- 一自萧关起战尘
-
给你两个表,第一个是5°至360°每隔5°的角的正弦、余弦、正切、余切函数的高精度近似值。
第二个是0°、15°、18°、30°、36°、45°、54°、60°、72°、75°、90°这些角的正弦、余弦、正切函数精确值的数学表达式。其他角的三角函数精确值的数学表达式一般极其复杂,故未收录。90°以上角的三角函数可借助此表用诱导公式求出。
==================================================
以下是第一个表:
sin5° = 0.0871557427476582; cos5° = 0.996194698091746;
tan5° = 0.087488663525924; cot5° = 11.4300523027613;
sin10° = 0.17364817766693; cos10° = 0.984807753012208;
tan10° = 0.176326980708465; cot10° = 5.67128181961771;
sin15° = 0.258819045102521; cos15° = 0.965925826289068;
tan15° = 0.267949192431123; cot15° = 3.73205080756888;
sin20° = 0.342020143325669; cos20° = 0.939692620785908;
tan20° = 0.363970234266202; cot20° = 2.74747741945462;
sin25° = 0.422618261740699; cos25° = 0.90630778703665;
tan25° = 0.466307658154999; cot25° = 2.14450692050956;
sin30° = 0.5; cos30° = 0.866025403784439;
tan30° = 0.577350269189626; cot30° = 1.73205080756888;
sin35° = 0.573576436351046; cos35° = 0.819152044288992;
tan35° = 0.70020753820971; cot35° = 1.42814800674211;
sin40° = 0.642787609686539; cos40° = 0.766044443118978;
tan40° = 0.83909963117728; cot40° = 1.19175359259421;
sin45° = 0.707106781186547; cos45° = 0.707106781186548;
tan45° = 1; cot45° = 1;
sin50° = 0.766044443118978; cos50° = 0.642787609686539;
tan50° = 1.19175359259421; cot50° = 0.83909963117728;
sin55° = 0.819152044288992; cos55° = 0.573576436351046;
tan55° = 1.42814800674211; cot55° = 0.70020753820971;
sin60° = 0.866025403784439; cos60° = 0.5;
tan60° = 1.73205080756888; cot60° = 0.577350269189626;
sin65° = 0.90630778703665; cos65° = 0.422618261740699;
tan65° = 2.14450692050956; cot65° = 0.466307658154999;
sin70° = 0.939692620785908; cos70° = 0.342020143325669;
tan70° = 2.74747741945462; cot70° = 0.363970234266202;
sin75° = 0.965925826289068; cos75° = 0.258819045102521;
tan75° = 3.73205080756888; cot75° = 0.267949192431123;
sin80° = 0.984807753012208; cos80° = 0.17364817766693;
tan80° = 5.67128181961771; cot80° = 0.176326980708465;
sin85° = 0.996194698091746; cos85° = 0.0871557427476584;
tan85° = 11.4300523027613; cot85° = 0.0874886635259242;
sin90° = 1; cos90° = 0;
tan90° = ∞; cot90° = 0;
sin95° = 0.996194698091746; cos95° = -0.0871557427476582;
tan95° = -11.4300523027613; cot95° = -0.0874886635259241;
sin100° = 0.984807753012208; cos100° = -0.17364817766693;
tan100° = -5.67128181961771; cot100° = -0.176326980708465;
sin105° = 0.965925826289068; cos105° = -0.258819045102521;
tan105° = -3.73205080756888; cot105° = -0.267949192431123;
sin110° = 0.939692620785908; cos110° = -0.342020143325669;
tan110° = -2.74747741945462; cot110° = -0.363970234266202;
sin115° = 0.90630778703665; cos115° = -0.422618261740699;
tan115° = -2.14450692050956; cot115° = -0.466307658154998;
sin120° = 0.866025403784439; cos120° = -0.5;
tan120° = -1.73205080756888; cot120° = -0.577350269189625;
sin125° = 0.819152044288992; cos125° = -0.573576436351046;
tan125° = -1.42814800674212; cot125° = -0.700207538209709;
sin130° = 0.766044443118978; cos130° = -0.642787609686539;
tan130° = -1.19175359259421; cot130° = -0.83909963117728;
