DNA

DNA图谱 / 问答 / 标签

cDNA是什么啊?

DNA(Deoxyribonucleic acid),中文译名为脱氧核糖核酸,是染色体的主要化学成分,同时也是基因组成的,有时被称为“遗传微粒”。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由RNA与DNA进行一定条件下合成的,就是cDNA。cDNA 互补脱氧核糖核酸   为具有与某mRNA(信使RNA)链呈互补的碱基序列的单链DNA即complementary DNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。在这种情况下,mRNA的cDNA,与原来基因的DNA(基因组DNA,genomic DNA)不同而无内含子;相反地对应于在原来基因中没有的而在mRNA存在的3′末端的多A序列等的核苷序列上,与exon序列、先导序列以及后续序列等一起反映出mRNA结构。cDNA同样可以被克隆。(转自http://baike.baidu.com/view/212931.htm)

CDNA与基因组DNA有何区别?

一、来源不同CDNA:CDNA是以mRNA为模板,在适当引物的存在下,由mRNA经过反转录而得到的DNA,是mRNA链互补的DNA链。基因组DNA:基因组DNA是指整套人类基因结构,控制着人类从一个单个细胞到一个复杂整体的发育。二、所属细胞类型不同CDNA:CDNA的基因可以来自于原核细胞,也可以来自于真核细胞。基因组DNA:基因组DNA是指人类基因,属于真核细胞。三、结构不同CDNA:cDNA内部已无内含子等结构。基因组DNA:基因组DNA通常存在内含子等结构。扩展资料二代测序均是先将RNA反转录组成cDNA再进行测序的。mRNA,并不是严格意义上的基因,而是基因信息的载体,称作Messenger RNA (mRNA),即信使核糖核酸。“基因”是指负载特定生物遗传信息,能够产生一条多肽链或功能RNA所必需的DNA分子片段,不但包括编码区,还包括5"-端和3"-端两侧特异性序列,虽然这些序列不编码氨基酸,但在基因表达的过程中起着重要的作用。参考资料来源:百度百科-CDNA百度百科-基因组DNA

cdna是什么 详解cdna的定义和应用?

通过cdna的克隆和表达,可以研究基因的功能。例如,将cdna克隆到表达载体中,转染到细胞中,就可以研究该基因的表达和功能。3. 基因功能研究3. 基因功能研究cdna是通过逆转录反应将mRNA作为模板合成的DNA分子。逆转录是指将RNA作为模板合成DNA的过程,这个过程由逆转录酶催化完成。逆转录过程中,RNA模板首先被逆转录酶的反转录酶活性所逆转录,形成相应的DNA互补链,然后由DNA聚合酶合成第二条DNA链,形成完整的双链DNA分子。这个过程合成的DNA分子即为cdna。1. 基因克隆

cDNA和基因组DNA有什么不同

一、来源不同CDNA:CDNA是以mRNA为模板,在适当引物的存在下,由mRNA经过反转录而得到的DNA,是mRNA链互补的DNA链。基因组DNA:基因组DNA是指整套人类基因结构,控制着人类从一个单个细胞到一个复杂整体的发育。二、所属细胞类型不同CDNA:CDNA的基因可以来自于原核细胞,也可以来自于真核细胞。基因组DNA:基因组DNA是指人类基因,属于真核细胞。三、结构不同CDNA:cDNA内部已无内含子等结构。基因组DNA:基因组DNA通常存在内含子等结构。扩展资料二代测序均是先将RNA反转录组成cDNA再进行测序的。mRNA,并不是严格意义上的基因,而是基因信息的载体,称作Messenger RNA (mRNA),即信使核糖核酸。“基因”是指负载特定生物遗传信息,能够产生一条多肽链或功能RNA所必需的DNA分子片段,不但包括编码区,还包括5"-端和3"-端两侧特异性序列,虽然这些序列不编码氨基酸,但在基因表达的过程中起着重要的作用。参考资料来源:百度百科-CDNA百度百科-基因组DNA

cDNA反转录的产物是双链还是单链的?

RNA反转录的cDNA是单链的,最终形成双链。cDNA是指具有与某RNA链呈互补碱基序列的DNA。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)作用而合成。并且在合成单链cDNA后,再用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶作用合成双链cDNA。扩展资料:反转录的生物学意义:1、对分子生物学的中心法则进行了修正和补充,修正后的中心法则表示为:是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)。有些病毒(如阮病毒,即疯牛病病毒)以蛋白质直接形成蛋白质。2、在致癌病毒的研究中发现了癌基因,在人类一些癌细胞如膀胱癌、小细胞肺癌等细胞中,也分离出与病毒癌基因相同的碱基序列,称为细胞癌基因或原癌基因。癌基因的发现为肿瘤发病机理的研究提供了很有前途的线索。3、在实际工作中有助于基因工程的实施。由于目的基因的转录产物易于制备,可将mRNA反向转录形成DNA用以获得目的基因。参考资料来源:百度百科-反转录参考资料来源:百度百科-cDNA

什么是cDNA,有什么作用

中文名称: 互补DNA 英文名称: cDNA, complementary DNA 学科分类: 遗传学 注 释: 信使RNA(mRNA)分子的双链DNA拷贝。构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子.因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的.所以一个cDNA分子就代表一个基因.但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子.所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列---内含子.

cDNA和gDNA区别

gDNA(genomic DNA,基因组DNA):是指有机体在单倍体状态下的DNA全部含量。广义的基因组也指某一体系(如核或细胞器)中的DNA,它包括编码或细胞中固有的核糖体DNA(rDNA)、线粒体DNA(mtDNA)、tRNA基因及其它RNA编码。cDNA:与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由RNA与DNA进行一定条件下合成的,就是cDNA。两者从定义就可以看出区别,从某种意义上来说,前者包括后者.

CDNA与基因组DNA有何区别?

一、来源不同CDNA:CDNA是以mRNA为模板,在适当引物的存在下,由mRNA经过反转录而得到的DNA,是mRNA链互补的DNA链。基因组DNA:基因组DNA是指整套人类基因结构,控制着人类从一个单个细胞到一个复杂整体的发育。二、所属细胞类型不同CDNA:CDNA的基因可以来自于原核细胞,也可以来自于真核细胞。基因组DNA:基因组DNA是指人类基因,属于真核细胞。三、结构不同CDNA:cDNA内部已无内含子等结构。基因组DNA:基因组DNA通常存在内含子等结构。扩展资料二代测序均是先将RNA反转录组成cDNA再进行测序的。mRNA,并不是严格意义上的基因,而是基因信息的载体,称作Messenger RNA (mRNA),即信使核糖核酸。“基因”是指负载特定生物遗传信息,能够产生一条多肽链或功能RNA所必需的DNA分子片段,不但包括编码区,还包括5"-端和3"-端两侧特异性序列,虽然这些序列不编码氨基酸,但在基因表达的过程中起着重要的作用。参考资料来源:百度百科-CDNA百度百科-基因组DNA

下列关于cDNA叙述正确的是

【答案】:DcDNA是指以mRNA为模板,利用反转录酶合成与mRNA互补的DNA。

cDNA文库与基因组文库有什么不同

cDNA文库 以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库.基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性.cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因.但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组.DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA 基因组文库 用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆.这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库. 将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆.这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因.

CDNA中C是什么意思

c是complementary的缩写,既是补充物的意思。既用RNA反转录成的DNA为cDNA.

