二重积分

DNA图谱 / 问答 / 标签

心形线的二重积分,高等数学,具体过程,谢了

x=ρcosθ原积分=∫(0,2π)(cosθ)^2dθ∫(0,a(1-cosθ)ρ^3dρ=a^4/4∫(cosθ)^2(1-cosθ)^4dθ=a^4/4∫[(cosθ)^6+6(cosθ)^4+(cosθ)^2]dθ(奇数次幂积分=0)=a^4/32∫[(1+cos2θ)^3+12(1+cos2θ)^2+4(1+cos2θ)]dθ(仍然去掉奇数次幂)=a^4/32∫[1+3(1+cos4θ)/2+12+6(1+cos4θ)+4]dθ=a^4/64∫49dθ=49πa^4/32

用二重积分计算,心脏线r=a(1-cosθ)内,圆r=a外的公共区域面积

简单计算一下即可,答案如图所示

怎么用积分计算二重积分?

二重积分一共一般有三种计算方法:变限求积分,直角坐标化极坐标,作图构思取最简单的微元。先确定积分区域,把二重积分的计算转化为二次积分的计算。但二次积分的计算相当于每次只计算一个变元的定积分, 利用对称性。 积分区域是关于坐标轴对称的。 被积函数也时关于坐标轴对称的。当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。可以看出二重积分的值是被积函数和积分区域共同确定的。扩展资料:当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。参考资料来源:百度百科-二重积分

二重积分怎么计算?

计算方法如下:二重积分化累次积分的通用方法根据前文原理:二重积分是在一块二维的积分区域上,对被积函数做累积;无论采用哪种二重积分化累次积分的方式,关键是要把积分区域用两个积分变量的范围“精确”的表示出来。一旦表示出来,顺手就能写成累次积分,二重积分的计算就只剩下计算两次定积分。两个积分变量的积分区域,一定可以用这两个变量的范围“精确”表示出来,谁在先谁在后都行,这样就必有两种表示法:以直角坐标为例,这两种表示也保证了,二重积分必能按两种方式转化为累次积分。

二重积分求导

将一元函数积分推广来看对于连续函数 f(x,y) 如何求二重积分. 每个二重积分都可以方便地用定积分的方法分步进行计算。矩形区域上的二重积分设 f(x,y) 在矩形区域 R: a<=x<=b, c<=y<=d 上有定义。 如果 R 被分别平行于 x 轴和 y 轴的直线网格所划分成许多小块面积 u2206 A="u2206 xu2206 y" 。扩展资料对直角坐标来说,主要考点有两个:一是积分次序的选择,基本原则有两个:一是看区域,选择的积分次序一定要便于定限,说得更具体一点,也就是要尽量避免分类讨论;二是看函数,要尽量使第一步的积分简单,选择积分次序的最终目的肯定是希望是积分尽可能地好算一些,实践表明,大多数时候,只要让二重积分第一步的积分尽可能简单,那整个积分过程也会比较简洁;所以在拿到一个二重积分之后,可以根据它的被积函数考虑一下第一步把哪个变量看成常数更有利于计算,从而确定积分次序。二是定限,完成定限之后,二重积分就被化为了两次定积分,就可以直接计算了。

二重积分的计算公式

所围成的体积=∫∫∫dxdydz(V是z=x^2+y^2与z=1所围成的空间区域)=∫dθ∫rdr∫dz(作柱面坐标变换)=2π∫r(1-r^2)dr=2π(1/2-1/4)=π/2扩展资料:二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

怎么用二重积分计算累次积分呢?

计算方法如下:二重积分化累次积分的通用方法根据前文原理:二重积分是在一块二维的积分区域上,对被积函数做累积;无论采用哪种二重积分化累次积分的方式,关键是要把积分区域用两个积分变量的范围“精确”的表示出来。一旦表示出来,顺手就能写成累次积分,二重积分的计算就只剩下计算两次定积分。两个积分变量的积分区域,一定可以用这两个变量的范围“精确”表示出来,谁在先谁在后都行,这样就必有两种表示法:以直角坐标为例,这两种表示也保证了,二重积分必能按两种方式转化为累次积分。

二重积分一共有多少种计算方法,分别是什

二重积分一共一般有三种计算方法:变限求积分,直角坐标化极坐标,作图构思取最简单的微元。先确定积分区域,把二重积分的计算转化为二次积分的计算。但二次积分的计算相当于每次只计算一个变元的定积分, 利用对称性。 积分区域是关于坐标轴对称的。 被积函数也时关于坐标轴对称的。当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。可以看出二重积分的值是被积函数和积分区域共同确定的。扩展资料:当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。参考资料来源:百度百科-二重积分

二重积分怎么算

二重积分怎么算?二重积分化为二次积分计算,二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。

二重积分计算公式是什么?

所围成的体积=∫∫∫dxdydz(V是z=x^2+y^2与z=1所围成的空间区域)=∫dθ∫rdr∫dz(作柱面坐标变换)=2π∫r(1-r^2)dr=2π(1/2-1/4)=π/2扩展资料:二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

二重积分计算?

