- CarieVinne
-
数据分析师的基本工作流程:
1.定义问题
确定需要的问题,以及想得出的结论。需要考虑的选项有很多,要根据所在业务去判断。常见的有:变化趋势、用户画像、影响因素、历史数据等。
2.数据获取
数据获取的方式有很多种:
一是直接从企业数据库调取,需要SQL技能去完成数据提取等的数据库管理工作。
二是获取公开数据,政府、企业、统计局等机构有。
三是通过Python编写网页爬虫。
3.数据预处理
对残缺、重复等异常数据进行清洗。
4.数据分析与建模
这个部分需要了解基本的统计分析方法、数据挖掘算法,了解不同统计方法适用的场景和适合的问题。
5.数据可视化和分析报告撰写
学习一款可视化工具,将数据通过可视化最直观的展现出来。
数据分析入门需要掌握的技能有:
1. SQL(数据库):
怎么从数据库取数据?怎么取到自己想要的特定的数据?等这些问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能。
2. excel
分析师更多的时候是在分析数据,分析数据时需要把数据放到一个文件里,就是excel。
熟练excel常用公式,学会做数据透视表,什么数据画什么图等。
3.Python或者R的基础:
必备项,也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。
4.学习一个可视化工具
如果你想往更高层次发展,上面的东西顶多只占20%,剩下的80%则是业务理解能力,目标拆解能力,根据数据需求更多新技能的学习能力。
- LuckySXyd
-
以下推荐一些从入门到精通——关于学习数据分析的书籍清单!
入门篇
《深入浅出数据分析》:大头书,HeadFirst系列,内容很浅,比较适合没有基础的人作为科普读物,适合快速入门;
《统计数字会撒谎》:本文不涉及枯燥的数学公式与推理过程,通俗易懂,其实讲的都是统计学最基本的常识,可是却往往容易被人所忽视;
《谁说菜鸟不会数据分析》:不错的工具类书籍。比较浅显,适合完全没有Excel或对Excel似懂非懂的人。 讲了一些方法论的东西,但是非常的简单,不太适合对Excel熟悉的读者;
《深入浅出统计学》
:帮你快速了解统计学相关的知识。
进阶篇
《MySQL 必知必会》:不到250页的小册子,实践性很强,基本没有什么理论的堆砌,完完全全就是一本实践指南,教会你怎么用SQL语句操作MySQL;
《高性能MySQL(第3版)》:跟《MySQL必知必会》相似的书籍,主要讲解了MySQL的理论和实践知识;
《数据化管理:洞悉零售及电子商务运营》:讲解在企业中应用数据的例子,读完受益匪浅,里面举的很多例子都很接地气,很值得数据分析师阅读学习。
高级篇
《统计学》(贾俊平,何晓群,金勇进著):统计比较通用的入门教材了,也算是兼顾数学证明和应用,可读性没有上面强,但是也非常的通俗易懂,有很多统计学专业的起始教材也会选择这本。
《Python数据分析》:作者对于利用Python进行数据分析有着很丰富的经验,因此写出的书也是深入浅出,让人很容易就能看懂。对一个热爱学习的数据分析师来说学一门数据分析处理的编程语言是一件很有用的事情。
《Python数据挖掘入门与实践》:作为一个专业的数据分析师,实际上很多时候都需要用到模型。这本书作为数据挖掘入门读物,介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,还是挺不错的一本书。
- gitcloud
-
大数据时代的到来,意味着数据增长的速度急速攀升。一方面,互联网+的经济模式使得传统行业也迸发出了巨大的数据体量。另一方面,传统互联网企业如今也做的风生水起,产业链不断完善,譬如BAT巨擘,每天产生的数据量非常惊人。
在这样的背景下,数据分析师开始应运而生,并蓬勃发展,而数据分析师也成为当下炙手可热的职位。那究竟应该如何成为一名数据分析师呢。在我看来,数据分析师需要从统计学,分析技能以及业务常识三个方面进行入手学习,这里重点说一下后两者。
首先来说分析技能。
Excel作为经典的数据分析工具,是数据分析师必备的武器库。灵活的Excel有两大经典利器,透视表以及灵活的函数。而在函数中,尤为重要的便是Vlookup。这个函数是用于进行字段匹配的,在实际工作中应用非常广泛。
Excel常用于基本的数据描述,并且可以处理的样本量非常有限。而在大数据时代,为了解决海量数据的查询,SQL就应运而生了。SQL基本可以分为增删改查四大模块,其中具体的语法又有where,select等。
除了Excel以及SQL之外,数据挖掘的工具也是必不可少的。如果没有编程基础,可以学习SPSS。而如果有编程,建议学习Python以及R。
说完分析技能,我们再来说一下业务知识。
业务知识并不是简单就能学会的,本质上是需要在企业中摸爬滚打才能学会的。然而,好的书籍也可以让你对业务知识有一定的了解。推荐两本书:《增长黑客》以及《精益数据分析》。
如果有问题,欢迎评论,一同探讨。
- 真颛
-
近日,由中国软件网、海比研究联合中国软件行业协会应用软件产品云服务分会,发布了《2017年中国大数据可视化市场研究报告》。
东软凭借两款大数据可视化产品,在2017年中国大数据可视化市场份额排名中,位居第三,并成为收入增长最快的厂商,增长率超过100%!