RNA是如何反转录成cDNA的?过程和原理怎样?请教

rna不纯化做反转录,cdna容易降解.是的,得到的是全体mrna的cdna的库。然后通过pcr手段获得需要的目的片段。但是实际操作过程中,由于mrna的降解,因此一次实验不可能得到全部的cdna,因此要重复1~2次,才能保证全部mrna被反转录为cdna.核糖核酸(缩写为rna,即ribonucleicacid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。rna由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。rna的碱基主要有4种,即a腺嘌呤、g鸟嘌呤、c胞嘧啶、u尿嘧啶,其中,u(尿嘧啶)取代了dna中的t。

【求助】cDNA 该如何保存? 求解答

可以用PCR产物稀释100倍左右作为模版。是RT后的cDNA。不是PCR后得双链CDNA。PCR后得产物是稳定的。不知道你是用的哪个我说是的RT后的cDNA可以分装成小份儿的,经常用的放4度,其他的放-20度保存分装

cDNA是双链么

你知道real time PCR用cDNA和用DNA的目的区别在哪儿吗?用DNA的一般是检测基因组中目的片段的数量的用cDNA的一般是检测目的基因表达量的,这当然就需要检测mRNA的量,但是RNA太容易被分解,难以检测,故而用反转录而成的cDNA。一般反转录而成的cDNA是单链的,要形成双链,还需要其他步骤,比如两步法中的pcr步骤。

CDNA与基因组DNA有何区别?

一、来源不同CDNA:CDNA是以mRNA为模板,在适当引物的存在下,由mRNA经过反转录而得到的DNA,是mRNA链互补的DNA链。基因组DNA:基因组DNA是指整套人类基因结构,控制着人类从一个单个细胞到一个复杂整体的发育。二、所属细胞类型不同CDNA:CDNA的基因可以来自于原核细胞,也可以来自于真核细胞。基因组DNA:基因组DNA是指人类基因,属于真核细胞。三、结构不同CDNA:cDNA内部已无内含子等结构。基因组DNA:基因组DNA通常存在内含子等结构。扩展资料二代测序均是先将RNA反转录组成cDNA再进行测序的。mRNA,并不是严格意义上的基因,而是基因信息的载体,称作Messenger RNA (mRNA),即信使核糖核酸。“基因”是指负载特定生物遗传信息,能够产生一条多肽链或功能RNA所必需的DNA分子片段,不但包括编码区,还包括5"-端和3"-端两侧特异性序列,虽然这些序列不编码氨基酸,但在基因表达的过程中起着重要的作用。参考资料来源:百度百科-CDNA百度百科-基因组DNA

mRNA反转录形成cDNA 大致分为哪些步骤

mRNA反转录形成cDNA 大致分为哪些步骤  有反转录酶,可以以RNA为模版合成DNA。  这过程需要引物,根据mRNA有3‘polyA尾巴的特点,可以用oligo-dT作为引物,合成cDNA,这样可以自然去除非mRNA的RNA的转录。  也可以用随机引物去合成大量不同的cDNA。  如果要反转录特定的mRNA,就根据它设计特异性引物反转录,这样理论上只有目的cDNA产生。

cdna是什么

Complementary DNA 为具有与某RNA链呈互补的碱基序列的单链DNA即complementary DNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。

CDNA如何克隆

一般用mRNA反转录地方法得到cDNA或者从文库里直接得到cDNA之后用PCR就可以扩增 克隆cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入寄主细胞。每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布。特点是:①有些生物,如RNA病毒没有DNA,只能用cDNA克隆;②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息;③cDNA能在细菌中表达。cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。1.方法:(1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA。(2)载体DNA的选择:①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松驰型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆。②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA库。M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交。③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb的外源DNA片段。也能象一般质粒一样携带小片段DNA,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。(3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端。平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。连接反应需注意载体DNA与DNA片段的比率。以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。(4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难。②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高。

怎样得到一种基因的cDNA,求具体步骤

1.首先,你要知道那种细胞有该基因的高表达。2.培养该细胞。3.提取总的mRNA。4.下面的步骤取决于你对该基因序列的知道情况。如果全序列已知,那就设计一对针对首尾的PCR引物,直接做RT-PCR,就可以得到全长cDNA了。如果只知道其中一段,那就先把mRNA用随机引物反转录为cDNA,建立cDNA文库。然后用已知的序列设计探针,在文库中寻找

cDNA文库和基因DNA有什么区别?

cDNA文库不同于基因组文库,被克隆DNA是从mRNA反转录来源的DNA。cDNA组成特点是其中不含有内含子和其他调控序列。cDNA文库以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组。DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA基因组文库用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆。这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因。

关于cdna的最正确的说法是

关于cdna的最正确的说法是以mRNA为模板合成的双链DNA。cDNA是指互补DNA。特指在体外经过逆转录后与RNA互补的DNA链。与平常我们所称谓的基因组DNA不同,cDNA没有内含子而只有外显子的序列。真核生物的mRNA或其他RNA的cDNA,在遗传工程方面广为应用。为具有与某mRNA(信使RNA)链呈互补的碱基序列的单链DNA即complementary DNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后。以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。在这种情况下,mRNA的cDNA,与原来基因的DNA(基因组DNA,genomic DNA)不同而无内含子;相反地对应于在原来基因中没有的而在mRNA存在的3"末端的多A序列等的核苷序列上,与exon序列、先导序列以及后续序列等一起反映出mRNA结构。确定mRNA完整性的方法有:①直接检测mRNA分子的大小。②测定mRNA的转译能力。③检测总mRNA指导合成cDNA第一链长分子的能力。

如何获得cDNA?需要哪些步骤?

cDNA的获取方法:1.用亲和层析法得到 mRNA 后,根据 mRNA 分子的 3" 端有 poly (A) 尾结构的原理,用 12~20 个核苷酸长的 oligo 与纯化的 mRNA 混合, oligo ( dT )会与 poly (A) 结合作为反转录酶的引物,随机引物法合成的产物也是 RNA-DNA 的杂交体。把 cDNA 克隆到载体中之前,必须把这种杂交体中的 RNA 转变成 DNA 链,即形成双链 DNA 分子。2.利用 cDNA 第一链的 3" 末端常常出现发夹环的特征,这种发夹结构是反转录酶在第一链末端“返折”并且进行复制第一链的结果,用这种方法合成的双链 cDNA 在一端有一个发夹环,可以用单链特异的 S1 核酸酶切去。新合成的 DNA 存在切口,用 DNA 连接酶把这些切口连接在一起形成一条完整的 DNA 链。 RNase H 法优于 S1 核酸酶法,它能获得包括 mRNA 5" 端全部或绝大部分的更长顺序 cDNA 分子。cDNA简介:为具有与某mRNA(信使RNA)链呈互补的碱基序列的单链DNA即complementary DNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。在这种情况下,mRNA的cDNA,与原来基因的DNA(基因组DNA,genomic DNA)不同而无内含子;相反地对应于在原来基因中没有的而在mRNA存在的3′末端的多A序列等的核苷序列上,与exon序列、先导序列以及后续序列等一起反映出mRNA结构。

cDNA文库是什么?

部分基因文库cDNA是指以mRNA为模板,由逆转录酶催化形成的互补DNA(cDNA),其核苷酸序列完全互补于模板mRNA链;再以cDNA为模板,由DNA聚合酶合成第二链,得到互补双链DNA.由于模板mRNA含有该种细胞的各种mRNA分子,因而合成的cDNA产物是各种mRNA拷贝的混合物,然后将双链产物与载体(质粒或噬菌体)DNA重组,并转化到宿主细菌或包装成噬菌体颗粒,得到一系列重组的克隆混合体.每个克隆含单独一种mRNA分子,克隆总和则包含细胞的全部mRNA信息,即cDNA文库.

