- 真颛
-
2-100欧拉函数表
n φ(n)
2 1
3 2
4 2
5 4
6 2
7 6
8 4
9 6
10 4
11 10
12 4
13 12
14 6
15 8
16 8
17 16
18 6
19 18
20 8
21 12
22 10
23 22
24 8
25 20
26 12
27 18
28 12
29 28
30 8
31 30
32 16
33 20
34 16
35 24
36 12
37 36
38 18
39 24
40 16
41 40
42 12
43 42
44 20
45 24
46 22
47 46
48 16
49 42
50 20
51 32
52 24
53 52
54 18
55 40
56 24
57 36
58 28
59 58
60 16
61 60
62 30
63 36
64 32
65 48
66 20
67 66
68 32
69 44
70 24
71 70
72 24
73 72
74 36
75 40
76 36
77 60
78 24
79 78
80 32
81 54
82 40
83 82
84 24
85 64
86 42
87 56
88 40
89 88
90 24
91 72
92 44
93 60
94 46
95 72
96 32
97 96
98 42
99 60
100 40
- 血莲丿红尘
-
phi[1]=1 phi[2]=1 phi[3]=2 phi[4]=2 phi[5]=4 phi[6]=2 phi[7]=6 phi[8]=4 phi[9]=6 phi[10]=4 phi[11]=10 phi[12]=4 phi[13]=12 phi[14]=6 phi[15]=8 phi[16]=8 phi[17]=16 phi[18]=6 phi[19]=18 phi[20]=8 phi[21]=12 phi[22]=10 phi[23]=22 phi[24]=8 phi[25]=20 phi[26]=12 phi[27]=18 phi[28]=12 phi[29]=28 phi[30]=8 phi[31]=30 phi[32]=16 phi[33]=20 phi[34]=16 phi[35]=24 phi[36]=12 phi[37]=36 phi[38]=18 phi[39]=24 phi[40]=16 phi[41]=40 phi[42]=12 phi[43]=42 phi[44]=20 phi[45]=24 phi[46]=22 phi[47]=46 phi[48]=16 phi[49]=42 phi[50]=20 phi[51]=32 phi[52]=24 phi[53]=52 phi[54]=18 phi[55]=40 phi[56]=24 phi[57]=36 phi[58]=28 phi[59]=58 phi[60]=16 phi[61]=60 phi[62]=30 phi[63]=36 phi[64]=32 phi[65]=48 phi[66]=20 phi[67]=66 phi[68]=32 phi[69]=44 phi[70]=24 phi[71]=70 phi[72]=24 phi[73]=72 phi[74]=36 phi[75]=40 phi[76]=36 phi[77]=60 phi[78]=24 phi[79]=78 phi[80]=32 phi[81]=54 phi[82]=40 phi[83]=82 phi[84]=24 phi[85]=64 phi[86]=42 phi[87]=56 phi[88]=40 phi[89]=88 phi[90]=24 phi[91]=72 phi[92]=44 phi[93]=60 phi[94]=46 phi[95]=72 phi[96]=32 phi[97]=96 phi[98]=42 phi[99]=60 phi[100]=40
相关推荐
什么是欧拉函数
欧拉函数就是指:对于一个正整数n,小于或等于n的正整数中与n互质的正整数个数(包括1)的个数,记作 φ ( n ) 。在数论,对正整数 n,欧拉函数是小于或等于 n 的正整数中与 n 互质的数的数目(因此φ(1)=1)。此函数以其首名研究者欧拉命名(Euler"s totient function),它又称为 Euler"s totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为 1,3,5,7 均和 8 互质。从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。通式:(其中 p1, p2……pn 为 x 的所有质因数,x 是不为 0 的整数)定义 φ(1)=1(和 1 互质的数(小于等于 1)就是 1 本身)。注意:每种质因数只有一个。比如 12=2*2*3 那么φ(12)=φ(4*3)=φ(2^2*3^1)=(2^2-2^1)*(3^1-3^0)=4若 n 是质数 p 的 k 次幂,,因为除了 p 的倍数外,其他数都跟 n 互质。设 n 为正整数,以 φ(n)表示不超过 n 且与 n 互素的正整数的个数,称为 n 的欧拉函数值φ:N→N,n→φ(n)称为欧拉函数。欧拉函数是积性函数——若 m,n 互质,特殊性质:当 n 为奇质数时,, 证明与上述类似。2023-07-16 18:35:391
欧拉函数计算公式是什么?