不可否认,整合复杂数据的收集、分析和可视化,并从数据中获得价值,是未来的趋势。而对于目前企业最关心的大数据可视化,今后的一个基本需求趋势——让数据可视化不仅仅是可见,更要求可控。大数据可视化,是把数据分析的结果以图形化、图像化的方式展现,帮助人们理解复杂的数据,快速获得数据的价值。在大数据秒级分析的基础上,东软的DataViz,在数据可视化领域不断突破。近百种数据可视化形式,GIS地图可视化、3D可视化,一组杂乱无序的业务数据,分分钟就能变成炫酷动图。
DataViz 定位敏捷BI,面向业务人员提供自助式数据探索与可视化分析服务。平台提供可视化接入数据源、可视化定义数据集、自助式可视化分析工具和交互式故事板等功能,旨在以自助式数据探索与可视化分析方式,帮助企业用户快速准确地洞悉数据背后隐藏的商业价值,让企业决策更“有据可依”。
DataViz 提供固定分辨率功能,可以按照大屏的尺寸进行精准的可视化布局和实现,并可以按照长边铺满等进行宽高适应。与此同时,DataViz可以自由设定背景图片、背景色等,提供实时效果预览,轻松在本地电脑即可制作大屏可视化仪表板,例如在大屏界面中,通过地图、折线图、柱状图、列表等图表,展现数据分析大屏。
我们置身于大数据时代,有效的利用大数据决定着我们未来,而大数据可视化工具,是您必不可少的工具。从大数据分析到大数据展现,这次,东软不仅拼实力,还拼颜值!
- 再也不做站长了
-
第1本《谁说菜鸟不会数据分析入门篇》
很有趣的数据分析书!基本看过就能明白,以小说的形式讲解,很有代入感。包含了数据分析的结构化思维、数据处理技巧、数据展现的技术,很能帮我们提升职场竞争能力。找不到工作的,学好了它,自然没问题。
第2本《拯救你的Excel数据的分析、处理、展示(动画版)》
一本用手机看的Excel操作书,大部分例子都配置了二维码,手机扫扫就能看,基本上可以躺着把书学了。所有数据的分析、处理也都带了职场范例(有会计、HR、销售场景),很贴合实际。拯救我们小白的Excel,职场加薪不是梦想!
第3本《Excel图表之道:如何制作专业有效的商务图表》
职场大牛的书,教我们做图表的,好看到不能再好看。可以设计和制作达到杂志级质量的、专业有效的商务图表。相信平时我们很难做到吧,看了你就知道,也许一切没那么难。
第4本《绝了!Excel可以这样用:数据分析经典案例实战图表书》
挺好的一个系列,都是Excle常用的技巧,适合销售和HR。也是职场故事,很接地气,带视频的,全都是Excel数据分析的常用理念和方法。
第5本《深入浅出数据分析》
深入浅出系列是对新手非常友好的丛书,用生动但啰嗦的语言讲解案例。厚厚的一本书翻起来很快。本书涉及的基础概念比较广,包含一点统计学知识,学下来对数据分析思维会有一个大概了解。
第6本《MySQL必知必会》
如果真想买书看,可以看这本,适合新手向的学习,看基础概念和查询相关的章节即可。网络上大部分MySQL都是偏DBA的。
第7本《深入浅出统计学》
大概是最啰嗦的深入浅出系列,从卖橡皮鸭到赌博机的案例,囊括了常用的统计分析如假设检验、概率分布、描述统计、贝叶斯等。
第8本《网站分析实战》
互联网不再是网站的天下,但是移动端依旧有Web,我们在朋友圈看到的所有H5活动、第三方内容等,都是依托网页实现。网站的数据分析依旧有存在空间,网站的数据指标还是能够指导我们运营!
