- 不白九百
-
1、胡克:英国物理学家;发现了胡克定律(F弹=kx) 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家; 动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。 17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。 18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。 19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。 20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。 21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉) 22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。 23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。 24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。 25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。 26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。 27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。 28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。 29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。 30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。 31、玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。 32、约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素。
相关推荐
布拉开是在哪一年用云室记录粒子的径迹,最终证实
布拉开是在1911年用云室记录粒子的径迹,最终证实电子具有粒子性。1911年英国的物理学家布拉凯特首先用云室观察到并照相记录了α和β粒子的径迹,1924年用云室照片首次成功地验证了人工轻核转变,即氦-14核俘获a粒子变为氧-17。1923年,美国物理学家康普顿利用威尔逊发明的云雾室成功得观察到了光子与电子碰撞。1925年布莱克特对威尔逊云室作了重要改进,将盖革计数器与云室联合运用,云室的记录改由其上方的盖革计数器检测到粒子而启动,儿乎每张得到的照片都包含着引人入胜的事物,为云室在近代物理研究中的应用翻开了崭新的一页。云室实验很快表明,电子携带的能量高达10亿电子伏,比以往所知来自放射性的电子的能量要大1000倍。布菜克特改进威尔逊云室方法及在核物理和宇宙线领域的发现,使他获得了1948年诺贝尔物理学奖。2023-08-04 17:21:201
威尔逊云室、气泡室的基本原理是什么?
简答:威尔逊云室的原理是利用气体中的离子作为形成蒸气的凝结中心.当快速粒子穿过含有过饱和汽的气体空间时,在它的路程上产生许多离子,许多蒸气分子凝结在这些离子上,形成许多小液滴.这样,在粒子所飞过...2023-08-04 17:21:271
“威尔逊云室”具有什么重大的意义?
威尔逊在1911年建造成第一台云雾室,后人为了纪念他,把这种云雾室称做“威尔逊云室”。汤姆生对这一成果给予高度评价:“这一方法对于科学的进步具有无法估量的价值。”汤姆生和卢瑟福用它拍下α粒子和β粒子径迹的照片;1925年布拉凯特用它研究人工放射性;1932年菲特用它研究中微子;1933年安德森用它研究宇宙射线,发现了正电子,1937年又用它发现了介子。2023-08-04 17:21:351
云雾室的介绍
云雾室也称云室(cloud chamber)是一种早期的核辐射探测器﹐也是最早的带电粒子径迹探测器。因发明者为英国物理学家威尔逊,一般称为威尔逊云室。威尔逊(Charles Thomson Rees Wilson,1869-1959),1894年起研究云雾中的光学现象。1895年,他设计了一套设备,使水蒸气冷凝来形成云雾。当时普遍认为,要使水蒸气凝结,每颗雾珠必须有一个尘埃为核心。威尔逊发现:潮湿而无尘的空气膨胀时出现水滴。他认为这可能是水蒸气以大气中导电离子为核心而凝聚的结果。2023-08-04 17:21:421
云室是什么?
云室是1904年由英国物理学家威尔逊发明的,因此也舟为 “威尔逊云室”。云室是观察微观粒子运动仪器,它利用过饱和蒸汽容易围绕离子凝成雾滴的现象达到探测粒子的目的。(图)(50年代使用的云室剖面图。观察窗位于左方,控制压力的活塞位于右方,室内有多块交替排列的铅板和锌板,粒子撞击其上并击碎和锌原子,整个过程可由外部拍摄下来。室内充满酒精和水的混合蒸汽) 云室是一个圆筒或箱状的容器,侧面有片云母窗用于照明光进入和射入粒子,上面有玻璃窗以便观察和摄影,下面有一个活塞,实验进容器充入饱和蒸汽和空气。开始工作时,迅速将活塞同下移动,容器内气体绝热膨胀,温度急剧下降,使气体达到过饱和状态。如果此时有一个粒子进入容器,沿路径产生离子对,每一离子便成为蒸汽的凝结核心,在沿粒子行进时的路径上形成一串小液滴;当有光照射时,这些小液滴对光有散射作用,便可通过顶部的玻璃窗观察到白亮的粒子径迹,根据径迹的长短、浓谈、以及在磁场中的弯曲等,可以分辨出粒子的种类和性质。 1911年,威尔逊又发明了记录a,β等带电粒子轨迹的云雾室照相装置。1919年,英国物理学家卢瑟福使用云室发现了质子。(图)(云室的基本构造。快速拉回活塞,带动橡皮膜以增加云室的容积,并瞬间降低内部压力,急速冷却并使蒸汽过饱和,沿粒子运动路线附近便会产生水气凝结,得以观察到粒子的运动轨迹)2023-08-04 17:21:571
威尔逊云室的设计形成
1895年,他设计了一套设备,使水蒸气冷凝来形成云雾。当时人们认为,要使水蒸气凝结,每颗雾珠必须有一个尘埃为核心。威尔逊仔细除去仪器中的尘埃后发现,无需尘埃,而用X射线照射云室时,云雾立即出现,这证明凝聚现象是以离子为中心出现的。经过四年研究,他总结出,当无尘空气的体积膨胀比为1.25时,负离子开始成为凝聚核心;当膨胀比为1.28时,负离子全部成为凝聚核心。对于正离子来说,膨胀比为1.31时开始成为凝聚核心,膨胀比为1.35时全部成为凝聚核心。另一方面,他还指出,离子的电荷对水蒸气分子产生作用力,有助于雾珠的扩大。1912年,威尔逊为云室增设了拍摄带电粒子径迹的照相设备,使它成为研究射线的重要仪器。用这个云室拍摄了α粒子的图象。2023-08-04 17:22:051
威耳孙云室原理
1894年夏末,威尔逊在他为了研究云雾中的光学现象而建立的云室中发现:潮湿而无尘的空气膨胀时出现水滴。他认为这可能是水蒸气以大气中导电离子为核心而凝聚的结果。1896年他用当时新发现的X射线照射云室中的气体,观察到处于过饱和状态的水蒸气的凝聚大量增加。X射线通过云室中的气体,能产生大量离子;他观察到的现象证实了离子是水蒸气凝聚的核心。因此,云室可以用来探测带电粒子,并可以用照相记录。他用经过净化的没有尘埃的湿空气,使它膨胀以后冷却,同时让X射线穿入,X射线穿过的地方空气被电离,带电离子就会像尘埃一样形成细微的水滴,显示出X射线的运动轨迹。威尔逊还进一步发现如果体积膨胀不多,低于30%,那么只有带负电的离子才能形成雾滴;如果体积膨胀很多,那么正、负带电离子都能形成雾滴。威尔逊在1911年建造成第一台云雾室,后人为了纪念他,把这种云雾室称做威尔逊云室。J.汤姆孙对它给予高度评价:“这一方法对于科学的进步具有无法估量的价值。”J.汤姆孙和卢瑟福用它拍下了α粒子和β粒子径迹的照片;1925年布拉凯特用它研究人工放射性;1932年菲特用它研究中微子;1933年安德森用它研究宇宙射线,发现了正电子,1937年又用它发现了介子。接着,这一技术在全世界实验室里得到推广,取得很重要的成就。由于云室的工作,威尔逊获得1927年诺贝尔物理学奖。2023-08-04 17:22:201
电子是如何发现的
分类: 教育/科学 >> 科学技术 解析: 电子的发现和阴极射线的实验研究联系在一起的,而阴极射线的发现和研究又是以真空管放电现象开始的.早在1858年,德国物理学家普吕克在利用放电管研究气体放电时发现了阴极射线.普吕克利用真空泵,发现随着玻璃管内空气稀薄到一定程度时,管内放电逐渐消失,这时在阴极对面的玻璃管壁上出现了绿色荧光.当改变管外所加的磁场时,荧光的位置也会发生变化,可见,这种荧光是从阴极所发出的射线撞击玻璃管壁所产生的。 阴极射线究竟是什么呢?在19世纪后30年中,许多物理学家投入了研究.当时英国物理学家克鲁克斯等人已经根据阴极射线在磁场中偏转的事实,提出阴极射线是带负电的微粒,根据偏转算出阴极射线粒子的荷质比(e/m),要比氢离子的荷质比大1000倍之多.当时,赫兹和他的学生勒纳德,在阴极射线管中加了一个垂直于阴极射线的电场,企图观察它在电场中的偏转,为此他们认为阴极射线不带电.实际上当时是由于真空度还不高,建立不起静电场. J.J.汤姆生设计了新的阴极射线管(图1),在电场作用下由阴极C发出的阴极射线,通过Α和B聚焦,从另一对电极D和E间的电场中穿过.右侧管壁上贴有供侧量偏转用的标尺.他重复了赫兹的电场偏转实验,开始也没有看见任何偏转.但他分析了不发生偏转的原因可能是电场建立不起来。于是,他利用当时最先进的真空技术获得高真空,终于使阴极射线在电场中发生了稳定的电偏转,从偏转方向也明确表明阴极射线是带负电的粒子.他还在管外加上了一个与电场和射线速度都垂直的磁场(此磁场由管外线圈产生),当电场力eE与磁场的洛仑兹力evB相等时,可以使射线不发生偏转而打到管壁中央。经过推算可知,阴极射线粒子的荷质比e/m≈1011C/kg.通过进一步的实验,汤姆生发现用不同的物质材料或改变管内气体种类,测得射线粒子的荷质比e/m保持不变.可见这种粒子是各种材料中的普适成分。 1898年,汤姆生又和他的学生们继续做直接测量带电粒子电量的研究.其中之一就是用威尔逊云室,测得了电子电荷是1.1x10-19C,并证明了电子的质量约是氢离子的千分之一.于是,汤姆生最终解开了阴极射线之谜.这以后不少科学家较精确地测量了电子的电荷值,其中有代表性的是美国科学家密立根,在1906年第一次测得电子电荷量e=l.34X10-19C,1913年最后测得e=1.59x10-19C.在当时条件下,这是一个高精度的测量值.近代精确的电子电荷量e=1.***********(49)x10-19C(括号中的值是测量误差).2023-08-04 17:22:261
云雾室的相关简介
1896年他用当时新发现的X射线照射云室中的气体,观察到X射线穿过之处空气被电离,带电离子会形成细微的水滴,显示出X射线的运动轨迹,威尔逊为云室增设了拍摄带电粒子径迹的照相设备,使它成为研究射线的重要仪器。1911年他首先用云室观察到并照相记录了α和β粒子的径迹。师从著名物理学家卢瑟福的物理学家布莱克特(PatrickM.S.Blackett,1897-1974)将威尔逊云室用于核物理及宇宙射线研究。他从1921年起在剑桥大学卡文迪什实验室工作多年。1924年他用云室照片首次成功地验证了人工轻核转变,即氦-14核俘获α粒子变为氧-17。最初的云室不管出现的粒子轨迹是否有意义随时进行记录。 1923年,美国物理学家康普顿利用威尔逊发明的云雾室成功得观察到了光子与电子碰撞。1925年布莱克特对威尔逊云室作了重要改进,将盖革计数器与云室联合运用,云室的记录改由其上方的盖革计数器检测到粒子而启动,几乎每张得到的照片都包含着引人入胜的事物,为云室在近代物理研究中的应用翻开了崭新的一页。云室实验很快表明,电子携带的能量高达10亿电子伏,比以往所知来自放射性的电子的能量要大1000倍。布莱克特改进威尔逊云室方法及在核物理和宇宙线领域的发现,使他获得了1948年诺贝尔物理学奖。1928年以后,这一技术在全世界各有关实验室得到推广,取得了重要的成就。由于威尔逊在云室方面的贡献,他获得了1927年诺贝尔物理学奖。 1932年,安德森(CarlDavidAnderson,1905-1991)与内德梅耶(SethNeddermeyer,1907-1988)将云室置入一个强磁场之中观察宇宙射线。宇宙射线进入云室后会留下轨迹,拍下轨迹的照片,即可用来进行分析。安德森当时每隔15秒钟使云室膨胀一次并拍摄照片。通过对1300张粒子轨迹照片的详细分析,发现有一种粒子的轨迹与当时已知的带电粒子的轨迹不一样。根据轨迹偏转的方向,可以判断这种粒子的电荷是正的,又根据轨迹曲率的大小,可推知这种粒子要比质子轻得多,且与电子的质量近乎相等。安德森后来了解了狄拉克理论后才恍然大悟,他们所发现的上述粒子正是英国物理学家狄拉克(PaulA.M.Dirac,1902-1984)预言过的“反”粒子。正电子的发现是物理学发展史上的又一座里程碑。它说明了理论在认识末来世界中所起的巨大作用;更重要的这是人类第一次从实验上发现了反物质,是人类对物质世界认识的一大飞跃,也为物理学家探寻新的粒子指明了新的方向。由于安德森的这一重大发现,他获得了1936年的诺贝尔物理学奖。在安德森发现正电子后的短短几个月,布莱克特用他拍摄的正负电子成对产生过程的宇宙线径迹照片也有力地证实了正电子的存在。中国物理学家王淦昌(1907-1998)1930年在德国柏林大学威廉皇帝化学研究所读研究生时,了解到玻特(W.Bothe,1891-1957)用α粒子轰击铍核产生了强贯穿辐射,玻特将它解释为γ辐射。王淦昌对此有所怀疑,曾两次向导师迈特纳(L.Meitner,1878-1968)建议用云雾室做探测器重复玻特的实验,可比玻特用计数器的实验更能弄清发现的贯穿辐射的真正性质,但未被迈特纳采纳。1932年,英国物理学家查德威克(JamesChadwick,1891-1974)采用电离室、计数器和云雾室实验,证实玻特的贯穿辐射不是γ射线,而是一种以前尚未发现的、与氢核(质子)的质量差不多的、但不带电的中性粒子。这正是1920年卢瑟福猜想原子核内可能存在的一种中性的粒子,即中子。中子的发现,不仅改变了当时人们的物质结构的概念,同时还为研究和变革原子核提供了一种有力的手段,促进了核裂变研究工作的发展和原子能的利用。由于这一重要的发现,查德威克获得了1935年诺贝尔奖物理学奖。1935年日本理论家汤川秀树(HidekiYukawa,1907-1981)预言存在一种质量处于电子与质子之间的粒子。1937年内德梅耶和安德森在宇宙射线云室实验中检验出一种粒子的质量约为200个电子的质量。物理学家普遍认为,这种粒子就是汤川秀树预言过的那种粒子,取名介子。实际上核力理论所需要的粒子是直到数年以后才发现的π介子。当时云室发现的这种粒子被重新命名为μ介子,后简称为μ子,现在μ子已不再划归介子类。云室技术曾有过多方面的应用,在探测器历史上有过它的辉煌,20世纪30年代初期是使用云室的全盛时期,不少学者创造性地利用云室取得了许多重要成果。直到发明了更灵敏的径迹探测器后,云室技术仍然偶尔使用。中国物理学家霍秉权(1903-1988)1931年进入剑桥大学研究院,他被导师威尔逊发明的“威尔逊云室”所深深吸引。但霍秉权发现这个闻名世界的“云室”并不完善,上下跳动的滚筒不容易掌握,影响了“云室”的功效。他多次进行实验,最后用橡皮膜代替原来的铜活塞用橡皮膜代替原来的活塞,密封性好,膨胀速度快,并减小了畸变现象,大大提高了云室的功效,威尔逊亲自著文在英国皇家学会介绍这一成就。1935年2月,霍秉权应清华大学物理系教授赵忠尧之邀到清华大学任教,在教课的同时致力于科学研究。他自制成小“云室”,并在此基础上做成了“双云室”用以观察宇宙射线。这种“双云室”观察宇宙射线径迹清晰,性能良好,这一创造得到国际著名物理学家玻尔和威尔逊的充分肯定。受战争影响,他随校迁到昆明后仍然致力于制作“大云室”,研究宇宙射线。 中国物理学家张文裕(1910-1992)1946年在美国设计建造了一个自动控制、选择和记录宇宙线稀有事例的云室,研究宇宙线中μ子与物质的相互作用。实验证明,μ子被核吸收之后,没有放出α粒子,也就是说,不存在引起爆炸的“星裂”径迹,从而证明μ子是非强相互作用粒子,否定了关于介子武器的谣传。在进一步的研究中,他发现了μ介原子,后者在国际上被称作“张辐射”。1956年张文裕回国后,提议在云南高山站增建一个大云室组研究高能宇宙线粒子引起的高能核作用。他利用从国外带回的建造云室用的高级平面玻璃和一些实验工具,建成了包括三个云室的大云室组,中间一个加有磁场,成为当时国际上规模最大的云室组。大云室组发现了一个质量可能10倍于质子质量的重粒子,并在此项工作中为国家培养了一批宇宙线研究人才。2023-08-04 17:22:341
威尔逊云室中a粒子的轨迹短是为什么?