原式=π/8,详情如图所示有任何疑惑,欢迎追问

二重积分怎么dx,dy分开算

二重积分公式是:∫∫f(x,y)dxdy。x、y是未知数,分量,dx、dy是对应的分量的微元;两个的书写顺序可以随机交换。f(x,y)是被积函数,既然是二重积分,被积函数肯定是跟两个分量有关的,也可以只有其中一个分量,或者常数都行。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

二重积分的计算原理是什么?

跟定积分原理一样在[-a,a]上若f(x)为奇函数,f(-x)=-f(x)∫(-a,a) f(x) dx,令x=-u=∫(a,-a) f(-u)*(-du)=∫(-a,a) f(-u) du=∫(-a,a) -f(u) du=-∫(-a,a) f(x) dx,移项得∫(-a,a) f(x) dx=0同理∫(-a,a) f(x) dx = 2∫(0,a) f(x) dx若f(x)为偶函数至于二重积分若D关于x轴和y轴都是对称的而且被积函数是关于x或y是奇函数的话,结果一样是0例如D为x^2+y^2=1则x,x^3,xy,xy^3,y^5,x^3y^3等等的结果都是0不要以为xy和x^3y^3是偶函数,奇偶性是对单一自变量有效的计算x时把y当作常数,所以对x的积分结果是0时,再没必要对y积分了

微积分常用公式要全的已及二重积分的计算方法

利用极坐标计算二重积分,有公式∫∫f(x,y)dxdy=∫∫f(rcosθ,rsinθ)rdrdθ,其中积分区域是一样的。I=∫dx∫(x^2+y^2)^-1/2dyx的积分上限是1,下限0y的积分上限是x,下限是x??积分区域D即为直线y=x,和直线y=x??在区间[0,1]所围成的面积,转换为极坐标后,θ的范围为[0,π/4],下面计算r的范围:因为y=x??的极坐标方程为:rsinθ=r??cos??θr=sinθ/cos??θ因为直线y=kx和曲线y=x??的交点为(0,0),(k,k??),所以在极坐标中r的取值范围为[0,sinθ/cos??θ],则积分I化为极坐标的积分为I=∫dθ∫1/√(rcosθ)??+(rsinθ)??rdr=∫dθ∫dr(θ范围[0,π/4],r范围[0,sinθ/cos??θ])=∫(sinθ/cos??θ)dθ(θ范围[0,π/4])=∫(-1/cos??θ)dcosθ=|1/cosθ|(θ范围[0,π/4])=1/cos(π/4)-1/cos0=√2-1

怎么计算二重积分?

二重积分的计算方法如下:二重积分的计算方法:把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。二重积分的现实(物理)含义:面积×物理量=二重积分值;举例说明:二重积分的现实(物理)含义:二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。

二重积分的计算

[-x*cos(x+y)]"=x*sin(x+y)-cos(x+y)x*sin(x+y)=cos(x+y)-[x*cos(x+y)]"以上是对x求导的结果。把y暂看作常数。二重积分,可以先把y看作常数,对x进行积分。然后再对y积分。∫∫xysin(x+y)dxdy=∫y[∫xsin(x+y)dx]dy=∫y{∫cos(x+y)-[x*cos(x+y)]"dx}dy=∫y[∫cos(x+y)dx]dy-∫y∫[x*cos(x+y)]"dxdy=∫ysin(x+y)dy-∫xycos(x+y)dy对于其中第一项,仍然采用分部积分法∫ysin(x+y)dy=∫{cos(x+y)-[y*cos(x+y)]"}dy=sin(x+y)-y*cos(x+y)对于第二项∫xycos(x+y)dy=x∫ycos(x+y)dy=x∫{[ysin(x+y)]"-sin(x+y)}dy=xysin(x+y)+xcos(x+y)因此原二重积分结果为sin(x+y)-y*cos(x+y)-xysin(x+y)-xcos(x+y)=(1-xy)sin(x+y)-(x+y)cos(x+y)(经对x和y求导检验后,上述结果正确)以下限代入=(1-0)*sin0-(0+0)cos0=0以上限x+y=π/2代入=1-xy=1-x(π/2-x)=1-πx/2+x^2其中x∈[0,π/2]上限为x+y=π/2。但x和y本身并非定值。这导致了积分结果依然是一个函数。

二重积分的计算方法

  1、二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。   2、二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。   3、函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。

matlab计算二重积分

syms x y;f_1=0.2*exp(-0.5*((x-16)^2)+((y-10)^2)/0.64-((x-16)*(y-10))/2);xup=y/4+sqrt(6-1.5*y^2);xlow=y/4-sqrt(6-1.5*y^2);fs1=int(f_1,"x",xlow,xup);fs2=int(fs1,"y",-2,2);fs2 =int((exp(-(135*y)/4)*exp(675/4)*exp((27*y^2)/16)*(erf((21*2^(1/2))/2 - (3*2^(1/2)*y)/8 + (12 - 3*y^2)^(1/2)/2) + erf((3*2^(1/2)*y)/8 - (21*2^(1/2))/2 + (12 - 3*y^2)^(1/2)/2))*(2*pi)^(1/2))/10, y, -2, 2)syms x y;f1=x*y;f2=int(f1,"y",1,x);f3=int(f2,"x",1,2);扩展资料:运用的符号积分命令int用法:int(fun):求函数fun的不定积分;int(fun,var):求函数fun关于变量var的不定积分;int(fun, var, a,b,):求函数fun的在[a,b]间的定积分或广义积分;示例>> clear;syms x y z;>> int(sin(x*y+z),z)ans = -cos(x*y+z)参考资料来源:百度百科—INT函数

二重积分的计算原理是怎样的?