第9本《深入浅出Python》
还是深入浅出系列,完全适合零基础的新人。需要注意的是,编程学习不同于其他知识,如果计算机基础不稳固,在使用中会遇到各类问题。知其然不知其所以然!
第10本《Python学习手册》
对于拥有编程基础的人,这本书系无巨细的有些啰嗦,不过对新人,可以避免不必要的坑。把它当作一本工具文档吧,当遇到不理解的内容随时翻阅。
第11本《利用Python进行数据分析》
这本书是你学习python不二之选,对着书,着重学习numpy,pandas两个包!每段代码都敲打一遍,千万行的数据清洗基本不会有大问题了。
第12本《R语言实战》
R语言的入门书籍,从数据读取到各类统计函数的使用。虽然没有涉及机器学习,依靠这本书入门R是绰绰有余了。
第13本《统计学:从数据到结论》
这本书是将R语言和统计学结合的教材,可以利用这本书再复习一遍统计知识。
第14本《深入浅出SQL》
带你进入SQL语言的心脏地带,从使用INSERT和SELECT这些基本的查询语法到使用子查询(subquery)、连接(join)和事务(transaction)这样的核心技术来操作数据库。到读完《深入浅出SQL》之时,你将不仅能够理解高效数据库设计和创建,还能像一个专家那样查询、归一(normalizing)和联接数据。你将成为数据的真正主人。
第15本《数据挖掘导论》
这本书绝对是一本良心教材,拿到手从第一章开始阅读,能看多少就看多少。但是要尽量多看点,因为此书你可能要看一辈子的~~
第16本《算法导论中文版》
本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。
上面的书籍都是PDF版
视频教材的有:
Python入门教程完整版(懂中文就能学会)资料
Python入门教程完整版(懂中文就能学会)视频
Mysql从入门到精通全套视频教程
8天深入理解python教程
大数据Hadoop视频教程,从入门到精通
Python就业班
Python标准库(中文版)
数学建模0基础从入门到精通,全套资源
0基础Python实战-四周实现爬虫系统
麦子学院招牌课程[明星python编程视频VIP教程][200G](价值9000元)
从零基础到数据分析师,帮你拿到年薪50万!
维心:xccx158
- 余辉
-
数据分析最重要的可能并不是你熟悉的编程工具、分析软件,或者统计学知识,而是清楚你所使用的统计知识(统计学、计量、时间序列、非参数等等)背后的原理、假设及其局限性,知道各种数据分析工具(例如数据挖掘)能带来什么,不能带来什么,看到一组统计检验的结果你能言说什么,不能言说什么。这一切的背后,需要一套完整的「科学」逻辑框架,让你了解自己手中的工具的本质,你才能从数据中正确地发现有效的信息,而不是胡乱地使用一大堆自己都搞不清楚的工具来堆砌分析结果,这样得到分析结果不仅无用,而且有害。
知道了这些后,希望成长为数据分析师,就需要着手训练自己的能力和洞察力。既然是数据分析师,那就分别从数据和分析两方面入手。
数据当然包含了数据收集、处理、可视化等内容,每个环节对于最后的结果都有关键性的影响。其中涉及的技术性内容只是一部分而已,更重要的是你要理解数据收集(是否存在采样偏差?如何纠正或者改进?)、处理(是否有漏洞或异常情况没有考虑?)背后的逻辑。
你要充分了解这些概念背后的逻辑、动机是什么,才能正确地根据自己的目的作出选择。
数据可视化更多的是一门艺术:如何把信息以最恰当的方式呈现给希望获得这些信息的人。首先,你要充分理解这些信息究竟是什么,有什么特点,你才能较为恰当的选择采用的可视化工具。
另外一部分就是分析。当然就是各种分析模型,还是需要了解这些模型背后的逻辑,要放到整个项目的上下文中去看,而不是单纯地在模型中看。
总而言之,理解数据以及其中的信息是非常重要的,这决定了你的分析和呈现的方法是否合适,决定了最后的结论是否可靠。
