怎样,如果你对AD历险中的时间膨胀感到迷惑,希望这可以使之澄清一些。如果你原本不糊涂,那么希望你现在也不。 质量和能量 除了长度收缩和时间膨胀以外,相对论还有许多推论。其中最著名、最重要的是关于能量的。 能量有许多状态。任何运动的物体都因其自身的运动而具有物理学家所谓的“动能”。动能的大小和物体的运动速度及质量有关。(“质量”非常类似于“重量”,但并不完全相同)放在架子上的物体具有“引力势能”。因为如果架子被移掉,它就(由于引力)具有获得动能的可能。 热也是一种形式的能,其最终可以归结于组成物质的原子和分子的动能,此外还有许多其他形式的能。 把上述现象都和能量联系起来的原因,即它们之间的联系,是能量守恒定律。这个定律是说,如果我们把宇宙中全部的能量都加起来(我们可以用象焦耳或千瓦时这样的单位定量地描述能量),其总量永不改变。此即,能量从不会产生或消灭,尽管它们可以从一种形态转化为另一种形态。例如,汽车是一种可以将(在引擎的汽缸中的)热能转化为(汽车运动的)动能的设备;灯泡(可以)将电能转化为光能(这又是两种能的形式)。 爱因斯坦在他的相对论中发现了能量的另一种形式,有时被称作“静能量”。我已经指出一个运动物体由于其运动而具有了能量。但爱因斯坦发现,同样一个物体在其静止不动的时候同样具有能量。物体内静能量的数量依赖于其质量,并以公式E=mc2给出。

求狭义相对论通俗解释

狭义相对论预言了牛顿经典物理学所没有的一些新效应(相对论效应),如时间膨胀 、长度收缩、横向多普勒效应、质速关系、质能关系等。狭义相对论已经成为现代物理理论的基础之一:一切微观物理理论(如基本粒子理论)和宏观引力理论(如广义相对论)都满足狭义相对论的要求。这些相对论性的动力学理论已经被许多高精度实验所证实。狭义相对论不仅包括如时间膨胀等一系列推论,而且还包括麦克斯韦-赫兹方程变换等。狭义相对论需要使用引入张量的数学工具。狭义相对论是对牛顿时空理论的拓展,要理解狭义相对论就必须理解四维时空 ,其数学形式为闵可夫斯基几何空间。扩展资料:狭义相对论也允许超光速世界的存在,其中所有物质的速度都超过光速c,这类物质(或粒子)称为快子,其静质量是虚数(其平方小于零)。一切物理定律(除引力外)的方程式在洛伦兹变换下保持形式不变。不同时间进行的实验给出了同样的物理定律,这正是相对性原理的实验基础。参考资料来源:百度百科-狭义相对论