跟定积分原理一样在[-a,a]上若f(x)为奇函数,f(-x)=-f(x)∫(-a,a) f(x) dx,令x=-u=∫(a,-a) f(-u)*(-du)=∫(-a,a) f(-u) du=∫(-a,a) -f(u) du=-∫(-a,a) f(x) dx,移项得∫(-a,a) f(x) dx=0同理∫(-a,a) f(x) dx = 2∫(0,a) f(x) dx若f(x)为偶函数至于二重积分若D关于x轴和y轴都是对称的而且被积函数是关于x或y是奇函数的话,结果一样是0例如D为x^2+y^2=1则x,x^3,xy,xy^3,y^5,x^3y^3等等的结果都是0不要以为xy和x^3y^3是偶函数,奇偶性是对单一自变量有效的计算x时把y当作常数,所以对x的积分结果是0时,再没必要对y积分了

怎样求二重积分?

二重积分的计算方法如下:二重积分的计算方法:把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。二重积分的现实(物理)含义:面积×物理量=二重积分值;举例说明:二重积分的现实(物理)含义:二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。

如何计算二重积分啊?

二重积分一共一般有三种计算方法:变限求积分,直角坐标化极坐标,作图构思取最简单的微元。先确定积分区域,把二重积分的计算转化为二次积分的计算。但二次积分的计算相当于每次只计算一个变元的定积分, 利用对称性。 积分区域是关于坐标轴对称的。 被积函数也时关于坐标轴对称的。当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。可以看出二重积分的值是被积函数和积分区域共同确定的。扩展资料:当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。参考资料来源:百度百科-二重积分

二重积分怎么计算

化为二次积分。∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。扩展资料:几何意义在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积参考资料来源:百度百科-二重积分

计算二重积分步骤顺序

计算二重积分步骤顺序:1.直角投影法:分别在x轴和y轴上投影,做法一:先确定x的取值范围,然后从x的坐标区域做一条垂线交于曲线,分别得到y1(x)和y2(x);这种积分先对x积分,再对y积分做法二:先确定y的取值范围,然后从y的坐标区域做一条垂线交于曲线,分别得到x1(y)和x2(y),这种积分先对y积分,再对x积分2.极坐标法:当积分区域或被积函数含有x∧2+y∧2时,使用极坐标法首先确定θ和r的取值范围,r的取值范围可以用x=rcosθ,y=rsinθ代入积分区域的函数得到,或者直接从积分区域观察出来;将x=rcosθ,y=rsin代入被积函数,dxdy=rdrdθ,积分式中前面写对θ的积分,后面写对r的积分。

计算二重积分 ∫∫(x+y)dxdy [0≤x≤1;0≤y≤1] ∫∫(x+y)dxdy [0≤x

计算方法如下:二重积分化累次积分的通用方法根据前文原理:二重积分是在一块二维的积分区域上,对被积函数做累积;无论采用哪种二重积分化累次积分的方式,关键是要把积分区域用两个积分变量的范围“精确”的表示出来。一旦表示出来,顺手就能写成累次积分,二重积分的计算就只剩下计算两次定积分。两个积分变量的积分区域,一定可以用这两个变量的范围“精确”表示出来,谁在先谁在后都行,这样就必有两种表示法:以直角坐标为例,这两种表示也保证了,二重积分必能按两种方式转化为累次积分。

怎样计算二重积分???

对称性计算二重积分时要看被积函数或被积函数的一部分是否关於某个座标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。奇偶性计算二重积分时要看被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。以上内容参考:百度百科-二重积分

谁能清楚的告诉我二重积分到底怎么算

把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。你可以找一本高等数学书看看。。你这个题目积分区域中,x,y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x),g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待(只含有x的项可以像提出常数一样提到积分号外面来)。这个第一次积分得到一个关于x的函数(这个结果是第二次积分的表达式),然后再对x积分,这时候上下限就是2和1。这样就得到积分值了。扩展资料二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。参考资料:百度百科-二重积分

请问二重积分怎么计算?

二重积分的计算方法如下:二重积分的计算方法:把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。二重积分的现实(物理)含义:面积×物理量=二重积分值;举例说明:二重积分的现实(物理)含义:二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。

二重积分是如何计算的?

1、被积函数等于0时;2、积分区域面积等于0时;3、被积函数是关于x的奇函数,且积分区域关于y轴对称时;4、被积函数是关于y的奇函数,且积分区域关于x轴对称时。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。扩展资料:几何意义在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。参考资料来源:百度百科-二重积分

二重积分到底算的是什么?