a粒子是氦核,体积相对较大,所以在云室中运动会把半径更大的云气凝结成液体,动能损失就更快,一般的云室都是酒精气体。。β粒子是核外电子,半径小,所以在云室中的轨迹更细。γ射线应该算一种电磁波,所以基本上看不到它的云室轨迹。一般的可以直接观察到的带点物体在经过电场时会偏转,因而我们能根据其偏转方向判断其带电性,但微观粒子我们无法直接观察轨迹,只能借助云室来显示轨迹。原理同上。。纯手打,望采纳。2023-08-04 17:23:052
威尔逊云室
给你讲的通俗点吧,压强增大,空气就含不住太多的酒精,气压减小空气就能含住更多的酒精,(气压减小,空气分子间的距离增大,分子间的空间增大,能够容纳更多的酒精分子)当拉动活塞的时候,气压减小液态的酒精就会变成气态,当然现在有液态酒精生存,现在气室气体就是过饱和的,要不剩存的酒精也会变成气态。 当然了,液态变成气态是蒸发的现象,蒸发是要吸热的!2023-08-04 17:23:142
为何在威尔逊云室中高速β粒子显示的径迹又细又直,低速β粒子的径迹又短又粗而且弯曲?
高速的粒子电离能力弱形成的离子少,并且速度快,单位长度所遗留下的粒子数相应要少,所以轨迹比较细。而低速粒子虽然电离的离子也少,但速度慢,单位长度停留时间长相对产生的离子多故轨迹较粗。高速不宜被改变速度,故直,低速且质量小,很容易在碰撞中改变速度方向。故弯2023-08-04 17:23:211
威尔逊云室中径迹粗而短的是什么粒子?细而长的是什么粒子?原理是什么?拜谢大虾!
短的是阿尔发粒子 因为电离能力强 细长的是伽玛 因为是光子束 所以基本不电离2023-08-04 17:23:291
威尔逊云室和盖革-米勒计数管各利用了什么方法显示气体离子的存在
云室用的是例子扰动产生的液滴计数器用的是离子激发的放电过程2023-08-04 17:23:361
高中物理基础知识题
α粒子,β粒子威尔逊云室是一种古老并因此在现在看来是落后的探测装置,主要用来探测带电粒子的径迹。威尔逊云室中充着某种气体,例如水蒸气,当带电粒子在云室中运行时,会使气体发生电离,并因此可以清晰看到带电粒子在气体中的轨迹。通过这样的轨迹,可以估算粒子的速度(轨迹长度除以时间),也可以估计带电粒子的线度(轨迹越粗说明带电粒子越大)。2023-08-04 17:23:443
科学家也会的原理和哪些物理定律有冲突?
1、胡克:英国物理学家;发现了胡克定律(F弹=kx)2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e。11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。13、安培:法国科学家;提出了著名的分子电流假说。14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。31、玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。32、约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素2023-08-04 17:23:521
请介绍下气泡室和云室
气泡室 bubble chamber气泡室是探测高能带电粒子径迹的一种有效的手段,它曾在50年代以后一度成了高能物理实验的最风行的探测设备,为高能物理学创造了许多重大发现的机会。气泡室是由一密闭容器组成,容器中盛有工作液体,液体在特定的温度和压力下进行绝热膨胀,由于在一定的时间间隔内(例如50ms)处于过热状态,液体不会马上沸腾,这时如果有高速带电粒子通过液体,在带电粒子所经轨迹上不断与液体原子发生碰撞而产生低能电子,因而形成离子对,这些离子在复合时会引起局部发热,从而以这些离子为核心形成胚胎气泡,经过很短的时间后,胚胎气泡逐渐长大,就沿粒子所经路径留下痕迹。如果这时对其进行拍照,就可以把一连串的气泡拍摄下来,从而得到记录有高能带电粒子轨迹的底片。照相结束后,在液体沸腾之前,立即压缩工作液体,气泡随之消失,整个系统就很快回到初始状态,准备作下一次探测。工作液可用液氢或液氘,需在甚低温下工作,也可用液态碳氢有机物,如丙烷、乙醚等,可在常温下工作。大型气泡室容积可达20立方米。气泡室的原理和膨胀云室有些类似,可以看成是膨胀云室的逆过程,但却更为简便快捷。它兼有云室和乳胶的优点。它和云室都可以按人们的意志在特定的时间间隔里靠特定的方法,以带电粒子为核心使气体凝结为液体,或者使液体蒸发形成气泡,从而留下粒子的径迹。它和乳胶相同的地方在于工作物质本身即可当作靶子。气泡室的优点更多,它的空间和时间分辨率高,工作循环周期短,本底干净、径迹清晰,可反复操作。但也有不足之处,那就是扫描和测量时间还嫌太长,体积有限,而且甚为昂贵,不适应现代粒子能量越来越高、作用截面越来越小的要求。用气泡室发现了∑0,Ξ0,∑+,Ω-等粒子以及几百种共振粒子。它还可用于探测各种类型粒子的衰变。高能粒子径迹探测器。1952年格拉塞(Donald Arthur Glaser, 1926-)所发明。获得了1960年度诺贝尔物理学奖。 在一能耐高压的密封容器内装置纯净的加压透明工作液,在一定温度下突然减压膨胀时,容器内的压力低于该液体的平衡蒸气压,液体处于过热的亚稳态,这时带电粒子射入,在其路径上产生离子,过热液体以离子为核心形成沸腾小气泡,从而显示出径迹,再通过照相拍摄下照片。工作液可用液氢或液氘,需在甚低温下工作,也可用液态碳氢有机物,如丙烷、乙醚等,可在常温下工作。大型气泡室容积可达20立方米。气泡室兼备乳胶和云室两者的优点,容器内的工作液本身就是一个可见的靶子。气泡室的径迹 畸变小、本底干净、径迹清晰,测量精度高,用它发现了∑0,Ξ0,∑+,Ω-等粒子以及几百种共振态粒子。***** 一种高能粒子径迹探测器,简称泡室。它是1952年美国人D.A.格拉泽发明的。它曾给高能物理实验带来许多重大的发现,如新粒子、共振态、弱中性流等等。(见彩图 气泡室 、 早期的气泡室(其中的径迹是宇宙线 子) ) 工作原理 密闭容器中的工作液体在特定的温度和压力下进行绝热膨胀时,可以在一定的时间间隔内(一般约50毫秒)处于过热的亚稳状态而不马上沸腾。此时如果有高能带电粒子通过,在粒子飞行路线上与液体中的原子碰撞而产生低能电子(δ射线)因而产生很多离子对,这些离子对在复合时引起局部发热或热针,从而形成胚胎气泡。逐渐经过不短于0.3毫秒(一般为1毫秒)之后,气泡长大,就可以对它进行照相。这时把这一连串气泡拍摄下来,就得到了高能带电粒子的径迹底片。照相结束后,立即(在沸腾之前)再压缩工作液体,使粒子径迹气泡消失,从而使整个系统回到原先的状态,并进入下一个工作循环。 整个泡室装置包括室本体及真空系统、压缩-膨胀系统、安全系统、热交换恒温系统、照明及照相系统、控制系统。由于物理测量的要求,还需要有一个庞大的磁铁系统(一般的常规磁铁或超导磁体)。 低温泡室 格拉泽早期的泡室是用有机液体作为工作物的小型泡室。后来由于物理实验的需要,在工作液体和规模等方面都有了很大的发展。因为基本粒子与质子(氢核)的相互作用最简单,容易得到明确的物理结果,所以研制出了液氢泡室。这在泡室技术和在物理上的应用都是极为关键的进步。氘核含有一个质子和一个中子,为了研究粒子与中子的相互作用,还研制出了液氘泡室(后来用液氘充到氢泡室中也得液氘泡室)。由于氦原子核的自旋和同位旋都是零,这时研究与自旋及同位旋有关的过程相当重要,所以又研制成了液氦泡室。氢、氘和氦泡室的一个共同特点是,都需要很低的工作温度(氢泡室的工作温度为25~29K,氘泡室的工作温度比氢泡室的约高5K,氦泡室的工作温度最低,为3~4K),所以它们又称为低温泡室。这种泡室要求有低温系统,所以技术难度较大。 重液泡室 有些物理实验要求有效地记录光子和尽可能增加靶物质的厚度(例如做中微子实验就需要尽量多的靶物质),所以研制了一种重液泡室。这种泡室的工作液体通常是氟利昂及其混合物。这种泡室的工作温度与室温相近,不需要低温系统。氢泡室和重液泡室在物理实验上各有优缺点。氢泡室有提供纯质子靶的优点,但是记录γ光子及其它次级作用的效率较低,而重液泡室则正好相反。因此,后来研制了把两者结合起来的具有称为径迹灵敏靶的泡室。它是把充有液氢或液氘的透明的塑料容器作为靶子放到一个充有液氖和液氢混合物的泡室里同时进行膨胀,使得靶子内外部能对径迹灵敏。 全息照相泡室 粲粒子发现以后,为了测量其极短的寿命(约10秒),需要提高径迹室的空间分辩率。所以,又研制了全息照相泡室。全息照相可以直接给出三维的记录,它比普通照相有大得多的景深范围,而且空间分辨率高一个数量级。同时,它还可以使探测器系统小型化。 混合泡室 为了提高对加速器粒子束流的利用率及提高事例的积累速度,还研制了一种每秒可以循环十次以上的快循环泡室。由于产生胚胎气泡的热针在不到 1微秒的时间内就扩散掉了,所以到目前为止,还不可能做到由计数器触发控制膨胀的泡室。但是,由于快电子学及在线计算器的快速发展,现在已经可能用闪烁计数器、切伦科夫计数器、多丝正比室、漂移室、穿越辐射探测器、光子探测器、量能器等电子学探测器组成的选择触发的逻辑系统对快循环泡室采用触发选择照相和协助记录。这样就大大提高了有用照片的比率和可进一步分析的记录内容。这种以快循环泡室作为靶子及顶点探测器,在上、下游配有电子学探测器系统,称为混合谱仪。 优缺点 泡室本身的优点是直观、作用顶点(有时连衰变顶点)可见、有很好的多重效率、有效空间大和测量精度高等等。但是泡室也有缺点,例如收集和分析数据较慢,特别是扫描、测量照片(虽然在利用自动化剂量装置的情况下)太费时间,体积不容易做得很大,因而不容易适应能量越来越高、要研究的作用截面越来越小、事例数要尽量多的实验的要求。目前正在发展着全息泡室与电子学谱仪的结合。 云室是1904年由英国物理学家威尔逊发明的,因此也舟为 “威尔逊云室”。云室是观察微观粒子运动仪器,它利用过饱和蒸汽容易围绕离子凝成雾滴的现象达到探测粒子的目的。 (图)(50年代使用的云室剖面图。观察窗位于左方,控制压力的活塞位于右方,室内有多块交替排列的铅板和锌板,粒子撞击其上并击碎和锌原子,整个过程可由外部拍摄下来。室内充满酒精和水的混合蒸汽) 云室是一个圆筒或箱状的容器,侧面有片云母窗用于照明光进入和射入粒子,上面有玻璃窗以便观察和摄影,下面有一个活塞,实验进容器充入饱和蒸汽和空气。开始工作时,迅速将活塞同下移动,容器内气体绝热膨胀,温度急剧下降,使气体达到过饱和状态。如果此时有一个粒子进入容器,沿路径产生离子对,每一离子便成为蒸汽的凝结核心,在沿粒子行进时的路径上形成一串小液滴;当有光照射时,这些小液滴对光有散射作用,便可通过顶部的玻璃窗观察到白亮的粒子径迹,根据径迹的长短、浓谈、以及在磁场中的弯曲等,可以分辨出粒子的种类和性质。 1911年,威尔逊又发明了记录a,β等带电粒子轨迹的云雾室照相装置。1919年,英国物理学家卢瑟福使用云室发现了质子。 (图)(云室的基本构造。快速拉回活塞,带动橡皮膜以增加云室的容积,并瞬间降低内部压力,急速冷却并使蒸汽过饱和,沿粒子运动路线附近便会产生水气凝结,得以观察到粒子的运动轨迹)2023-08-04 17:24:272
十字路口行动的行动过程
1946年1月24日,白兰地公开以比基尼环礁为核试选址,并预计进行三次核试。首次核试代号Able,核弹于空中爆炸;第二次核试代号Baker,在水下引爆;第三次核试代号Charlie,在深水引爆。选取比基尼的主要考虑在于其远离民居,原住民少,潟湖广阔,风暴稀少,更有稳定风向及水流,且由美国控制。2月6日,海军派舰轰击比基尼环礁水道,但向原住民隐瞒意图。到2月10日美国马绍尔群岛总督到达比基尼,并以圣经出埃及记为喻,称美国将带领比基尼住民前往“应许之地”,成功诱使岛上全数167名住民同意搬迁。在核弹选用方面,核试两颗核弹均使用胖子原子弹的钚元素。Able使用的核弹代号为“吉尔达”(Gilda)。而Baker核弹则为“比基尼的海伦”(Helen of Bikini)。吉尔达核弹的钚内核在洛斯阿拉莫斯曾两次意外超越临界点,造成哈里·K·达格利恩(Harry K. Daghlian, Jr.)及路易斯·斯洛廷两名科学家死亡,使之被戏称为“魔鬼核心”(Demon Core)。靶舰方面,海军一共拣选了95艘各种军舰,当中包括两艘航空母舰、五艘战列舰、四艘巡洋舰、12艘驱逐舰、八艘潜艇、60艘各式登陆载具及运输舰,以及三艘驳船。为方便量度核爆破坏力如何随距离递减,海军将军舰密集布置,而没有重构现实下锚情况。各艘军舰均安装了量度仪器,监察气压、船只动向以及辐射。整场核试中,美国一共使用了200只猪、60只豚鼠、204只山羊、5000只老鼠、200只小鼠,以及带有不同种类昆虫的谷物,用活体辐射实验品,测试生物在高辐射下的基因变异。至于观察部队方面,海军一共派出150艘支援舰,为42,000人提供住宿、实验站或工作坊,当中超过37,000人隶属海军,另加37个女护士。观察舰队旗舰设于香格里拉号航空母舰,而其他人员则分散于不同舰只及地点,包括埃尼威托克环礁及夸贾林环礁(Kwajalein Atoll)。海军人员亦可以申请延长服役期一年,以留在环礁参与观赏核爆。高空摄影上,美军改装了八架B-17轰炸机,包括安装了自动摄影机、辐射探测器与及空气样本采集器。这些轰炸机可透过地面无线电遥控飞行,飞进人体无法承受的高辐射环境,以至核爆引发的蘑菇云顶部。地面的摄影设备亦由环礁外围的高塔遥控操作。总体而言,环礁内的镜头共可以拍摄超过50,000幅静画,及1,500,000呎长的动画影卷。其中一部摄影机更可在1秒摄取1,000幅影像。核试进行前,所有人员都撤离环礁,往东面18.5千米外的海面观察舰队,以远离辐射。纵使如此,起初直接观察核试者亦要戴上墨镜,以保护眼睛不被核爆强光所伤,但在Able核试前却取消了相关规定。军方指墨镜几乎没有任何保护功效,要求所有人在核试时背向核爆区,合上双眼,并双手掩脸以策安全。