它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理,R+V-E=2就是欧拉公式。在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。当R=2时。由说明1这两个区域可想象为以赤道为边界的两个半球面,赤道上有两个“顶点”将赤道分成两条“边界”。即R=2,V=2,E=2于是R+V-E=2,欧拉定理成立。2023-07-16 18:35:532
欧拉函数21怎么算
欧拉函数21计算:分解质因数:21=2^3*3*5。欧拉函数:φ(21)=21*(1-1/2)(1-1/3)(1-1/5)=120*1/2*2/3*4/5=32。小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。设n为正整数,以 φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值φ:N→N,n→φ(n)称为欧拉函数。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。2023-07-16 18:36:071
求欧拉函数的计算公式
它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理,R+V-E=2就是欧拉公式。在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。当R=2时。由说明1这两个区域可想象为以赤道为边界的两个半球面,赤道上有两个“顶点”将赤道分成两条“边界”。即R=2,V=2,E=2于是R+V-E=2,欧拉定理成立。2023-07-16 18:36:222
欧拉函数第441项是什么
4.3 欧拉函数详解】 - 浪漫主义狗的博客 - CSDN博客 - 欧拉函数4417月13日1 u223c N 1u223cN1u223cN中与N NN互质的数的个数被称为欧拉函数,记为u03d5 ( N ) phi(N)u03d5(N),特别的u03d5 ( 1 ) = 1 phi(...CSDN编程社区ue63c欧拉函数最全总结 - jiet07的博客 - CSDN博客 - 欧拉函数1. 素数分解法1.对于一个正整数N的素数幂分解N=P1q1P2q2…Pnqn,其中,Pi为素数(1≤i≤n)。根据第二条性质得到:φ(2. 编程思维利用欧拉函数和它本身不同质因数的关系,用筛法计算出某个范围内所有数的欧拉函数值。欧拉函数和它本身不同质因数的关系:欧拉函数: φCSDN编程社区ue63c欧拉函数第441项是什么 - 资深教育答主答疑 - 百度问一问在线2119位教育培训答主在线答已服务超1.5亿人5分钟内回复Hi,为您实时解答教育类升学、学科答疑等问题,与高校名师、专家1对1在线沟通欧拉函数第441项是什么马上提问ue734欧拉函数值怎么计算的120人正在咨询1到10的欧拉函数110人正在咨询求欧拉函数3628800的值101人正在咨询欧拉函数值怎么计算的120人正在咨询百度问一问ue63c欧拉函数知识点总结及代码模板及欧拉函数表 - 20172674的博客 - CSDN...1. boolboo[50000];2. intp[20000];3. voidprim()CSDN博客ue63c大家还在搜ue63c欧拉函数值怎么计算的1到10的欧拉函数求欧拉函数3628800的值100以内的欧拉函数欧拉函数计算器欧拉函数包括1吗欧拉函数前100项列昂纳多·斐波那契数列欧拉函数(详解) - 数论 - 落春只在无意间的博客 - CSDN博客 - 欧拉函数数列2021年7月31日欧拉函数:对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。例如euler(8)=4,因为1,3,5,7均和8互质。 Euler函数表达通式:euler...CSDN编程社区ue63c欧拉函数(转) -2023-07-16 18:36:302
欧拉函数φ(120)怎么算?
分解质因数:120=2^3*3*5欧拉函数:φ(120)=120*(1-1/2)(1-1/3)(1-1/5)=120*1/2*2/3*4/5=32小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。设n为正整数,以 φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值φ:N→N,n→φ(n)称为欧拉函数。扩展资料:利用欧拉函数和它本身不同质因数的关系,用筛法计算出某个范围内所有数的欧拉函数值。如:ψ(10)=10×(1-1/2)×(1-1/5)=4;ψ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8。2023-07-16 18:36:394
欧拉函数的简介
通式:,其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4若n是质数p的k次幂,,因为除了p的倍数外,其他数都跟n互质。设n为正整数,以 φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数。欧拉函数是积性函数——若m,n互质,特殊性质:当n为奇数时,, 证明与上述类似。若n为质数则2023-07-16 18:36:541
欧拉函数数列的前10项
欧拉函数数列的前10项:1、2、2、4、3、6 、4、6、4 、10在数论,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目。数列(sequence of number),是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示,前n项和用Sn表示。等差数列可以缩写为A.P.(Arithmetic Progression)递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。数列递推公式特点:有些数列的递推公式可以有不同形式,即不唯一。有些数列没有递推公式,即有递推公式不一定有通项公式。2023-07-16 18:37:061
欧拉公式是什么?
欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式,即将复数、指数函数与三角函数联系起来。拓扑学中的欧拉多面体公式。初等数论中的欧拉函数公式。欧拉公式描述了简单多面体顶点数、面数、棱数特有的规律,它只适用于简单多面体。常用的欧拉公式有复数函数e^ix=cosx+isinx,三角公式d^2=R^2-2Rr,物理学公式F=fe^ka等。复变函数e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。[2]欧拉公式e^ix=cosx+isinx的证明:因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……cosx=1-x^2/2!+x^4/4!-x^6/6!……sinx=x-x^3/3!+x^5/5!-x^7/7!……在e^x的展开式中把x换成±ix.(±i)^2=-1,(±i)^3=u2213i,(±i)^4=1……e^±ix=1±ix/1!-x^2/2!u2213ix^3/3!+x^4/4!……=(1-x^2/2!+……)±i(x-x^3/3!……)所以e^±ix=cosx±isinx将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:恒等式e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。那么这里的π就是x,那么e^iπ=cosπ+isinπ=-1那么e^iπ+1=0这个公式实际上是前面公式的一个应用。分式 分式里的欧拉公式: a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c三角公式 三角形中的欧拉公式: 设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr拓扑学说 拓扑学里的欧拉公式:拓扑学 V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。 如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。[3] X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。初等数论 初等数论里的欧拉公式: 欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。 欧拉证明了下面这个式子: 如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有 φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm) 利用容斥原理可以证明它。物理学欧拉公式应用众所周知,生活中处处存在着摩擦力,欧拉测算出了摩擦力与绳索缠绕在桩上圈数之间的关系。现将欧拉这个颇有价值的公式列在这里:F=fe^ka其中,f表示我们施加的力,F表示与其对抗的力,e为自然对数的底,k表示绳与桩之间的摩擦系数,a表示缠绕转角,即绳索缠绕形成的弧长与弧半径之比。 此外还有很多著名定理都以欧拉的名字命名。2023-07-16 18:37:3512
1的欧拉函数是多少
1的欧拉函数是1.欧拉函数是定义在正整数集合上的函数. φ(n)为小于n 并且与n 互素的非负整数的个数. 欧拉函数定义:对于一个正整数n,小于n且和n互质的正整数的个数,记做φ(n),φ(1)被定义为12023-07-16 18:38:081
54的欧拉函数
54的欧拉函数是81,因为欧拉函数(81)=54。在数论中,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为φ函数(由高斯所命名)或是欧拉总计函数(totient function,由西尔维斯特所命名)。例如,欧拉函数(8)=4因为1,3,5,7均和8互质。欧拉函数实际上是模n的同余类所构成的乘法群(即环的所有可逆元组成的乘法群)的阶。这个性质与拉格朗日定理一起构成了欧拉定理的证明。2023-07-16 18:38:361
MOD运算的欧拉函数
欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数的个数,记做:φ(n),其中φ(1)被定义为1,但是并没有任何实质的意义。定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然,对于素数p,φ(p)= p -1.对于两个素数p、q,他们的乘积n = pq 满足φ(n) =(p-1)(q-1)证明:对于质数p,q,满足φ(n) =(p-1)(q-1)考虑n的完全余数集Zn = { 1,2,....,pq -1}而不和n互质的集合由下面三个集合的并构成:1) 能够被p整除的集合{p,2p,3p,....,(q-1)p} 共计q-1个2) 能够被q整除的集合{q,2q,3q,....,(p-1)q} 共计p-1个3)很显然,1、2集合中没有共同的元素,因此Zn中元素个数 = pq - (p-1 + q- 1 + 1) = (p-1)(q-1)</PRE>2023-07-16 18:38:431
7的欧拉函数值
7的欧拉函数值等于4。欧拉函数是小于n的正整数中与n互质的数的数目,若n是质数p的k次幂,,因为除了p的倍数外,其他数都跟n互质。欧拉函数是积性函数,即是说若m,n互质,。证明:设A,B,C是跟m,n,mn互质的数的集,据中国剩余定理,和C可建立双射的关系。因此的值使用算术基本定理便知。应用首先看一个基本的例子。令a = 3,n = 5,这两个数是互素的。比5小的正整数中与5互素的数有1、2、3和4,所以φ(5)=4(详情见[欧拉函数])。计算:a^{φ(n)} = 3^4 =81,而81= 80 + 1 Ξ 1 (mod 5)。与定理结果相符。这个定理可以用来简化幂的模运算。比如计算7^{222}的个位数,实际是求7^{222}被10除的余数。7和10[[互素]],且φ(10)=4。由欧拉定理知7^4Ξ1(mod 10)。所以7^{222}=(7^4)^55*(7^2)Ξ1^{55}*7^2Ξ49Ξ9 (mod 10)。2023-07-16 18:39:091
C语言实现欧拉函数
int eular(int n){ int ret=1,i; //定义变量 for(i=2;i*i<=n;i++) //从i=2开始循环,判定条件为i*i小于等于n,循环一次i增加1 if(n%i==0) //判定条件为n除以i的余数等于0 { n/=i,ret*=i-1; //n=n/i,ret = ret*(i-1) while(n%i==0) //当n除以i的余数等于0时执行下面的语句,否则跳过 n/=i,ret*=i; } if(n>1) //如果n>1执行下面语句,否则跳过 ret*=n-1; //ret = ret*(n-1) return ret;}直接复制的百度百科的,没具体看是什么功能2023-07-16 18:39:242
请问10的欧拉函数是多少?