sin135° = 0.707106781186548; cos135° = -0.707106781186547;
tan135° = -1; cot135° = -1;
sin140° = 0.642787609686539; cos140° = -0.766044443118978;
tan140° = -0.83909963117728; cot140° = -1.19175359259421;
sin145° = 0.573576436351046; cos145° = -0.819152044288992;
tan145° = -0.70020753820971; cot145° = -1.42814800674211;
sin150° = 0.5; cos150° = -0.866025403784439;
tan150° = -0.577350269189626; cot150° = -1.73205080756888;
sin155° = 0.4226182617407; cos155° = -0.90630778703665;
tan155° = -0.466307658154999; cot155° = -2.14450692050956;
sin160° = 0.342020143325669; cos160° = -0.939692620785908;
tan160° = -0.363970234266203; cot160° = -2.74747741945462;
sin165° = 0.258819045102521; cos165° = -0.965925826289068;
tan165° = -0.267949192431123; cot165° = -3.73205080756887;
sin170° = 0.173648177666931; cos170° = -0.984807753012208;
tan170° = -0.176326980708465; cot170° = -5.6712818196177;
sin175° = 0.0871557427476582; cos175° = -0.996194698091746;
tan175° = -0.087488663525924; cot175° = -11.4300523027613;
sin180° = 0; cos180° = -1;
tan180° = 0; cot180° = ∞;
sin185° = -0.0871557427476579; cos185° = -0.996194698091746;
tan185° = 0.0874886635259238; cot185° = 11.4300523027614;
sin190° = -0.17364817766693; cos190° = -0.984807753012208;
tan190° = 0.176326980708465; cot190° = 5.67128181961771;
sin195° = -0.25881904510252; cos195° = -0.965925826289068;
tan195° = 0.267949192431122; cot195° = 3.73205080756888;
sin200° = -0.342020143325669; cos200° = -0.939692620785908;
tan200° = 0.363970234266202; cot200° = 2.74747741945462;
sin205° = -0.422618261740699; cos205° = -0.90630778703665;
tan205° = 0.466307658154998; cot205° = 2.14450692050956;
sin210° = -0.5; cos210° = -0.866025403784439;
tan210° = 0.577350269189626; cot210° = 1.73205080756888;
sin215° = -0.573576436351046; cos215° = -0.819152044288992;
tan215° = 0.700207538209709; cot215° = 1.42814800674212;
sin220° = -0.642787609686539; cos220° = -0.766044443118978;
tan220° = 0.83909963117728; cot220° = 1.19175359259421;
sin225° = -0.707106781186547; cos225° = -0.707106781186548;
tan225° = 1; cot225° = 1;
sin230° = -0.766044443118978; cos230° = -0.642787609686539;
tan230° = 1.19175359259421; cot230° = 0.83909963117728;
sin235° = -0.819152044288992; cos235° = -0.573576436351046;
tan235° = 1.42814800674211; cot235° = 0.70020753820971;
sin240° = -0.866025403784438; cos240° = -0.5;
tan240° = 1.73205080756888; cot240° = 0.577350269189626;
sin245° = -0.90630778703665; cos245° = -0.422618261740699;
tan245° = 2.14450692050956; cot245° = 0.466307658154998;
sin250° = -0.939692620785908; cos250° = -0.342020143325669;
tan250° = 2.74747741945462; cot250° = 0.363970234266203;
sin255° = -0.965925826289068; cos255° = -0.258819045102521;
tan255° = 3.73205080756888; cot255° = 0.267949192431123;
sin260° = -0.984807753012208; cos260° = -0.17364817766693;
tan260° = 5.67128181961771; cot260° = 0.176326980708465;
sin265° = -0.996194698091746; cos265° = -0.0871557427476582;
tan265° = 11.4300523027613; cot265° = 0.0874886635259241;
sin270° = -1; cos270° = 0;
tan270° = ∞; cot270° = 0;