求教cDNA制备的一般方法 RT,一般的步骤就行,

一、制备用于克隆cDNA的mRNA 1.Oligotex mRNA Kits (QIAGEN)法 2.磁珠法分离mRNA 注意:一般需要做mRNA完整性的检测(检查mRNA在无细胞翻译体系指导合成高分子量蛋白质的能力、mRNA分子的大小等);如果用于制备cDNA文库则还需要检测mRNA在细胞中的丰度. 二、cDNA第一链的合成 1、oligo(dT)引导的DNA合成法:利用真核mRNA分子所具有的poly(A)尾巴的特性,加入oligo(dT)短片段,由反转录酶合成cDNA的第一链. 2、随机引物引导的cDNA合成法 (randomly primed cDNA synthesis) : 根据许多可能的序列,合成出6-10个核苷酸长的寡核苷酸短片段(混合物),作为合成第一链cDNA的引物.在应用这种混合引物的情况下,cDNA的合成可以从mRNA模板的许多位点同时发生,而不仅仅从3"-末端的oligo(dT)引物一处开始. 三、cDNA第二链的合成 1、自身引导合成法: 单链cDNA的3"端能够形成发夹状的结构作为引物,在大肠杆菌聚合酶I Klenow或反转录酶的作用下,合成cDNA的第二链. 缺 点: 在以S1核酸酶切割cDNA的发夹状结构时,会导致对应于mRNA 5"端的地方的序列出现缺失和重排.S1核酸酶的纯度不够时,会偶尔破坏合成的双链cDNA分子. 2、置换合成法 原 理: 以第一链合成产物cDNA:mRNA杂交体作为切口平移的模板,RNA酶H在杂交体的mRNA链上造成切口和缺口,产生一系列RNA引物,在大肠杆菌DNA聚合酶I 的作用下合成cDNA的第二链. 优点:a)合成cDNA的效率高 b)直接利用第一链的反应产物,不需纯化 c)避免使用S1核酸酶来切割双链cDNA 3、引物-衔接头法

基因组dna文库和cdna文库的区别

cdna文库不同于基因组文库,被克隆dna是从mRNA反转录来源的dna。cdna组成特点是其中不含有内含子和其他调控序列。 cdna文库 以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组。DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA 基因组文库 用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。 将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆。这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因。

如何获得cDNA?

cDNA的获取方法:1.用亲和层析法得到mRNA后,根据mRNA分子的3"端有poly(A)尾结构的原理,用12~20个核苷酸长的oligo与纯化的mRNA混合,oligo(dT)会与poly(A)结合作为反转录酶的引物,随机引物法合成的产物也是RNA-DNA的杂交体。把cDNA克隆到载体中之前,必须把这种杂交体中的RNA转变成DNA链,即形成双链DNA分子。2.利用cDNA第一链的3"末端常常出现发夹环的特征,这种发夹结构是反转录酶在第一链末端“返折”并且进行复制第一链的结果,用这种方法合成的双链cDNA在一端有一个发夹环,可以用单链特异的S1核酸酶切去。新合成的DNA存在切口,用DNA连接酶把这些切口连接在一起形成一条完整的DNA链。RNaseH法优于S1核酸酶法,它能获得包括mRNA5"端全部或绝大部分的更长顺序cDNA分子。cDNA简介:为具有与某mRNA(信使RNA)链呈互补的碱基序列的单链DNA即complementaryDNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。在这种情况下,mRNA的cDNA,与原来基因的DNA(基因组DNA,genomicDNA)不同而无内含子;相反地对应于在原来基因中没有的而在mRNA存在的3′末端的多A序列等的核苷序列上,与exon序列、先导序列以及后续序列等一起反映出mRNA结构。

cDNA是干什么用的

cDNA 互补脱氧核糖核酸为具有与某mRNA(信使RNA)链呈互补的碱基序列的单链DNA即complementary DNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。在这种情况下,mRNA的cDNA,与原来基因的DNA(基因组DNA,genomic DNA)不同而无内含子;相反地对应于在原来基因中没有的而在mRNA存在的3′末端的多A序列等的核苷序列上,与exon序列、先导序列以及续序列等一起反映出mRNA结构。cDNA同样可以被克隆。

如何获得cDNA?

cDNA的获取方法:1.用亲和层析法得到 mRNA 后,根据 mRNA 分子的 3" 端有 poly (A) 尾结构的原理,用 12~20 个核苷酸长的 oligo 与纯化的 mRNA 混合, oligo ( dT )会与 poly (A) 结合作为反转录酶的引物,随机引物法合成的产物也是 RNA-DNA 的杂交体。把 cDNA 克隆到载体中之前,必须把这种杂交体中的 RNA 转变成 DNA 链,即形成双链 DNA 分子。2.利用 cDNA 第一链的 3" 末端常常出现发夹环的特征,这种发夹结构是反转录酶在第一链末端“返折”并且进行复制第一链的结果,用这种方法合成的双链 cDNA 在一端有一个发夹环,可以用单链特异的 S1 核酸酶切去。新合成的 DNA 存在切口,用 DNA 连接酶把这些切口连接在一起形成一条完整的 DNA 链。 RNase H 法优于 S1 核酸酶法,它能获得包括 mRNA 5" 端全部或绝大部分的更长顺序 cDNA 分子。cDNA简介:为具有与某mRNA(信使RNA)链呈互补的碱基序列的单链DNA即complementary DNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。在这种情况下,mRNA的cDNA,与原来基因的DNA(基因组DNA,genomic DNA)不同而无内含子;相反地对应于在原来基因中没有的而在mRNA存在的3′末端的多A序列等的核苷序列上,与exon序列、先导序列以及后续序列等一起反映出mRNA结构。

cdna稳定吗

cdna稳定。cDNA是指互补(有时称拷贝)DNA。特指在体外经过逆转录后与RNA互补的DNA链。与平常我们所称谓的基因组DNA不同,cDNA没有内含子而只有外显子的序列。[1]真核生物的mRNA或其他RNA的cDNA,在遗传工程方面广为应用。