数学。。。 面积吧

高等数学二重积分的有关计算

  二重积分的计算方法如下:  设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(ξi,ηi),作和lim n→+∞ (n/i=1 Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y)在区域D上的二重积分,记为∫∫f(x,y)dδ,即  ∫∫f(x,y)dδ=lim n→+∞ (Σf(ξi,ηi)Δδi)  这时,称f(x,y)在D上可积,其中f(x,y)称被积函数,f(x,y)dδ称为被积表达式,dδ称为面积元素, D称为积分域,∫∫称为二重积分号.  同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。性质  性质1 (积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差),即  ∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ  性质2 (积分满足数成) 被积函数的常系数因子可以提到积分号外,即  ∫∫kf(x,y)dσ=k∫∫f(x,y)dσ (k为常数)  性质1与性质2合称为积分的线性性。  性质3 如果在区域D上有f(x,y)≦g(x,y),则∫∫f(x,y)dσ≦∫∫g(x,y)dσ  推论 ∣∫∫f(x,y)dσ∣≦∫∫∣g(x,y)∣dσ  性质4 设M和m分别是函数f(x,y)在有界闭区间D上的最大值和最小值,σ为区域D的面积,  则mσ≦∫∫f(x,y)dσ≦Mσ  性质5 如果在有界闭区域D上f(x,y)=1, σ为D的面积,则Sσ=∫∫dσ  性质6 二重积分中值定理  设函数f(x,y)在有界闭区间D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得  ∫∫f(x,y)dσ=f(ξ,η)●σ

如何计算二重积分?

对称性计算二重积分时要看被积函数或被积函数的一部分是否关於某个座标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。奇偶性计算二重积分时要看被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。以上内容参考:百度百科-二重积分

怎样计算二重积分?

二重积分一共一般有三种计算方法:变限求积分,直角坐标化极坐标,作图构思取最简单的微元。先确定积分区域,把二重积分的计算转化为二次积分的计算。但二次积分的计算相当于每次只计算一个变元的定积分, 利用对称性。 积分区域是关于坐标轴对称的。 被积函数也时关于坐标轴对称的。当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。可以看出二重积分的值是被积函数和积分区域共同确定的。扩展资料:当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。参考资料来源:百度百科-二重积分

二重积分的计算方法

二重积分的计算方法如下:把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。

如何计算二重积分?

计算二重积分步骤顺序:1.直角投影法:分别在x轴和y轴上投影,做法一:先确定x的取值范围,然后从x的坐标区域做一条垂线交于曲线,分别得到y1(x)和y2(x);这种积分先对x积分,再对y积分做法二:先确定y的取值范围,然后从y的坐标区域做一条垂线交于曲线,分别得到x1(y)和x2(y),这种积分先对y积分,再对x积分2.极坐标法:当积分区域或被积函数含有x∧2+y∧2时,使用极坐标法首先确定θ和r的取值范围,r的取值范围可以用x=rcosθ,y=rsinθ代入积分区域的函数得到,或者直接从积分区域观察出来;将x=rcosθ,y=rsin代入被积函数,dxdy=rdrdθ,积分式中前面写对θ的积分,后面写对r的积分。

如何计算二重积分?

对称性计算二重积分时要看被积函数或被积函数的一部分是否关於某个座标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。奇偶性计算二重积分时要看被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。以上内容参考:百度百科-二重积分

二重积分怎么算

化为二次积分。∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。扩展资料:几何意义在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积参考资料来源:百度百科-二重积分

二重积分的计算公式

二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以得到一个关于ρ的等式;就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ;此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π扩展资料:在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为可得到二重积分在极坐标下的表达式:参考资料:百度百科-二重积分

二重积分的计算方法

二重积分的计算方法如下:二重积分的计算方法:把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。二重积分的现实(物理)含义:面积×物理量=二重积分值;举例说明:二重积分的现实(物理)含义:二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。

ffxydxdy二重积分的计算方法

二重积分公式是:∫∫f(x,y)dxdy。x、y是未知数,分量,dx、dy是对应的分量的微元;两个的书写顺序可以随机交换。f(x,y)是被积函数,既然是二重积分,被积函数肯定是跟两个分量有关的,也可以只有其中一个分量,或者常数都行。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

二重积分的计算例题

解:可以用“大-小”实现。过程是,∫∫Dydxdy=∫(-2,0)dx∫(0,2)ydy-∫(-√(2y-y^2),0)dx∫(0,2)ydy。又,∫(-2,0)dx∫(0,2)ydy=∫(-2,0)[(1/2)y^2丨(y=0,2)]dx=2∫(-2,0)dx=4;对∫(-√(2y-y^2),0)dx∫(0,2)ydy,设设x=ρcosθ,y=ρsinθ,则积分区域D={(ρ,θ)丨0≤ρ≤2sinθ,π/2≤θ≤π}。∴∫(-√(2y-y^2),0)dx∫(0,2)ydy=∫(π/2,π)dθ∫(0,2sinθ)(ρ^2)sinθdρ=(8/3)∫(π/2),π)(sinθ)^4dθ=(1/3)∫(π/2),π)(3-4cos2θ+cos4θ)dθ=π/2。∴∫∫Dydxdy=4-π/2。供参考。

怎样用二元函数计算二重积分?

计算方法如下:二重积分化累次积分的通用方法根据前文原理:二重积分是在一块二维的积分区域上,对被积函数做累积;无论采用哪种二重积分化累次积分的方式,关键是要把积分区域用两个积分变量的范围“精确”的表示出来。一旦表示出来,顺手就能写成累次积分,二重积分的计算就只剩下计算两次定积分。两个积分变量的积分区域,一定可以用这两个变量的范围“精确”表示出来,谁在先谁在后都行,这样就必有两种表示法:以直角坐标为例,这两种表示也保证了,二重积分必能按两种方式转化为累次积分。

如何计算二重积分?口诀是什么?