不过部分观察者并没有跟从指示,而大部分的舰上观察报告亦“令人失望”:船员往往只感受到轻微震荡,以及听到一声微弱的爆炸声。1946年7月1日上午9时,一架B-29轰炸机在目标舰上空投下23,000当量的吉尔达核弹。核弹原定在内华达号战列舰上空520英尺(160米)爆炸,但却意外大幅偏离目标710码(650米)之遥,最后在吉列姆号海军运输舰(USS Gilliam, APA-57)上空引爆。爆炸使吉列姆号及卡莱尔号(USS Carlisle, APA-69)即时沉没;两艘美国驱逐舰安德森号及林森号在一小时内沉没,而酒勾号轻巡洋舰则在次日沉没。由于核爆的破坏远低于预期,部分传媒对此深表失望,而2日福莱斯特则称重型军舰只会在近距的水下核试,方会承受庞大损伤,而略提核弹偏离目标一事。 Able核爆阵列 沉没船只(由爆心海平面计算距离)编号 舰名 舰种 距离 5 吉列姆号 运输舰 50码(46米) 9 酒匂号 轻巡洋舰 420码(380米) 4 卡莱尔号 运输舰 430码(390米) 1 安德森号 驱逐舰 600码(550米) 6 林森号 驱逐舰 760码(690米) 严重损毁编号 舰名 舰种 距离 40 鳐鱼号USS Skate, SS-305 潜艇 400码(370米) 12 YO-160 石油驳船 520码(480米) 28 独立号 轻型航母 560码(510米) 22 克里坦登号USS Crittenden, APA-77 运输舰 595码(544米) 32 内华达号 战列舰 615码(562米) 3 阿肯色号 战列舰 620码(570米) 35 彭萨科拉号 重巡洋舰 710码(650米) 11 ARDC-13 浮动干船坞 825码(754米) 23 道生号USS Dawson, APA-79 运输舰 855码(782米) 38 盐湖城号 巡洋舰 895码(818米) 27 休斯号 驱逐舰 920码(840米) 37 兰德号 驱逐舰 1,012码(925米) 49 LST-52 登陆坦克 1,530码(1,400米) 10 萨拉托加号 航空母舰 2,265码(2,071米) 核爆引发的空气冲击波,是上述舰只沉没或受损的主因。至于在爆心1,000码(910米)范围内的船只,其受损程度极受舰体方位左右。如阵列图中6号的林森号驱逐舰,因整面右舷朝向爆心,使舰体横向承受冲击波,受损面积因此增大,故此在一小时内沉没。反之,在爆心东南面的船舰以舰艉朝向爆心,纵向面对核爆冲击波,受损面积较小;再加上阵列的军舰密集编布,又分散了冲击波力量,使该区军舰受损相对轻微,纵受重创仍不至于沉没。长门号战列舰是唯一一艘在爆心1,000码(910米)内、却未有承受任何严重损坏的大型舰只。由于长门号曾参与偷袭珍珠港,故美军刻意将长门号编在预定爆心内华达号(编号32号)附近,并以舰侧朝向内华达号。但由于空投失误,长门号承受的冲击波因此大大减低;再加上长门号的舰体本身较为坚固,而美军却高估长门号在战时遭受空袭的损修,令计算核试破坏时出现变量,使预期的重创没有出现。长门号最终要在第二次核试方告沉没。相比之下,萨拉托加号虽然远离爆心超过2,000码(1,800米),却受到严重破坏。萨拉托加号的重创并非由冲击波所引起,而是核爆使舰体燃油及武装起火爆炸所致。核试前美军为所有军舰注满现实所需的燃料与及弹药,以至分布在甲版及机库的舰载机,而航空母舰装载大量易燃的飞行燃料,且分布在舰体各处,使火势极为猛烈。更何况诸如长门号等战列舰拥有厚重装甲,而航空母舰的舰体却极为脆弱。最终萨拉托加号的大火被海军扑灭,以使其参与代号Baker的水下核试。按照广岛原爆的经验,核爆引发的冲击波倘若在每平方英寸施加超过5磅压力(即5psi,磅力每平方英寸),该范围内的物料将会自燃。Able核试引发的自燃区域直径约有3.2千米,萨拉托加号及大部分外围军舰均在其内。但由于海水并不会燃烧,而除航母以外,大部分军舰均能抵受爆炸以及火灾,故未有出现陆上原爆的自燃现象。为了减少辐射尘,Able核弹采取了和广岛及长崎的核弹同样的空炸引爆,其引爆高度被设定在520英尺(160米)。在空中引爆时,会被吸进核爆火球的地面物质较少,而因此产生的辐射性物质大部份则会被带进平流层之中,所以在核试地点产生的辐射尘相当有限。也由于核试辐射尘最终会被稀释到全球环境里,而非留在本地,因此被军方称之为“可自洁”的核试方法。 事实上,由于辐射尘较少,故此环礁的靶舰都未有变成放射性。核试次日海军人员已可登上大部分靶舰,搜集核试数据。不过,在核爆瞬间,接近爆心的船舰仍被大量中子及强烈伽玛辐射照射;而舰上的实验及外缘物料,亦有机会被中子激化(Neutron activation)而带有致命辐射。这些辐射联同核爆冲击波,使大量活体生物因此死亡。美军将57只豚鼠、109只小鼠、146只猪、176只山羊及3030只白老鼠,分别置于22艘目标舰内官兵的活动空间,以模拟军舰官兵。结果10%生物被冲击波即时杀死;另外15%生物被带有辐射的火球击伤,并在数日内死亡;最后又有10%生物在后续研究中因辐射而死。由于是次核爆只产生一次性辐射,再加上大量老鼠被刻意配置于致命范围以外,以研究辐射会否引致动物后代变种,整体生存率因此被拉高。部分生物在核爆后出奇生还,当中最著名的是一只编号311的猪,在核试前被放置在酒匂号上,核试后被发现在环礁游泳,而被美军救起。该猪最后与另一只生还的山羊,一同送到华盛顿国家动物园饲养。不过若果将动物当成人类推算,核爆仍将杀死大量军舰官兵。虽然内华达号有厚重装甲保护,但在舰体内外的山羊,分别在核试后四日及两日死亡。按照推算,意外远离爆心的内华达号仍将死伤枕藉。 Baker水下核试采用了21,000当量核弹(有指亦为23,000当量)。核弹被置于登陆舰(LSM-60)90英尺(27米)呎水深下(海床水深180英尺(55米)呎),位处靶舰阵列正中央。7月25日上午8时35分,核弹引爆。核爆过后,LSM-60登陆舰没有留下任何可辨认残骸,被判定遭核爆气化;另外八艘军舰在核爆后沉没,包括战列舰阿肯色号及长门号;航空母舰萨拉托加号;潜艇舟U0002b695号、鲣鱼号及天竺鲷号;以及YO-160石油驳船。欧根亲王号重巡洋舰在核爆后严重受损,并在12月拖行期间沉没。是次核试的破坏力主要来自水压冲击波,而其辐射尘更几乎污染全部靶舰,使之具放射性。Baker核爆阵列 沉没船只(由爆心海平面计算距离,以码作单位)编号 舰名 舰种 距离 50 LSM-60 登陆舰 0码(0米) 3 阿肯色号 战列舰 170码(160米) 8 舟U0002b695号 潜艇 363码(332米) 10 萨拉托加号 航空母舰 450码(410米) 12 YO-160 石油驳船 520码(480米) 7 长门号 战列舰 770码(700米) 41 鲣鱼号 潜艇 800码(730米) 2 天竺鲷号 潜艇 850码(780米) 11 ARDC-13 浮动干船坞 1,150码(1,050米) 36 欧根亲王号 重巡洋舰 1,800码(1,600米) Baker核爆对舰只的损害明显较Able为大,当中最受注目的,是位于爆心旁边的阿肯色号。核爆后阿肯色号几乎即时翻转沉没,而按照在核爆时的拍摄片段,阿肯色号上方的水墙出现一偌大黑影,故阿肯色号很可能在爆炸后被水墙吸起,然后舰艏可能触及海床,最后舰艉向后倒下,使舰体在礁湖翻沉。不过部分观察者则持相反意见:身在现场的白兰地认为黑影只是烟雾;而后期有作家则指是水墙空隙。不论如何,同年海军曾派潜水员到阿肯色号残骸,发现阿肯色号翻转于海床,舰艉朝向爆心,与吸起再翻转说吻合;舰体的主炮及上层建筑均不可见,且被一层辐射性淤泥掩盖。美国国家公园管理局的潜水员分别在1989与1990年故地重游,海沙仍然盖过舰体,但淤泥却已经消失。而潜水员也看到战列舰的前部12吋主炮。1990年潜水员再次返回阿肯色号前,曾到博物馆舰德克萨斯号预演,以了解阿肯色号舷侧防空炮塔的环境,方便重返现场。至于航空母舰方面,萨拉托加号的巨大烟囱在核爆后倾倒于飞行甲板;而舰艏与舰艉又遭到不同力度的水流拉扯,使舰体中央折断并大幅入水。白兰地曾下令拖船前往救援,但因辐射问题而作罢。萨拉托加号最终在核试后8小时沉没。随着辐射水平逐年下降,萨拉托加号现已成为其一潜水热点。至于早在Able核试受重创的独立号,因距离较远而未再受创,但受到严重辐射污染。由于长年清理辐射无果,独立号最终在1951年于法拉隆群岛凿沉。德国欧根亲王号重巡洋舰成功撑过两次核爆,但严重核污染使水兵无法登舰修补入水。同年9月欧根亲王号被拖往夸贾林环礁,途中在12月22日倾覆于浅海。时至今日,其右舷螺旋桨仍露出水面可见;而左舷螺旋桨则在1978年被打捞,现存于德国基尔的莱博海军纪念馆。鲣鱼号潜艇是唯一一艘被击沉的舰只,可在事后成功打捞浮出水面。及后该舰被拖往加州对开海面,两年后作靶舰击沉。至于三艘重创军舰:法伦号海军运输舰(APA-81,编号25)、休斯号(DD-410,编号27)及长鲨号(USS Dentuda, SS-335,编号24),均在核试后几近沉没,而海军则将三舰拖到海滩搁浅。由于三舰均在爆心1,000码(910米)以外,故此受损较为轻微;而长鲨号更在水下,受到较少辐射污染,最终更短暂重新服役。贵为人类史上首次水下核试,Baker核试过程一直广受关注。在核弹引爆瞬间,一个高速膨胀的火球在引爆点出现,并在水下产生超音速的液压冲击波,将附近的船舰龙骨扯开;水下冲击波也被空中摄录机清晰拍摄纪录:当水下冲击波向外扩散时,海水颜色随之变为深色,犹如海上石油油污;而紧接在冲击波之后的海平面则即时变成一层白色。由于水的传声速度较空气快五倍之多,当冲击波在水下高速扩散时,后方海面即迅速染白,犹如一层白色薄面在海上高速向外延伸。核爆1毫秒后,火球引发的气泡同时抵达海床及海平面。气泡在海床炸开一个直径30英尺(9.1米)乘以2,000英尺(610米)的大坑,并将海水雾化,以圆顶状喷上半空。核爆后一秒,气泡将直径500英尺(150米)范围内、共2,000,000(二百万)吨海水及海沙喷上半空,并形成一道高6,000英尺(1,800米)、阔2,000英尺(610米)、但厚300英尺(91米)的水墙。最后当气泡上升至空中,便引发一道空气冲击波。由于冲击波后方的气压急降,使水汽即时凝结为云。这道凝结云(又称“威尔逊云”,以威尔逊云室为名)由海面迅速抬升,并掩盖了整道水墙,同时以圆盘状向外扩散,最后在气压逐步回升后方告消失。随着凝结云消失,水墙顶部开始变成花椰菜状,所有海水、海沙及水雾均耗尽动力,并即将随重力坠回海面。核爆并没有产生蘑菇云。同时,气泡大量吸起海水,使水下出现真空。当两旁海水涌入填补空间后,反向外面海水施加推力,从而引发类似海啸的海波。第一波海浪在核爆后11秒,已涌离爆心近1,000英尺(300米),浪高94英尺(29米)。当海浪涌到3.5英里(5,600米)外的海滩时,仍达15英尺(4.6米)高,并反复冲击九次之多。海滩的数架登陆坦克因此被冲上岸边,并被一层厚沙覆盖。核爆后12秒,水墙开始随重力下坠,形成一道高900英尺(270米)的巨型瀑布。这道瀑布从天而降,激起一度高辐射的海潮,淹过海面绝大部分的靶舰。这最终使靶舰受到极为严重的辐射污染。Baker核试的实验数据繁多,当中不少领域更是军方及科学界闻所未闻。核试后两个月军方甚至要再开会议,标准化研究项目的术语,并重新定义各报告的描述及运算。核试后首要分析数据为辐射物质。Baker是世上首个于爆炸点产生大量辐射尘及核裂变产物的核爆,此前的新墨西哥、广岛及长崎原爆均在高空,故此辐射物质相对明显较少。然而军方当时却低估辐射所引发的问题与危害。Baker核试一共产生约3磅(1.4千克)核裂变产物。这些污染物混合在水雾、水墙以及云团,最后大部分均返回潟湖,并随着潮汐及洋流带到其他地方。然而当水墙倒塌之时,部分受污染的水雾被再次激起,并随着辐射性海潮向外高速扩散,最后随风漂到测试场地以外。更危险的是,当这些水雾的水汽被蒸发以后,这些裂变产物便会变成透明,无法以肉眼看见,并继续随风扩散,威胁人身安全。除核裂变产物外,核爆同时令海水本身变成放射性。事缘Baker核爆的核分裂,向周遭环境喷气出两倍以上的自由中子。在空爆环境下,这些中子会被高热吸收,并随着核裂变产物及未分裂的钚带到平流层。然而关键在于,Baker进行的是水下核试,环境中子被礁湖海水吸收:倘若有一额外中子被打入海水中钠元素的原子核,该等钠元素便会变得放射性。一般而言,钠-23变成放射性的钠-24,会有15小时的半衰期。不过钠并不会如其他重元素沉入海底,而是维持液态,并可随海水继续污染其他军舰。而在核试后首六日,钠的放射强度将递减1,000倍,但仍足以损害进入环礁的人类健康。最后,核弹采用的钚-239亦引发严重危机。核爆后一共有11.6磅(5.3千克)的钚未有裂变,并与3磅(1.4千克)核裂变产物混合。 虽然钚的α粒子辐射无法穿透人体皮肤,但倘若为人体摄取,则会在骨髓中富集,成为剧毒。更重要的是,工作人员的胶片剂量计(Film badges)及盖革计数器均无法探测钚元素;而钚-239的半衰期长近24,200年。换言之,一旦人体意外摄取钚-239,其一生都无法解毒。Baker核试后,美军先派遥控船舰进入潟湖,并探测辐射。接着美军开始尝试清洗靶舰辐射,包括使用舰载灭火龙头、灭火泡沬、拖把、肥皂以至碱水,但只有首轮喷气稍有成效。再加上海水的钠已具放射性,使美军支援舰用以洗刷船身的海水均带有辐射,不但全无清洗之效,其水雾溅到舰上水兵时,更使水兵受辐射污染。起初美军按照曼哈顿计划经验,限定每人每日最多可摄取0.1伦琴(0.1 roentgens,即0.1R),但由于辐射量过高,首日美军只能登上离爆心最远的五艘靶舰。在钠的首六日半衰期间,一共有4,900人登上受严重污染的靶舰。而核试10日后,美军则批准人员登上所有舰只。辐射对活体生物的影响,很快便为美军所见。在Able核试中,辐射源主要来自核爆瞬间,并没有造成环境辐射;但Baker核试却使绝大部分军舰均受辐射污染,使生物从居住环境摄取并累积辐射。Baker核试后首数日,大部分军舰均不宜人类登上,而分散各舰的猪及老鼠则几乎全数因辐射死亡,只有少量老鼠幸存,生物实验为当时美国媒体关注焦点。