cDNA文库的cDNA

cDNA双链合成1. Superscipt II—RT合成第一链:1. 在一RNase-free的0.2ml PCR管中,加入xul mRNA(大约500ng)1ul Xho I Primer(1.4ug/ul)(5" GAGAGAGAGAGAGAGAGAGAACTAGTCTCGAGTTTTTTTTTTTTTTTTTT…3")11-x ul RNase-free water(大于500ng mRNA 分n管(500ng/tube)合成第一链, 第一链合成完毕后将n管合成一管进行第二链合成.)2. 混匀后,70℃反应10分钟;3. 反应完成后,立刻将反应体系置于冰上5min;4. 稍微离心一下,顺序加入以下试剂:4ul 5×first strand buffer2ul 0.1M DTT1ul 10mM dNTP(自己配制)5. 混匀,稍微离心反应物之后,42℃放置2分钟;6. 反应完成,趁热加入1 ul Superscipt II—RT,混匀;7. 42℃反应50分钟,然后70℃,15分钟灭活反转录酶.2. cDNA第二链的合成1. 第一链反应完成后,取2ul一链产物-20℃冰箱中保存,待电泳检测。其余的产物合并,混匀,然后顺序加入下列试剂(promega):20ul 10×DNA Polymerase I buffer6ul 10mM dNTP(自己配制)xul dd H2O1ul RNase H(2U/ul)10ul DNA Polymerase I(10U/ul)总体系为200ul;2. 混匀后,16℃反应2.5小时;3. 70℃灭活10分钟;4. 反应完成后,得到200ul cDNA第二链反应体系,将此体系置于冰上;5.取2ul二链产物,同保存的一链产物一起电泳鉴定。同时上1kb ladder,确定双链的大小范围。注:一链,二链的电泳图是smear,且二链稍比一链大一些。3. 双链cDNA末端补平1. 在第二链反应体系中,顺序加入下列试剂(promega):6ul 10mM dNTP2ul T4 DNA Polymerase(8.7U/ul)2ul BSA(10mg/ml)2. 稍微离心混匀反应物, 37℃反应至少30分钟,然后75℃灭活10分钟;3. 加入等体积酚/氯仿/异戊醇,剧烈振荡后,常温下13000g离心5分钟;4. 离心后,吸取上清于另一1.5ml eppendof管中,加入等体积氯仿,上下颠倒几次混匀后,常温下13000g离心5分钟;5. 吸取上清至另一eppendof管,加入1/10V3M NaAc(PH5.2)和2.5V预冷的无水乙醇,混匀,-20℃放置过夜以沉淀双链cDNA;6. 第二日,将昨日沉淀物在4℃,13000g离心60分钟以充分沉淀双链cDNA;7.离心完毕,弃上清,加入1ml 70%乙醇洗涤沉淀,常温下13000g离心5分钟;8.离心完毕,弃上清,干燥沉淀至无乙醇气味.注:第3,第4步可以用PCR 纯化试剂盒代替。PCR纯化试剂盒操作流程:1.溶液PE使用前应加入适量体积95%-100%的乙醇,混匀。2.向200ul二链补平产物中加入5倍体积的buffer PB,混匀。3.加入spin column中,13000rpm离心1min。4.加入0.75ml buffer PE,13000rpm离心1min。5.13000rpm,再离心1min。6.将spin column放入一新的离心管中,加入50ul buffer EB,静置10min。7.13000rpm离心2min。8.加入30ul buffer EB,静置10min。9.13000rpm离心2min。10.加入1/10体积3M的NaAc,2.5倍体积无水乙醇,混匀,-20℃沉淀过夜。4 EcoR I adaptor 加接1. 往双链cDNA沉淀中加入9ul EcoR I adaptor(400ng/ul),4℃至少放置30分钟以充分溶解cDNA沉淀;2. 溶解完成后,顺序加入下列试剂:1.2ul 10×Ligase Buffer1ul 10mM rATP1 ul T4 DNA Ligase(4U/ul)3. 混匀后,4℃连接3days,或者8℃过夜连接;5 双链cDNA末端的磷酸化及Xho I酶切1. 连接反应完成后,将反应体系70℃放置15分钟灭活T4 DNA Ligase;2. 稍微离心使反应物集中至管底,室温下放置5分钟,然后加入下列试剂:1ul 10×Ligase Buffer1ul 10mM rATP6ul dd H2O1ul T4 PNK(10U/ul)3. 37℃反应30分钟,然后70℃灭活15分钟;4. 稍微离心使反应物集中至管底;5. 室温放置5分钟;然后加入下列试剂:4ul Xho 10×Buffer2ul BSA5ul ddH2O8ul Xho I (10U/ul)6. 37℃反应1.5小时,然后65℃灭活酶10分钟;7. 反应完成,双链cDNA合成完毕。置于4℃准备回收。6.胶回收cDNA1.配制小胶数板(每个样品一板):1%琼脂糖凝胶,2ul EB/300ml 胶2.取4℃保存样品上样,40ul/孔。3.电泳50V;1hr4.紫外灯下分别切下500~1kb、1.0-2.0kb及2.0-4.0kb cDNA 片段.,分别放入已做标记的1.5ml离心管中。5.称取胶重,加入三倍体积buffer QXI(例如,100mg胶中加入300ul buffer QXI)6.50℃ 水浴数分钟,至胶完全融化。用手指弹 QIAEX II 使重悬,每管中加入5ul QIAEXII7.50℃ 水浴10min,每隔2min 取出颠倒混匀数次,使QIAEX II 保持悬浮8.4℃,13000rpm,30sec。(弃上清,离心机中甩一下,吸取上清)9.加入500ul buffer QXI,轻弹管底使QIAEX II 重悬10. 离心并去上清(同操作8)11. 加入500ul buffer PE,重悬QIAEX II,离心30sec,去上清12. 再加入500ul buffer PE,重悬QIAEX II,离心30sec,弃上清,离心机中甩一下,吸去上清13. 超净台上吹干(至无乙醇味),加入10ul elution buffer,重悬QIAEX II,静置5min,13000rpm,30sec。吸上清,冰上放置。14. 取1ul上清上样电泳,同时做分子量标准(1kb ladder)及DNA含量标准(10ng,20ng)作对照。15. 将收回的cDNA置于-20℃内保存,据电泳结果,取适量DNA进行连接。注意事项:1.胶回收前电泳槽,电泳板,梳子等都要用1%的HCl浸泡过夜。2.胶回收时电压要稳定。 第一链的合成oligo(dT)引导的DNA合成法:利用真核mRNA分子所具有的poly(A)尾巴的特性,加入12-20个脱氧胸腺嘧啶核苷组成的oligo(dT)短片段,由反转录酶合成cDNA的第一链.缺 陷:因为逆转录酶无法到达mRNA分子的5"-末端,必须从3"-末端开始合成cDNA.对于大分子量的较长的mRNA分子而言,特别麻烦.随机引物引导的cDNA合成法 (randomly primed cDNA synthesis) :根据许多可能的序列,合成出6-10个核苷酸长的寡核苷酸短片段(混合物),作为合成第一链cDNA的引物.在应用这种混合引物的情况下,cDNA的合成可以从mRNA模板的许多位点同时发生,而不仅仅从3"-末端的oligo(dT)引物一处开始. 第二链的合成第一链的合成反应完成后,得到DNA/RNA杂交分子,在DNA聚合酶的作用下,以第一链为模版,合成cDNA的第二链。 变性降解除去杂交分子中的RNA,单链cDNA的3"端能够形成发夹状的结构作为引物,在大肠杆菌聚合酶I Klenow或反转录酶的作用下,合成cDNA的第二链.缺 点:在以S1核酸酶切割cDNA的发夹状结构时,会导致对应于mRNA 5"端的地方的序列出现缺失和重排. S1核酸酶的纯度不够时,会偶尔破坏合成的双链cDNA分子.自身引导法合成双链cDNA 原 理:以第一链合成产物cDNA:mRNA杂交体作为切口平移的模板,RNA酶H在杂交体的mRNA链上造成切口和缺口,产生一系列RNA引物,在大肠杆菌DNA聚合酶I的作用下合成cDNA的第二链.优点:a)合成cDNA的效率高b)直接利用第一链的反应产物,不需纯化c)避免使用S1核酸酶来切割双链cDNA3,引物-衔接头法

cDNA文库和基因DNA有什么区别?

cDNA文库不同于基因组文库,被克隆DNA是从mRNA反转录来源的DNA。cDNA组成特点是其中不含有内含子和其他调控序列。cDNA文库以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组。DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA基因组文库用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆。这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因。

什么是ctDNA,dsDNA,ssDNA,cDNA?

ctDNA(小牛胸腺DNA)是一种很常用的双链DNA,dsDNA是双链DNA的简称,ssDNA是单链DNA的简称,cDNA(complement DNA)表示互补DNA。

现代分子生物学中cDNA中文名是什么?