对正整数n,欧拉函数φ(n)是少于或等于n的数中与n互质的数的数目 与10互质的数有1,3,7,9 共4个 所以φ(10)=4 通常计算如下: 10=2*5 φ(10)=10*(1-1/2)*(1-1/5)=42023-07-16 18:39:511
欧拉函数:φ(341)是多少
刚做过,等于 300 。不知是不是你的提问。如果有疑问请追问。2023-07-16 18:40:002
欧拉函数
φ(8)= 4 (1,3,5,7与8互质)φ(12)= 4 (1,5,7,11与12互质)2023-07-16 18:40:092
欧拉函数证明
E(x)表示比x小的且与x互质的正整数的个数。*若p是素数,E(p)=p-1。*E(p^k)=p^k-p^(k-1)=(p-1)*P^(k-1)证:令n=p^k,小于n的正整数数共有n-1即(p^k-1)个,其中与p不质的数共[p^(k-1)-1]个(分别为1*p,2*p,3*p...p(p^(k-1)-1))。所以E(p^k)=(p^k-1)-(p^(k-1)-1)=p^k-p^(k-1).得证。*若ab互质,则E(a*b)=E(a)*E(b),欧拉函数是积性函数.*对任意数n都可以唯一分解成n=p1^a1*p2^a2*p3^a3*...*pn^an(pi为素数).则E(n)=E(p1^a1)*E(p2^a2)*E(p3^a3)*...*E(pn^an) =(p1-1)*p1^(a1-1)*(p2-1)*p2^(a2-1)*...*(pn-1)*pn^(an-1) =(p1^a1*p2^a2*p3^a3*...*pn^an)*[(p1-1)*(p2-1)*(p3-1)*...*(pn-1)]/(p1*p2*p3*...*pn) =n*(1-1/p1)*(1-1/p2)*...*(1-1/pn)* E(p^k) =(p-1)*p^(k-1)=(p-1)*p^(k-2)*p E(p^(k-1))=(p-1)*p^(k-2)->当k>1时,E(p^k)=E(p*p^(k-1))=E(p^(k-1))*p. (当k=1时,E(p)=p-1.)由上式: 设P是素数, 若p是x的约数,则E(x*p)=E(x)*p. 若p不是x的约数,则E(x*p)=E(x)*E(p)=E(x)*(p-1). *快速求欧拉函数方法: 首先来回顾一下线性筛选素数方法:2023-07-16 18:40:173
欧拉函数φ(200)怎么算?
分解200=2^3*5^2,欧拉函数φ(200)=200*(1-1/2)*(1-1/5)=802023-07-16 18:40:261
计算欧拉函数φ(100),写出详细过程?
其中pi是x的所有质因数还可以利用下列公式:φ(p)=p-1(其中p是素数)得知φ(100)=φ(25*4)=φ(25)φ(4)=φ(5^2)φ(2^2)=5φ(5)*2φ(2)=5(5-1)*2(2-1)=402023-07-16 18:40:341
谈一谈拉格朗日函数跟欧拉函数的区别?