狭义相对论

狭义相对论中关于时间延缓的一个似是而非的疑难。按照狭义相对论,运动的时钟走得较慢是时间的性质,一切与时间有关的过程都因运动而变慢,变慢的效应是相对的。于是有人设想一次假想的宇宙航行,双生子甲乘高速飞船到远方宇宙空间去旅行,双生子乙则留在地球上,经过若干年飞船返回地球。按地球上的乙看来,甲处于运动之中,甲的生命过程进行得缓慢,则甲比乙年轻;而按飞船上的甲看来,乙是运动的,则乙比较年轻。重返相遇的比较,结果应该是唯一的,似乎狭义相对论遇到无法克服的难题。 事实上双生子佯谬并不存在。狭义相对论是关于惯性系之间的时空理论。甲和乙所处的参考系并不都是惯性系,乙是近似的惯性系,乙推论甲比较年轻是正确的;而甲是非惯性系,狭义相对论不适用,甲不能推论乙比较年轻。其实根据广义相对论,或者甚至勿须用广义相对论,设想一个甲相对乙作变速运动的特殊过程:很快加速-匀速-很快减速然后反向很快加速-匀速-很快减速,按照狭义相对论,仔细考虑其中的时间延缓和同时性的相对性,可以得出无论从甲或乙分析,结论是相同的,都是飞船上的甲要比乙更年轻。乙留在地面等待甲,甲乘飞船作太空旅行,甲所乘坐的飞船在启动、调头、减速降落这些过程的加速、减速,都是相对于乙所在的惯性系而言的,所以这些过程没有什么附加的特殊效应,又因这些过程的时间都很短,所以可以将其忽略;而认为甲及其所乘坐的飞船静止不动,乙在飞离甲及甲所乘坐的飞船时,乙在启动、调头、减速这些过程的加速、减速,是相对于甲所处的非惯性系而言的。按照广义相对论的等效原理,相当于考察乙的运动的参考系中有一个引力场,虽然甲和乙都处在这一引力场中,但因他们在引力场中所处的位置不同,因而引力场对他们的影响也就不同。在乙启动及减速降落时,甲和乙距离较近,他们的引力场势相差不大,引力场对他们时间的流逝的影响也相差不大,所以仍可将这部分较短的时间忽略。而在乙调头时,由于甲和乙的距离非常遥远,这时乙的引力场势远高于甲,它使乙的时间比甲流逝得要快的多,或者反过来说,它使甲的时间比乙流逝得要慢的多。这一影响超过了乙相对于甲匀速运动期间速度v对时间的影响,使乙飞行归来与甲会合时,乙仍然要比甲变老了。所以乙调头这一过程在考虑“双生子佯谬”问题时是不能忽略的。运用广义相对论进行计算的结果,可知乙飞行归来与甲会合时,甲仍然是21岁,而乙是90多岁。 1966年用μ子作了一个类似于双生子旅游的实验,让μ子沿一直径为14米的圆环运动再回到出发点,实验结果表明运动的μ子的确比静止的μ子寿命更长。 1905年9月,德国《物理年鉴》杂志刊登了一篇《关于运动物体的电动力学》的论文,它宣告了狭义相对论假说的问世。正是这篇看似很普通的论文,建立了全新的时空观念,并向明显简单的同时性观念提出了挑战。我们知道由爱因斯坦狭义相对论可以得出运动的物体存在时间膨胀效应。在1911年4月波隆哲学大会上,法国物理学家P.朗之万用双生子实验对狭义相对论的时间膨胀效应提出了质疑,设想的实验是这样的:一对双胞胎,一个留在地球上,另一个乘坐火箭到太空旅行。飞行速度接近光速,在太空旅行的双胞胎回到地球时只不过两岁,而他的兄弟早已死去了,因为地球上已经过了200年了。这就是著名的双生子详谬。双生子佯谬说明狭义相对论在逻辑自恰性上还存在不完善的地方。本文正是以时间膨胀效应为线索对狭义相对论做进一步的探讨,分析双生子佯谬产生的原因。 首先让我们来看一个例子。假设我们一家来到了美国科学家伽莫夫笔下汤普金斯先生曾经梦游过的城市,在这座城市里由于速度极限(光速)很低,所以相对论效应非常显著。来到这座城市后,我们进了一家瑞士钟表店,每人选了自己喜欢的一块表并要求营业员把三块表的时间调成一致。随后,我们来到了一家游乐园,其中一个游乐项目是乘坐光速飞车,其实飞车的速度并没有达到光速。我站在起点A处,帮儿子把安全带系牢,儿子高兴地坐在A点的光速飞车里。我妻子站在终点B处,A与B之间的距离为L。车马上要出发了,我下意识地对了一下自己和儿子的表,时间一分一秒都不差。抬头再看终点处妻子的表,我发现妻子的表比我的表慢了一些。来不及多想车已经象离弦的箭一样冲了出去。我突然发现儿子的表越走越慢,当然是相对我的表而言,最后到达终点时与我妻子的表一致了。看来瑞士表的质量也不怎么样,我打算玩完回去后把表给退了。在回来的路上我看了一眼妻子和儿子的表,奇怪!怎么我们的表显示的时间分秒不差,我明明看见他们俩的表比我的慢了呀!我把我的发现告诉了我的妻子,她说她也觉得挺奇怪的,但是与我所说的现象稍有些不同。在终点处,她发现我和儿子的手表都比她的表慢了,但当儿子乘坐飞车向她驶来时,儿子的表却变得越来越快,最后到达终点时竟与她的表一致了。这时候儿子也加入了我们的谈话,他告诉了我他的发现,他是这样描述的,在起点处他发现爸爸的表跟他的表时间是一致的,妈妈的表走得比他的慢,当车运动起来后,爸爸的表变慢了而妈妈的表比原来快了,最后当他到达终点时妈妈的表与他的表又一致了。 从上面这个例子中,我们看到由于三个人所处的状态不同,得出的结论也大相径庭。但都有一个共同的特点,就是每个人都是以他本人的时间为基准作出判断的。我们知道光速是有限的,光在空间运行是需要时间的。当所研究的对象涉及到空间大尺度范围或当物体运动的速度大到可以与光速相提并论时,光通过空间两点所需的时间就不能不考虑进来,这样通常在小尺度低速度情况下被认为是同时发生的两个事件就不能再认为是同时的了。爱因斯坦也正是从时间的同时性入手,提出了狭义相对论。在我们生活的宇宙中,时间是非物质的量,它是为了描述物体运动而人为引进的一个物理概念。经典物理对时间是这样定义的“绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而在均匀地,与任何其他外界事物无关地流逝着”。这一定义在研究空间小尺度范围或低速运动的物体时,无疑是正确的,因为它暗含这样一个概念即时间的同时性是绝对。但在研究空间大尺度范围或高速运动的物体时,这一定义是否仍然有效,取决于对时间的同时性是如何定义的,同时还要看空间两点两个事件发生的时间是如何记录的。 假设有两个完全一样的钟被放置在AB两地。我们可采用中点对钟法将两地的钟校准。我们说发生在AB两地的两个事件是同时的,如果AB两地的钟所指示的时间是一样的话。这个结论暗含有这样一个条件即在AB两地分别有两个观察者记录本地事件发生的时间,然后再将两个时间进行对比,判断这两个事件是否是同时发生的,判断的结果与AB两地的位置无关。从这个意义上说时间的同时性是绝对的。我们再看另一种情况,我们仍采用同样的方法将AB两地的钟校准。从A点观察AB两地同时发生的两个事件,得到的结论是A地的事件先于B地的事件,相差的时间与两地之间的距离有关。同理,从B点观察AB两地同时发生的两个事件,得到的结论则是B地的事件先于A地的事件。按照这个结论,时间的同时性又是相对的。所以说时间的同时性是相对的还是绝对的完全取决于时间是如何测量的。狭义相对论所涉及的是后一种情况。 运动物体的情况又如何呢?假设有一枚火箭从A点运动到B点。火箭上装有校对好的时钟。我们仍采用中点对钟法在AB两点之间A1、A2、A3...放置一系列校对好的时钟,并在A1、A2、A3...的每一个位置上都设有一个观察员记录火箭经过的时间。一切就绪火箭出发了。在A点的观察员立刻发现火箭上的钟变得越来越慢了,时间变慢的速度与火箭的速度有关。而据A1、A2、A3...的观察员报告,火箭在通过他们所在的位置时,火箭上钟的指示与本地钟的指示是一样的。而在B点观察员则发现,在火箭未出发前,火箭上钟的指示已经比B点的时间慢了一些,但随着火箭逐渐接近,火箭上的时钟却变得越来越快,当到达B点时竟然与B点的时钟是一样的。