叫做部分基因文库有mRNA逆转录形成的DNA即称为cDNA无启动子

cdna文库不含内含子

...cDNA是环状DNA,一般只存在于原核生物的dna中,根据原核生物dna的特点没有内含子,逆转录的dna是从mrna来的,mrna全都是外显子转录来的,内含子在转录的过程中已经被剪切掉了,如果没有模板是不能逆转录出内含子. 至于编码区,他是dna中编码蛋白质的基因,当然只存在于dna中. 总之,dna转录加工去掉内含子转录的部分,留下外显子转录的部分连接起来组成mrna,后进行翻译,mrna可以在逆转录酶的存在下,在逆转录回dna中的外显子部分.

问mRNA转录成cDNA的过程

有反转录酶,可以以rna为模版合成dna。这过程需要引物,根据mrna有3‘polya尾巴的特点,可以用oligo-dt作为引物,合成cdna,这样可以自然去除非mrna的rna的转录。也可以用随机引物去合成大量不同的cdna。如果要反转录特定的mrna,就根据它设计特异性引物反转录,这样理论上只有目的cdna产生

【求助】cDNA 该如何保存?

最好不要长久用cDNA做模版。 可以用PCR产物稀释100倍左右作为模版。 是RT后的cDNA。 不是PCR后得双链CDNA。 PCR后得产物是稳定的。 不知道你是用的哪个我说是的RT后的cDNA可以分装成小份儿的,经常用的放4度,其他的放-20度保存分装

mrna逆转录为什么得到cdna

是的,得到的是全体mRNA的cDNA的库.然后通过PCR手段获得需要的目的片段.但是实际操作过程中,由于mRNA的降解,因此一次实验不可能得到全部的cDNA,因此要重复1~2次,才能保证全部mRNA被反转录为cDNA.

cDNA是双链么

你知道realtimePCR用cDNA和用DNA的目的区别在哪儿吗?用DNA的一般是检测基因组中目的片段的数量的用cDNA的一般是检测目的基因表达量的,这当然就需要检测mRNA的量,但是RNA太容易被分解,难以检测,故而用反转录而成的cDNA。一般反转录而成的cDNA是单链的,要形成双链,还需要其他步骤,比如两步法中的pcr步骤。

ORF cDNA 和CDS的区别

CDS是Coding sequence的缩写,是编码一段蛋白产物的序列,是结构基因组学术语ORF开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断.当一个新基因被识别,其DNA序列被解读,人们仍旧无法搞清相应的蛋白序列是什么CDS与开放读码框ORF的区别(1)开放读码框是从一个起始密码子开始到一个终止密码子结束的一段序列;不是所有读码框都能被表达出蛋白产物,或者能表达出占有优势或者能产生生物学功能的蛋白.(2) CDS,是编码一段蛋白产物的序列.(3) cds必定是一个orf.但也可能包括很多orf.(4)反之,每个orf不一定都是cds.(5)Open reading frame (ORF) - a reading frame that does not contain a nucleotide triplet which stops translation before formation of a complete polypeptide.Coding sequence (CDS) - The portion of DNA that codes for transcription of messenger RNAORF-----translation,CDS----transcriptiontranslation 是理论上的,而transcription则显然是事实存在的.cDNA为具有与某RNA链呈互补的碱基序列的单链DNA即complementary DNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链EST (Expressed Sequence Tag)表达序列标签—是从一个随机选择的cDNA 克隆,进行5"端和3"端单一次测序挑选出来获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp .由于cDNA文库的复杂性和测序的随机性,有时多个EST代表同一基因或基因组,将其归类形成EST簇(EST clusteF)mRNA携带遗传信息,在蛋白质合成时充当模板的RNA.

由cDNA全长怎么得到DNA全长

以mRNA为模板,经反转录酶催化,在体外反转录成cDNA。步骤的话应该与DNA复制过程类似,需要的原料是mRNA模板,四中脱氧核糖核苷酸,逆转录酶,还有能量,注意:这样获得的DNA片段不含非编码区序列。以下是专业回答一).构建cDNA文库:以生物细胞的总mRNA为模板,用反转录酶合成互补的双链cDNA,然后接到载体上,转入到宿主后建立的基因文库就是cDNA文库。1、mRNA的提取及其完整性的确定1)总RNA的提取RNA提取方法:APGC法或NP-40或应用试剂盒提取总RNA2)mRNA的分离高等真核生物mRNA分子的3"端均有poly(A)尾,将总RNA通过寡聚(DT)纤维柱分离mRNA或利用磁珠法制备纯mRNA。在某些情况下,裂解细胞后用蔗糖梯度来制备mRNA-核糖体复合物作为提取mRNA的替换途径。3)mRNA的纯化①按照大小对总mRNA进行分级,主要用琼脂糖凝胶电泳和蔗糖密度梯度离心法进行分级;②多聚核糖体的免疫学纯化法,这是利用抗体来纯化合成目的多肽的方法。4)mRNA完整性的确定确定mRNA完整性的方法有三种:①直接检测mRNA分子的大小;②测定mRNA的转译能力;③检测总mRNA指导合成cDNA第一链长分子的能力。2、cDNA的合成和克隆1)cDNA第一链的合成用亲和层析法得到mRNA后,根据mRNA分子的3"端有poly(A)尾结构的原理,用12~20个核苷酸长的oligo(dT)与纯化的mRNA混合,oligo(dT)会与poly(A)结合作为反转录酶的引物,反转录反应的产物是一条RNA-DNA的杂交链。oligo(dT)结合在mRNA的3"端,因此合成全长的cDNA需要反转录酶从mRNA分子的一端移动到另一端,有时这种全合成难以达到,尤其是mRNA链很长时,为此建立了一种随机引物法合成cDNA。随机引物是一种长度为6~10个核苷酸,由4种碱基随机组成的DNA片段。与oligo(dT)仅与mRNA3"端结合不同,它们可以在mRNA的不同位点结合。随机引物法合成的产物也是RNA-DNA的杂交体。把cDNA克隆到载体中之前,必须把这种杂交体中的RNA转变成DNA链,即形成双链DNA分子。2).双链cDNA的合成合成cDNA第二条链有两种方法。一种方法是利用cDNA第一链的3"末端常常出现发夹环的特征,这种发夹结构是反转录酶在第一链末端“返折”并且进行复制第一链的结果,它为合成cDNA第二链提供了有用的引物。用这种方法合成的双链cDNA在一端有一个发夹环,可以用单链特异的S1核酸酶切去。但是S1核酸酶的处理,常常会“修剪”过多的cDNA顺序,使cDNA丢失了mRNA5"端的部分顺序。另一种方法是用大肠杆菌的RNaseH进行修饰。RNaseH能识别RNA-DNA杂交分子并把其中的RNA切割成短的片段,这些RNA短片段仍与cDNA第一链结合,可被新合成的DNA所取代。新合成的DNA存在切口,用DNA连接酶把这些切口连接在一起形成一条完整的DNA链。RNaseH法优于S1核酸酶法,它能获得包括mRNA5"端全部或绝大部分的更长顺序cDNA分子。3)将cDNA重组到载体上合成的cDNA与载体DNA进行连接一般有3种方法:①借助于末端转移酶的3"-OH端合成均聚物的能力,双链cDNA和线性化载体DNA的3"-OH端分别加上均聚核苷酸链;②双链cDNA和线性化载体DNA分别用Klenow片段进行末端补平,然后用T4DNA连接酶进行齐头连接,形成重组体;③通过粘性末端连接。4).转化重组的载体DNA分子在一定条件下转化入大肠杆菌,形成携带质粒的菌株。当不同重组的DNA含有不同的cDNA基因时,整个转化子含有来自mRNA群体的各种cDNA基因,这样的转化子群体构成该mRNA全部遗传信息的cDNA基因文库。5).目的cDNA克隆的鉴定用于从cDNA文库中筛选和鉴定目的cDNA的方法主要有3种:①核酸杂交②免疫学杂交检测③cDNA同胞选择