sin275° = -0.996194698091746; cos275° = 0.0871557427476579;
tan275° = -11.4300523027614; cot275° = -0.0874886635259237;
sin280° = -0.984807753012208; cos280° = 0.17364817766693;
tan280° = -5.67128181961772; cot280° = -0.176326980708465;
sin285° = -0.965925826289068; cos285° = 0.25881904510252;
tan285° = -3.73205080756888; cot285° = -0.267949192431122;
sin290° = -0.939692620785908; cos290° = 0.342020143325669;
tan290° = -2.74747741945462; cot290° = -0.363970234266203;
sin295° = -0.90630778703665; cos295° = 0.422618261740699;
tan295° = -2.14450692050956; cot295° = -0.466307658154998;
sin300° = -0.866025403784439; cos300° = 0.5;
tan300° = -1.73205080756888; cot300° = -0.577350269189626;
sin305° = -0.819152044288992; cos305° = 0.573576436351046;
tan305° = -1.42814800674211; cot305° = -0.70020753820971;
sin310° = -0.766044443118978; cos310° = 0.642787609686539;
tan310° = -1.19175359259421; cot310° = -0.83909963117728;
sin315° = -0.707106781186548; cos315° = 0.707106781186547;
tan315° = -1; cot315° = -1;
sin320° = -0.64278760968654; cos320° = 0.766044443118978;
tan320° = -0.839099631177281; cot320° = -1.19175359259421;
sin325° = -0.573576436351046; cos325° = 0.819152044288992;
tan325° = -0.70020753820971; cot325° = -1.42814800674211;
sin330° = -0.5; cos330° = 0.866025403784438;
tan330° = -0.577350269189627; cot330° = -1.73205080756887;
sin335° = -0.422618261740699; cos335° = 0.90630778703665;
tan335° = -0.466307658154998; cot335° = -2.14450692050956;
sin340° = -0.342020143325669; cos340° = 0.939692620785908;
tan340° = -0.363970234266203; cot340° = -2.74747741945462;
sin345° = -0.258819045102521; cos345° = 0.965925826289068;
tan345° = -0.267949192431123; cot345° = -3.73205080756888;
sin350° = -0.17364817766693; cos350° = 0.984807753012208;
tan350° = -0.176326980708465; cot350° = -5.67128181961771;
sin355° = -0.0871557427476583; cos355° = 0.996194698091746;
tan355° = -0.0874886635259241; cot355° = -11.4300523027613;
sin360° = 0; cos360° = 1;
tan360° = 0; cot360° = ∞;
==================================================
关于第二个表的注释:
“sqrt(x)”表示x的算术平方根,“/”表示除号。
以下是第二个表:
sin0° = 0; cos0° = 1; tan0° = ∞;
sin15° = [sqrt(6)-sqrt(2)]/4; cos15° = [sqrt(6)+sqrt(2)]/4;
tan15° = 2-sqrt(3);
sin18° = [sqrt(5)-1]/4; cos18° = sqrt[10+2*sqrt(5)]/4;
tan18° = {3*sqrt[50+10*sqrt(5)]-5*sqrt[10+2*sqrt(5)]}/20;
sin30° = 1/2; cos30° = sqrt(3)/2;
tan30° = sqrt(3)/3;
sin36° = sqrt[10-2*sqrt(5)]/4; cos36° = [sqrt(5)+1]/4;
tan36° = {sqrt[50-10*sqrt(5)]-sqrt[10-2*sqrt(5)]}/4;
sin45° = sqrt(2)/2; cos45° = sqrt(2)/2;
tan45° = 1;
sin54° = [sqrt(5)+1]/4; cos54° = sqrt[10-2*sqrt(5)]/4;
tan54° = {3*sqrt[50-10*sqrt(5)]+5*sqrt[10-2*sqrt(5)]}/20;
sin60° = sqrt(3)/2; cos60° = 1/2;
tan60° = sqrt(3);
sin72° = sqrt[10+2*sqrt(5)]/4; cos72° = [sqrt(5)-1]/4;
tan72° = {sqrt[50+10*sqrt(5)]+sqrt[10+2*sqrt(5)]}/4;
sin75° = [sqrt(6)+sqrt(2)]/4; cos75° = [sqrt(6)-sqrt(2)]/4;
tan75° = 2+sqrt(3);
sin90° = 1; cos90° = 0;
tan90° = ∞;
- 北境漫步
-
上面是废话..表看 给你两个表,第一个是5°至360°每隔5°的角的正弦、余弦、正切、余切函数的高精度近似值。
第二个是0°、15°、18°、30°、36°、45°、54°、60°、72°、75°、90°这些角的正弦、余弦、正切函数精确值的数学表达式。其他角的三角函数精确值的数学表达式一般极其复杂,故未收录。90°以上角的三角函数可借助此表用诱导公式求出。