如果在火箭里也有一个观察员,他会得到这样的结论即当火箭运动起来后,A点的钟变慢了,B点的钟变快了而沿途所经过的钟所指示的时间与火箭上的时间是一致的。在上面的例子中,火箭相对于A和B的运动方向是不同的,所以从A点和B点观察的结果也应是不同的,相对于A点时间是变慢了,相对于B点时间是变快了。时间是变快了还是变慢了取决于观察者与被观察的物体之间的距离是增加还是减少了,变快变慢的速度与两个物体之间的相对运动速度有关。下面我们将定量的分析上面的例子。 我们仍用上面所举火箭的例子,将两个校准好的时钟分别放置在AB两地。火箭以速度V从A点向B点运动。AB两点之间的距离为S。令ΔT1为火箭经过AB两点时,在AB两点的观察员所记录的时间之差。令ΔT2为在A点的观察员记录火箭经过AB两点的时间差。当物体达到B点时,光返回A点所需的时间为AB之间的距离S除以光速C。根据以上条件,我们可以得到: ΔT2-ΔT1= S/C (1) S=V×ΔT1 (2) 将(2)式代入(1)经过整理后得到; ΔT1=ΔT2÷(1+V/C) (3) 分析(3)式我们可以看出,当火箭运动的速度V=C时,ΔT2=2×ΔT1;当火箭运动的速度V<<C时,ΔT1≈ΔT2,由于1+V/C≥1,所以ΔT2≥ΔT1。我们得到一个结论,火箭上的时间变慢了即时间膨胀,当然这是从A点观察所得到的结论。如果从B点观察,结论又是怎样呢?我们仍然令ΔT1为火箭经过AB两点时,在AB两点的观察员所记录的时间之差,ΔT2为在B点的观察员记录的火箭从A点到B点的时间差,光从A点到B点所需的时间为S/C。与上面类似我们可以得到: ΔT1-ΔT2= S/C (4) S=V×ΔT1 (5) 将(5)式代入(4)经过整理得到: ΔT1=ΔT2÷(1-V/C) (6) 从(6)式我们可以看出,当火箭运动的速度V=C时,ΔT2为零,也就是说当你看到火箭出发时,火箭已经到了你跟前了;当火箭运动的速度V<<C时,ΔT1≈ΔT2,由于等式1-V/C≤1,所以ΔT2≤ΔT1。所以我们又得出一个相反的结论,火箭的时间变快了即时间收缩了。 到目前为止,我们都是在基于光速不变这样一个前提下讨论问题的。光速不变假设是爱因斯坦从迈克尔逊-莫雷为证明以太存在所做的干涉实验的否定结果中得出的推论。在上面的讨论中,运动物体的速度V是这样得到的,在AB两地分别放置两个校准好的时钟,AB两地之间的距离为L。在A点记录物体出发的时刻,在B点记录物体到达的时刻,用两地之间的距离L除以两地所记录的时间差,就得到了运动物体的速度,这样计算的结果与两地之间的距离无关。当然还可以用另一种方法,在A点记录物体发出的时刻,在物体经过B点返回到A点时,记录物体到达的时刻,用两倍的距离L除以在A点记录的时间差,就得到运动物体的速度。这两种算法的结果是一样的。如果从A点来观察运动的物体在一去一回时速度是否是一样呢?用我们上面所得到的时间膨胀和时间收缩效应的结论,我们可以得出,物体在离开A点后,速度是变慢的,而当物体从B点返回时,速度又是变快的,当然这是从A点观察所得到的结果。 狭义相对论还存在另外一种效应即尺缩效应。可以采用同样的方法,证明运动物体的长度随观察者与运动物体之间的距离的减少,还存在长度伸长的效应。通过以上讨论,我们清楚了,同时性是相对的还是绝对的取决于观察时间的方法,离开这一点强调同时性是相对的还是绝对的是没有意义的。即使按照同时性是相对的观点,时间除了膨胀效应外,还应有收缩的效应,所以说双生子佯谬本身是不存在的。 [编辑本段]特别注意 上述论述,与爱因斯坦相对论观点是不一致的。而与我下面论述是一致的。这样理解相对论,双生子悖论,确实不存在,但这样的相对论,需要修正爱因斯坦的相对论。 “美国科学家伽莫夫笔下汤普金斯先生曾经梦游过的城市”,我们不用管是一种慢光速,还是声速,原理是一样的。 如果一个钟,以0.5倍声速从原点远去,我们会听到什么现象呢? 一秒钟时,它距离原点0.5声秒距离报1秒,但这个事件我们在原点听见,需要再过0.5秒,于是我们发现,在本地钟1.5秒时,远处的钟报1秒,本地钟3秒时,远离的钟报2秒,也就是我们在忽略测量时间时,误以为远去的钟慢了。而且速度越快,钟慢得越厉害。 理想点以a倍光速远去,1秒钟远离a*C(光速)距离,在计时起位置要a秒传过来,到达a*C的事件将在a+1秒传到观察者,观察者认为速度为a*C/(1+a),速度永远小于光速。a为1时看到以1/2C远离。 当a远小于1时,a*C/(1+a)可近似为a*C,也就是实际速度,当a接近于无穷大时,a*C/(1+a)可近似为C,也就是远离速度远小于测量速度时,测量速度可忽略不记,测量结果约等于真实速度;当远离速度远大于测量速度,测量结果约等于测量速度,也就是测量不到超过测量速度的远离情况。 无人会用爱因斯坦的方法,从物理原理上解释两参照系靠近时的相对论计算方法。下面我来解释一下应该怎样推导接近参照系的情况。 理想点以0.5倍声速靠近,在距离2声秒时作为记时0点,我们听到2秒时,远处的钟报距离2声秒,2.5秒时听到钟报距离是1.5声秒,3秒时,钟报距离是1声秒,3.5秒时,钟报距离是0.5声秒,4秒,我们与运动的钟相遇,报距离0声秒。 靠近的钟测量现象变快。 从算式中,我们明显看出,与爱因斯坦相对论不同。这样解释相对论现象,是允许运动速度超过光速的。也许真的需要修正爱因斯坦的相对论,才可以解决双生子悖论问题? 爱因斯坦自己的理解,速度无穷大,“绝对同时”有意义,但观测速度上限是光速,因此“绝对同时”无意义。 说明爱因斯坦有时候明白相对论是由于光速太慢,引起的测量问题。如果测量速度无穷大,则同时性的相对性问题不存在。对一群盲人来说,测量速度的上限是声速,则爱因斯坦奉献给他们的伟大理论将是声速相对论,但不能因此得出声速最快。 参考百度百科词条中:相对论,光速不变原理,超光子,时间进程,洛伦兹坐标变换,钟慢效应,倒相对论,双生子悖论,速度效应,超光速,洛仑兹变换,极限速度,狭义相对论。 搜狐社区朝高回应上述关于对相对论的质疑:上面的关于用声速测量效应来质疑相对论效应,只是质疑者个人的片面理解。质疑者的思维完全停留在经典物理的基础上,根本无法领会狭义相对论的内容。质疑者完全回避了实验证明时间确实变慢而非仅仅是观测效应这一事实,也拒绝承认相对论效用已经应用于生产实践并已取得了巨大成果这一事实。对迈克尔逊-莫雷实验,质疑者始终只能假定是因为光的介质与实验设备相对静止的结果,竭力回避实验设备与介质有相对运动的实验。在搜狐社区已对这个问题进行过多次争论(见http://club.it.sohu.com/r-kpyd-82977-0-175-0.html),希望对相对论感兴趣的不要被上面的质疑所误解,感兴趣的话去看看争论过程。关于双生子佯谬,前面的解释不错,我也已经有个人理解,可以完全用狭义相对论来进行解释,正在抽时间整理。 大家注意上面一段论述的不科学性。 1。声称“质疑者的思维完全停留在经典物理的基础上”是主观评价,没有论据,我们完全可以认为,朝高根本没有学好经典物理。因为他根本不承认经典物理的计算结果和理解。其人的论述也往往采用“巨大成果这一事实”,然而他从未提出过任何一个实验,必须用相对论才能解释,而任何其它方法都无效。 2。朝高其人,多次声称不懂相对论,那么他对自己是否能明白爱因斯坦的意思没有把握,然后他说“爱因斯坦当时就是遍历了当年的几乎所有理论”包括爱因斯坦没有谈到过的测量速度问题,这完全是迷信爱因斯坦。见http://club.it.sohu.com/r-kpyd-82977-24-178-0.html 3。搜狐论坛上几个反对我的人,都不知道相对论是怎么被证明的,详见:http://club.it.sohu.com/r-kpyd-79387-0-56-0.html ,现在除了抄,他们也提不出新观点和新证据。