现在可以回答题主的问题了:成长为一个数据分析师,要注意理解你的知识,形成一个系统,而不是像机器人一样机械地胡乱套用模型。在这个理念下训练你的编程能力,了解你所分析对象的原理和尽可能多的细节。在这个基础上,才能谈数据分析。
- bikbok
-
中文专业的前期要多花点功夫了啊,我是数学专业的,大学做过建模,所有统计学的东西还有一些软件多少接触过一点。建议你自学的话,excel软件和spss先熟悉一下,找两本书看看,《谁说菜鸟不会数据分析》是入门的,可以看一看,先了解一下吧,数据分析的东西还是要多实践的。如果你现在工作跟数据分析没有什么关系的话,转业工作可能有点困难,这种情况建议去考个证书吧,虽然现在国内数据分析刚起步,还没有太有含金量的证书,不过你这种情况有肯定比没有好,我就去考了一个,考CPDA吧,还有一个CDA,我选考的CPDA,说是CDA国外有机构什么的,但是我找不到任何网站可以查到这个证书,问他们他们也不说,我怕找工作人家要查查不到,但是CPDA工信部网站能查询证书信息的,所以对就业帮助可能会大一些,工作还是有参考作用的,不过指望靠班学到很多还是不可能,只是让你了解入门,手上多个敲门砖。数据分析属于技术类工种,要多实践,数据采集和挖掘是基础,这些工作门槛比数据分析岗相对低一些,好找,希望对你有帮助。
- CPS小天才
-
一、掌握基础、更新知识。
基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识), 多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。
数据库查询—SQL
数据分析师在计算机的层面的技能要求较低,主要是会SQL,因为这里解决一个数据提取的问题。有机会可以去逛逛一些专业的数据论坛,学习一些SQL技巧、新的函数,对你工作效率的提高是很有帮助的。
统计知识与数据挖掘
你要掌握基础的、成熟的数据建模方法、数据挖掘方法。例如:多元统计:回归分析、因子分析、离散等,数据挖掘中的:决策树、聚类、关联规则、神经网络等。但是还是应该关注一些博客、论坛中大家对于最新方法的介绍,或者是对老方法的新运用,不断更新自己知识,才能跟上时代,也许你工作中根本不会用到,但是未来呢?
行业知识
如果数据不结合具体的行业、业务知识,数据就是一堆数字,不代表任何东西。是冷冰冰,是不会产生任何价值的,数据驱动营销、提高科学决策一切都是空的。
一名数据分析师,一定要对所在行业知识、业务知识有深入的了解。例如:看到某个数据,你首先必须要知道,这个数据的统计口径是什么?是如何取出来的?这个数据在这个行业, 在相应的业务是在哪个环节是产生的?数值的代表业务发生了什么(背景是什么)?对于A部门来说,本月新会员有10万,10万好还是不好呢?先问问上面的这个问题:
对于A部门,
1、新会员的统计口径是什么。第一次在使用A部门的产品的会员?还是在站在公司角度上说,第一次在公司发展业务接触的会员?
2、是如何统计出来的。A:时间;是通过创建时间,还是业务完成时间。B:业务场景。是只要与业务发接触,例如下了单,还是要业务完成后,到成功支付。
3、这个数据是在哪个环节统计出来。在注册环节,在下单环节,在成功支付环节。
4、这个数据代表着什么。10万高吗?与历史相同比较?是否做了营销活动?这个行业处理行业生命同期哪个阶段?
在前面二点,更多要求你能按业务逻辑,来进行数据的提取(更多是写SQL代码从数据库取出数据)。后面二点,更重要是对业务了解,更行业知识了解,你才能进行相应的数据解读,才能让数据产生真正的价值,不是吗?
对于新进入数据行业或者刚进入数据行业的朋友来说:
行业知识都重要,也许你看到很多的数据行业的同仁,在微博或者写文章说,数据分析思想、行业知识、业务知识很重要。我非常同意。因为作为数据分析师,在发表任何观点的时候,都不要忘记你居于的背景是什么?