9月白兰地曾向传媒指“用作实验的动物所承受的痛苦,几乎是微不足道的。它们要么变得衰弱、要么回复健康、要么无痛地死亡。”不过,因“魔鬼核心”意外临界而死亡的两名科学家,其死亡过程极为痛苦;但由于军方当时仍将意外列为机密,再加上公众对辐射危害所知甚少,故此未有在大众引起即时反弹。然而,军方内部亦开始对辐射有所警惕,并质疑军方的安全措施。在Baker核试以前,海军全无清理核辐射经验,亦对清理期间对人体的危害一无所知。海军亦没有预计辐射水雾会淹盖几乎全部军舰,低估其破坏程度。在欠缺经验、装备及危险意识下,美国水兵往往采用传统的清洗方法,且全无保护装备。十字路口行动原定进行第三场代号Charlie的核试,在比基尼外海深水引爆。不过自7月25日Baker核试后,船舰清理辐射几乎全无进展,更不可能拖到外海再作排列。到8月3日,负责于行动监视辐射的科学家史丹佛·瓦伦(时为陆军上校)认为核试已对众多水兵构成严重危险,并要求即时中止清理。瓦伦指出,当水兵在舰上清理时,辐射物随即污染人体皮肤、衣服甚至肺部。当水兵返回支援舰洗澡及洗衣服时,这些辐射物又随之转移到支援舰,并随水兵带到各地。瓦伦同时质疑水兵没有按照安全指引行事,部分消防船因过于靠近靶舰,而反过来受到污染,而被迫弃用。更有甚者,支援舰多次进出受污染水域,其舰体亦会累积辐射。8月6日至9日之间,有67人摄取过量辐射;而盖革计数器亦不敷应用。海军部分官兵起初对此警戒不足。在水兵眼中,拯救曾经并肩作战的军舰是其首要任务。比如温莱特号驱逐舰的老兵因重新登上旧舰,而摄取过量辐射,要即时送返美国。纽约号战列舰的舰长更指斥瓦伦的量度数据有偏差,并希望将纽约号驶回美国。再加上钠在核试后持续半衰,令辐射读数下降,又使水兵误以为清理有效。然而瓦伦最担忧的,是水兵仪器无法探测的钚。倘若船舰已受钚污染,则水兵可能已曝露于钚的环境之中。白兰地为此在威奇托号重巡洋舰举行会议,并召集近1,400名军官听取瓦伦报告。到8月9日,白兰地终于得悉水兵使用的盖革计数器无法探测钚-239,而当日科学家却在欧根亲王号的舰长室物料样本发现了钚。这使白兰地怀疑钚可能已遍布所有军舰。8月10日,瓦伦向白兰地呈交一幅X光相片,相中的刺尾鱼因受严重辐射污染,其身体竟然向外发出X光。白兰地阅毕相片,即时下令中止所有清理活动。第三轮核试因此取消,而十字路口行动亦在同日即时终结。美军最终在1955年才在棚屋行动(Operation Wigwam)进行深水核试。2023-08-04 17:24:351
关于射线探测及放射性的应用,下列说法正确的是( )A.α粒子在威尔逊云室的径迹直而粗,是因为α粒
A、α粒子的质量大,不易改变方向,电离本领大,产生的粒子多,故径迹直而粗短,γ粒子电离本领小,一般看不到其径迹或只能看到一些细碎的雾滴,故A正确B错误;C、用放射治疗癌症,是利用“细胞分裂越快的组织,对射线的耐受能力就越弱”这一特点,C正确;D、用γ射线照射食品,可以杀死使食物腐败的细菌,延长保存期,D正确.故选:ACD.2023-08-04 17:24:491
正电子湮没技术的正电子性质
1928年Dirac在求解相对论性的电子运动的Dirac方程时预言正电子的存在,1932年Andersan在威尔逊云室研究宇宙射线时发现了正电子。正电子是人类发现的第一个反粒子。正电子可以由β+衰变产生,也可由核反应和电子直线加速器产生,还可以通过γ射线与物质的相互作用产生。当γ射线的能量大于电子静止能量的两倍时(hν>1.02Mev),它与物质的相互作用将产生正负电子对效应。即γ光子经过原子核附近时,其能量被吸收而转变为正负电子对如方程(1)所示。γ→e+e+(1)正电子是轻子,它只参与电磁相互作用。除开所带电荷的符号与电子相反之外,正电子的其它性质(包括质量、电荷的数量、自旋和磁矩)均与电子相同。正电子湮没当γ射线能量大于两倍电子的静止能量经过原子核附近时,其能量被吸收而转换为正负电子对。反过来,正负电子相碰时,两粒子自身被湮灭而发出γ光子,如方程(2)所示:e++e→2γ(2)此过程是一典型的爱因斯坦质能转换的量子电动力学过程。高能正电子进入物质后,通过与电子、原子或离子的非弹性散射损失能量,其动能迅速降到热能,这一过程称为热化,热化过程所需的时间很短(只需几个Ps,1Ps=10–12S)。热化后的正电子在物质中扩散,在扩散过程中碰到电子发生湮没,产生γ光子。扩散过程的持续时间因材料的不同而异,主要由材料中的电子密度决定。正电子在材料中居留时间即正电子湮没寿命。正电子湮没寿命与物质中的电子密度密切相关,正电子在材料中的射程主要决定于热化阶段和材料的密度。在一般材料中,正电子射程约在20~300mm间。在正电子实验中为了保证正电子在样品中湮没而不穿出,要求样品厚度约为1mm。在不同的材料中,正电子的湮没机制及湮没寿命各不相同,它能反映出材料的微观结构和电子密度等信息。正电子湮没过程是一个量子电动力学的过程,它的理论分析需用量子电动力学的理论。根据量子电动力学理论及场论的分析可知,正负电子湮没时可以发射单光子、双光子和三光子,但发射双光子的概率最大。2023-08-04 17:25:081
高中物理学史总结
一、力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 7、17世纪,德国天文学家开普勒提出开普勒三大定律; 8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同; 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。 11、1957年10月,苏联发射第一颗人造地球卫星; 1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。二、电磁学 12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。 18世纪中叶,美国人富兰克林提出了正、负电荷的概念。 1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。 18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。 19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。 20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。 21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。 22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。 23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。 (最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同) 24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。 25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。 26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。三、热学 27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。 28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。 29、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。 30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。 21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。 四年后,帕斯卡的研究表明,大气压随高度增加而减小。 1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。四、波动学 22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。 23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。 24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。五、光学 25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。 26、1801年,英国物理学家托马斯u2022杨成功地观察到了光的干涉现象。 27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。 28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。 29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。 30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。 31、1800年,英国物理学家赫歇耳发现红外线; 1801年,德国物理学家里特发现紫外线; 1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。 32、激光——被誉为20世纪的“世纪之光”。六、波粒二象性 33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界; 受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。 34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。 35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。 36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。 37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性; 1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。七、相对论 38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界); 39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。 40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。 狭义相对论的其他结论: ①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀) ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。 ③相对论质量:物体运动时的质量大于静止时的质量。 41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。八、原子物理学 42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。 43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。 44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。 45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。 天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。 46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子, 并预言原子核内还有另一种粒子——中子。 47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。 48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。 49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。 50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。 51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。 52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。 53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子; 轻子-不参与强相互作用的粒子,如:电子、中微子; 强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。 54、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。2023-08-04 17:25:204
介绍物理学简史??