口诀是:后积先定限,限内画条线,先交写下限,后交写上限,二重积分换序口诀具体的应用:首先要作出积分的区域,再看先对哪个做出积分,如果先对x积分,则作一条平行于x轴的直线穿过积分区域,与积分区域的交点就是积分上下限。二重积分的计算对于二重积分的计算,我们首先要根据题目的条件先画出积分区域草图,同学请注意一定要看准条件,正确的画图,这一步如果出现问题,后面在计算二重积分很有可能出现错误。一定要保证积分区域图形的准确。我们说二重积分是要化为累次积分进行计算,那么选择积分次序就很重要,我们在选择积分次序主要是尽量的避免分类讨论。这个主要是由我们之前画的图形决定,其次是根据我们被积函数,看被积函数先算那个简单。选择完积分顺序之后,在确定积分上下限,然后就开始计算。

二重积分的计算方法有哪些,各有什么性质?

性质1 函数和(差)的二重积分等于各函数二重积分的和(差),即   ∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ   性质2 被积函数的常系数因子可以提到积分号外,即   ∫∫kf(x,y)dσ=k∫∫f(x,y)dσ (k为常数)   性质3 如果在区域D上有f(x,y)≦g(x,y),则∫∫f(x,y)dσ≦∫∫g(x,y)dσ   推论 ∣∫∫f(x,y)dσ∣≦∫∫∣f(x,y)∣dσ   性质4 设M和m分别是函数f(x,y)在有界闭区间D上的最大值和最小值,σ为区域D的面积,   则mσ≦∫∫f(x,y)dσ≦Mσ   性质5 如果在有界闭区域D上f(x,y)=1, σ为D的面积,则σ=∫∫dσ   性质6 二重积分中值定理    设函数f(x,y)在有界闭区间D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得   ∫∫f(x,y)dσ=f(ξ,η)●σ

二重积分公式是什么?

二重积分公式是f(x,y)≦g(x,y)。设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域,并以表示第个子域的面积。在上任取一点作和。如果当各个子域的直径中的最大值趋于零时,此和式的极限存在,且该极限值与区域D的分法及的取法无关,则称此极限为函数在区域上的二重积分,记为,即。这时,称在上可积,其中称被积函数,称为被积表达式,称为面积元素,称为积分区域,称为二重积分号。二重积分应用在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。二重积分和定积分一样不是函数,而是一个数字。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。如函数,其积分区域D是由所围成的区域。其中二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。

二重积分怎么算?

圆心不在原点的圆,使用变量代换,x=1+u,y=2+v,dxdy=dudv。接着就可以用极坐标求二重积分。二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。二重积分的定义:设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(ξi,ηi),作和lim n→ ∞ (n/i=1 Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y)在区域D上的二重积分,记为∫∫f(x,y)dδ,即∫∫f(x,y)dδ=limλ →0(Σf(ξi,ηi)Δδi)这时,称f(x,y)在D上可积,其中f(x,y)称被积函数,f(x,y)dδ称为被积表达式,dδ称为面积元素, D称为积分域,∫∫称为二重积分号.同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。

二重积分的计算方法 二重积分的计算方式

1、二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。 2、二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。 3、函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。

如何计算二重积分呢?

将一元函数积分推广来看对于连续函数 f(x,y) 如何求二重积分. 每个二重积分都可以方便地用定积分的方法分步进行计算。矩形区域上的二重积分设 f(x,y) 在矩形区域 R: a<=x<=b, c<=y<=d 上有定义。 如果 R 被分别平行于 x 轴和 y 轴的直线网格所划分成许多小块面积 u2206 A="u2206 xu2206 y" 。扩展资料对直角坐标来说,主要考点有两个:一是积分次序的选择,基本原则有两个:一是看区域,选择的积分次序一定要便于定限,说得更具体一点,也就是要尽量避免分类讨论;二是看函数,要尽量使第一步的积分简单,选择积分次序的最终目的肯定是希望是积分尽可能地好算一些,实践表明,大多数时候,只要让二重积分第一步的积分尽可能简单,那整个积分过程也会比较简洁;所以在拿到一个二重积分之后,可以根据它的被积函数考虑一下第一步把哪个变量看成常数更有利于计算,从而确定积分次序。二是定限,完成定限之后,二重积分就被化为了两次定积分,就可以直接计算了。

二重积分怎么算?

在MATLAB软件中输入二重积分的代码即可求二重积分,具体操作请参照以下步骤,演示软件版本为MATLAB 2014版。1、将要使用MATLAB计算下图中的二重积分,首先在电脑上打开MATLAB软件。2、新建脚本(Ctrl+N),输入图中框住的代码内容。其中Q1=dblquad(f,0,2*pi,-pi,pi,1.0e-3)采用默认方法quad计算二重积分,绝对计算精度设为1.0e-3。plot3(x,y,ff,"r","LineWidth",3)是绘制被积分函数ff=x.*sin(y)-cos(x)+y-3的图像。3、保存和运行上述脚本,在命令行窗口(Command Window)得到如下结果:Q1 =-118.4351。也就是说,该二重数值积分的结果为-118.4351。4、同时得到被积分函数x.*sin(y)-cos(x)+y-3的图像。5、也可采用quadl法计算二重积分,在Q1命令后面再添加一行命令Q2=dblquad(f,0,2*pi,-pi,pi,1.0e-3,"quadl")即可。

二重积分的计算方法?