但大家一定不要忘记了一些基本的技术,不要把基础去忘记了,如果一名数据分析师不会写SQL,那麻烦就大了。哈哈。。你只有把数据先取对了,才能正确的分析,否则一切都是错误了,甚至会导致致命的结论。新同学,还是好好花时间把基础技能学好。因为基础技能你可以在短期内快速提高,但是在行业、业务知识的是一点一滴的积累起来的,有时候是急不来的,这更需要花时间慢慢去沉淀下来。
不要过于追求很高级、高深的统计方法,我提倡有空还是要多去学习基本的统计学知识,从而提高工作效率,达到事半功倍。以我经验来说,我负责任告诉新进的同学,永远不要忘记基本知识、基本技能的学习。
二、要有三心。
1、细心。
2、耐心。
3、静心。
数据分析师其实是一个细活,特别是在前文提到的例子中的前面二点。而且在数据分析过程中,是一个不断循环迭代的过程,所以一定在耐心,不怕麻烦,能静下心来不断去修改自己的分析思路。
三、形成自己结构化的思维。
数据分析师一定要严谨。而严谨一定要很强的结构化思维,如何提高结构化思维,也许只需要工作队中不断的实践。但是我推荐你用mindmanagement,首先把你的整个思路整理出来,然后根据分析不断深入、得到的信息不断增加的情况下去完善你的结构,慢慢你会形成一套自己的思想。当然有空的时候去看看《麦肯锡思维》、结构化逻辑思维训练的书也不错。在我以为多看看你身边更资深同事的报告,多问问他们是怎么去考虑这个问题的,别人的思想是怎么样的?他是怎么构建整个分析体系的。
四、业务、行业、商业知识。
当你掌握好前面的基本知识和一些技巧性东西的时候,你应该在业务、行业、商业知识的学习与积累上了。
这个放在最后,不是不重要,而且非常重要,如果前面三点是决定你能否进入这个行业,那么这则是你进入这个行业后,能否成功的最根本的因素。 数据与具体行业知识的关系,比作池塘中鱼与水的关系一点都不过分,数据(鱼)离开了行业、业务背景(水)是死的,是不可能是“活”。而没有“鱼”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。
如何提高业务知识,特别是没有相关背景的同学。很简单,我总结了几点:
1、多向业务部门的同事请教,多沟通。多向他们请教,数据分析师与业务部门没有利益冲突,而更向是共生体,所以如果你态度好,相信业务部门的同事也很愿意把他们知道的告诉你。
2、永远不要忘记了google大神,定制一些行业的关键字,每天都先看看定制的邮件。
3、每天有空去浏览行业相关的网站。看看行业都发生了什么,主要竞争对手或者相关行业都发展什么大事,把这些大事与你公司的业务,数据结合起来。
4、有机会走向一线,多向一线的客户沟通,这才是最根本的。
标题写着告诫,其实谈不上,更多我自己的一些心得的总结。希望对新进的朋友有帮助,数据分析行业绝对是一个朝阳行业,特别是互联网的不断发展,一个不谈数据的公司根本不叫互联网公司,数据分析师已经成为一个互联网公司必备的职位了。
数据分析师中国统计网——一位资深数据分析师的分享
- 床单格子
-
首先我们要了解下大数据分析和传统的数据分析在概念上的区别,大数据分析相较于传统的数据分析,需要掌握更多的技能,对于从业者能力要求提高了。但是大数据分析的学习门槛并没有太高,学习难度适中,很多人都能够学会大数据分析。
- 寸头二姐
-
这个必须得有视频课程,至于怎么领取方式,给您推荐一个。看下图
- 阿里阿涅德
-
为适应大数据与人工智能行业发展的需求,我部邀请了统计部门、科研院所、金融、数据分析行业及市场研究行业的专家对BDA课程设置及考核目标进行了修订,并正式印发《BDA数据分析师课程标准(2018年版)》,并于2018年春季开始执行。现将相关事宜说明如下:
一、基本原则
坚持科学论证。广泛听取不同领域专家的意见,向权威机构、权威人士咨询,求真务实,严谨认真,确保课程内容科学,符合大数据分析工作的需要。
坚持继承发展。继承已有经验和成功做法,有针对性地进行修订完善,确保课程调整的连续性,使课程体系充满活力。
依据职业要求。课程标准符合数据分析的工作要求,突出了大数据分析的优势,强调了数据分析工作的必备技能,适用不同专业的人员学习。