而我经常可以从其他观点中学习,并将其进行合理解释后加入到我的论据中。 4。经典物理包括爱因斯坦相对论,从未提出过超光速测量问题,朝高其人还认为人的思维速度不能超过光速,至少他从未承认过人的思维速度可以超光速。这足以证明我所掌握的科学,已经超出经典物理和相对论,而不能因为结论支持以前的某个观点就认为退步。历史上公元前300年,就有人提出过太阳中心说,但没有论据,不能说伽利略的太阳中心说是对地球中心说的倒退。光的波粒之争也几经反复,不能说每次回归都是退步,正相反,每次回归都是因为有了新证据,每次都在进步。 搜狐社区朝高针对上面的回复: 1、我的经典物理学得好不好,不是质疑者主观评价是怎样就是怎样的,有兴趣的可以到搜狐社区科普园地(http://club.it.sohu.com/l-kpyd-0-0-0-0.html)看看我在物理相关帖中的表现,如果谁有把握经典物理学得比我好,不妨找几个经典物理问题在搜狐社区科普园地再探讨一下。“因为他根本不承认经典物理的计算结果和理解”,事实上我一直就没有否认他用经典力学的分析过程,只是认为相对论超出了经典力学所能表达的范围,而质疑者一直就停留在经典力学的层面。关于相对论在实际应用中的成果,网上比比皆是,无需我在这里列举。 2、我没有完全学懂相对论,但至少有一些了解。至少我经典物理学得不错,但我的思维没有完全停留在经典物理的层面,有兴趣的可以先看看我的“光子的世界——助你理解相对论(一)”(http://club.it.sohu.com/r-kpyd-83315-0-11-0.html),并等待我即将整理的“双生子悖论——助你理解相对论(三)”。 3、我们不完全懂相对论,但不会因为自己不懂就说人家的理论错了。 4、“朝高其人还认为人的思维速度不能超过光速”,这是完全的狡辩,甚至可以说是污蔑,有兴趣的可以去看一下那个辩论,看我们是否说过这样的话。“至少他从未承认过人的思维速度可以超光速”,至少我们也从来没有反对过思维的速度可以超过光速,我从来没谈论过思维速度是否可以超过光速的问题,他就可以如此非此即彼的捏造事实,可见此人人品如何。关于光的波粒之争,这位质疑者也好意思在这里谈,说白了,所谓的每次都在进步,就是面对我们的反驳,他为了弥补自己观点的漏洞不断修改自己的观点,弥补了一个旧漏洞又带来了更多新的漏洞,自始至终就不能自圆其说。免谈新的漏洞,只谈补了旧的漏洞,这就是他说的进步,补不完的漏洞就有不断进步的基础。 搜狐社区朝高回复: 在搜狐社区科普园地,我根据这位相对论的质疑者(即搜狐社区帖中的楼主)对他的质疑提出疑问(见http://club.it.sohu.com/r-kpyd-82977-228-248-0.html),内容如下: 事实上,楼主甚至根本没有完全了解相对论,相对论所表达的长度变短、时间变慢,并非一种观察效应。如果完全只是楼主所说的观察效应,只要几何与物理学得稍好一点的初中生都能解释和计算由于观察效应带来的长度变短和时间变慢。而且,按楼主的理解,只有被观察物体向你远离时,你的观察效应才是长度变短,也只有时钟向你远离,你观察到的时钟才是变慢的,如果是尺和时钟从远处向你飞来,则观察效应上长度是变长的、时钟是变快的。打个比方,一根1光年长的棒,棒的一头离你1光年,另一头离你2光年,从某时刻开始,这根棒以0.5倍光速向你飞来,2年后,当近的这一头终于到你面前时,你看到的另一头刚开始动时的光线也正好传过来了,于是你看到的这根棒一头到了你跟前,另一头还刚刚启动,你看到的这根棒长度就是2光年长。再打个比方,一个时钟从距你5光年处以0.8倍光速向你飞来,那么在该时钟实际飞了5年后你才看到它开始起飞,6.25 年以后,这个钟就飞到你跟前了,在你看来这个钟只用了1.25年就走了6.25年,是正常速度的5倍,而你看到的这个钟只用了1.25年就飞了5光年,速度是光速的4倍。这么简单的假设就能得出观察到4倍光速的结论,爱因斯坦又怎么会假设光速是极限,又怎么会经过这么多年的质疑而相信相对论的人仍然那么多呢? 事实上,只是由于巧合,楼主计算的尺或钟远离时的观察效应的变化量正好等于相对论的尺缩和时间变慢的值而已,楼主自以为是,以为这就是相对论的真谛;而相对论的尺缩和时间变慢,早就考虑了观察效应,是在排除观察效应之后的真正的变化,各种证实相对论的实验,也都考虑了这个观察效应,是实际的结果而不是观察效应。如果狭义相对论表达的仅仅是观察效应的结果,那么一个几何与物理都学得较好的初中生只要了解了相对论效应,都可以通过计算发现这仅仅是一种观察效应。而楼主仅仅是误解了相对论,并以超过初中范围的知识表达了初中知识就能表达的内容而已。 而这位质疑者回复“232楼(即搜狐社区辩论中上述质疑内容)基本为主观结论叙述,没有论据,所以不能证伪,但我们知道,不能证伪的论述,也不具有可信性。”也就是说,这位相对论质疑者自己否认了他关于双生子佯谬的叙述,即本词条从第四段开始到参考词条前的内容。 提示: 一些号称维护相对论的人,根本不知道如何从经典时空观推导相对论,根本达不到以大学教材为基础,论述相对论的水平,见http://club.it.sohu.com/r-kpyd-79387-0-56-0.html,我们从没见过任何人推导过两个参照系接近时的爱因斯坦相对论效果,只是简单的以为V反向就可以了,对于初始长度两个参照系相同或不相同,都无法消除。而且在推导洛沦兹变换时用到了假设空间平坦,之后又说空间长度与速度相关,到广义相对论,更假设空间弯曲,就是从一个假设,到另一个假设,然后就完全抛弃经典理论,在相对论的空间自由扭曲。 这个情况,我们在非欧几何里见过,假设平行线在无穷远点相交,虽然我们不能证明假设不成立,但我们也从没证实过平行线在无穷远点相交,所以这是个纯逻辑游戏,没有实际用途。 我们论述的相对论非常简单,它利用了多普勒效应证明的声速不变,与声源运动无关的公理,不需要假设,就得到了声速相对论。就可以轻易的解释爱因斯坦推导相对论的不完善前提和不完善论据,也可以解释相对论结果,更可以解释相对论悖论——包括这个双生子悖论,我们有什么理由不修改相对论,以符合普适相对论和经典理论? 很明显的一个现象,我们在给中学生讲述相对论时,可以比爱因斯坦的更容易获得支持,因为我们的论述,完全符合经典理论。而爱因斯坦相对论,却难以自圆其说,必须丢掉很多常识性公理,才能不造成矛盾。也就是说,即使你可以从经典理论建立起相对论时空观,然后你必须再推翻这些理论,才能在爱因斯坦时空运转起来。 关于相对论还有一个奇怪的现象:不承认相对论结果的人,统统被冠以不懂相对论的帽子。就好象寓言故事皇帝的新衣中,看不到新装的人,被称为愚蠢的,或不称职的,于是一些人纷纷跳出来说看见了新衣,或懂相对论。是不是真的有新衣,或是否真的懂相对论,我们是可以制定标准的。那就是:从经典时空观推导相对论,会推导,基本算懂了。 另外我们没有理由问这样的问题:为什么牛顿三大定律如此的简单,连中学生都能明白,牛顿之前的科学家怎么就想不到呢?亚里士多德那么伟大的科学家怎么会想不到重物有可能比轻的物体后落呢? 双生子悖论这么简单的一个问题,维护相对论的人,怎么不能给出一个符合常识的解释呢?难道相对论必须推翻一切常对论质疑者一直在以为他所说的观察效应就是相对论效应,可是有脑子的人都可以现在能看到的地球上的那位其实看到的是很久很久以前的影像,现在他实际上已经是一位老大爷;地球要不了多久就会到自己面前了;而乘飞船的这位,刚刚到自己身边停下来,因为飞船比地球更快,所以他长得更慢,现在年龄恰好跟自己一样大——这时突然发现到自己身边的这位原来就是自己