如何用已有的cDNA,做出相应的蛋白质

1.dna经过转录合成rna,再经过翻译形成肽链,经过内质网和高尔基体加工后成为有一定空间结构的蛋白质。2.mrna经过逆转录形成cdna(complementarydna),这一般是rna病毒才能进行的过程。

如何检测cDNA的纯度,有什么方法

cDNA量少,直接跑看不出来什么,即使有弥散也不能说明质量好坏。纯度的话用跨内含子的housekeeping基因引物P,看产物大小,避免有基因组残余。有符合要求的目的基因的引物更好了,但是表达量少的话容易P不出来反转要成功,首先RNA要好,操作要小心,RNasin要加,dNTP要新的(至少也是RT专用的)。热变性要充分

为什么cDNA文库的基因没有启动子和终止子

cDNA文库是用mRNA逆转录得到的DNA,只含有编辑对应蛋白质的信息,没有控制该基因表达的相关元件(启动子、终止子、增强子),也没有内含子。因此,cDNA文库的基因没有启动子和终止子 。

简述cDNA文库与基因组文库的主要区别

cDNA文库 以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组。DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA基因组文库用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。 将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆。这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因。

由mRNA反转录形成cDNA的过程大致分为哪些步骤?

先从细胞提取总rna,然后根据大多数真核mrna含有多聚腺嘌呤(polyadenylicacid,polya)尾的特点,用寡聚dt纤维素柱将mrna分离出,以mrna为模板,在多聚a尾上结合12-18个dt的寡聚dt片段,作为合适的起始引物,在逆转录酶作用下合成

RT后cDNA浓度能测出来吗

可以用紫外分光光度计(浓度计)进行测量,但不太准。Real-timePCR可以对cDNA中某基因进行定量或半定量,但要准确测量总cDNA比较困难。一般cDNA就用反转录的RNA的量进行估算,而且反转录和之后的检测基本都连续在一起,有内参进行对照,所以没必要测cDNA的浓度。

cDNAs是什么意思?是双链CDNA吗?

全长互补脱氧核糖核酸(cDNAs)。

cDNA文库和基因DNA有什么区别?

cDNA文库不同于基因组文库,被克隆DNA是从mRNA反转录来源的DNA.cDNA组成特点是其中不含有内含子和其他调控序列. cDNA文库 以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库.基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性.cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因.但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组.DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA 基因组文库 用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆.这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库. 将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆.这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因.

cdna是什么

  cdna,是一种互补脱氧核糖核酸,与mRNA链互补的单链DNA,以其mRNA为模板,在适当引物的存在下,由mRNA与DNA进行一定条件下合成的,就是cDNA。   cdna为具有与某mRNA(信使RNA)链呈互补的碱基序列的单链DNA即complementaryDNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。在这种情况下,mRNA的cDNA,与原来基因的DNA(基因组DNA,genomicDNA)不同而无内含子;相反地对应于在原来基因中没有的而在mRNA存在的3′末端的多A序列等的核苷序列上,与exon序列、先导序列以及后续序列等一起反映出mRNA结构。cDNA同样可以被克隆。

cDNA是什么意思?

cDNA 是指互补(有时称拷贝)DNA。特指在体外经过逆转录后与RNA互补的DNA链。与平常我们所称谓的基因组DNA不同,cDNA没有内含子而只有外显子的序列 。真核生物的mRNA或其他RNA的cDNA,在遗传工程方面广为应用。cDNA是指具有与某RNA链呈互补碱基序列的DNA。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)作用而合成,并且在合成单链cDNA后,再用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶作用合成双链cDNA。在这种情况下,mRNA的cDNA,与原来的基因组DNA相同而且无内含子;相反地,对应于在原来基因中没有的而在mRNA存在的3"末端的poly A序列等的核苷序列上,与外显子序列、先导序列以及后续序列等一起反映出mRNA结构。

什么是cDNA?

cDNA(全称complementary DNA),是一种互补脱氧核糖核酸。与mRNA链互补的单链DNA,以其mRNA为模板,在适当引物的存在下,由mRNA与DNA进行一定条件下合成的,就是cDNA。【cDNA定义】为具有与某mRNA(信使RNA)链呈互补的碱基序列的单链DNA即complementary DNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。在这种情况下,mRNA的cDNA,与原来基因的DNA(基因组DNA,genomic DNA)不同而无内含子;相反地对应于在原来基因中没有的而在mRNA存在的3′末端的多A序列等的核苷序列上,与exon序列、先导序列以及后续序列等一起反映出mRNA结构。cDNA同样可以被克隆。【DNA与cDNA的区别】DNA指的是生物体的主要遗传物质,单体脱氧核糖核酸聚合而成的聚合体,内部有内含子等结构.cDNA是由与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由RNA与DNA经过反转录过程而成反转录的DNA,其内部无内含子等结构,基因克隆中利于在原核生物中表达.

DNA分子的结构?

一DNA分子是由两条链组成的。这两条链按反向平行方式盘旋成双螺旋结构。二DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成骨架;碱基排列在内侧。三两条链上的碱基通过氢键连接成碱基对,A(腺嘌呤)与T(胸腺嘧啶)配对,G(鸟嘌呤)与C(胞嘧啶)配对。碱基之间的这种一一对应关系,叫做碱基互补配对原则。

dna阿拉发螺旋的碱基数

B型DNADNA分子每匝螺旋有10个碱基对.A型DNADNA分子每匝螺旋有11个碱基对.Z型DNA每个螺旋有12个碱基对.知道这个以后你可以推断出来.

请问DNA里,螺旋数与碱基对的关系?假设碱基对为x个,求螺旋的个数?

B型DNA DNA分子每匝螺旋有10个碱基对. A型DNA DNA分子每匝螺旋有11个碱基对. Z型DNA 每个螺旋有12个碱基对. 知道这个以后你可以推断出来.

什么叫DNA?是谁发现了DNA?

DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。发现DNA最早是在1869年,是由德国生化学家米歇尔发现的。

3种构型DNA的特点如何?

B型DNA(右手双螺旋DNA);活性最高的DNA构象; A型DNA,B型DNA的重要变构形式,仍有活性; Z型DNA,Z型DNA是左手螺旋,B型DNA的另一种变构形式,活性明显降低

DNA结构的基本要素有哪些?

DNA双螺旋结构模型的要点:1、由两条碱基互补的、反向平行排列的脱氧多核苷酸单链组成,碱基互补的方式是A与T,C与G对应;2、两条互补链围绕一“主轴”向右盘旋形成双螺旋结构;DNA分子结构3、DNA分子结构由4种碱基(A、T、G、C)的排列顺序决定储存遗传信息;4、DNA分子结构双螺旋的表面形成两条凹槽,一面宽而深,称之深沟;另一面狭而浅,称之浅沟。与特定功能的蛋白质(酶)识别和调控相关。DNA链5、DNA链碱基排列顺序的组合方式无限,形成多种不同的DNA分子。扩展资料:DNA双螺旋结构的发现者富兰克林(Rosalind Elsie Franklin)于1952年5月获得一张非常清晰的B型DNA衍射照片(照片51号)。1953年1月,沃森访问国王学院时看到了这张照片,立刻领悟了双螺旋模型的关键。他在回忆录《双螺旋》中写道:“在看到图片的瞬间,我目瞪口呆、心跳加速,图片上占主要位置的黑色十字映像只能从螺旋结构中产生”。参考资料来源:百度百科-DNA双螺旋结构

DNA的分子结构是什么样子的

DNA的分子结构是什么样子的DNA是染色体的主要化学成分,同时也是组成基因的材料.DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见.这种核酸高聚物是由核苷酸链接成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成.DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G).在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起.由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G.因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的.在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链.分子链的开头部分称为3"端而结尾部分称为5"端,这些数字表示脱氧核糖中的碳原子编号.图

DNA分子的结构是什么

双螺旋结构DNA即脱氧核糖核酸(英文Deoxyribonucleic acid的缩写),又称去氧核糖核苷酸,是染色体主要组成成分,同时也是主要遗传物质。、不明白欢迎来求助~

DNA分子的结构?