二、课程变化
按照大数据分析工作的不同场景和技术要求,调整了初、中、高级考试课程,其中初级4门课程、中级5门课程、高级4门课程(详见附件)。
强调了统计理论、计算机技术和行业案例应用三维一体的大数据分析人才培养理念。
三、考试变化
按照考试要求,初级考试题型定为单项选择题、多项选择题;中级考试题定为简答论述题、案例应用题;高级考试题定为行业案例分析题。取消了初、中、高级在线作业考核内容。加强了数据分析实践应用能力考核标准。
四、考试课程过渡
参加2017年11月考试的考生,还延续使用2016年考试大纲,完成后续考试工作。2017年11月之后报名的考生,依据《BDA数据分析师课程标准(2018年版)》学习备考。
《BDA数据分析师课程标准(2018年版)》是数据分析师考试考核的基本依据,是考试招生重要导向,要把课程标准与大数据分析人才培训有机结合起来,统筹兼顾,形成合力,发挥好课程标准在企业人才培养和选拔中的引导作用,强化考试内容与数据分析岗位的关联性,保证教、考、就业一致性,提升数据分析师与人工智能领域从业人员综合能力。
2018年1月8日
附件:BDA数据分析师课程标准(2018年版)
一、初级考试科目说明
序号
课程名称
选用教材
科目一
初级数据分析方法 《统计学(第六版)》ISBN:9787300203096
本课程培养学生应用数据分析方法分析和解决问题的实际能力。内容包括数据分析的基本问题、数据的整理、数据的描述分析、数据的推断分析、数据的相关分析、数据的回归分析等内容。通过系统地掌握各种数据分析方法,理解其中所包含的统计思想及不同特点、应用条件及适用场合。
科目二
Excel数据处理与分析 《Excel高级数据处理及分析》ISBN:9787121246692
本课程主要是从Excel数据分析角度讲解数据的输入与验证、编辑与格式化、公式和函数,数学和统计函数处理、日期与时间函数、文本函数、财务函数、查找与引用函数、工作表函数、数组公式的高级应用等对处理数据。数据的组织和管理、公式和函数的综合应用实例,数据透视表分析数据、导入和分析外部数据、数据可视化图表分析、宏与VBA程序入门、数据的保护与共享,Excel综合应用案例。
科目三
大数据技术概论 《大数据技术概论》ISBN:9787302450511
本课程包括大数据概论、大数据采集及预处理、大数据分析、大数据可视化、Hadoop概论、HDFS和Common概论、MapReduce概论、NoSQL技术介绍、Spark概论、云计算与大数据等。
科目四
R语言 《R语言实用教程》ISBN:9787302371175
本课程是R语言初级课程,内容包括R程序基础操作、数据集、数据管理、图形图表、常用函数、描述分析、相关分析、数据可视化等内容。
考试说明
· 理论综合试卷:由科目一初级数据分析方法、科目二大数据技术概论、科目三Excel数据处理与分析、科目四R语言共4部分构成。
· 题型题量:单项选择题(共60道),多项选择题(共20道),理论综合试卷各科合计题量共80道选择题。
· 考试方式:笔试,150分钟,各科目分别达到60分及格。
· 上机综合试卷:由科目一初级数据分析方法、科目二大数据技术概论、科目三Excel数据处理与分析、科目四R语言共4部分构成。
· 题型题量:综合案例应用题共5道题。
考试方式:· 上机操作,150分钟,总分达到60分及格。
· 实践应用考核:按要求提交一份数据分析报告。
· 考核方式:自主完成报告的撰写,在线提交,经专家指导和答辩60分及格。
二、中级考试科目说明
序号
课程名称
选用教材
科目一
中级数据分析方法 《调查数据分析》ISBN:9787500577690
本课程主要内容有实验设计、参数检验、多元回归分析、主成份分析/因子分析、感知图、聚类分析、判别分析与分类树、时间序列分析、及其他常用的数据挖掘方法和思想。
科目二
数据挖掘 《数据挖掘导论(完整版)》ISBN: 9787115241009
本课程主要内容包括数据、分类、关联分析、聚类和异常检测五个方面。通过基本概念、代表性算法引出高级概念和算法。由浅入深理解数据挖掘。