简单分析一下,详情如图所示

二重积分的计算方法是怎样的?

把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。为此,必须注意:选取适合坐标,是否分域,如何定限。计算二重积分的主要方法有:利用对称性、奇偶性、变量替换、几何意义化简,利用直角坐标或极坐标化为二次积分,利用分域法,交换积分次序等能大大简化二重积分的计算,只要方法选得适当,二重积分的运算量就会小很多。二重积分的现实(物理)含义:面积×物理量=二重积分值;举例说明:二重积分的现实(物理)含义:二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。扩展资料:二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

怎么计算二重积分?

计算二重积分步骤顺序:1.直角投影法:分别在x轴和y轴上投影,做法一:先确定x的取值范围,然后从x的坐标区域做一条垂线交于曲线,分别得到y1(x)和y2(x);这种积分先对x积分,再对y积分做法二:先确定y的取值范围,然后从y的坐标区域做一条垂线交于曲线,分别得到x1(y)和x2(y),这种积分先对y积分,再对x积分2.极坐标法:当积分区域或被积函数含有x∧2+y∧2时,使用极坐标法首先确定θ和r的取值范围,r的取值范围可以用x=rcosθ,y=rsinθ代入积分区域的函数得到,或者直接从积分区域观察出来;将x=rcosθ,y=rsin代入被积函数,dxdy=rdrdθ,积分式中前面写对θ的积分,后面写对r的积分。

二重积分如何计算?

I=∫∫e^(x+y)dxdy=∫(1,0)dx∫(1,0)e^(x+y)dy=∫(1,0)dx∫(1,0)ex*eydy=∫(1,0)exdx∫(1,0)eydy=ex∫(1,0)*ey∫(1,0)=(e-1)^2扩展资料:函数和(差)的二重积分等于各函数二重积分的和(差)。 被积函数的常系数因子可以提到积分号外。如果在区域D上有f(x,y)≦g(x,y),则∫∫f(x,y)dσ<=∫∫g(x,y)dσ。设M和m分别是函数f(x,y)在有界闭区域D上的最大值和最小值,σ为区域D的面积,则mσ<=∫∫f(x,y)dσ<=Mσ。如果在有界闭区域D上f(x,y)=k(k为常数),σ为D的面积,则Sσ=k∫∫dσ=kσ。

二重积分如何计算?

二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以得到一个关于ρ的等式;就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ;此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π扩展资料:在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为可得到二重积分在极坐标下的表达式:参考资料:百度百科-二重积分

二重积分的计算

化为二次积分。∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。扩展资料:几何意义在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积参考资料来源:百度百科-二重积分

二重积分运算?

对于内层定积分∫(0,x)tanx/x dy,变量y为积分变量,被积函数tanx/x相当于常量移动积分号∫外面,得到∫(0,x)tanx/x dy=tanx/x*∫(0,x)dy=tanx/x*x=tanx,如下图所示:

高等数学 二重积分

以上,请采纳。

高等数学下二重积分?

y"+x=√(x^2+y)设√(x^2+y)-x=u, x^2+y=x^2+2xu+u^2y"=2u+2xu"+2uu" 代入得:u=2u+2xu"+2uu" u"=-u/(2u+2x)或:dx/du+2x/u=-2这是x作为函数、u作为变量的一阶线性微分方程,由通解公式:x=(1/u^2)(C-(2/3)u^3)xu^2+(2/3)u^3=C 代入√(x^2+y)-x=u:C=(2/3)u^2(3x/2+u)=(2/3)(√(x^2+y)-x)^2(x/2+√(x^2+y))C=(2/3)[(x^2+y)-2x√(x^2+y)+x^2](x/2+√(x^2+y))=(2/3)(x(x^2+y)/2+(x^2+y)^(3/2)-x^2√(x^2+y)-2x(x^2+y)+x^3/2+x^2√(x^2+y))=(2/3)((x^2+y)^(3/2)-x^3-(3/2)xy)

高等数学二重积分

y"+x=√(x^2+y) 设√(x^2+y)-x=u, x^2+y=x^2+2xu+u^2 y"=2u+2xu"+2uu" 代入得: u=2u+2xu"+2uu" u"=-u/(2u+2x) 或:dx/du+2x/u=-2 这是x作为函数、u作为变量的一阶线性微分方程,由通解公式: x=(1/u^2)(C-(2/3)u^3) xu^2+(2/3)u^3=C 代入√(x^2+y)-x=u: C=(2/3)u^2(3x/2+u) =(2/3)(√(x^2+y)-x)^2(x/2+√(x^2+y)) C=(2/3)[(x^2+y)-2x√(x^2+y)+x^2](x/2+√(x^2+y)) =(2/3)(x(x^2+y)/2+(x^2+y)^(3/2)-x^2√(x^2+y)-2x(x^2+y)+x^3/2+x^2√(x^2+y)) =(2/3)((x^2+y)^(3/2)-x^3-(3/2)xy)

高等数学,二重积分怎么做

当二重积分里面的多项式因式只含有一个未知数,可以采用这种方法,特殊的,多项式只有一项,可以理解为1和多项式相乘,这里的1可以是只关于x的函数,也可以是只关于y的函数。然后可以提取这样的因式,求出未知数的范围,这里的范围是确切的,积分式写前面。再写另一个因式,求出另一个未知数范围,这里的范围要用前一个未知数表示。不知道你懂没,这个书上有一两页专门讲,多看看说明,不要跳过

二重积分中值定理是什么?