==================================================
以下是第一个表:
sin5° = 0.0871557427476582; cos5° = 0.996194698091746;
tan5° = 0.087488663525924; cot5° = 11.4300523027613;
sin10° = 0.17364817766693; cos10° = 0.984807753012208;
tan10° = 0.176326980708465; cot10° = 5.67128181961771;
sin15° = 0.258819045102521; cos15° = 0.965925826289068;
tan15° = 0.267949192431123; cot15° = 3.73205080756888;
sin20° = 0.342020143325669; cos20° = 0.939692620785908;
tan20° = 0.363970234266202; cot20° = 2.74747741945462;
sin25° = 0.422618261740699; cos25° = 0.90630778703665;
tan25° = 0.466307658154999; cot25° = 2.14450692050956;
sin30° = 0.5; cos30° = 0.866025403784439;
tan30° = 0.577350269189626; cot30° = 1.73205080756888;
sin35° = 0.573576436351046; cos35° = 0.819152044288992;
tan35° = 0.70020753820971; cot35° = 1.42814800674211;
sin40° = 0.642787609686539; cos40° = 0.766044443118978;
tan40° = 0.83909963117728; cot40° = 1.19175359259421;
sin45° = 0.707106781186547; cos45° = 0.707106781186548;
tan45° = 1; cot45° = 1;
sin50° = 0.766044443118978; cos50° = 0.642787609686539;
tan50° = 1.19175359259421; cot50° = 0.83909963117728;
sin55° = 0.819152044288992; cos55° = 0.573576436351046;
tan55° = 1.42814800674211; cot55° = 0.70020753820971;
sin60° = 0.866025403784439; cos60° = 0.5;
tan60° = 1.73205080756888; cot60° = 0.577350269189626;
sin65° = 0.90630778703665; cos65° = 0.422618261740699;
tan65° = 2.14450692050956; cot65° = 0.466307658154999;
sin70° = 0.939692620785908; cos70° = 0.342020143325669;
tan70° = 2.74747741945462; cot70° = 0.363970234266202;
sin75° = 0.965925826289068; cos75° = 0.258819045102521;
tan75° = 3.73205080756888; cot75° = 0.267949192431123;
sin80° = 0.984807753012208; cos80° = 0.17364817766693;
tan80° = 5.67128181961771; cot80° = 0.176326980708465;
sin85° = 0.996194698091746; cos85° = 0.0871557427476584;
tan85° = 11.4300523027613; cot85° = 0.0874886635259242;
sin90° = 1; cos90° = 0;
tan90° = ∞; cot90° = 0;
sin95° = 0.996194698091746; cos95° = -0.0871557427476582;
tan95° = -11.4300523027613; cot95° = -0.0874886635259241;
sin100° = 0.984807753012208; cos100° = -0.17364817766693;
tan100° = -5.67128181961771; cot100° = -0.176326980708465;
sin105° = 0.965925826289068; cos105° = -0.258819045102521;
tan105° = -3.73205080756888; cot105° = -0.267949192431123;
sin110° = 0.939692620785908; cos110° = -0.342020143325669;
tan110° = -2.74747741945462; cot110° = -0.363970234266202;
sin115° = 0.90630778703665; cos115° = -0.422618261740699;
tan115° = -2.14450692050956; cot115° = -0.466307658154998;
sin120° = 0.866025403784439; cos120° = -0.5;
tan120° = -1.73205080756888; cot120° = -0.577350269189625;
sin125° = 0.819152044288992; cos125° = -0.573576436351046;
tan125° = -1.42814800674212; cot125° = -0.700207538209709;
sin130° = 0.766044443118978; cos130° = -0.642787609686539;
tan130° = -1.19175359259421; cot130° = -0.83909963117728;
sin135° = 0.707106781186548; cos135° = -0.707106781186547;
tan135° = -1; cot135° = -1;
sin140° = 0.642787609686539; cos140° = -0.766044443118978;