在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。此函数以其首名研究者欧拉命名(Euler"s totient function),它又称为Euler"s totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。2023-07-16 18:41:122
欧拉函数 φn=1/3n
n=p1^a1*p2^a2*……*pk^ak 则φ(n)=p1^(a1-1)*(p1-1)*p2^(a2-1)*(p2-1)*……*pk^(ak-1)*(pk-1)=n/3 显然n=3^a2^k,可以 因为φ(n)=3^(a-1)*(3-1)*2^(k-1)*(2-1)=3^(a-1)*2^k=n/3 若还有其他的因数 则φ(n)=3^(a-1)*(3-1)*2^(k-1)*(2-1)p3^(a3-1)*(p3-1)*p4^(a4-1)*(p4-1)*……*pk^(ak-1)*(pk-1) =n/3*p3^(a3-1)*(p3-1)*p4^(a4-1)*(p4-1)*……*pk^(ak-1)*(pk-1) 因为p3〉=5 所以p3^(a3-1)*(p3-1)*p4^(a4-1)*(p4-1)*……*pk^(ak-1)*(pk-1)不等于1,所以φ(n)>n/3 若不含有3^a 则n/3不是整数 若没有2^k,则n是奇数 而φ(n)=3^(a-1)*(3-1)*p3^(a3-1)*(p3-1)*p4^(a4-1)*(p4-1)*……*pk^(ak-1)*(pk-1)是偶数 所以 n=3^a2^k2023-07-16 18:41:231
欧拉函数 Pascal (用线性筛法)
该算法在可在线性时间内筛素数的同时求出所有数的欧拉函数。 需要用到如下性质( p为质数 ): 1. phi(p)=p-1 因为质数p除了1以外的因数只有p,故1至p的整数只有p与p不互质 2. 如果i mod p = 0, 那么 phi(i * p)=p * phi(i) 证明如下 ( 上述证明存在bug。。感谢@PrimaryOIer指教) 上面的过程证明了从区间[1,i]->[i+1,i+i],若整数n 不与i互质,n+i依然与i不互质。下面给出另一个证明:若整数n与i互质,n+i与i依然互质 3.若i mod p ≠0, 那么 phi( i * p )=phi(i) * ( p-1 ) i mod p 不为0且p为质数, 所以i与p互质, 那么根据欧拉函数的积性 phi(i * p)=phi(i) * phi(p) 其中phi(p)=p-1即第一条性质2023-07-16 18:41:312
谁的欧拉函数等于100
2^2*5^2的欧拉函数等于100。(2^2-2*1)*(5^2-5^1)=2*20=40个。φ(100)=φ(25*4)=φ(25)φ(4)=φ(5^2)φ(2^2)=5φ(5)*2φ(2)=5(5-1)*2(2-1)=40。φ函数的值<math>varphi(1)=1</math>(唯一和1互质的数就是1本身)。若n是质数p的k次幂,<math>varphi(n)=p^a-p^=(p-1)p^</math>,因为除了p的倍数外,其他数都跟n互质。通式:其中p1,p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。(注意:每种质因数只一个。比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4。若n是质数p的k次幂,,因为除了p的倍数外,其他数都跟n互质。设n为正整数,以φ(n)表示不超过n且与n互。素的正整数的个数,称为n的欧拉函数值,这里函数。φ:N→N,n→φ(n)称为欧拉函数。欧拉函数是积性函数——若m,n互质。2023-07-16 18:41:491
欧拉函数的证明
设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理,A*B和C可建立一一对应的关系。因此φ(n)的值使用算术基本定理便知,若则例如与欧拉定理、费马小定理的关系对任何两个互质的正整数a, m(m>=2)有即欧拉定理当m是质数p时,此式则为:a^(p-1)≡1(mod m)即费马小定理。2023-07-16 18:42:021
30的欧拉函数是多少?
φ(30) = 8。欧拉函数定义: 对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目; 例如: φ(8) = 4, 因为1,3,5,7均和8互质。2023-07-16 18:42:141
什么是欧拉定理?
在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。另有欧拉公式。2023-07-16 18:42:252
请问10的欧拉函数是多少?谢谢
10的欧拉函数:varphi(8)=4分析及过程:在数论,对正整数n,欧拉函数varphi(n)是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler"s totient function、φ函数、欧拉商数等。varphi(10)=4,因为1,3,7,9均和10互质。2023-07-16 18:42:432
4的欧拉函数为什么是2
4与1.3互质所以它的欧拉函数为2。欧拉函数φ(x)表示小于等于x的正整数中与x互质的数的个数。比如φ(4)=2,因为4与1,3互质。2023-07-16 18:43:021
2的欧拉函数值为什么是