脱氧核糖核酸(DNA,为英文Deoxyribonucleicacid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。事实上,原核细胞(无细胞核)的DNA存在于细胞质中,而真核生物的DNA存在于细胞核中,DNA片断并不像人们通常想像的那样,是单链的分子。严格的说,DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。这种核酸高聚物是由核苷酸链接成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成。DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链。分子链的开头部分称为3"端而结尾部分称为5"端,这些数字表示脱氧核糖中的碳原子编号。

DNA分子的结构是

脱氧核糖核酸(DNA,为英文Deoxyribonucleicacid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。事实上,原核细胞(无细胞核)的DNA存在于细胞质中,而真核生物的DNA存在于细胞核中,DNA片断并不像人们通常想像的那样,是单链的分子。严格的说,DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。这种核酸高聚物是由核苷酸链接成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成。DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链。分子链的开头部分称为3"端而结尾部分称为5"端,这些数字表示脱氧核糖中的碳原子编号。这个网站右边的那个图很好http://en.wikipedia.org/wiki/DNA

DNA如何解释?生物学

脱氧核糖核酸(DNA,为英文Deoxyribonucleicacid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。事实上,原核细胞(无细胞核)的DNA存在于细胞质中,而真核生物的DNA存在于细胞核中,DNA片断并不像人们通常想像的那样,是单链的分子。严格的说,DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。这种核酸高聚物是由核苷酸链接成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成。DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链。分子链的开头部分称为3"端而结尾部分称为5"端,这些数字表示脱氧核糖中的碳原子编号

在体内dna是不是都以b结构存在?

一般将Watson&Crick提出的双螺旋构型,称为B-DNA。B-DNA是DNA在生理状态下的构型,生活在细胞中的极大多数DNA以B-DNA形式存在。当外界环境条件发生变化时,DNA的构型也会发生变化。实际生活在细胞内的B-DNA的一个螺圈并不正好是10个核苷酸对,平均一般为10.4对。当DNA在高盐浓度条件下时,则以A-DNA形式存在。A-DNA是DNA的脱水构型,它也是右手螺旋,每个螺圈含有11个核苷酸对。A-DNA比较短而密,平均直径为23?。大沟深而窄,小沟浅而宽。在活体内DNA并不以A构型存在;在细胞内的DNA-RNA或RNA-RNA双螺旋结构,却与A-DNA非常相似。现在还发现:某些DNA序列可以以左手螺旋的形式存在,称为Z-DNA。当某些DNA序列富含G-C且嘌呤和嘧啶交替出现时,可以形成Z-DNA。Z-DNA除左手螺旋外,其每个螺圈含有12个碱基对。分子直径为18?,只有一个深沟。现在还不知道,Z-DNA在体内是否存在。

为何会有DNA?

因为物种进化必须要靠到它 但为何会有 因何产生 那就要回到宇宙的起源这个问题 连爱因思坦都未能解答的问题 因为有Du2027Nu2027A,所以人先会有DNA。明唔明? 基因一词来自希腊语,意思为「生」。是指携带有遗传信息的DNA序列,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 染色体在体细胞中是成对存在的,每条染色体上都带有一定数量的基因。 一般来说,生物体中的每个细胞都含有相同的基因,但并不是每个细胞中的每个基因所携带的遗传信息都会被表达出来。不同部位和功能的细胞,能将遗传信息表达出来的基因也不同。 zh. *** /wiki/%E5%9F%BA%E5%9B%A0 核糖核酸(缩写为RNA,即Ribonucleic Acid),是存在于生物细胞以及部分病毒、类病毒中的遗传讯息载体。 RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖(五碳糖)和碱基构成。RNA的碱基主要有四种,即A腺嘌呤、G鸟粪嘌呤、C胞嘧啶和U尿嘧啶。其中,U(尿嘧啶)相当于/取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。 与DNA不同的是,RNA一般为单链长分子,但在一般水溶液中会形成分子内双螺旋结构。此外,RNA本手也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本上和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。 在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA(转运RNA) rRNA(核糖体RNA) mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的部分,而核糖体是蛋白质合成的机械。而在细胞中,还有许多种类和功能不一的小型RNA ( *** all RNA),像是组成 spliceosome 的snRNAs ( *** all nuclear RNAs),负责rRNA成型的snoRNAs ( *** all nucleolar RNAs)以及最近很热门/红火的、会让细胞特定基因表现减缓 (knockdown KD)的miRNAs (microRNAs)等等。 在病毒方面,很多病毒只以RNA作为其唯一的遗传讯息载体(有别于细胞生物普遍用双链DNA做为载体)。 1982年以来,研究表明,不少RNA,如I、II型内含子 (type-I、type-II intron),RNase P,HDV,核糖体RNA等等都有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶(ribozyme)。 20世纪90年代以来,又发现了RNAi(RNA interference,RNA干扰)等等现象,证明RNA在基因表达调控中具有重要作用。 zh. *** /wiki/RNA 脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为「遗传微粒」,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。 事实上,原核细胞(无细胞核)的DNA存在于细胞质中,而真核生物的DNA存在于细胞核中,DNA片断并不像人们通常想像的那样,是单链的分子。严格的说,DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。 这种核酸高聚物是由核苷酸连结成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成。DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链。 分子链的开头部分称为3"端而结尾部分称为5"端,这些数字表示脱氧核糖中的碳原子编号。 zh. *** /w/index?title=DNA&variant=zh- 核糖核酸(缩写为RNA,即Ribonucleic Acid),是存在于生物细胞以及部分病毒、类病毒中的遗传讯息载体。 RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖(五碳糖)和碱基构成。RNA的碱基主要有四种,即A腺嘌呤、G鸟粪嘌呤、C胞嘧啶和U尿嘧啶。其中,U(尿嘧啶)相当于/取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。 与DNA不同的是,RNA一般为单链长分子,但在一般水溶液中会形成分子内双螺旋结构。此外,RNA本手也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本上和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。 在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA(转运RNA) rRNA(核糖体RNA) mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和胺基酸的转运者;rRNA是组成核糖体的部分,而核糖体是蛋白质合成的机械。而在细胞中,还有许多种类和功能不一的小型RNA ( *** all RNA),像是组成 spliceosome 的snRNAs ( *** all nuclear RNAs),负责rRNA成型的snoRNAs ( *** all nucleolar RNAs)以及最近很热门/红火的、会让细胞特定基因表现减缓 (knockdown KD)的miRNAs (microRNAs)等等。 在病毒方面,很多病毒只以RNA作为其唯一的遗传讯息载体(有别于细胞生物普遍用双链DNA做为载体)。 1982年以来,研究表明,不少RNA,如I、II型内含子 (type-I、type-II intron),RNase P,HDV,核糖体RNA等等都有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶(ribozyme)。 20世纪90年代以来,又发现了RNAi(RNA interference,RNA干扰)等等现象,证明RNA在基因表达调控中具有重要作用。 zh. *** /w/index?title=RNA&variant=zh- 参考: zh. *** /w/index?title=DNA&variant=zh-

具有左手螺旋的DNA结构是(  )。

【答案】:D天然DNA分子普遍以右手螺旋结构形式存在(又细分为A型DNA和B型DNA),也存在左手螺旋结构,称为Z型DNA。A项,G-四链体是由富含碱基鸟嘌呤(G)的一种特殊的DNA二级结构。

Z型DNA与B型DNA可以相互转化吗 我只知道B可以转化为Z,但不清楚反过来是否可以吗啊

可以,在不同的生理条件下,可以进行互相转换.