积分中值定理,是一种数学定律。分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。积分中值定理揭示了一种将积分化为函数值, 或者是将复杂函数的积分化为简单函数的积分的方法, 是数学分析的基本定理和重要手段, 在求极限、判定某些性质点、估计积分值等方面应用广泛。二重积分的中值定理:设f(x,y)在有界闭区域D上连续,是D的面积,则在D内至少存在一点,使得定理证明设(x)在上连续,且最大值为,最小值为,最大值和最小值可相等。由估值定理可得同除以(b-a)从而由连续函数的介值定理可知,即:命题得证。积分中值定理在应用中所起到的重要作用是可以使积分号去掉,或者使复杂的被积函数化为相对简单的被积函数,从而使问题简化。因此,对于证明有关题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理, 去掉积分号,或者化简被积函数。

二重积分的中值定理

二重积分中值定理公式有哪些?

二重积分中值定理公式如下图:口诀是:后积先定限,限内画条线,先交写下限,后交写上限,二重积分换序口诀具体的应用:首先要作出积分的区域,再看先对哪个做出积分,如果先对x积分,则作一条平行于x轴的直线穿过积分区域,与积分区域的交点就是积分上下限。应用:若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。在一元函数微分学中,微分中值定理是应用函数的局部性质研究函数在区间上整体性质的重要工具,它在数学分析中占有重要的地位,其中拉格朗日中值定理是核心,罗尔定理是其特殊情况,柯西定理是其推广。

高等数学,极坐标下计算二重积分?

令x=ρcosθ,y=ρsinθ,则D:{(x,y)|x^2+y^2<=2y}即为{(ρ,θ)|ρ<=2sinθ}

二重积分,极坐标如何化成直角坐标

二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ极点是原来直角坐标的原点以下是求ρ和θ 范围的方法一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ 代进去可以得到一个关于ρ的等式,就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法: 一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以得到一个关于ρ的等式; 就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ;此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π根据公式x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。例如:计算扩展资料性质:意义:二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy

求定积分∫e^(-x^2/2)dx ,0到正无穷的,用二重积分算的那种方法

纠正一下,这个属于反常积分,二重积分算法和这个有什么关系愿闻其详。真算起来非常麻烦,观察后发现可以变形为正态分布的概率密度函数,利用正态分布相关结论求值

二重积分中的原点(极点)在哪里?

1、原点(极点)在积分区域的内部,θ的范围从0到2π;2、原点(极点)在积分区域的边界,θ的范围从区域的边界,按逆时针方向扫过去;3、原点(极点)在积分区域之外,θ的范围从区域的靠极轴的边界,按逆时针方向扫过去。有许多二重积分仅仅依靠直角坐标下化为累次积分的方法难以达到简化和求解的目的。当积分区域为圆域,环域,扇域等,或被积函数为等形式时,采用极坐标会更方便。扩展资料:1、直角坐标与极坐标的转换:在直角坐标系xOy中,取原点为极坐标的极点,取正x轴为极轴,则点P的直角坐标系(x,y)与极坐标轴(r,θ)之间有关系式:2、注意事项:在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D。参考资料来源:百度百科-二重积分

二重积分,如图。主要是极坐标转换成直角坐标的范围是怎么确定的?麻烦详细点

你好!答案是D,可以如图先画出积分区域,再改写为直角坐标下的二次积分。经济数学团队帮你解答,请及时采纳。谢谢!

二重积分直角坐标转化为极坐标?

先画草图,相切的时候确定θ范围

二重积分的极坐标表示

回答稍微有点长,但是仔细读肯定会帮助你理解。你说的不对,不是secx是secΘ。转化成极坐标的时候,你得从坐标原点画一条指向x轴正方向的直线,然后在积分区域内逆时针旋转至x负方向,直线箭尾经过的是r的下限,箭头经过的是r的上限。角度Θ的取值范围根据旋转的角度决定,最大的范围是[0,pi](从x轴正向转到x轴负方向)在这个题目里,积分区域很好画,是一个第一象限内的一个三角形,指向x轴正方向的直线从和x轴重合开始,一直转到y=x这条直线,所以角度就是从0转到1/4pi,这个应该很好理解。而对于r的取值,箭尾始终是在原点,所以r=0,而在旋转过程中,箭头在触及的积分区域的端点界限始终是x=1这条线,所以根据极坐标公式是x=rcosΘ,也就是rcosΘ=1,所以r=1/cosΘ=secΘ。那么有个思考题可以帮助你理解,还是这个题,积分区域变成了x=±1和y=x围成的两个中心对称的三角区域应该怎么写积分呢?做法还是一样的,旋转角度没有变,所以Θ的取值还是0到1/4pi,但是由于这时候箭尾不再是在原点了,而是始终在x=-1这条线上,箭头还是原来的x=1,所以这时候r就变成了从-secΘ到secΘ了。不明白追问吧。