一.欧拉函数1.算法描述1u223cN 中与 N 互质的数的个数被称为欧拉函数,也就是说,1~N中与N的最大公约数是1的数的个数,记作phi left ( N ight )。在算术基本定理中,若N=p_{1}^{alpha _{1}}p_{2}^{alpha _{2 }}cdot cdot cdot p_{n}^{alpha _{n}}则: phi left ( N ight )=Nleft ( 1-frac{1}{p_{1}} ight )left ( 1-frac{1}{p_{2}} ight )cdot cdot cdot left ( 1-frac{1}{p_{n}} ight )证明如下:我们可以分以下几步求出N的互质的数1.在1~N这些数中,将p1、p2、……pn的倍数剔除,很显然,pi的倍数和N的最大公约数是不是1.N-frac{N}{p_{1}}-frac{N}{p_{2}}-cdot cdot cdot -frac{N}{p_{n}}2.但需要注意是,在1~N这些数中,pi*pj的倍数倍剔除了两次,因此要把他们加上frac{N}{p_{1}p_{2}}+frac{N}{p_{1}p_{3}}+cdot cdot cdot +frac{N}{p_{n-1}p_{n}}3.但是,对于pi*pj*pk的倍数,在第1步时,被剔除了三次,在第2步时,被pi*pj、pi*pk、pj*pk加上了三次,因而我们需要把pi*pj*pk的倍数再剔除一次:-frac{N}{p_{1}p_{2}p_{3}}-frac{N}{p_{1}p_{2}p_{4}}-cdot cdot cdot -frac{N}{p_{n-2}p_{n-1}p_{n}}4.那么可以想到,接下来就是所有N除以四项乘积的和,减去N除以五项乘积的和……事实上,将所有的这些式子加起来,得到的就是 phi left ( N ight )=Nleft ( 1-frac{1}{p_{1}} ight )left ( 1-frac{1}{p_{2}} ight )cdot cdot cdot left ( 1-frac{1}{p_{n}} ight )首先,当分母为奇数个乘积时,那每一项的符号都是-1的奇数次方,还是-1;当分母为偶数个乘积时,每一项的符号都是-1的偶数次方,为正。这个公式可以类比于约数的个数,道理是一样的。left ( p_{1}^{0}+p_{1}^{1} +cdot cdot cdot + p_{1}^{alpha _{1}} ight )left ( p_{2}^{0}+p_{2}^{1} +cdot cdot cdot + p_{2}^{alpha _{2}} ight )cdot cdot cdot left ( p_{n}^{0}+p_{n}^{1} +cdot cdot cdot + p_{n}^{alpha _{n}} ight )2.代码实现可以发现,欧拉函数并不关心每个质因子的指数是什么,因而我们不用s来存储指数,也不用map来存储质因子,每当我们发现一个质数i时,让结果乘以(1-1/i)。但需要注意两点:1.对于(1-1/i),1/i是小数,就这么写的话,那每一项都是1了,所以要×i再÷i,即:res=res/i*(i-1)。2.一定要记得在循环结束后,判断x是否会大于1,如果大于1,说明还存在x这个质因子,再执行一步:res=res/x*(x-1)。具体代码:#include<iostream>using namespace std;int n;int main(){ cin>>n; while(n--){ int x; cin>>x; int res=x; for(int i=2;i<=x/i;i++){ if(x%i==0){ while(x%i==0){ x=x/i;//i是我的一个质数 } res=res/i*(i-1); } } if(x>1) res=res/x*(x-1);//注意 cout<<res<<endl; }}二.筛法求欧拉函数1.算法描述第一部分中的算法适合于求单个给定数字对应的欧拉函数的值,但是当题目要求求1~N所有数字的欧拉值之和时,用第一部分中的算法就会花费很多时间,下介绍用筛法求欧拉函数:首先我们回顾筛法求质数的过程,对于给定的正整数N:for(int i=2;i<=n;i++){ if(!str[i]){ primes[cnt++]=i; } else{ for(int j=0;primes[j]<=n/i;j++){ str[i*primes[j]]=true; if(i%primes[j]==0) break; } }}通过筛法,所有的质数,合数我们都可以遍历到,把所有的质数加入数组primes中,并且str[i*primes[j]]保证了每一个数都会被它的最小质因子筛掉,而if(i%primes[j]==0)保证了不会被重复标记,详细介绍可以参考:https://blog.csdn.net/qq_64637770/article/details/127200421?spm=1001.2014.3001.5501那如何做出修改让筛法求欧拉函数?1.首先,对于质数i,那么1~i-1都与i互质,那么phi left (i ight )=i-12.对于合数,即我用str[i*primes[j]]将一个合数筛掉时,我必须同时把它的欧拉值求出来,我们分为以下两种情况:A.若i可以整除primes[j],那么primes[j]*i和i有共同的质因子,这是因为primes[j]是i的质因子,那么phi left ( i ight )已经包括了1-frac{1}{primes[j]}这一项,而欧拉函数的值与指数无关,因而:phi left ( i*primes[j] ight )=primes[j]*phi left ( i ight )B.若i不能够整除primes[j],那么primes[j]*i比i多一个质因子primes[j],这是因为i本身不包含质因子primes[j],而primes[j]本身是质数,不会再有质因子,因而:phi left ( i*primes[j] ight )=primes[j]left ( 1-frac{1}{primes[j]} ight )phi left ( i ight )=left ( primes[j] -1 ight )phi left ( i ight )因而,每一个数的欧拉值都可以通过该种方法求出来。2.代码实现关于代码实现需要注意的是,res的值可能会很大,所以要定义成long long类型。