tan140° = -0.83909963117728; cot140° = -1.19175359259421;
sin145° = 0.573576436351046; cos145° = -0.819152044288992;
tan145° = -0.70020753820971; cot145° = -1.42814800674211;
sin150° = 0.5; cos150° = -0.866025403784439;
tan150° = -0.577350269189626; cot150° = -1.73205080756888;
sin155° = 0.4226182617407; cos155° = -0.90630778703665;
tan155° = -0.466307658154999; cot155° = -2.14450692050956;
sin160° = 0.342020143325669; cos160° = -0.939692620785908;
tan160° = -0.363970234266203; cot160° = -2.74747741945462;
sin165° = 0.258819045102521; cos165° = -0.965925826289068;
tan165° = -0.267949192431123; cot165° = -3.73205080756887;
sin170° = 0.173648177666931; cos170° = -0.984807753012208;
tan170° = -0.176326980708465; cot170° = -5.6712818196177;
sin175° = 0.0871557427476582; cos175° = -0.996194698091746;
tan175° = -0.087488663525924; cot175° = -11.4300523027613;
sin180° = 0; cos180° = -1;
tan180° = 0; cot180° = ∞;
sin185° = -0.0871557427476579; cos185° = -0.996194698091746;
tan185° = 0.0874886635259238; cot185° = 11.4300523027614;
sin190° = -0.17364817766693; cos190° = -0.984807753012208;
tan190° = 0.176326980708465; cot190° = 5.67128181961771;
sin195° = -0.25881904510252; cos195° = -0.965925826289068;
tan195° = 0.267949192431122; cot195° = 3.73205080756888;
sin200° = -0.342020143325669; cos200° = -0.939692620785908;
tan200° = 0.363970234266202; cot200° = 2.74747741945462;
sin205° = -0.422618261740699; cos205° = -0.90630778703665;
tan205° = 0.466307658154998; cot205° = 2.14450692050956;
sin210° = -0.5; cos210° = -0.866025403784439;
tan210° = 0.577350269189626; cot210° = 1.73205080756888;
sin215° = -0.573576436351046; cos215° = -0.819152044288992;
tan215° = 0.700207538209709; cot215° = 1.42814800674212;
sin220° = -0.642787609686539; cos220° = -0.766044443118978;
tan220° = 0.83909963117728; cot220° = 1.19175359259421;
sin225° = -0.707106781186547; cos225° = -0.707106781186548;
tan225° = 1; cot225° = 1;
sin230° = -0.766044443118978; cos230° = -0.642787609686539;
tan230° = 1.19175359259421; cot230° = 0.83909963117728;
sin235° = -0.819152044288992; cos235° = -0.573576436351046;
tan235° = 1.42814800674211; cot235° = 0.70020753820971;
sin240° = -0.866025403784438; cos240° = -0.5;
tan240° = 1.73205080756888; cot240° = 0.577350269189626;
sin245° = -0.90630778703665; cos245° = -0.422618261740699;
tan245° = 2.14450692050956; cot245° = 0.466307658154998;
sin250° = -0.939692620785908; cos250° = -0.342020143325669;
tan250° = 2.74747741945462; cot250° = 0.363970234266203;
sin255° = -0.965925826289068; cos255° = -0.258819045102521;
tan255° = 3.73205080756888; cot255° = 0.267949192431123;
sin260° = -0.984807753012208; cos260° = -0.17364817766693;
tan260° = 5.67128181961771; cot260° = 0.176326980708465;
sin265° = -0.996194698091746; cos265° = -0.0871557427476582;
tan265° = 11.4300523027613; cot265° = 0.0874886635259241;
sin270° = -1; cos270° = 0;
tan270° = ∞; cot270° = 0;
sin275° = -0.996194698091746; cos275° = 0.0871557427476579;
tan275° = -11.4300523027614; cot275° = -0.0874886635259237;
sin280° = -0.984807753012208; cos280° = 0.17364817766693;