极坐标下的二重积分为什么在这个条件下可以这么写

rdrdθ 是进行坐标变换的产物. dxdy=rdrdθ , 这是从直角坐标系变换到极坐标系. 其中的r是由雅可比行列式计算得出的. 也可以直接由面积公式计算, 极坐标下ds=rdθ * dr=rdrdθ 之所以只见到rdr, 是因为dθ提到前面去了进行等量代换不一定都有几何意义的. f(rcosθ,rsinθ)rdr这种东西的几何意义可以理解为面密度为f(rcosθ,rsinθ)时圆的面积的1/π

极坐标计算二重积分

解:(5)原式=∫<0,2π>dθ∫<π,2π>r*sinrdr (作极坐标变换) =2π(-3π) (应用分部积分法) =-6π^2; (6)原式=∫<0,π/2>dθ∫<1,2>θ*rdr (作极坐标变换) =∫<0,π/2>θdθ∫<1,2>rdr =((π^2/8)(2-1/2) =3π^2/16。

请问如图的二重积分怎么转换成极坐标?

二重积分中的极坐标转换为直角坐标,只要把被积函数中的ρcosθ,ρsinθ分别换成x,y。并把极坐标系中的面积元素ρdρdθ换成直角坐标系中的面积元素dxdy。 即: ρcosθ=x ρsinθ=y ρdρdθ=dxdy

二重积分的极点怎么求?

二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以得到一个关于ρ的等式;就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ;此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π扩展资料:在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D。参考资料来源:百度百科-二重积分

二重积分极坐标

如何理解极坐标下的二重积分?

可以先用微元法得到二重积分,然后将 ρ,θ看做新的变量X与Y,再利用直角坐标系来计算可以得到二次积分的表达式,这个应该好理解些吧。之所以极坐标在计算二重积分时有不同的原因是在同一个dθ上面积不是均匀分布的,这也是为什么会与直角坐标系有区别的原因。在极坐标中在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域。

二重积分极坐标变化,交换积分顺序上下极限怎么确定

你好!交换顺序时,暂时忘掉极坐标的含义,把θ与r当作直角坐标就容易做了,如图。经济数学团队帮你解答,请及时采纳。谢谢!

二重积分怎么转化为极坐标?

二重积分中的极坐标转换为直角坐标,只要把被积函数中的ρcosθ,ρsinθ分别换成x,y。并把极坐标系中的面积元素ρdρdθ换成直角坐标系中的面积元素dxdy。即:ρcosθ=x ρsinθ=y ρdρdθ=dxdy

利用极坐标计算二重积分中,θ的范围如何确定

确定θ的范围的方法:看这个区域所在的象限范围,解两曲线的交点坐标(x,y)后,角度θ=arctan(y/x),就可得到θ的范围。极坐标θ的变化都是从原点位置开始扫起的。注意角度必须是弧度制。一般分3种情况:1、原点(极点)在积分区域的内部,角度范围从0到2π;2、原点(极点)在积分区域的边界,角度范围从区域的边界,按逆时针方向扫过去,到另一条止;3、原点(极点)在积分区域之外,角度范围从区域的靠极轴的边界,按逆时针方向扫过去,到另一条止。扩展资料:利用极坐标计算二重积分中,除了确定θ的范围外,还要确定r的范围。r的范围确定方法:可以画一个从原点指向出来的箭头,先穿越的曲线就是下限,后穿越的曲线就是上线。即得到了r的范围。有许多二重积分仅仅依靠直角坐标下化为累次积分的方法难以达到简化和求解的目的。当积分区域为圆域,环域,扇域等时采用极坐标会更方便。在直角坐标系xOy中,取原点为极坐标的极点,取正x轴为极轴,则点P的直角坐标系(x,y)与极坐标轴(r,θ)之间有关系式:x=rcosθ,y=rsinθ。参考资料来源:百度百科-极坐标参考资料来源:百度百科-二重积分

极坐标中的二重积分如何与直角坐标中的二重积分互相转化?

二重积分经常把直角坐标转化为极坐标形式 主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ 极点是原来直角坐标的原点 以下是求ρ和θ 范围的方法 一般转换极坐标是因为有x^2+y^2存在,转换后计算方便 题目中会给一个x,y的限定范围,一般是个圆 将x=ρcosθ y=ρsinθ 代进去可以得到一个关于ρ的等式,就是ρ的最大值 而ρ的最小值一直是0 过原点作该圆的切线,切线与x轴夹角为θ范围 如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ 此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π

二重积分极坐标与直角坐标的互化是什么?

二重积分经常把直角坐标转化为极坐标形式,主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ,极点是原来直角坐标的原点。以下是求ρ和θ 范围的方法:一般转换极坐标是因为有x^2+y^2存在,转换后计算方便,题目中会给一个x,y的限定范围,一般是个圆,将x=ρcosθ y=ρsinθ 代进去可以得到一个关于ρ的等式,就是ρ的最大值 而ρ的最小值一直是0,过原点作该圆的切线,切线与x轴夹角为θ范围。如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ,此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π。
 1 2  下一页  尾页