什么叫DNA?是谁发现了DNA?

DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。发现DNA最早是在1869年,是由德国生化学家米歇尔发现的。

请介绍DNA的双螺旋构象有哪几种及其特点

1953年Watson和Crick提出的DNA右手双螺旋模型是B型构象。除了B构象外人们还发现了A构象、C构象、D构象和E构象等右手双螺旋构象以及左手双螺旋的Z构象。

b型dna双螺旋的长度为340厘米则含有碱基个数为

应该是A型的 .A型的DNA结合更紧密,比B型的多 .Z型的结构上是左旋,没有特殊的紧密压缩

B型DNA为什么不能变成A型DNA

是可以转换的"只是可能细胞的分化导致一部分dna转录活性降低变成了a-型dna

活细胞中哪种类型DNA最多(A B C D E T Z)

B型.DNA的构象现已知有A,B,C,D,E,T,Z 7种. B型是DNA在细胞内的主要形式

比较DNA(B型)和RNA的二级结构

前者的二级结构是两条互补的链靠碱基互补配对的氢键和碱基堆积力形成的右手双螺旋;后者的二级结构是单链靠碱基堆积形成的右手单螺旋

DNA的分子结构是什么样子的?

脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。 事实上,原核细胞(无细胞核)的DNA存在于细胞质中,而真核生物的DNA存在于细胞核中,DNA片断并不像人们通常想像的那样,是单链的分子。严格的说,DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。 这种核酸高聚物是由核苷酸链接成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成。DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链。 分子链的开头部分称为3"端而结尾部分称为5"端,这些数字表示脱氧核糖中的碳原子编号。 DNA的理化结构 DNA是大分子高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度。DNA对紫外线有吸收作用,当核酸变性时,吸光值升高;当变性核酸可复性时,吸光值又会恢复到原来水平。温度、有机溶剂、酸碱度、尿素、酰胺等试剂都可以引起DNA分子变性,即使得DNA双键间的氢键断裂,双螺旋结构解开

DNA的中文名称是什么?

脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。

DNA,蛋白质是什么型(L型,D型,左螺旋,右螺旋等)

DNA构型:A型(右手螺旋)、B型(右手螺旋,最常见)、Z型(左手螺旋) 蛋白质构型:α-螺旋、β-折叠、β-转角、无规则卷曲 氨基酸构型:L 型、D 型

DNA是如何发现的?

DNA的发现自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题,人们开始了对核酸和蛋白质的研究。早在1868年,人们就已经发现了核酸。在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌""作战"而战死的白细胞和被杀死的人体细胞的"遗体"。于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用。他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质。霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的。于是他便给这种从细胞核中分离出来的物质取名为"核素",后来人们发现它呈酸性,因此改叫"核酸"。从此人们对核酸进行了一系列卓有成效的研究。20世纪初,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成的。其中碱基有4种(腺瞟吟、鸟嘌吟、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了"四核苷酸假说"。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识。人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用。蛋白质的发现比核酸早30年,发展迅速。进人20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现。1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链。于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体。1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有美菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。格里菲斯称该核酸为"转化因子"。1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的"转化因子",并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明"转化因子"是DNA。但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进人大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。进人细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由DNA的指令合成的。这一结果立即为学术界所接受。几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948-1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进人芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?--活细胞的物理面貌卜书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的"B型"DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的"A型"简单得多,只要稍稍看一下"B型"的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念。他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌岭一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。本文摘自《创造发明1000例》广西师范大学出版社2001年7月版

“cDNA”的名词解释是什么?

cDNA(全称complementary DNA),是一种互补脱氧核糖核酸。与mRNA链互补的单链DNA,以其mRNA为模板,在适当引物的存在下,由mRNA与DNA进行一定条件下合成的,就是cDNA。【cDNA定义】为具有与某mRNA(信使RNA)链呈互补的碱基序列的单链DNA即complementary DNA之缩写,或此DNA链与具有与之互补的碱基序列的DNA链所形成的DNA双链。与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由依赖RNA的DNA聚合酶(反转录酶)的作用而合成,并且在合成单链cDNA后,在用碱处理除去与其对应的RNA以后,以单链cDNA为模板,由依赖DNA的DNA聚合酶或依赖RNA的DNA聚合酶的作用合成双链cDNA。真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。在这种情况下,mRNA的cDNA,与原来基因的DNA(基因组DNA,genomic DNA)不同而无内含子;相反地对应于在原来基因中没有的而在mRNA存在的3′末端的多A序列等的核苷序列上,与exon序列、先导序列以及后续序列等一起反映出mRNA结构。cDNA同样可以被克隆。【DNA与cDNA的区别】DNA指的是生物体的主要遗传物质,单体脱氧核糖核酸聚合而成的聚合体,内部有内含子等结构.cDNA是由与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由RNA与DNA经过反转录过程而成反转录的DNA,其内部无内含子等结构,基因克隆中利于在原核生物中表达.

cdna是什么 详解cdna的定义和应用?

cdna可以用来分析基因表达水平。通过PCR扩增cdna,可以得到特定基因的DNA产物,并通过序列分析等方法来确定该基因在不同组织、不同发育阶段的表达情况。cdna的定义2. 基因表达分析2. 基因表达分析cdna可以用来分析基因表达水平。通过PCR扩增cdna,可以得到特定基因的DNA产物,并通过序列分析等方法来确定该基因在不同组织、不同发育阶段的表达情况。cdna是通过逆转录反应将mRNA作为模板合成的DNA分子。逆转录是指将RNA作为模板合成DNA的过程,这个过程由逆转录酶催化完成。逆转录过程中,RNA模板首先被逆转录酶的反转录酶活性所逆转录,形成相应的DNA互补链,然后由DNA聚合酶合成第二条DNA链,形成完整的双链DNA分子。这个过程合成的DNA分子即为cdna。

cDNA的名词解释是什么?

互补DNA 英文名称: cDNA, complementary DNA 学科分类: 遗传学 注 释: 信使RNA(mRNA)分子的双链DNA拷贝。 构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子.因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的.所以一个cDNA分子就代表一个基因.但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子.所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列---内含子.

cDNA 和DNA有何区别?

cDNA就是由成熟mRNA经过反转录过程而成反转录的DNA,其内部无内含子等结构,基因克隆中利于在原核生物中表达。基因组DNA指生物中所有的DNA包括有真核生物的内含子等结构不能在原核生物体内表达,基因克隆中只能在真核生物中表达。cDNA(全称complementary DNA),是一种互补脱氧核糖核酸。与mRNA链互补的单链DNA,以其mRNA为模板,在适当引物的存在下,由mRNA与DNA进行一定条件下合成的,就是cDNA。脱氧核糖核酸(英语:Deoxyribonucleic acid,缩写为DNA)又称去氧核糖核酸,是一种分子,双链结构,由脱氧核糖核苷酸(成分为:脱氧核糖及四种含氮碱基)组成。可组成遗传指令,引导生物发育与生命机能运作。主要功能是长期性的资讯储存,可比喻为"蓝图"或"食谱"。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。组成简单生命最少要265到350个基因 。
 首页 上一页  18 19 20 21 22 23 24 25 26 27 28  下一页  尾页