具体代码:#include<iostream>using namespace std;int x;const int N=1000010;long long res;//最后的欧拉函数的值的和,有可能会非常大,要用long longbool str[N];//是否被标记过int primes[N];//存放质因子int cnt;int phi[N];//各个N的函数值int main(){ phi[1]=1;//1的欧拉值为1捏 cin>>x; for(int i=2;i<=x;i++){ if(!str[i]){//如果没有被标记过,那么是质数 phi[i]=i-1;//质数的欧拉值就是i-1 primes[cnt++]=i; } for(int j=0;primes[j]<=x/i;j++){ str[i*primes[j]]=true;//首先我一定能把所有的合数遍历到,这是肯定的 if(i%primes[j]==0){ //如果i可以整除primes[j]的话,那么i和primes[j]*i的最小质因子是相同的 phi[i*primes[j]]=primes[j]*phi[i]; break; } else{ //如果i不可整除primes[j]的话,那么i和primes[j]*i就相差一个primes[j]这个最小质因子 phi[i*primes[j]]=primes[j]*phi[i]*(primes[j]-1)/primes[j]; //那这样就把所有数的欧拉值都存在phi中 } } } for(int i=1;i<=x;i++){ res=res+phi[i]; } cout<<res;}2023-07-16 18:43:108
欧拉公式 欧拉公式包含什么
1、欧拉公式是指以欧拉命名的诸多公式。其中最著名的有:复变函数中的欧拉幅角公式——将复数、指数函数和三角函数联系起来,拓扑学中的欧拉多面体公式,初等数论中的欧拉函数公式。此外还包括其它一些欧拉公式,如分式公式等。 2、分式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b),当r=0,1时式子的值为0,当r=2时值为1,当r=3时值为a+b+c。 3、复变函数:e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 4、空间中的欧拉公式:V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。2023-07-16 18:43:241
欧拉函数φ(n)大于根号n/2吗
大于根号n/2,设n为正整数,以 φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数。由于任何一个合数都至少有一个不大于根号n的素因子,因此欧拉函数大于根号n/22023-07-16 18:43:313
欧拉函数如何运算
在数论,对正整数n,欧拉函数<math>varphi(n)</math>是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler"stotientfunction、φ函数、欧拉商数等。例如<math>varphi(8)=4</math>,因为1,3,5,7均和8互质。从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。[编辑]φ函数的值<math>varphi(1)=1</math>(唯一和1互质的数就是1本身)。若n是质数p的k次幂,<math>varphi(n)=p^a-p^=(p-1)p^</math>,因为除了p的倍数外,其他数都跟n互质。欧拉函数是积性函数——若m,n互质,<math>varphi(mn)=varphi(m)varphi(n)</math>。证明:设A,B,C是跟m,n,mn互质的数的集,据中国剩余定理,<math>A imesB</math>和C可建立一一对应的关系。因此<math>varphi(n)</math>的值使用算术基本定理便知,若<math>n=prod_{pmidn}p^{alpha_p}</math>,则<math>varphi(n)=prod_{pmidn}p^{alpha_p-1}(p-1)=nprod_{p|n}left(1-frac ight)</math>。例如<math>varphi(72)=varphi(2^3 imes3^2)=2^(2-1) imes3^(3-1)=2^2 imes1 imes3 imes2=24</math>[编辑]与欧拉定理、费马小定理的关系对任何两个互质的正整数a,m,<math>mge2</math>,有<math>a^{varphi(m)}equiv1pmodm</math>即欧拉定理当m是质数p时,此式则为:<math>a^equiv1pmodp</math>即费马小定理。2023-07-16 18:43:521
欧拉函数φ(120)怎么算?
分解质因数:120=2^3*3*5欧拉函数:φ(120)=120*(1-1/2)(1-1/3)(1-1/5)=120*1/2*2/3*4/5=32小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。设n为正整数,以 φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值φ:N→N,n→φ(n)称为欧拉函数。扩展资料:利用欧拉函数和它本身不同质因数的关系,用筛法计算出某个范围内所有数的欧拉函数值。如:ψ(10)=10×(1-1/2)×(1-1/5)=4;ψ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8。2023-07-16 18:44:001
欧拉函数计算公式
它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理,R+V-E=2就是欧拉公式。在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。当R=2时。由说明1这两个区域可想象为以赤道为边界的两个半球面,赤道上有两个“顶点”将赤道分成两条“边界”。即R=2,V=2,E=2于是R+V-E=2,欧拉定理成立。2023-07-16 18:44:071
欧拉函数 当 n=12 时,它的值是多少
用F表示欧拉函数,则n=p1(r1)p2(r2)...pm(rm)F(n)=n*(1-1/p1)*(1-1/p2)*...*(1-1/pm),所以F(12)=12*(1-1/2)*(1-1/3)=42023-07-16 18:44:151
50的欧拉函数值是多少