公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研究发表于1802年。 公元1914年,英国科学家莫塞莱发现原子序数与元素辐射特征线之间的关系,奠定了X射线光谱学的基础。 公元1914年,德国科学家弗朗克与赫兹测量汞的激发电位。 1915年,丹麦科学家玻尔判定他们测的结果实际上是第一激发电位,这正是玻尔1913年定态跃迁原子模型理论的极好证据。 公元1914年,英国科学家查德威克发现β能谱。 公元1915年,在爱因斯坦的倡议下,荷兰科学家德哈斯首次测量回转磁效应。 公元1916年,荷兰科学家德拜提出X射线粉末衍射法。 公元1919年,英国科学家阿斯顿发明质谱仪,为同位素的研究提供重要手段。 公元1919年,卢瑟福首次实现人工核反应。 公元1919年,德国科学家巴克家森发现磁畴。 公元1922年,德国科学家斯特恩与盖拉赫使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。 公元1923年,美国科学家康普顿用光子和电子相互碰撞解释X射线散射中波长变长的实验结果,称康普顿效应。 公元1927年,美国科学家戴维森与革末用低速电子进行电子散射实验,证实了电子衍射。同年,英国科学家G.P.汤姆逊用高速电子获电子衍射花样,他们的工作为法国科学家德布罗意的物质波理论提供了实验证据。 公元1928年,卡文迪许实验室的印度科学家喇曼等人发现散射光的频率变化,即喇曼效应。 公元1931年,美国科学家劳伦斯等人建成第一台回旋加速器。 公元1932年,英国科学家考克拉夫特与爱尔兰科学家瓦尔顿共同发明高电压倍加器,用以加速质子,实现人工核蜕变。 公元1932年,美国科学家尤里将天然液态氢蒸发浓缩后,发现氢的同位素—氘的存在。 公元1932年,查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒子,质量大体与质子相等。据此曾安排实验,但末获成果。1930年,德国科学家玻特等人在α射线轰击铍的实验中,发现过一种穿透力极强的射线,误认为γ射线;1931年,法国科学家约里奥与伊仑·居里让这种穿透力极强的射线通过石蜡,打出高速质子。查德威克接着做了大量实验,并利用威尔逊云室拍照,以无可辩驳的事实说明这一射线即是卢瑟福预言的中子。 公元1932年,美国科学家安德森从宇宙线中发现正电子,证实狄拉克的预言。 公元1933年,美国科学家图夫建立第一台静电加速器。 公元1933年,英国科学家布拉凯特等人从云室照片中发现正负电子对。 公元1934年,前苏联科学家切仑柯夫发现液体在β射线照射下发光的一种现象,称切仑柯夫辐射。 公元1934年,法国科学家约里奥·居里夫妇发现人工放射性。 公元1936年,安德森等人发现μ介子。 公元1938年,德国科学家哈恩与史特拉斯曼发现铀裂变。 公元1938年,前苏联科学家卡皮查用实验证实液氦的超流动性。 公元1939年,奥地利裔美国科学家拉比等人用分子束磁共振法测核磁矩。 公元1940年,美国科学家开尔斯特等人用分子建造第一台电子感应加速器。 公元1946年,美国科学家珀塞尔用共振吸收法测核磁矩,布拉赫用核感应法测核磁矩,两人从不同的角度实现了核磁共振。这种方法可以使核磁矩和磁场的测量精度大大提高。 公元1947年,德裔美国科学家库什精确测量电子磁矩,发现实验结果与理论预计有微小偏差。 公元1947年,美国科学家兰姆与雷瑟福用微波方法精确测出氢原子能级的差值,发现英国科学家狄拉克的量子理论仍与实际有不符之处。这一实验为量子电动力学的发展提供了实验依据。 公元1948年,美国科学家肖克利、巴丁与布拉顿共同发明晶体三级管。 公元1952年,美国科学家格拉塞发明气泡室,比威尔逊云室更为灵敏。 公元1954年,美国科学家汤斯等人制成受激辐射的微波放大器——曼塞。 公元1955年,美国科学家张伯伦与希格里等人发现反质子。1957年,希格里等人又发现反中子。 公元1956年,华裔美国科学家吴健雄等人实验验证了华裔美国科学家李政道、杨振宁提出的在弱相互作用下宇称不守恒的理论(1956年)。实验方法是将钴-60置于极低温(0.01K)的环境中测量β蜕变。 公元1958年,德国科学家穆斯堡尔实现γ射线的无反冲共振吸收(穆斯堡尔效应)。 公元1960年,美国科学家梅曼制成红宝石激光器,实现了肖洛和汤斯1958年的预言。 公元1962年,英国科学家约瑟夫森发现约瑟夫森效应。 另附 1900--1909 1900年,瑞利发表适用于长波范围的黑体辐射公式。 1900年,普朗克(M.Plank,1858—1947)提出了符合整个波长范围的黑体辐射公式,开 用能量量子化假设从理论上导出了这个公式。 1900年,维拉尔德(P.Willard,1860一1934)发现γ射线。 1901年,考夫曼(W.Kaufmann,1871—1947)从镭辐射测射线在电场和磁场中的偏转,从 而发现电子质量随速度变化。 1901年,理查森(O.W.Richardson,1879—1959)发现灼热金属表面的电子发射规律。 后经多年实验和理论研究,又对这一定律作进一步修正。 1902年,勒纳德从光电效应实验得到光电效应的基本规律:电子的最大速度与光强无关, 为爱因斯坦的光量子假说提供实验基础。 1902年,吉布斯出版《统计力学的基本原理》,创立统计系综理论。 1903年,卢瑟福和索迪(F.Soddy,1877一1956)发表元素的嬗变理论。 1905年,爱因斯坦(A.Einstein,1879—1955)发表关于布朗运动的论文,并发表光量子 假说,解释了光电效应等现象。 1905年,朗之万(P.Langevin,1872—1946)发表顺磁性的经典理论。 1905年,爱因斯坦发表《关于运动媒质的电动力学》一文,首次提出狭义相对论的基本原 理,发现质能之间的相当性。 1906年,爱因斯坦发表关于固体热容的量子理论。 1907年,外斯(P.E.Weiss,1865—1940)发表铁磁性的分子场理论,提出磁畴假设。 1908年,昂纳斯(H.Kammerlingh—Onnes,1853—1926)液化了最后一种“永久气体”氦。 1908年,佩兰(J.B.Perrin,1870—1942)实验证实布朗运动方程,求得阿佛伽 德罗常数。 1908—1910年,布雪勒(A.H.Bucherer,1863—1927)等人,分别精确测量出电子质量 随速度的变化,证实了洛仑兹-爱因斯坦的质量变化公式。 1908年,盖革(H.Geiger,1882—1945)发明计数管。卢瑟福等人从粒子测定电子电荷e 值。 1906—1917年,密立根(R.A.Millikan,1868—1953)测单个电子电荷值,前后历经11 年,实验方法做过三次改革,做了上千次数据。 1909年,盖革与马斯登(E.Marsden)在卢瑟福的指导下,从实验发现粒子碰撞金属箔产 生大角度散射,导致1911年卢瑟福提出有核原子模型的理论。这一理论于1913年为盖 革和马斯登的实验所证实。 1910--1919 1911年,昂纳斯发现汞、铅。锡等金属在低温下的超导电性。 1911年,威尔逊(C.T.R.Wilson,i869—1959)发明威尔逊云室,为核物理的研究提供 了重要实验手段。 1911年,赫斯(V.F.Hess,1883—1964)发现宇宙射线。 1912年,劳厄(M.V.Laue,1879—1960)提出方案,弗里德里希(W. Friedrich),尼平 (P.KniPning,1883—1935)进行X射线衍射实验,从而证实了X射线的波动性。 1912年,能斯特(W. Nernst,1864—1941)提出绝对零度不能达到定律(即热力学第三定 律)。 1913年,斯塔克(J.Stark,1874—1957)发现原子光谱在电场作用下的分裂象(斯塔克效应)。 1913年,玻尔(N.Bohr,1885—1962)发表氢原子结构理论,解释了氢原子光谱。 1913年,布拉格父子(W.H.Bragg,1862—l942;W.L.Bragg,1890—1971)研究X射 线衍射,用X射线晶体分光仪,测定X射线衍射角,根据布拉格公式:Zdsin6=算出晶 格常数d。 1914年,莫塞莱(H.G.J.Moseley,1887—1915)发现原子序数与元素辐射特征线之间 的关系,奠定了X射线光谱学的基础。 1914年,弗朗克(J. Franck,1882——1964)与 G.赫兹(G.Hertz,1887—1975)测 汞的激发电位。 1914年,查德威克(J.Chadwick,1891—1974)发现能谱。 1914年,西格班(K.M.G.Siegbahn,1886—1978)开始研究 X射线光谱学。 1915年,在爱因斯坦的倡仪下,德哈斯(W.J.de Hass,1878—1960)首次测量回转磁效 应。 1915年,爱因斯坦建立了广义相对论。 1916年,密立根用实验证实了爱因斯坦光电方程。 1916年,爱因斯坦根据量子跃迁概念推出普朗克辐射公式,同时提出了受激辐射理论,后 发展为激光技术的理论基础。 1916年,德拜(P.J.W.Debye,1884—1966)提出 X射线粉末衍射法。 1919年,爱丁顿(A.S.Eddington,1882—1944)等人在日食观测中证实了爱因斯坦关于 引力使光线弯曲的预言。 1919年,阿斯顿(F.W.Aston,1877—1945)发明质谱仪,为同位素的研究提供重要手段。 1919年,卢瑟福首次实现人工核反应。 1919年,巴克豪森(H.G.Barkhausen)发现磁畴。 1920--1929 1921年,瓦拉塞克发现铁电性。 1922年,斯特恩(O.Stern,1888—1969)与盖拉赫(W.Gerlach,1889—1979) 使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。 1923年,康普顿(A.H.Compton,1892—1962)用光子和电子相互碰撞解释X射线散射中 波长变长的实验结果,称康普顿效应。 1924年,德布罗意(L.de Broglie,1892—1987)提出微观粒子具有波粒二象性的假设。 1924年,玻色(S.Bose,1894—1974)发表光子所服从的统计规律,后经爱因斯坦补充建立了玻色一爱因斯坦 统计。 1925年,泡利(W.Pauli,1900—1958)发表不相容原理。 1925年,海森伯(W.K.Heisenberg,1901—1976)创立矩阵力学。 1925年,乌伦贝克(G.E.Uhlenbeck,1900--)和高斯密特(S.A.Goudsmit,1902—1979)提出电子自旋假设。 1926年,薛定愕(E.Schrodinger,1887—1961)发表波动力学,证明矩阵力学和波动力 学的等价性。 1926年,费米(E.Fermi,1901—1954)与狄拉克(P.A.M.Dirac,1902—1984)独立 提出费米-狄拉克统计。 1926年,玻恩(M.Born,1882—1970)发表波函数的统计诠释。 1927年,海森伯发表不确定原理。 1927年,玻尔提出量子力学的互补原理。 1927年,戴维森(C.J.Davisson,1881—1958)与革末(L.H.Germer,1896-- 1971)用低速电子进行电子散射实验,证实了电子衍射。同年,G.P.汤姆生 (G.P.Thomson,1892—1975)用高速电子获电子衍射花样。 1928年,拉曼(C.V.Raman,1888--1970)等人发现散射光的频率变化,即拉曼效应。 1928年,狄拉克发表相对论电子波动方程,把电子的相对论性运动和自旋、磁矩联系了起 来。 1928—1930年,布洛赫(F.BIoch,1905—1983)等人为固体的能带理论奠定了基础。 1930--1939 1930—1931年,狄拉克提出正电子的空穴理论和磁单极子理论。 1931年,A.H.威尔逊(A.H.Wilson)提出金属和绝缘体相区别的能带模型,并预言介 于两者之间存在半导体,为半导体的发展提供了理论基础。 1931年,劳伦斯(E.O.Lawrence,1901—1958)等人建成第一台回旋加速器。 1932年,考克拉夫特(J.D.Cockcroft,1897—1967)与沃尔顿(E.T.Walton)发明高 电压倍加器,用以加速质子,实现人工核蜕变。 1932年,尤里(H.C.Urey,1893—1981)将天然液态氢蒸发浓缩后,发现氢的同位素 ——氘的存在。 1932年,查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒 子,质量大体与质予相等。据此曾安排实验,但未获成果。 193O年,玻特(w.B大成,18盯一1的7)等人在。射线轰击被的实验中,发现过一种穿 透力极强的射线,一误认为、射线,1931年约里奥(F.Joliot,1900—1958)与伊 伦·居里(1.Curie,1897—1956)让这种穿透力极强的射线,通过石蜡,打出高速 质子。查德威克接着做了大量实验,并用威尔逊云室拍照,以无可辩驳的事实说明这 一射线即是卢瑟福预言的中子。 1932年,安德森(C.D.Anderson,1905一)从宇宙线中发现正电子,证实狄拉克的预言。 1932年,诺尔(M.Knoll)和鲁斯卡(E.Ruska)发明透射电子显微镜。 1932年,海森伯、伊万年科(Д.Д.Иваненко)独立发表原子核由质子和中子 组成的假说。 1933年,泡利在索尔威会议上详细论证中微于假说,提出β衰变。 1933年,盖奥克(W.F.Giauque)完成了顺磁体的绝热去磁降温实验,获得千分之几开的 低温。 1933年,迈斯纳(W.Meissner,1882—1974)和奥克森菲尔德(R.Ochsenfeld)发现超 导体具有完全的抗磁性。 