探索“双生子佯谬”之谜,怎样理解狭义相对论的精华?

双生子佯谬故事其实就是:一对双胞胎,哥哥乘坐飞船去宇宙耍一圈回来,问到底哥哥弟弟谁更年轻?而狭义相对论又告诉我们“运动物体时间会变慢”,但是问题关键在于,哥哥和弟弟,都可以认为自己是静止,对方在运动,哪到底谁在变慢?我们先来分析哥哥的行为,哥哥最开始和弟弟一起静止地面(称为阶段1),然后哥哥乘坐飞船开始加速(称为阶段2),加速到速度v后做匀速直线运动(称为阶段3),开始减速(称为阶段4),到达某星球后静止(阶段5),开始反向加速往地球走(阶段6),达到速度v后做匀速直接线运动(阶段7),开始减速(阶段8),静止于地球和弟弟相会(阶段9)。现在以哥哥为视角,让我们看看哥哥是经历了啥?先看阶段1、阶段5和阶段9:其实哥哥和弟弟都处于相同的参考系,因为都是静止状态(这里假设遥远星球是和地球处于相对静止的状态,确保阶段5和阶段1、9处于同一个参考系)。既然都是静止,哥哥和弟弟处于相同参考系,那么他们的时间流逝速度一致,也就是说这三个阶段,哥哥和弟弟PK时间流逝,大家打成平手。下面看阶段3和阶段7:这个过程哥哥是做匀速直线运动,处于运动惯性系,弟弟静止地球,处于静止惯性系,还是以哥哥为视角,根据狭义相对论“运动物体时间变慢”,哥哥可以认为自己没动弟弟在动,所以这2个阶段,弟弟时间流逝速度慢了,哥哥赢了这两回合(当然此时如果以弟弟为视角,弟弟也会觉得是哥哥时间慢了,但是当前讨论的是哥哥的视角)。到目前为止,哥哥2胜3平。下面分析阶段2:哥哥加速离开弟弟,由于哥哥具有加速度,处于非惯性系,“运动物体时间变慢”未必正确了,但此时通过往期的文章我专门分析过,这种非惯性系情况下要看哥哥的受力方向,受力远离弟弟,弟弟时间变慢,受力指向弟弟,弟弟时间变快,其效应的大小与以哥哥视角下兄弟两人的距离有关(如果你不明白为什么,可以看看往期文章,这里不再详细讲解)。由于哥哥是刚刚离开弟弟,兄弟两人距离很近,所以相对论效应比较弱,又因为哥哥受力是远离弟弟,所以弟弟时间变慢,得出结论,这个阶段还是弟弟变慢,只不过变慢的非常少、很微小,这一次哥哥又赢了(不过赢的不多)目前为止,哥哥3胜3平。继续分析阶段4:由于哥哥是减速,也会有加速度,处于非惯性系,受力指向弟弟,且兄弟两人距离非常远了,所以相对论效应不仅明显,而且明显的过分,受力又指向弟弟,所以弟弟的时间会猛然加速的非常大,所以这一回合,哥哥完败,败的很惨(不了解加速情况下,受力方向与两者距离对时间影响的朋友,可以去看往期文章,否则蒙圈)。目前为止,哥哥3胜3平1负。继续看阶段6:哥哥开始反向加速,由于受力依然指向弟弟,且兄弟间距离非常远,所以最终结论还是:哥哥继续完败,败的还是很惨。目前为止,哥哥3胜3平2负。最后看阶段8:哥哥开始减速准备和弟弟见面,由于减速,也会有加速度,处于非惯性系,受力远离弟弟,所以弟弟时间变慢,但是此时兄弟两人距离较近,所以弟弟时间只慢一点点,但是哥哥还是总算掰回一局。目前分析完毕:哥哥4胜3平2负。目前大家是否觉得好奇,哥哥是4胜哦,总体速度应该比弟弟快,弟弟应该更年轻才对?其实不是,因为哥哥4胜中有2胜是非常微弱的胜,但是哥哥的2惨败却败的非常惨烈,以上的每个阶段都可以定量计算的,可以用狭义相对论+洛伦兹公式算出每个阶段“哥哥领先多少”,通过量化计算,你会发现,弟弟遥遥领先哥哥(计算过程很复杂,要用到微积分,且必须熟练玩转洛伦兹变换才行,这里就不详细说了)。最后再把过程梳理下,大家就明白了:1、哥哥和弟弟静止于地球:弟弟时间流逝和哥哥保持一致。2、哥哥开始加速:弟弟时间变慢了,但是慢的很微弱。3、哥哥做匀速直线运动:弟弟时间依然变慢。4、哥哥做减速运动:弟弟时间变得非常快。(该阶段弟弟时间会快很多,会反超哥哥)5、哥哥静止于遥远星球:弟弟时间流逝和哥哥保持一致。6、哥哥反向加速离开:弟弟时间变得非常快。(该阶段弟弟时间会变快很多,会把领先扩大很多)7、哥哥做匀速直线运动:弟弟时间变得慢。8、哥哥做减速运动:弟弟时间还是变得慢,但是慢的很微弱。9、哥哥回到地球:弟弟时间流逝和哥哥保持一致。