tan280° = -5.67128181961772; cot280° = -0.176326980708465;
sin285° = -0.965925826289068; cos285° = 0.25881904510252;
tan285° = -3.73205080756888; cot285° = -0.267949192431122;
sin290° = -0.939692620785908; cos290° = 0.342020143325669;
tan290° = -2.74747741945462; cot290° = -0.363970234266203;
sin295° = -0.90630778703665; cos295° = 0.422618261740699;
tan295° = -2.14450692050956; cot295° = -0.466307658154998;
sin300° = -0.866025403784439; cos300° = 0.5;
tan300° = -1.73205080756888; cot300° = -0.577350269189626;
sin305° = -0.819152044288992; cos305° = 0.573576436351046;
tan305° = -1.42814800674211; cot305° = -0.70020753820971;
sin310° = -0.766044443118978; cos310° = 0.642787609686539;
tan310° = -1.19175359259421; cot310° = -0.83909963117728;
sin315° = -0.707106781186548; cos315° = 0.707106781186547;
tan315° = -1; cot315° = -1;
sin320° = -0.64278760968654; cos320° = 0.766044443118978;
tan320° = -0.839099631177281; cot320° = -1.19175359259421;
sin325° = -0.573576436351046; cos325° = 0.819152044288992;
tan325° = -0.70020753820971; cot325° = -1.42814800674211;
sin330° = -0.5; cos330° = 0.866025403784438;
tan330° = -0.577350269189627; cot330° = -1.73205080756887;
sin335° = -0.422618261740699; cos335° = 0.90630778703665;
tan335° = -0.466307658154998; cot335° = -2.14450692050956;
sin340° = -0.342020143325669; cos340° = 0.939692620785908;
tan340° = -0.363970234266203; cot340° = -2.74747741945462;
sin345° = -0.258819045102521; cos345° = 0.965925826289068;
tan345° = -0.267949192431123; cot345° = -3.73205080756888;
sin350° = -0.17364817766693; cos350° = 0.984807753012208;
tan350° = -0.176326980708465; cot350° = -5.67128181961771;
sin355° = -0.0871557427476583; cos355° = 0.996194698091746;
tan355° = -0.0874886635259241; cot355° = -11.4300523027613;
sin360° = 0; cos360° = 1;
tan360° = 0; cot360° = ∞;
==================================================
关于第二个表的注释:
“sqrt(x)”表示x的算术平方根,“/”表示除号。
以下是第二个表:
sin0° = 0; cos0° = 1; tan0° = ∞;
sin15° = [sqrt(6)-sqrt(2)]/4; cos15° = [sqrt(6)+sqrt(2)]/4;
tan15° = 2-sqrt(3);
sin18° = [sqrt(5)-1]/4; cos18° = sqrt[10+2*sqrt(5)]/4;
tan18° = {3*sqrt[50+10*sqrt(5)]-5*sqrt[10+2*sqrt(5)]}/20;
sin30° = 1/2; cos30° = sqrt(3)/2;
tan30° = sqrt(3)/3;
sin36° = sqrt[10-2*sqrt(5)]/4; cos36° = [sqrt(5)+1]/4;
tan36° = {sqrt[50-10*sqrt(5)]-sqrt[10-2*sqrt(5)]}/4;
sin45° = sqrt(2)/2; cos45° = sqrt(2)/2;
tan45° = 1;
sin54° = [sqrt(5)+1]/4; cos54° = sqrt[10-2*sqrt(5)]/4;
tan54° = {3*sqrt[50-10*sqrt(5)]+5*sqrt[10-2*sqrt(5)]}/20;
sin60° = sqrt(3)/2; cos60° = 1/2;
tan60° = sqrt(3);
sin72° = sqrt[10+2*sqrt(5)]/4; cos72° = [sqrt(5)-1]/4;
tan72° = {sqrt[50+10*sqrt(5)]+sqrt[10+2*sqrt(5)]}/4;
sin75° = [sqrt(6)+sqrt(2)]/4; cos75° = [sqrt(6)-sqrt(2)]/4;
tan75° = 2+sqrt(3);
sin90° = 1; cos90° = 0;
tan90° = ∞;
- 出投笔记
-
2
-1/,290.,260;3
sin45=根号2/,45,不算特殊角吧;cos15(自己算一下)
sin30=1/那些不用记的啊
只要记住30
45
60
就可以了
其他
考试时是不会考的
因为要用计算器来算
sin0=0
cos0=1
tan0=0
sin15=(根号6-根号2)/,305;2
tan15=sin15/2
1/2
根号3/,30,350这些是特殊角么,其他的都能通过诱导公式算出来
sin
cos
tan
0度
0
1
0
30度
1/2
cos30=根号3/2
-根号3/.;2
-根号3/2
-根号3
150度
1/.