1933年,费米发表p衰变的中微子理论。 1933年,图夫(M.A.Tuve)建立第一台静电加速器。 1933年,布拉开特(P.M.S.Blackett,1897—1974)等人从云室照片中发现正负电子对。 1934年,切仑柯夫(Π.A.Черенков)发现液体在β射线照射下发光的一种现象, 称切仑柯夫辐射。 1934年,约里奥-居里夫妇发现人工放射性。 1935年,汤川秀村发表了核力的介于场论,预言了介子的存在。 1935年,F.伦敦和H.伦敦发表超导现象的宏观电动力学理论。 1935年,N.玻尔提出原子核反应的液搞核模型。 1938年,哈恩(O.Hahn,1879—1968)与斯特拉斯曼(F.Strassmann)发现铀裂变。 1938年,卡皮查(П.Л.Капича,1894--)实验证实氦的超流动性。 1998年,F.伦敦提出解释超流动性的统计理论。 1939年,迈特纳(L.Meitner,1878—1968)和弗利行(O.Frisch)根据获滴核模型指出, 哈恩-斯特拉斯曼的实验结果是一种原子核的裂变现象。 1939年,奥本海默(J.R.Oppenheimer,1904—1967)根据广义相对论预言了黑洞的存在。 1939年,拉比(I.I.Rabi,1898—1987)等人用分子束磁共振法测核磁矩。 1940--1949 1940年,开尔斯特(D.W.Kerst)建造第一台电子感应加速器。 1940—1941年,朗道(Л.И.Ландау,1908—1968)提出氦Ⅱ超流性的量子理论。 1941年,布里奇曼(P.W.Bridgeman,1882—1961)发明能产生 10万巴高压的装置。 1942年,在费米主持下美国建成世界上第一座裂变反应堆。 1944—1945年,韦克斯勒(ВИВеклер.1907--1966)和麦克米伦(E.M.McMillan, 1907—)各自独立提出自动稳相原理,为高能加速器的发展开辟了道路。 1946年,阿尔瓦雷兹(L.W.Alvarez,1911--)制成第一台质子直线加速器。 1946年,柏塞尔(E.M.Purcell)用共振吸收法测核磁矩,布洛赫(F.Bloch,1905—1983)用核感应法测核磁矩,两人从不同的角度实现核磁共振。这种方法可以使核磁矩和磁场的测量精度大大提高。 1947年,库什(P.Kusch)精确测量电子磁矩,发现实验结果与理论预计有微小偏差。 1947年,兰姆(W.E.Lamb,Jr.)与雷瑟福(R.C.Retherford)用微波方法精确测出氢原子能级的差值,发现狄拉克的量子理论仍与实际有不符之处。这一实验为量子电动力学的 发展提供了实验依据。 1947年,鲍威尔(C.F.Powell,1903—1969)等用核乳胶的方法在宇宙线中发现π介子。 1947年,罗彻斯特和巴特勒(C.Butler,1922--)在宇宙线中发现奇异粒子。 1947年,H,P.卡尔曼和J.W.科尔特曼等发明闪烁计数器。 1947年,普里高金(I.Prigogine,1917--)提出最小熵产生原理。 1948年,奈耳(L.E.F.Neel,1904--)建立和发展了亚铁磁性的分子场理论。 1948年,张文裕发现μ子系弱作用粒子,并发现了μˉ子原子。 1948年,肖克利(w.Shockley),巴丁(J.Bardeen)与布拉顿(W.H.Brattain) 发明晶体三极管。 1948年,伽柏(D.Gabor,1900—1979)提出现代全息照相术前身的波阵面再现原理。 1948年,朝永振一郎、施温格(1.Schwinger)费因曼(R.P.Feynman,1918-- 1988)等分别发表相对论协变的重正化的量子电动力学理论,逐步形成消除发散困难的重 正化方法。 1949年,迈耶(M.G.Mayer)和简森(J.H.D.Jensen)等分别提出核壳层模型理论。 1950-1959 ???? 1960--现在 1960年,梅曼(T.H.Maiman)制成红宝石激光器,实现了肖洛(A.L.Schawlow)和 汤斯1958年的预言。 1962年,约瑟夫森(B.D.Josephson)发现约瑟夫森效应。 1964年,盖耳曼(M.Gell-Mann)等提出强子结构的夸克模型。 1964年,克洛宁(J.W.Cronin)等实验证实在弱相互作用中CP联合变换守 恒被破坏。 1967—1968年,温伯格(S.Weinberg)、萨拉姆(A.salam)分别提出电弱统一理论标准模型。 1969年,普里高金首次明确提出耗散结构理论。 1973年,哈塞尔特(F.J.Hasert)等发现弱中性流,支持了电弱统一理论。 1974年,丁肇中(1936--)与里希特(B.Richter,1931--)分别发现J/ψ粒子。 1980年,克利青(V.Klitzing,1943--)发现量子霍尔效应。 1983年,鲁比亚(C.Rubbia,1934--)和范德梅尔(S.V.d.Meer,1925--)等人在欧洲核子研究中心发现W±和Z0粒子。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。 公元1799年,英国科学家戴维做真空中的摩擦实验,以证明热是物体微粒的振动所致。 公元1800年,英国科学家赫休尔从太阳光谱的辐射热效应发现红外线。 公元1801年,德国科学家里特尔从太阳光谱的化学作用,发现紫外线。 公元1801年,英国科学家托马斯·杨用干涉法测光波波长。 公元1802年,英国科学家沃拉斯顿发现太阳光谱中有暗线。 公元1808年,法国科学家马吕斯发现光的偏振现象。 公元1811年,英国科学家布儒斯特发现偏振光的布儒斯特定律。 公元1815年,德国科学家夫琅和费开始用分光镜研究太阳光语中的暗线。 公元1819年,法国科学家杜隆与珀替发现克原子固体比热是一常数,约为6卡/度·克原子,称杜隆·珀替定律。 公元1820年,丹麦科学家奥斯特发现导线通电产生磁效应。 公元1820年,法国科学家毕奥和沙伐由实验归纳出电流元的磁场定律。 公元1820年,法国科学家安培由实验发现电流之间的相互作用力,1822年进一步研究电流之间的相互作用,提出安培作用力定律。 公元1821年,爱沙尼亚科学家塞贝克发现温差电效应(塞贝克效应)。 公元1827年,英国科学家布朗发现悬浮在液体中的细微颗粒作不断地杂乱无章运动,是分子运动论的有力证据。 公元1830年,诺比利发明温差电堆。 公元1831年,法拉第发现电磁感应现象。 公元1834年,法国科学家珀耳帖发现电流可以致冷的珀耳帖效应。 公元1835年,美国科学家亨利发现自感,1842年发现电振荡放电。2023-08-04 17:25:411
高中的物理学里的科学家有哪些
物理是一种理科课程.初中物理呢,是应用物理的知识来解释日常生活当中的许多现象的学科.比较贴近于生活.也来自生活.要是想学好物理呢,就必须有合适的方法.如果没有合适的方式方法的话.你根本就学不会物理的,因为物理是有逻辑性的.那么怎么学好初中物理这门学科呢?有什么样的方法可以学好物理呢?初中物理电路图以下是一些关于怎么学好物理的方式方法:第一、把物理培养成自己的兴趣兴趣就是学习开始的动力,你喜欢什么你才去干什么,所以.要想学好一门功课的话,就应该把他培养成自己的兴趣.这个时候呢,家长应该和孩子一起来学习,不然孩子会觉得学习是枯燥无味的.可以和孩子一起在网上搜索视频来看,或者是搜一些物理题来做,从小培养孩子物理的兴趣.是孩子从小就对物理感兴趣.之后对于初中,高中的学习,物理也没有任何的阻碍了.第二、要学会会提前预习功课,把不会的标注下来预习功课呢,是学好每一科目的最好的保障.当然,物理也不例外,可以经过预习,了解知识的大概内容,然后.让明天老师讲课的时候,你能都清楚老师在讲些什么,有事半功倍的效果.而且初中物理会出现的物理现象很多,所以.在预习当中需要注重的看一下,并且这些现象是非常好理解的,你也是能看懂的.第三、需要认真仔细的听讲,不要走私,开小差上课的效率是直接能够决定你的孩子的学习成绩的.在上课的时候,孩子必须要跟着老师的思想走.老师讲到哪,他就得听到哪,并且孩子的脑子要跟着一起思考问题,不能只跟着老师的思想走,不思考问题.这样跟没上课是一样的效果.第四、要多巩固学过的知识多复习在下课之后要多多的看一遍书,并且在回家做作业的时候不会的地方再看一遍,等到全部都做完作业之后再看一遍书进行巩固知识,在睡觉之前躺在床上的时候是要像过电影一样在脑子里边过一下今天学过的知识,这很有利于提高成绩.初中物理思维导图第五、不懂就问发现自己有不会的地方,一定要及时的问同学或者是老师.不懂就问才是最好的学习方法,这样就把所有的知识点都放在你的脑子里边了.成为你自己的东西了,而不是别人的东西.关于怎么学好初中物理的方法技巧已经告诉给大家了,希望同学们能够按照上面的方式方法进行学习,对于你们提高成绩是很有帮助的.2023-08-04 17:25:512
不需要敏化的乳胶是怎样产生出来的?
不需要事先敏化的乳胶在1935年就由列宁格勒的兹达诺夫和依尔福德(ILFORD)实验室各自独立地生产出来了。但是在核物理研究中,即使到了30年代照相法仍未得到普遍采用,只有在宇宙射线的研究上还有一些人用到这种方法。许多核物理学家对这种方法还持怀疑态度,因为从测量到的径迹长度计算粒子能量往往会得到很分散的结果。大家那个时候更相信的是威尔逊云室。2023-08-04 17:26:131
求高人帮我整理高中物理3-5的物理学史
普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。 爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。 汤姆逊:在研究阴极射线时发现电子。卢瑟福:提出原子的核式结构,发现质子,预言中子。查德威克:发现中子。贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。居里夫人:发现人工放射性元素钋、镭。威尔逊:发明了云室,用于研究射线。密立根:用油滴法测电子电量。2023-08-04 17:26:241
我想问有无知道西史历史的发展过程
200万年前,人类进入打制石器的旧石器时代。100万年前,人类掌握了火的使用技术。2万年前,人类发明弓箭。1万年前,人类进入定居农业社会。前7000年,中国仰韶文化时期已有陶窑及模制的陶器。前4241年,古埃及发明了世界上最早的太阳历。前4000年,埃及人已掌握陶器制造、冶金术、酒醋制造、颜料染色。前2500年,埃及人用沙和苏打制取玻璃。前2100年,美索不达米亚人发明六十进位制、乘法表。前2000年,埃及人发明十进制,整数和分数计算法,三角形和圆面积计算法,正方角锥体和锥台体积计算法;发明防腐剂以保存木乃伊。前1950年,巴比伦人能解两个变量的一次和二次方程。前1200年,中国用蚕丝织丝绢。前1200年,中国殷商青铜(铜锡合金)冶铸技术已达成熟阶段。前1066年-前221年,周朝。前770-前476,春秋时代。前770年,中国已会铸铁。前722年,中国开始用干支记日。前700年,管仲(前725-645)记载了磁石。前7世纪,巴比伦人发现日月食循环的沙罗周期。前611年,中国有彗星的最早记录,即后来的名的哈雷彗星。前6世纪,希腊的泰勒斯(Thales,前625-547)发现琥珀摩擦生电,发现磁石吸铁现象。前6世纪,希腊毕达哥拉斯证明了勾股定理,发现了无理数,提出了地球球形说,研究了音律。前6世纪,印度人计算出2的平方根为1.4142156。前594年,希腊梭伦改革,确立民主政治,制定宪法,工商业兴起。前551年,孔子诞生。前5世纪,希腊的德谟克利特完成古代原子论,认为万物是由大小和质量不同、运动不息的原子组成。前5世纪,中国的《周礼》中记载了用金属凹面镜从太阳取火的方法。前475-前221,战国时代。前462年,希腊巴门尼德、芝诺等埃利亚学派指出在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖论。前400年,墨翟(前468-376)发现小孔成像。前4世纪,希腊亚里士多德对数学、动物学等进行综合研究,在《天论》一书中提出了地球中心说。认识到声音是由空气运动产生的。发表《动物自然史》等书,记载有500多种动物,第一次把生物学置于广泛观察的基础之上。前4世纪,希腊的菲洛劳斯提出中心火说,是日心说的萌芽。前4世纪,中国的庄子(前369-286年)中记载了钻木取火的方法,提出了 “一尺之锤,日取其半,万事不竭”的观点。前350年,中国战国时代的甘德、石申编制了世界上最早的星表。前3世纪,希腊欧几里德发表 《几何原本》13卷。前3世纪,希腊的阿基米德(Archimedes,前287-212)发现杠杆原理和浮力定律,发明阿基米德螺旋。韩非记载司南。前285年,埃及国王托勒密2世即位,奖励保护学术。前258年,希腊埃拉西斯特拉托最早从事比较解剖学和病理解剖学。前250年,中国战国末年《韩非子》一书中有用“司南”识别南北的记载。前245年,希腊的克达席布斯在埃及亚历山大发明压力泵、气枪等。前230年,希腊的厄拉多塞在埃及的亚历山大测定出地球的大小。前221-前206,秦朝。前221年,中国秦始皇统一度量衡,其体制沿用到20世纪。前206-公元220年,汉朝。前2世纪,刘安(前179-122)著淮南子,记载用冰作透镜,用反射镜作潜望镜。前2世纪,中国西汉用丝麻纤维纸。1世纪,希腊希龙(Hero,62-150)发明蒸汽旋转器和热空气推动的转动机,这是蒸汽涡轮机和热气涡轮机的萌芽。发明虹吸管。1世纪,罗马普利尼的百科全书《博物学》问世。1世纪,中国的《汉书》记载尖端放电。100年,希腊尼寇马写《算术引论》一书,此后算术开始成为独立学科。105年,中国东汉时蔡伦造纸。