爱因斯坦狭义相对论中最著名最具挑战的双生子悖论

爱因斯坦在1905提出了狭义相对论,6年后的1911年,法国物理学家郎之万在意大利召开博洛尼亚大学召开的第四届世界哲学大会上提出了这么个问题:假设有一对双胞胎兄弟,弟弟呆在地球上不动,哥哥开着接近光速的飞船去宇宙里浪了一圈再回来。按照狭义相对论,运动的物体时间过得更慢,所以从地球上来看,显然是高速运动的哥哥时间过得更慢,那么等哥哥回到地球的时候,哥哥应该比弟弟更年轻。所谓悖论,就是命题中隐含着两个对立的结论。1. 什么是双生子悖论?狭义相对论中最著名的悖论,要数双生子悖论,也叫双生子佯谬(The Twin Paradox),同样是一个思维实验。1.1 哥哥比弟弟年轻假如有一对双胞胎兄弟,哥哥坐着一艘宇宙飞船,以接近光速的速度去太空里转了一圈,又回到地球上,而弟弟一直在地球上待着。问飞船回来以后,兄弟俩谁的年纪更大一些?根据钟慢效应,由于哥哥的运动速度非常快,所以在弟弟看来,哥哥的时间流逝速度非常慢。这样等哥哥回来后,弟弟经历的时间更长,所以哥哥反而比弟弟年轻,哥哥就变成了弟弟,弟弟变成了哥哥。1.2 弟弟比哥哥年轻这样一个推论看似没有什么问题,但是这里面隐含着严重的逻辑矛盾。虽然是哥哥坐着宇宙飞船去宇宙里转了一圈。但是在哥哥看来,何尝不是弟弟在地球上,地球相对于哥哥坐的宇宙飞船,也以接近光速的速度转了一圈。因为运动完全是相对的,无论是哥哥还是弟弟,都会觉得自己是不动的,是对方在运动。所以对于哥哥来说,应该是弟弟的时间流逝速度更慢。当自己回地球以后,哥哥应该更加年老,哥哥还是哥哥,弟弟还是弟弟。1.3 生活中的相对运动相信你一定坐过高铁,不知道你有没有过这样的感受。当你坐在高铁上,车还没有开动,在你坐的高铁旁边还有另外一列高铁。如果你望向窗外,发现对面的高铁开动了,这个时候你很有可能会产生错觉,你无法判断到底是对面的高铁开了,还是自己的高铁开了。因为运动完全是相对的,你只能判断对面的高铁相对于你运动了。至于到底是你所乘坐的高铁开动了,还是对面的高铁开动了,你是无法判断的。1.4 狭义相对论错了吗?同理,在宇宙飞船的思想实验中,如果哥哥和弟弟不知道自己具体是在地球上还是在宇宙飞船上,只能看到对方的相对运动的话,就会产生钟慢效应的悖论。也就是对于哥哥来说,弟弟更年轻了,而对于弟弟来说,哥哥也更年轻了,那么究竟是谁更年轻了呢?但是很显然,一件事不会有两个结果。真要做这么一个实验的话,最终要么是哥哥更年轻,要么是弟弟更年轻。如果折中一下,两个人的时间流逝还是一样的话,那钟慢效应的推论不就破溃了吗?2. 考虑整个加速的过程2.1 狭义相对论的适用范围与前两节的结论类似,狭义相对论的研究对象只能是做匀速直线运动的物体,不考有加速度的情况。加速度也属于广义相对论的讨论范畴。2.2 双生子佯谬的逻辑跳环如果真的分析一下这个思维实验,就会发现我们在逻辑上有一个巨大的跳环。一开始,哥哥和弟弟都在地球上,两个人是相对静止的。之后哥哥坐上了宇宙飞船,宇宙飞船一路加速到接近光速,哥哥实实在在的经历了一个加速过程。但是之前已经说了,狭义相对论只讨论匀速直线运动的情况,不考虑加速的情况。因此在分析这个问题的时候,不能只在狭义相对论的框架下来讨论,也必须要借助广义相对论。2.3 狭义相对论并未破溃其实仔细想一下就会发现,双生子悖论会遇到困难, 是因为哥哥最终要回到地球跟弟弟见面。这一见面,就会有谁更年轻的问题。但是如果哥哥飞出去以后,一直不回地球的话,即便在哥哥看来,弟弟流逝的时间更慢,在弟弟看来,哥哥的时间流逝也更慢,这本身是没有矛盾的。只要不存在最后哥哥回到地球与弟弟见面的环节,哥哥和弟弟各自的时间在自己看来都是正常的。而对于对方来说,只要没有验证的环节,狭义相对论就不会破溃。2.4 双生子思维实验的验证下面来看一个具体的例子。假设哥哥的飞行速度快到刚好使得弟弟看哥哥时间流逝的速度,是弟弟的十分之一,这个速度是非常接近光速的。根据相对运动,哥哥看弟弟的时间流逝速度也应该是自己的十分之一。哥哥出发的时候,两个人都是二十岁。当弟弟看自己的时间过了一年的时候,他给哥哥发了一条信息,说:哥哥,我这里已经过了一年了,我现在21岁了。然而在哥哥看来,由于弟弟的时间过得非常慢,弟弟在发出这条信息的时候,哥哥自己已经过了十年了。并且对于哥哥来说,这十年间自己是以接近光速的速度在飞行的,所以弟弟发信时,哥哥离地球的距离大概是十光年左右。而这条信息从发出到被哥哥接收到,又要花个十年左右。因为根据光速不变原理,这条信息要以光速跨越十光年的空间距离追上自己。所以当哥哥收到信息的时候,自己已经过了20年了。哥哥收到信息后马上给弟弟回信,说:弟弟,我已经40岁了。其实这个时候哥哥可以推算出,弟弟应该是22岁。但是在弟弟看来,整个过程就不是这样了。由于弟弟发信的时候自己只过了一年,所以哥哥离自己也只有一光年远,信息只需要追一光年的距离。但是在信息追赶哥哥的过程中,哥哥还在继续以略低于光速的速度远离。所以弟弟会觉得信息追赶哥哥的速度非常慢。等哥哥收到这条信息的时候,弟弟这里已经过了远远超过20年的时间,与哥哥之间的距离也远远超过20光年。还是根据光速不变原理,哥哥的回信在弟弟看来要以光速跨越这段很长的距离,还需要经过很长时间才能传到弟弟手中,而在回信中哥哥声称自己只有40岁。这样一来就没有矛盾了。无论是哥哥还是弟弟,收到对方的信息后再跟自己现在的时间进行比较,都会发现从信息上看来,对方比自己年轻了。狭义相对论的钟慢效应对双方来说都是成立的。3. 到底谁更年轻?上面的分析仍然是在狭义相对论的范围内讨论问题。如果运用广义相对论,真的让哥哥返回地球跟弟弟见面,到底谁会更年轻呢?答案是哥哥,因为哥哥会经历速度改变的过程。在广义相对论中,经历加速或减速的过程同样会使时间的流逝速度变慢。哥哥要想完成星际旅行,必须先加速,运动到最远处减速停下来,然后返航的过程再经历一次先加速后减速的过程。根据广义相对论,哥哥完成这一系列动作,时间流逝一定是更慢的。

狭义相对论是什么,黑洞究竟是怎么样的

狭义相对论是洛伦兹协变的力学和电动力学,数学基础是反应坐标在两个惯性系之间关系洛伦兹变换式,实际上就是背景时空为闵氏时空的广义相对论特例。黑洞是广义相对论中的概念,对应一类特殊时空:存在事件视界,将全时空分为两个集合,一个是能被观察者看到的事件的集合,另一个是不能被观察者看到的事件的集合。一般以事件视界作为黑洞的边界。作为最简单的史瓦西黑洞而言,其事件视界是一个二维球面和实数集的直积:S2×R,空间上对应一个球面,半径r=2m。通俗来讲黑洞就是一个半径小于其史瓦西半径的星体,引力非常之强导致光都无法从中脱离,故从外界看是黑的,因而得名。典型的黑洞是大质量恒星(质量大于30倍太阳质量)晚期经超新星爆发后留下的残骸,即恒星级黑洞。另外,一般认为大多数星系中心都是一个黑洞,叫做星系中心超大质量黑洞。还有微型黑洞,被认为是宇宙大爆炸初期在极高的能量密度下诞生的微观级别的黑洞。

以下哪个实验支持爱因斯坦的狭义相对论? a迈克尔逊干涉试验 b黑体辐射 c宇宙的加速膨胀 d水星的

a迈克尔逊干涉实验迈克尔逊和爱德华·威廉姆斯·莫雷使用迈克尔逊干涉仪在迈克尔逊-莫雷实验中对以太风观测中所得到的零结果,证实了以太的不存在。这朵十九世纪末经典物理学天空中的乌云为狭义相对论的基本假设提供了实验依据。

深度:为何说“速度越快时间越慢”?深扒狭义相对论的“祖坟”