50的欧拉函数值是4。用F表示欧拉函数,则n=p1(r1)p2(r2)pm(rm)F(n)=n*(1-1/p1)*(1-1/p2)*(1-1/pm),所以F(12)=12*(1-1/2)*(1-1/3)=4。分析及过程:在数论,对正整数n,欧拉函数varphi(n)是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler"s totient function、φ函数、欧拉商数等。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。2023-07-16 18:44:221
自然数100对应的欧拉函数值
欧拉函数是数论中很重要的一个函数, 欧拉函数是指: 对于一个正整数n, 小于n且和n互质的正整数的个数, 记做:φ(n), 其中φ(1)被定义为1, 但是并没有任何实质的意义 。定义小于n且和n互质的数构成的集合为Zn, 称呼这个集合为n的完全余数集合 φ(100 )= φ(25*4) =φ(25)φ(4)=φ(5^2)φ(2^2)=5φ(5)*2φ(2)=5(5-1)*2(2-1)=402023-07-16 18:44:391
求欧拉函数的计算公式
它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理,R+V-E=2就是欧拉公式。在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。当R=2时。由说明1这两个区域可想象为以赤道为边界的两个半球面,赤道上有两个“顶点”将赤道分成两条“边界”。即R=2,V=2,E=2于是R+V-E=2,欧拉定理成立。2023-07-16 18:45:042
欧拉函数大于根号n/2吗
欧拉函数大于根号n/2。在数论,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目。利用欧拉函数和它本身不同质因数的关系,用筛法计算出某个范围内所有数的欧拉函数值。在数论,对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称Euler"stotientfunction、φ函数、欧拉商数等。例如φ(8)=4,因为1,3,5,7均和8互质。从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。2023-07-16 18:45:191
10000的欧拉函数是多少
10000的欧拉函数是4。用F表示欧拉函数,则n=p1(r1)p2(r2)。pm(rm)F(n)=n*(1-1/p1)*(1-1/p2)*(1-1/pm),所以F(12)=12*(1-1/2)*(1-1/3)=4。若n是质数p的k次幂,<math>varphi(n)=p^a-p^=(p-1)p^</math>,因为除了p的倍数外,其他数都跟n互质。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。2023-07-16 18:45:431
五的欧拉函数为什么是4
欧拉函数是少于或等于n的数中与n互质的数的数目。例如euler(8)=4,因为1,3,5,7均和8互质。 Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),其中p1,p2……pn为x的所有素因数,x是不为0的整数。euler(1)=1(唯一和1互质的数就是1本身)。 欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。2023-07-16 18:45:561
请问10的欧拉函数是多少?
对正整数n,欧拉函数φ(n)是少于或等于n的数中与n互质的数的数目 与10互质的数有1,3,7,9 共4个 所以φ(10)=4 通常计算如下: 10=2*5 φ(10)=10*(1-1/2)*(1-1/5)=42023-07-16 18:46:031
欧拉数是多少?
Eu=ΔP/ρu2 其中Eu定义为欧拉数。它反映了流场压力降与其动压头之间的相对关系,体现了在流动过程中动量损失率的相对大小。2023-07-16 18:46:123
35的欧拉函数值
35的函数值是24.φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。2023-07-16 18:46:181
RSA算法中,欧拉函数φ(n)的定义是()。
RSA算法中,欧拉函数φ(n)的定义是()。 A.不超过n其和n互素的正整数个数(正确答案) B.不超过n其和n互素的整数个数 C.和n互素的整数个数 D.和n互素的正整数个数2023-07-16 18:46:251
126的欧拉函数是多少?
欧拉函数:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。所以126的欧拉函数是22023-07-16 18:46:331
欧拉函数ψ(440)怎么算?
欧拉函数怎么算?其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(和1互质的数(小于等于1)就是1本身)。注意:每种质因数只一个。2023-07-16 18:46:561
证明欧拉函数可以等于14吗
可以。最小的偶数使得欧拉函数φ(n)=14无解。欧拉公式的推导是基于指数函数e^z和三角函数sin(x)和cos(x)的泰勒级数展开,其中z∈C,x∈R。2023-07-16 18:47:031
关于欧拉函数的一个性质的证明 数论高手进
φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1,p2……pn为x的所有质因数,x是不为0的整数。设a,b,c是跟m,n,mn互质的数的集,据中国剩余定理,a*b和c可建立一一对应的关系。因此φ(n)的值使用算术基本定理便知,若n=∏p^(α(下标p))p|n则φ(n)=∏(p-1)p^(α(下标p)-1)=n∏(1-1/p)p|np|n例如φ(72)=φ(2^3×3^2)=(2-1)2^(3-1)×(3-1)3^(2-1)=24与欧拉定理、费马小定理的关系对任何两个互质的正整数a,m,m>=2有a^φ(m)≡1(modm)即欧拉定理当m是质数p时,此式则为:a^(p-1)≡1(modm)即费马小定理。2023-07-16 18:47:222