132年,中国东汉时张衡发明世界上第一个测量地震的仪器地动仪。2世纪,希腊托勒密运用圆锥、圆筒等方法绘制地球,建立了以地球为中心的宇宙体系。发现大气折射。已知道中国。220-581年,三国两晋南北朝。3世纪初,中国汉末华佗发明麻醉剂麻沸散用于外科手术。3世纪,中国魏晋时期的刘徽提出割圆术,得圆周率为3.1416 。5世纪,中国南北朝时南朝的祖冲之(429-500)算出圆周率的值到小数点后第七位,比西方人早1000多年。581-618年,隋朝。6世纪,中国北魏时贾思勰写《齐民要术》,在世界农学史上占有重要地位。618-907,唐朝唐太宗。7世纪,中国唐朝已采用刻板印刷。725年,中国南宫说等人实测子午线的长度。8世纪,中国造纸术传入西方,阿拉伯炼金术获得发展,制出了硫酸、硝酸、王水等,为向化学过渡准备了条件。9世纪,中国唐朝的炼丹士发明火药。9世纪,阿拉伯花剌子模发表《印度计数算法》,使西欧人熟悉了十进位制,他也是代数学的奠基人,阿拉伯阿尔·拉兹写成《医学集成》,被后人认为是医疗化学的先驱。9世纪,中国唐朝的炼丹士发明了火药,这是化学能转化为热能的重大发现。10世纪,阿拉伯伊本·西拿写成《医学经典》,对以后6个世纪影响很深。10世纪,中国宋代发明了胆矾溶液浸铜法生产铜,这是水法冶金术的开始。960-1279年,宋朝。11世纪,中国宋代沈括写成《梦溪笔谈》一书。11世纪,阿拉伯爱萨(西方人称为阿维森纳)写成《医典》。1041年,中国北宋毕升发明活字印刷术,早于西方400年,奠定了现代印刷术的基础。1054年,中国《宋史》记载了一次超新星爆发,这是世界上最早的有关超新星爆发的文字记载。该超新星的残骸形成了现在所见的蟹状星云。1200年,欧洲人开始使用眼镜。1202年,意大利斐波那契发表《计算之书》把印度-阿拉伯计数法介绍到西方。1231年,中国宋朝人发明“震天雷”,充有火药,可用投掷器射出,是火炮的雏形。1259年,中国南宋抗击金兵时,使用一种用竹筒射出子弹的火器,是火枪的雏形。13世纪中前叶,中国火药传入阿拉伯。1279-1368年,元朝。1284年,意大利人发明眼镜。14世纪中前叶,中国开始应用珠算盘。1368-1644,明朝。1385年,中国在南京建立观象台,是世界上最早的设备完善的天文台。14世纪-16世纪,文艺复兴先驱意大利的但丁发表《神曲》。文艺复兴的开始。1487年,葡萄牙人迪亚士发现非洲南端的好望角。1492-1502年,意大利人哥伦布发现美洲。1498年,葡萄牙人达·伽马开辟好望角到印度的航路。1500年,达芬奇设计了风力计、湿度计、降落伞、纺纱机、踏动车床等草图。1517年,德国的马丁.路德宗教改革。1519-1522年,葡萄牙人麦哲伦完成第一次环球航行,证实地球是球形。1539年,波兰的哥白尼提出了以太阳为中心的宇宙理论。1543年,哥白尼的《天体运行论》出版,从此自然科学便开始从神学中解放出来。1582年,西欧许多国家实行格里历,即现行公历的前身。1583年,意大利的伽利略发现摆的等时性原理。1589年,荷兰的史特芬发现力的平行四边形法则。1590年,意大利的伽利略作自由落体等一系列科学实验。1590年,荷兰的詹森发明复式显微镜。1593年,意大利的伽利略发明空气温度计。1596年,中国明代李时珍《本草纲目》出版,书中记有药物1892种,是重要的科学典籍。1600年,意大利的布鲁诺因拥护哥白尼地动说并宣传宇宙无限,在罗马被教会烧死。1605年,英国的培根(1561-1626)著《学术的进展》,提倡以实验为基础的归纳法。1607年,意大利的伽利略尝试测量光速。1609-1619年,德国的开普勒提出行星运动定律。1609年,意大利的伽利略制成第一架天文望远镜,用其发现了木星的四颗卫星。1609年,意大利的伽利略初次测光速,未获成功。1620年,荷兰的斯涅尔发现折射定律。1620年,葡萄牙的德列贝尔发明潜水船。1628年,英国的哈维发现血液循环。1632年,意大利的伽利略提出相对性原理。1637年,中国明朝的宋应星完成“天工开物”,总结了中国工农业生产技术。1638年,法国的笛卡尔提出 “以太”。1644-1911,清朝。1648年,捷克的马尔西发现光的色散。1654年,德国的盖里克发明真空泵,表演马德堡半球实验。1660年,英国的胡克发现弹性定律。1666年,英国的牛顿提出万有引力定律。1666年,英国的牛顿用三棱镜分光。1676年,丹麦的罗默利用木卫食测光速。1677年,德国的莱布尼兹发明微积分。1687年,英国的牛顿提出力学三定律和绝对时间、绝对空间的概念。1699年,法国的阿蒙顿发现摩擦定律。1701年,英国的贝努利创建变分法。1728年,英国的布拉德雷利用光行差测光速。1745年,德国的克莱斯特发明莱顿瓶。1750年,英国的米切尔设计测静电力扭秤,并提出磁力的平方反比定律。1750年,美国的富兰克林发明避雷针。1752年,美国的富兰克林作风筝引天电实验。1775年,意大利的伏打发明起电盘。1776年,美国宣布独立。1780年,意大利伽伐尼发现蛙腿肌肉收缩现象,认为是动物电所致。1781年,英国的瓦特改良蒸汽机。1785年,法国的库仑用实验证明静电力的平方反比定律。1789年, 法国大革命。1792年,意大利的伏打研究伽法尼现象,认为是两种金属接触所致。1798年,英国的卡文迪许用扭秤测定万有引力常数。1800年,意大利的伏打发明伏打电堆。英国的赫谢尔从太阳光谱的辐射热效应发现红外线。1801年,英国的杨用干涉法测出光波波长。1802年,英国的特里维西克造出了蒸汽机车。1808年,法国的马吕斯发现光的偏振现象。1808年,英国的道尔顿发表提出化学原子论。1820年,丹麦的奥斯特发现电流的磁效应。1820年,法国的安培发现电流之间的相互作用力。1821年,爱沙尼亚的塞贝克发现温差电效应。1826年,德国的欧姆确立欧姆定律。1827年,英国的布朗发现液体中的微粒作无规则运动。1830年,意大利的诺比利发明温差电堆。1831年,英国的法拉第发现电磁感应现象。1834年,法国的珀耳帖发现电流可以致冷的珀耳帖效应。1835年,美国的亨利发现自感。1840年,鸦片战争。1845年,英国的法拉第发现磁场使光的偏振面旋转。1848年,《共产党宣言》发表。1849年,法国的斐索用转动齿轮法测光速。1849年,英国的开尔文提出热力学第一和第二定律。1850年,英国的赫姆霍芝提出了能量守恒定律。1850年,中国太平军起义。1851年,法国的富科证明地球自转。1852年,英国的焦耳和汤姆生发现气体膨胀致冷效应。1858年,德国的普吕克尔在放电管中发现阴极射线。1859年,德国的基尔霍夫开创光谱分析法。1859年,英国的达尔文发表《物种起源》开创了生物进化论。1861年,美国南北战争。1869年,俄国的门捷列耶夫发表元素周期表。1875年,英国的克尔发现电光效应。1875年,巴黎会议签订米制公约。1876年,美国的贝尔发明电话。1879年,英国的麦克斯韦出版《电磁通论》,集电磁理论之大成。1879年,美国的霍尔发现电流通过金属,在磁场作用下产生横向电动势。1879年,美国的爱迪生发明电灯。1880年,法国的居里兄弟发现晶体的压电效应。1881年,美国的迈克尔逊发明灵敏度极高的干涉仪。1883年,奥地利的马赫的《力学科学》出版,批判了牛顿力学中的绝对时空的概念以及力和质量的概念。1885年,德国的本茨发明了汽油内燃汽车。1887年,德国的赫兹发现电磁波,发现光电效应。1887年,美国的迈克尔逊和莫雷试图由地球在“以太”中运动而引起的光的干涉效应,证实“以太漂移”的存在,但得到否定结果。1889年,法国的拉瓦锡发表《化学纲要》,开创了化学新纪元。1889年,英国的菲茨杰拉德提出了收缩假说,以解释迈克尔逊-莫雷实验的“零结果”。由于发表其论文的英国《科学》杂志不久停刊,所以直到1892年荷兰的洛伦兹独立提出收缩假说才为世人所知。1890年,匈牙利的厄缶作实验证明惯性质量和引力质量相等。1892年,荷兰的洛伦兹独立提出收缩假说。1894年,中日甲午战争。1895年,德国的伦琴发现x射线。1896年,法国的贝克勒尔发现放射性。1896年,荷兰的塞曼发现磁场使光谱线分裂。1897年,英国的汤姆生从阴极射线证实电子的存在。1899年,俄国的列别捷夫用实验证实光压的存在。1899年,德国的卢梅尔和鲁本斯做空腔辐射实验,精确测得辐射能量分布曲线,为普朗克1900年的量子假说提供了重要实验依据。1900年,八国联军侵华。1901年,德国的考夫曼从镭辐射测β射线在电场和磁场中的偏转,从而发现电子质量随速度变化。1903年,美国的莱特兄弟发明飞机。1903年,俄国的齐奥尔科夫斯基提出采用多级火箭实现航天飞行的理论。1904年,日俄战争爆发。1904年,荷兰的洛伦兹提出时空坐标变换方程组。法国的彭加勒提出电动力学相对性原理,并认为光是一切物体运动的极限速度。1905年,瑞士的爱因斯坦创立狭义相对论。1905年,俄国“波将金”号战舰起义。1905至1906年,法国的彭加勒阐明了电磁场方程对洛伦兹变换的不变性,并提出了四维时空理论。1907年,德国的明可夫斯基提出狭义相对论的空间-时间四维表示形式。1908年,德国的普朗克提出动量统一定义,肯定了质能关系的普遍成立。1908年,法国的佩兰(J.B.Perrin)用实验证实布朗运动方程,求得阿佛加德罗常数。1911年,辛亥革命。1911年,荷兰的翁纳斯发现低温下金属的超导现象。首次将氦液化。1911年,英国的威尔逊发明云室。1911年,奥地利的海斯发现宇宙射线。1913年,丹麦的玻尔提出定态跃迁原子模型。1913年,德国的斯塔克发现原子光谱在电场作用下的分裂。1913年,英国的布拉格父子用晶体的x光衍射测定晶格常数d。1914年,第一次世界大战爆发。1915年,爱因斯坦完成广义相对论。1917年,爱因斯坦提出有限无界的宇宙模型。1917年,俄国十月革命。1919年,英国的爱丁顿等人在巴西和几内亚湾观测日全食,证实引力使光线弯曲的预言。1919年,中国五四运动。1921年,中国共产党成立。1922年,苏联的弗里德曼得到引力场方程的非定态解,据此提出宇宙膨胀假说。1925年,美国的亚当斯发现天狼星光谱线的引力红移,再次验证了广义相对论。1929年,美国的哈勃(E. Hubble, 1889-1953)发现星系的红移与离地球的距离成正比—宇宙膨胀。1931年,美国的劳伦斯建成第一台回旋加速器。1932年,英国的考克拉夫特和爱尔兰瓦尔顿发明高电压倍增器,用以加速质子。1932年,美国的安德森在宇宙射线中发现正电子。1932年,英国的查德威克发现中子。1933年,德国希特勒上台。1934年,俄国的契仑柯夫发现液体在β射线照射下发光。1937年,中国抗日战争爆发。1938年,德国的哈恩、施特拉斯曼用中子轰击铀而发现了铀的裂变。1939年,奥地利的迈特纳、弗立施提出铀裂变的解释,并预言每次核裂变会释放大量的能量。1939年,美国的奥本海默和斯奈德预言黑洞。1939年,第二次世界大战爆发。1939年,第一次实现电视直播。1940年,敦刻尔刻大撤退。1941年,美籍意大利人罗西和美国的霍耳由介子蜕变实验证实时间的相对论效应。1941年,德国进攻苏联。1942年,美国的阿伦间接证明中微子的存在。1942年,美国在费米等人领导下,根据铀核裂变释放中子及能量的性质,在芝加哥大学建成了第一个热中子链式反应堆。1942年,美日中途岛海战。1945年,美国在奥本海默领导下制成原子弹。1945年,美国向日本广岛、长崎投掷原子弹。1945年,抗日战争胜利。1946年,第一台计算机ENIAC在美问世。1946年,美国的伽莫夫(G.Gamow)提出大爆炸宇宙模型。1948年,美国的肖克利、巴丁与布拉顿发明晶体三极管。1949年,中华人民共和国成立。1952年,美国的格拉塞发明气泡室。1957年,苏联发射第一颗人造地球卫星。1958年,德国的穆斯堡尔实现了γ射线的无反冲共振吸收。1960年,美国的梅曼制成红宝石激光器。1961年,美国的格拉肖、温伯格和巴基斯坦的萨拉姆提出电弱统一理论。1963年,发现类星体(Quasar),体积不大,能量极大,亮度剧变。宇宙中大约有106个。1964年,美国的彭齐亚斯和威尔逊在检测接收卫星信号的天线时,发现在波长7.35cm处有3.5K的宇宙微波背景辐射。1964年,中国制造出第一颗原子弹。1967年,中国爆炸了第一颗氢弹。1968年,英国的休伊什发现脉冲星。1969年,美国阿波罗11号宇宙飞船成功登月。1970年,中国发射“东方红1号”人造地球卫星。1971年,美国Intel公司制成微处理器,开始计算机第二次革命。1971年,美国的凯汀和海弗尔携带原子钟环绕地球飞行80小时,证明了时间的相对性。1973年,英国的霍金发现量子效应会使黑洞辐射粒子,并使黑洞蒸发。1978年,全国科学大会。1978年,美国的泰勒观测短周期双星证实引力波,这是广义相对论的一个验证。1981年,美国的航天飞机第一次升空。1982年,中国潜艇水下发射火箭成功。1990年,美国的哈勃望远镜(口径2.4m,重12.5吨)被送上太空。1990年,中国北京大型正负电子对撞机建成。1991年苏联解体1992年北美自由贸易区形成1993年欧洲联盟建立大事年表,希望有所帮助!2023-08-04 17:26:322
α粒子的径迹长短
解析: α粒子的质量比较大,在气体中飞行不易改变方向,并且电离本领大,沿途产生的离子多,过饱和酒精蒸气凝结在这些离子上,形成很粗的径迹,所以它在云室中的径迹直而短粗;β粒子的质量小 跟气体碰撞时容易改变方向,并且电离本领小 沿途产生的离子少,所以它在云室中的径迹比较细,且常常发生弯曲;γ粒子的电离本领更小,一般看不见它的径迹.因此,我们根据径迹的长短和粗细,可以知道粒子的性质.故选项A、C、D正确.答案:ACD2023-08-04 17:26:551
回旋加速器是如何发明的?