在牛顿经典力学统治的物理学时代,速度和时间是两个风马牛不相及的东西。速度就是速度,时间就是时间,两者没有更多关系。如果有谁告诉你速度会影响时间流逝的快慢,你一定会认为这个人疯了(事实上,直到今天,还有一部分人认为爱因斯坦“疯了”)! 牛顿的经典力学是以绝对时空观为背景的。何为“绝对时空观”?时间和空间都是绝对的,时间在任何环境中的流逝速度都是一样的。 绝对时空观很符合人们的日常认知,毕竟地球上每个人的时间流逝速度都是一样的(严格来讲,稍微有点不一样,后面会讲到)。虽然神话故事中有“天上一天,地上一年”的说法,但在人们的固有思维中,也只是觉得那只是一个神话故事而已,没有谁会当真。 而牛顿的绝对时空观也统治了物理学界几百年时间,直到时间来到了19世纪末。 当时的物理学界认为物理学大厦几乎已经修建完毕,之后不会有什么大的发现了,只需要小修小补就可以了。物理学家也为此感到骄傲自豪,认为他们一代人已经触摸到了物理学界最后的“圣杯”。 除了“两朵乌云”仍旧飘浮在物理学界的天空中! 而正是“两朵乌云”中的“其中一朵乌云”,彻底颠覆了物理学家们自认为已经建好的物理学大厦,这个大厦也因此轰然倒塌! 其中一朵“乌云”迈克尔逊莫雷实验与“以太”之间的矛盾,两者具体有什么矛盾呢? 所谓“以太”,通俗来讲就是牛顿绝对时空观中的“绝对参照系”,或者说“光速的参照系”,为何这样说? 这与“以太”的概念提出的背景有关。以太概念的提出是为了协调牛顿经典力学与麦克斯韦方程组之间的矛盾而诞生的,两者有什么矛盾呢? 很简单,牛顿经典力学是以绝对时空观为背景的,其中一个核心思想就是“任何速度都是相对的,都要走相应的参照系才有意义”。这很好理解,比如说,我们通常所说的速度都是默认地球为参照系。 但是麦克斯韦方程组却给了绝对时空观当头一棒,这个堪称“人类史上最伟大”的方程也有一个核心思想:光速与参照系无关,只与真空的磁导率和介电常数有关。 两者之间的“矛盾”就像一颗炸弹一样引爆了物理学界,牛顿和麦克斯韦都是大佬级别的存在,牛顿的经典力学统治了物理学界几百年,绝对时空观早已深入到每个人的骨髓里,如此的根深蒂固。 而另一方面,麦克斯韦方程组是如此的简洁优美,看起来就像是“上帝的公式”,当时的物理学家们也“不敢得罪”。 那怎么办呢?“左右逢源”是最好的方式。物理学界们开始了各种假设,来协调两者之间的矛盾,在这种大背景下,“以太”的概念应运而生。 当时的物理学家们认为,光速也有参照系,它的参照系就是“以太”。以太是我们看不见摸不着的绝对参照系。 说白了,以太的概念就是一种假设。这本没有什么问题,因为任何科学理论一开始都是从假设开始的,只要这个假设能经得起人们不断地验证,能经受得住考验就是好的假设。 不过,以太概念的提出没过多久就出问题了。人们总是对新生的事物充满好奇和 探索 欲望。 这不,迈克尔逊和莫莫雷就想弄明白以太到底是什么,到底是什么样的存在方式。 于是,迈克尔逊莫雷就做了一个实验(迈克尔逊莫雷实验)。这里简单说一下实验过程。 按照以太的诠释,以太存在于宇宙的每个角落,绝对静止的存在。所以,如果物体的运动会形成“以太风”效应,就如同我们在奔跑时,即便是没有风(相对静止的风),也会感觉到风的存在。用这种方法就可以得出地球在宇宙中运动的绝对速度(相对以太)。 而迈克尔逊和莫雷也用类似的方法测量不同运动状态下的光速,以此来寻找以太的真实存在。但无论他们多么努力,等来的都是“冰冷冷”的结果:无论在何种运动状态下测量光速,得到的数值都是不变的,都是30万公里每秒! 这样的结果显然是矛盾的。只有两种解释:要么迈克尔逊莫雷实验是错误的,测量不准确。要么以太的概念就是错误的,以太根本不存在。 以太不存在?当时的物理学界是不允许出现这种结果的,因为那意味着绝对时空观的轰然倒塌,几百年来一直统治物理学界的经典力学是不严谨的,这对物理学界是太大的打击,经典力学在他们心目中的地位早已根深蒂固! 在迈克尔逊莫雷做过实验之后,物理学家们纷纷站出来,做了类似的实验,实验过程更加严谨,精确。但结果没有任何改变:无论他们如何测量,光速就好像具有某种意识一样,就是不变,恒定的速度,30万公里每秒。 怎么办?迈克尔逊莫雷实验和以太之间的矛盾就像一只“苍蝇”一样卡在物理学家嗓子眼里,让他们浑身不舒服! 关键时刻,爱因斯坦颠覆性的大脑思维改变了一切,他看到了问题的关键所在:既然实验本身是没有问题的,那么肯定是以太的问题。而以太的概念本身就是一种假设,又与严谨的实验相悖,干脆直接抛弃,一切问题不就解决了? 于是爱因斯坦用“奥卡姆剃刀”(这个原理很实用,尤其是在我们日常生活中遇到杠精的时候,大家可以了解一下)一下把以太“咔嚓”掉了。 同时,爱因斯坦提出了自己的假设,这就是“光速不变原理”:光速是绝对的,在任何参照系和运动状态下都保持不变。 牛顿的绝对时空观轰然倒塌,爱因斯坦建立起来了相对时空观。以“光速不变原理”为前提(还有一个前提是相对性原理),爱因斯坦建立起了伟大的狭义相对论。 光速不变原理和以太的概念都是假设,但显然前者比后者更具说服力,因为它有严谨的实验来支撑,不仅仅是一个假设。一开始物理学界并不太承认狭义相对论,但随着越来越多的证据不断涌出,外界也不得不承认。 狭义相对论给了我们一个全新的世界观,宇宙观,彻底颠覆了传统的绝对时空观。之后爱因斯坦把“洛伦兹变换”加入到狭义相对论方程里,光速极限,时间膨胀,尺缩效应,质增效应等应用而生。 速度(光速),首次和时间有了密不可分的联系。为何会这样?其实答案很简单。在牛顿的绝对时空观里,时间和空间都是绝对的,光速(速度)会随着参照系的改变而变化。但在爱因斯坦的相对时空观里,光速是绝对的,这意味着时间和空间必须随着参照系有所改变,只有这样才能保证光速不变。光速与其他速度叠加之后不会发生改变,合成公式为: 通俗来讲,光速会根据你的运动状态发生改变,你快光速就快,你慢下来光速也就“慢下来”,光速会根据你的运动状态而相应地发生改变。 更严谨来讲,光速不仅仅是速度,光速并不是指光的速度,更应该是四维时空的一种内在秉性,任何静质量为零的物质传播速度都是光速,信息的传播速度也是光速,比如说引力波和胶子的传播速度都是光速。 上面说了,为了保证光速不变,时间和空间必须相应改变,于是就出现了时间膨胀和尺缩效应,公式如下: 公式中可以看出,速度越快,时间就越慢,当无限接近光速时,时间就趋于停止。公式的推导过程并不复杂(详见之前的文章:通俗讲解爱因斯坦的狭义相对论数学公式,上过初中就能看懂! 什么是时间神奇的事情正在发生时间膨胀的数学推导过程),一切都基于光速不变原理,之前发表的文章有说明,这里不再详述,有兴趣的朋友可以简单试试。 狭义相对论的核心之一是“光速不变原理”,但有一点不容忽视,那就是参照系的选择。不少人之所以不愿意相信相对论,就是因为在参照系不断转换的情况下迷失了方向,弄错了方向。 最后的强调: 光速不变原理是假设 光速不变原理是假设 光速不变原理是假设 重要的事情说三遍!什么,假设的东西我们凭什么相信? 我们真的可以有权利不相信,然后提出自己的假设,但正如“以太”这个假设的概念一样,如果你提出的假设能比光速不变原理更适用,更能解决经典力学与麦克斯韦方程组之间的矛盾,更符合实验观测,更能经得住考验,你肯定比爱因斯坦更牛!人们也肯定更相信你的假设。 但问题是你不能,我不能,截至目前大家都不能。 而且,假设的前提越多,就越容易出错。任何一个假设就像一颗定时炸弹一样引爆出更多的矛盾。这就像是谎言,为了圆一个谎言,之后需要不断编造更多的谎言。所以假设越少,出错的几率就越低。而爱因斯坦仅仅用两个假设(另外一个是相对性原理)就提出了伟大的狭义相对论! 所以,我们不妨心平气和地接受狭义相对论,何况一百多年来越来越多的事实已经证明了狭义相对论,手机导航系统就是最好的说明。 非要拒绝相信相对论来表明你的“与众不同”? 完!