这些要用到sin5和sin10;2
根号3/,335:其实只要熟记下0,60的就足够了;2
cos45=sin45
tan45=1
sin60=cos30
cos60=sin30
tan60=根号3
sin75=cos15
cos75=sin15
tan75=sin75/,230;2
根号3
90度
1
0
不存在
120度
根号3/2
1
60度
根号3/2
cos15=(根号6+根号2)/3
45度
根号2/?
sin360=sin0
cos360=cos0
tan360=tan0
PS,245.,275;2
根号2/2
tan30=根号3/cos75(自己比一下)
sin90=cos0
cos90=sin0
tan90无意义
sin105=cos15
cos105=-sin15
tan105=-cot15
sin120=cos30
cos120=-sin30
tan120=-tan60
sin135=sin45
cos135=-cos45
tan135=-tan45
sin150=sin30
cos150=-cos30
tan150=-tan30
sin165=sin15
cos165=-cos15
tan165=-tan15
sin180=sin0
cos180=-sin0
tan180=tan0
sin195=-sin15
cos195=-cos195
tan195=tan15
215
- Chen
-
那些不用记的啊 只要记住30 45 60 就可以了 其他 考试时是不会考的 因为要用计算器来算
sin0=0
cos0=1
tan0=0
sin15=(根号6-根号2)/2
cos15=(根号6+根号2)/2
tan15=sin15/cos15(自己算一下)
sin30=1/2
cos30=根号3/2
tan30=根号3/3
sin45=根号2/2
cos45=sin45
tan45=1
sin60=cos30
cos60=sin30
tan60=根号3
sin75=cos15
cos75=sin15
tan75=sin75/cos75(自己比一下)
sin90=cos0
cos90=sin0
tan90无意义
sin105=cos15
cos105=-sin15
tan105=-cot15
sin120=cos30
cos120=-sin30
tan120=-tan60
sin135=sin45
cos135=-cos45
tan135=-tan45
sin150=sin30
cos150=-cos30
tan150=-tan30
sin165=sin15
cos165=-cos15
tan165=-tan15
sin180=sin0
cos180=-sin0
tan180=tan0
sin195=-sin15
cos195=-cos195
tan195=tan15
215,230,245,260,275,290,305,335,350这些是特殊角么....
这些要用到sin5和sin10,不算特殊角吧?
sin360=sin0
cos360=cos0
tan360=tan0
PS:其实只要熟记下0,30,45,60的就足够了,其他的都能通过诱导公式算出来
sin cos tan
0度 0 1 0
30度 1/2 根号3/2 根号3/3
45度 根号2/2 根号2/2 1
60度 根号3/2 1/2 根号3
90度 1 0 不存在
120度 根号3/2 -1/2 -根号3
150度 1/2 -根号3/2 -根号3/3
180度 0 -1 0
270度 -1 0 不存在
360度 0 1 0