科目三
大数据技术原理与应用 《大数据技术原理与应用(第2版)》ISBN:9787115443304
本课程以分布式数据存储的概念、原理和技术为主,包括HDFS、HBase、NoSQL数据库、云数据库、MapReduce分布式编程框架、基于内存的分布式计算框架Spark、图计算、流计算、数据可视化等。
科目四
Python数据分析 《利用Python进行数据分析》ISBN: 9787111436737
本课程强调Python的数据处理与分析的能力学习,主要内容包括:Python的基础知识和基本概念,以及一些高级的主题,包括抽象、异常、魔法方法、属性、迭代器等。
科目五
SQL数据库应用与实践 《SQL初学者指南(第2版)》ISBN:9787115448651
本课程主要以数据库的查询、统计、归并等数据操作内容为主,重点放在Sql语法的各种操作,以常见的关系Sql数据库为主。
考试说明
· 理论综合试卷:由科目一中级数据分析方法、科目二数据挖掘、科目三大数据技术原理与应用,科目四Python数据分析、科目五SQL数据库应用与实践共5门课程构成。
· 题型题量:简答题(5道),论述题(5道)案例题(5道),理论综合试卷各科合计题量为15道。
· 考试方式:笔试,150分钟,各科目分别达到60分及格。
· 上机综合试卷:由科目一中级数据分析方法、科目二数据挖掘、科目三大数据技术原理与应用,科目四Python数据分析、科目五SQL数据库应用与实践共5门课程构成。
· 题型题量:案例应用题共5道题。
· 考试方式:上机操作,150分钟,总分达到60分及格。
· 实践应用考核:按要求提交一份数据分析报告。
· 考核方式:自主完成报告的撰写,并在线提交,经专家指导和答辩60分及格。
三、高级考试科目说明
序号
课程名称
选用教材
科目一
高级数据分析技术 《大数据与机器学习实践方法与行业案例》
ISBN:9787111556800
本课程重在不同算法的应用,以及模型的优化等,以机器学习、深度学习、图形挖掘等高级技术为主,以及相关应用。如个性化分析、推荐、社交关系分析等。
科目二
地理数据分析 《空间数据分析理论与实践》ISBN:9787307073951
本课程介绍了地理空间数据分析在科学以及决策相关研究方面的重要性,最新的探索性空间数据分析和空间建模方法,以及如何表达在地理空间中的属性的问题等。
科目三
文本数据分析与挖掘 《Python自然语言处理》ISBN:9787115333681
本课程以自然语言为主,是计算机科学领域与人工智能领域中的一个重要方向。它研究能够实现人与计算机之间用自然语言进行有效通信的各种理论和方法,也是人工智能、文本挖掘、语料库语言学的基础。
科目四
大数据分析建模 《大数据分析与预测建模》ISBN:9787115463661
本课程使用R语言进行数据分析,用R语言进行高级分析;“机器学习、大数据分析和可视化”,涉及机器学习的概念,社交媒体、移动分析和可视化,大数据分析的行业应用等。
考试说明
· 理论综合试卷(准高级):由科目一高级数据分析技术、科目二地理数据分析、科目三文本数据分析与挖掘,科目四大数据分析建模共4门课程构成。
· 题型题量:理论综合试卷题量为2道综合案例应题。
· 考试方式:笔试,150分钟,各科目分别达到60分及格。
· 实践应用考核(准高级):按要求提交一份行业数据分析论文。
· 考核方式:自主完成论文的撰写,并在线提交论文,经指导和答辩,分数60分及格。
· 答辩考核(高级):
- 一自萧关起战尘
-
欢迎到河南新华参观了解计算机技术 免费试听课程 报销路费
- clc1
-
数据分析这件事,如果你要成为数据分析师,那么bai你可以去招聘网站看看,对应的职位的需求是什么,一般来说你就会对应该掌握的知识架构有初步的了解。你可以去看看数据分析师职位,企业对技能需求可总结如下:
SQL数据库的基本操作,会基本的数据管理;
会用Excel/SQL做基本的数据提取、分析和展示;
会用脚本语言进行数据分析,Python or R;
学数据科学,上cda.cn