迈克尔逊干涉仪是如何通过实验结果否定以太的存在的,为狭义相对论奠定基础

1881年-1884年,阿尔伯特·迈克尔逊和爱德华·莫雷为测量地球和以太的相对速度,进行了著名的迈克尔逊-莫雷实验。实验结果显示,不同方向上的光速没有差异。这实际上证明了光速不变原理,即真空中光速在任何参照系下具有相同的数值,与参照系的相对速度无关,以太其实并不存在。 他认为若地球绕太阳公转相对于以太运动时,其平行于地球运动方向和垂直地球运动方向上,光通过相等距离所需时间不同,因此在仪器转动90°时,前后两次所产生的干涉必有0.04条条纹移动。1887年他们继续改进仪器,光路增加到11米,花了整整5天时间,仔细地观察地球沿轨道与静止以太之间的相对运动,结果仍然是否定的。这一实验与热辐射中的“紫外灾难”并称为“科学史上的两朵乌云”。

狭义相对论诞生的前夜,“以太”的概念差点“锁死”现代物理学

以太,相信很多人都听说过这个概念,尤其是对爱因斯坦相对论诞生过程比较了解的人,更是对“以太”的概念再熟悉不过了。 在爱因斯坦提出相对论之前,以牛顿经典力学为基础的绝对时空观统治着整个物理学界,当时的物理学界大佬视“经典力学”为“神明”,根本不会去质疑经典力学是否真的正确,也没有质疑的理由,因为经典力学已经统治物理学界几百年了,而且看起来可以“上天入地”,怎么可能怀疑呢? 以太的概念由来已久,不过这里所说的以太是为了调和麦克斯韦方程组与经典力学之间的矛盾而产生的,是近现代物理学的概念。 在物理学家们对牛顿的绝对时空观深信不疑时,麦克斯韦方程组横空出世,给绝对时空观出了一道难题。 按照绝对时空观的诠释,万事万物的运动速度都是相对的,没有绝对速度的存在。不过在麦克斯韦电磁理论中,有一个公式表明,光速好像是个例外,光速不需要参照系,它只与真空的磁导率和介电常数有关。 说白了,光速是绝对的,相对于任何物体(不管运动与否)都保持不变。 这下麻烦了:麦克斯韦电磁理论竟然与统治物理学界几百年的牛顿经典力学矛盾? 物理学家决不允许这种事情发生,于是他们坚决捍卫牛顿经典力学,想尽各种办法调和两者之间的矛盾,开始了“左右逢源”! 以太的概念应运而生。 物理学家们假设一种叫做“以太”的东西存在于宇宙每个角落,它没有质量,可以绝对渗透宇宙空间,同时以太也是绝对的参照系,绝对静止,其他任何物体都相对于以太运动。 以太的这种特性很好地协调了麦克斯韦电磁理论与牛顿经典力学之间的矛盾,也普遍被当时的物理学界接受。 物理学家也开始欣喜若狂,认为当时的物理学大厦已经基本完成,之后的发展只需要进行小修小补就可以了,不会有什么大的修改或者发现了。 但没想到的是,当时并不被物理学家们很重视的“两朵乌云”其中之一,彻底颠覆了牛顿经典力学下的绝对时空观。 “这朵乌云”就是迈克尔逊莫雷实验(实验过程不再详述),这个实验表明了一点:光速是绝对的,即使相对所谓的“以太”,光速也没有任何改变。 这就奇怪了:如果说以太是绝对静止的参照系,其他任何物质在不同运动状态下测量到的速度肯定是不同的,但光显得很特别,无论在何等状态下测量,光的速度就是恒定保持不变。 当时的物理学家们对于迈克尔逊莫雷实验深表怀疑:他们不相信一个实验就能推翻刚刚建立起来的物理学大厦,这种怀疑很正常,毕竟连迈克尔逊莫雷本人也怀疑是不是实验本身出了问题!(可见当时的经典力学在物理学界的统治地位) 于是,迈克尔逊莫雷反复做了几次实验(其他物理学家也做过类似实验),但结果仍旧没有任何改变:光就是傲慢地保持不变! 但经过几百年才建立起来的以经典力学为基础的物理学大厦岂能因为一个实验而轰然倒塌?当时的物理学界坚持认为迈克尔逊莫雷实验是错误的,一定是实验过程出现了某些纰漏,迈克尔逊甚至到死也不相信实验结果! 但无论如何,科学是严谨的,物理学家不可能对实验结果视而不见。于是又开始了“左右逢源”。 其中洛伦兹是左右逢源的“好手”,他也不愿意抛弃“以太”的概念,这样解释:在测量光速的过程中,测量者相对于以太有一定的运动速度,于是长度发生了变化(收缩),由此抵消了光在不同方向上产生的差异。 但是,结果还是治标不治本。随着类似实验越来越多,测量结果越来越精确,以太这个绝对静止的参照系带来了越来越多的矛盾,人们开始怀疑以太是否真的存在,毕竟以太的概念一开始就是假设的,看不见摸不着。而迈克尔逊莫雷实验本身是真实存在的,人们没有理由不怀疑以太是否存在。 但没有办法,牛顿的绝对时空观在当时的物理学家心目中是如此的根深蒂固,以至于物理学界很难因为一个实验彻底推翻刚刚建立起来的物理学大厦。 必须要有一个具有颠覆性思维的大脑出现,而爱因斯坦恰恰具有这种大脑。 爱因斯坦用“奥卡姆剃刀”一下把“以太”咔嚓掉了,结果就是:所有问题都解决了! 在爱因斯坦看来:既然一切的一切都是因为以太的概念导致了,而这个概念本身又是假设的,为什么不能抛弃以太的概念,重新建立起一套更完整的物理学体系呢? 于是,基于“光速不变原理”和“相对性原理”两个前提(其实也是两个假设),狭义相对论应用而生,绝对时空观彻底被颠覆,相对时空观问世! 事实上,当时的几个物理学家已经马上触摸到狭义相对论了,比如说庞加莱,只是他不愿意放弃以太的概念,结果就是遗憾地与狭义相对论失之交臂! 这里还要强调一点,任何科学理论都是建立在假设的基础上,只要你的假设能够自洽,而且能够比别的假设更好地诠释大自然现象,就是好的假设。但是假设必须越少越好,因为假设越多,出错的几率就越大。 狭义相对论的建立也是建立在两个假设的基础上。既然是假设,那你就有理由不相信:干嘛非要相信假设的东西呢?同时,你也完全可以提出自己的假设来代替爱因斯坦的假设,但前提是你的假设必须更完美才行,不然别人为何要相信你的假设呢? 但是,为什么一百多年过去了,科学家越来越相信狭义相对论呢? 答案很简单:狭义相对论经受住了科学家们的各种考验,在不断的验证过程中,狭义相对论的地位也越来越坚固!