粒子物理学的诞生揭开了物理学发展史中崭新的一页,它不但标志了人类对物质结构的认识进入了更深的一个层次,而且还意味着人类开始以更积极的方式变革自然、探索自然、开发自然和更充分地利用大自然的潜力。各种加速器的发明对粒子物理学的发展起了很大的促进作用,美国物理学家劳伦斯(E.Lawrence)顺应这一形势,走在时代的前列。他以天才的设计思想、惊人的毅力和高超的组织才能,为加速器的发展作出了重大贡献。劳伦斯1901年出生于美国南达科他州南部的坎顿,父母都是教师,早年就对科学有浓厚兴趣,喜欢做无线电通讯实验,在活动中表现出非凡的才能。他聪慧博学,善于思考,原想学医,却于1922年以化学学士学位毕业于南达科他大学,后转明尼苏达大学当研究生。导师斯旺对劳伦斯有很深影响,使他对电磁场理论进行了深入的学习。劳伦斯在耶鲁大学继续研究两年之后,于1927年当了助理教授。1928年转到伯克利加州大学任副教授。两年后晋升,是最年轻的教授。在这里他一直工作到晚年,使伯克利加州大学由一所新学校成为粒子物理的研究基地。1928年前后,人们纷纷在寻找加速粒子的方法。当时实验室中用于加速粒子的主要设备是变压器、整流器、冲击发生器、静电发生器和特斯拉线圈,等等。这些方法全都要靠高电压。可是电压越高,对绝缘的要求也越高,否则仪器就会被击穿。正当劳伦斯苦思解决方案之际,一篇文献引起了他的注意,使他领悟到用一种巧妙的方法来解决这个矛盾。他后来在诺贝尔物理学奖的领奖演说中讲到:“1929年初的一个晚上,当我正在大学图书馆浏览期刊时,我无意中发现在一本德文电气工程杂志上有一篇维德罗的论文,讨论正离子的多级加速问题。我读德文不太容易,只是看看插图和仪器照片。从文章中列出的各项数据,我就明确了他处理这个问题的一般方法……在连成一条线的圆柱形电极上加一适当的无线电频率振荡电压,以使正离子得到多次加速。这一新思想立即使我感到找着了真正的答案,解答了我一直在寻找的加速正离子的技术问题。我没有更进一步地阅读这篇文章,就停下来估算把质子加速到一百万电子伏的直线加速器一般特性该是怎样的。简单的计算表明,加速器的管道要好几米长,这样的长度在当时作为实验室之用已是过于庞大了。于是我就问自己这样的问题:不用直线上那许多圆柱形电极,可不可以靠适当的磁场装置,只用两个电极,让正离子一次一次地来往于两电极之间?再稍加分析,证明均匀磁场恰好有合适的特性,在磁场中转圈的离子,其角速度与能量无关。这样它们就可以以某一频率与一振荡电场谐振,在适当的空心电极之间来回转圈。这个频率后来叫做‘回旋频率"。”劳伦斯不仅提出了切实可行的方案,更重要的是以不懈的努力实现了自己的方案。1930年春,劳伦斯让他的一名研究生爱德勒夫森(N.Edleson)做了两个结构简陋的回旋加速器模型。真空室的直径大约只有10厘米。其中的一个还真的显示了能工作的迹象。随后,劳伦斯又让另一名研究生利文斯顿(M.S.Livingston)用黄铜和封蜡作真空室,直径也只有11.43厘米,但这个“小玩意”已具有正式回旋加速器的一切主要特征。1931年1月2日,在这微型回旋加速器上加不到1 000伏的电压,可使质子加速到80 000电子伏,也就是说,不到1 000伏的电压达到了8万伏的加速效果。1932年,劳伦斯又做了22.86厘米和27.94厘米的同类仪器,可把质子加速到1.25兆电子伏(MeV)。正好这时,英国卡文迪什实验室的科克饶夫(J.D.Cockcroft)和瓦尔顿(E.T.S.Walton)用高压倍加器做出了锂(Li)蜕变实验。消息传来,人心振奋,劳伦斯看到了加速器的光明前景,更加紧工作。不久他就用27.94厘米回旋加速器轻而易举地实现了锂蜕变实验,验证了科克饶夫和瓦尔顿的结果。这次实验的成功,显示了回旋加速器的优越性,使科学界认识到它的意义,同时也大大增强了劳伦斯等人对工作的信心。于是他和利文斯顿以更大的规模设计了一台D形电极、直径为68.58厘米的机器,准备把质子加速到5MeV能量。这时氘已经被尤里(Urey)发现了,劳伦斯可以用氘核作为轰击粒子,以获得更佳效果。因为氘核是由一个质子和一个中子组成的复合核,氘核在静电场作用下有可能解体,变成质子和中子。而中子的穿透能力特别强,这样就可以利用回旋加速器产生许多重要的人工核反应。68.58厘米回旋加速器的运行带来了丰硕成果。许多放射性同位素陆续在伯克利发现。伯克利加州大学成了核物理的研究中心,他们把生产出来的放射性同位素提供给医生、生物化学家、农业和工程科学家,广泛应用在医疗、生物、农业等领域。1936年,在劳伦斯主持下,他们将68.58厘米回旋加速器改装成93.98厘米的,使粒子能量达到6MeV。用它测量了中子的磁矩,并且产生出了第一个人造元素——锝(Tc)。为了表彰劳伦斯发明的回旋加速器的功绩,1939年诺贝尔物理学奖授给了劳伦斯。然而,劳伦斯仍不愿加速器停留在这个水平。他认为,在这个水平上工作,还远不足以发现微观世界的奥秘。所以新的一代回旋加速器又在设计之中。一台大型的回旋加速器,从设计、制作、安装、调试直到进行各项实验活动,都需要各种人才的分工协作、互相配合。劳伦斯在诺贝尔奖颁奖会上的演说词中讲到:“从工作一开始就要靠许多实验室的众多能干而积极的合作者的集体努力”,“各方面的人才都参加到这项工作中来,不论从哪个方面来衡量,取得的成功都依赖于密切和有效的合作。”1958年劳伦斯因病去世,终年57岁。为了纪念他,伯克利加州大学辐射实验室改名为劳伦斯辐射实验室。他的一生为回旋加速器奋斗不息,虽然他自己没有直接做出科学发现或者创立科学理论,但是在他的领导和培养下或者在跟他协作的过程中,许多人做出了重大贡献。在他的实验室里,先后有8人获得诺贝尔奖。由于加速器的应用,物理学进入了一个新阶段,“大科学”从此开始了。核乳胶的发1950年诺贝尔物理学奖授予英国布里斯托尔大学的鲍威尔(C.F.Powell),表彰他发展了研究核过程的光学方法,和他用这一方法做出的有关介子的发现。所谓研究核过程的光学方法,指的是运用特制的照相乳胶记录核反应和粒子径迹的方法,这种特制的乳胶就叫做核乳胶。鲍威尔1903年12月5日生于英格兰肯特(Kent)的汤布里奇(Tonbridge)。他父亲是一位枪炮制造商,长期从事这方面的贸易。他的祖父曾创建一所私立学校。家庭的影响使他从小就有崇尚实践和重视学术的素养。他11岁时就在当地的学校取得了奖学金,后来又在社会上赢得了公开奖学金到剑桥大学的西尼·塞索克斯(Sidney Sussex)学院学习。1924~1925年以头等成绩通过了自然科学学位考试,1925年毕业。1925~1927年鲍威尔作为卢瑟福和C.T.R.威尔逊的研究生在卡文迪什实验室做研究工作,1927年获博士学位。他的第一项研究是与云室有关的凝聚现象,其结果间接地解释了经喷嘴的蒸汽会产生高度电离这一反常现象。他证明了这是由于在快速膨胀的蒸汽中存在过饱和现象。他的结论关系到蒸汽涡轮机的设计和运转。1928年鲍威尔去布里斯托尔大学威尔斯物理实验室工作,当丁铎尔(A.M.Tyndall)的助手,后来晋升为讲师。1936年他参加地震考察队访问西印度群岛,研究火山活动。第二年回以布里斯托尔,1948年升任教授。他在这里长年耐心地工作于发展一种测量正离子迁移率的精确技术,从而掌握了大多数普通气体中的离子特性。在旅居加勒比海之后,他又回过来从事建造一台用于加速质子和氘核的科克饶夫高压加速器,把加速器与威尔逊云室结合起来,可以研究中子-质子散射。1938年他在从事宇宙射线实验中采用各种照相乳胶直接记录粒子的径迹。当科克饶夫高压加速器开始运转时,鲍威尔用同样的方法观测反冲质子的径迹,测量中子的能量,他和合作者发现乳胶中带电粒子的径迹长度可以对带电粒子的射程给出精确的计量,不久就明确这一方法在核物理实验中有非常大的好处。这一发现把他引向研究高能氘核束所产生的散射和蜕变过程。后来鲍威尔又回过来从事宇宙射线的研究并研制出了灵敏度更高的照相乳胶。1947年他和奥恰利尼在海拔3 000米的山顶上,用这种新乳胶直接记录宇宙射线的辐射,并通过分析乳胶中射线的径迹,证实了π±介子的存在,并且观测到了π介子衰变成μ介子和中微子的过程。1949年鲍威尔又用这种方法发现了K介子的衰变方式。鲍威尔所用的照相法是基于这样的原理:带电粒子穿过照相乳胶时,所经之处溴化银颗粒会被带电粒子电离,因而留下轨迹;一系列变黑的颗粒以一定间隔分布,其距离视粒子速率而定;粒子速率越大,则间距也越大。这是因为快速粒子比慢速粒子具有更小的电离能力。这一方法其实并不新颖,早在20世纪初期就已用做显示放射性辐射的手段。因为要在核过程的研究中运用这一方法,首先需要有一种对各种带电粒子特别是快速粒子都很灵敏的乳胶。在30年代初期,这个问题似乎已经接近于解决,因为有人发现,可以用敏化乳胶片的办法使之能对快速质子发生作用。不过这一方法用起来很困难,所以未能广泛使用。不需要事先敏化的乳胶在1935年就由列宁格勒的兹达诺夫和依尔福德(ILFORD)实验室各自独立地生产出来了。但是在核物理研究中,即使到了30年代照相法仍未得到普遍采用,只有在宇宙射线的研究上还有一些人用到这种方法。许多核物理学家对这种方法还持怀疑态度,因为从测量到的径迹长度计算粒子能量往往会得到很分散的结果。大家那个时候更相信的是威尔逊云室。鲍威尔的功绩就在于驱散了对照相法的怀疑,他使照相法不仅对宇宙射线和结合核现象,而且在研究某些核过程中也能成为非常有效的手段。鲍威尔用新的依尔福德中间色调底片,研究了在核过程研究中照相法的用途和可靠性。从1939年至1945年他和他的合作者一方面做了各种试验,另一方面不断地改进材料的处理方法,研究有关技术,创制分析粒子径迹的光学设备。他们的工作令人信服地证明了:在核物理的研究中,照相法和云室及计数器是同样有效的,有时照相法比云室和计数器更为有效。照相法节省时间,节省材料。例如,用威尔逊云室在20 000张立体照片中可供测量的粒子径迹只有1 600条,而鲍威尔和他的合作者在3平方厘米的照相底片中就找到了3 000条可用的粒子径迹。1946年在他们为改进和发展照相法的努力中作出了重要的一步,这就是他们用到了一种新型的名叫“C2”的乳胶,其特性在各方面都超过了原来的乳胶。粒子的径迹更为清晰,看不到干扰本底,这就大大地提高测量的可靠性。后来还可以用照相法来发现罕见过程,可以在乳胶中掺某种原子以供特殊研究。改进的照相法对宇宙射线的研究就更为有效。乳胶可以连续记录,而威尔逊云室只能记录仪器操作的短暂时间间隙里所通过的粒子和所发生的过程,因而显得十分局限。可见,照相法在这些研究中大大优越于云室法。在法国南部有一个高于海平面2 800米的观测站用到了这种新型乳胶。后来又在高5 500米处进行测量,测量结果在乳胶中找到了大量的孤立粒子径迹,同时也有记录蜕变的分叉,这些分叉就像一颗一颗的星。在乳胶中可以找到分叉数各不相等的“星”,从这些星可以判定,有一些是小质量的粒子闯进了乳胶,打到乳胶中的某些原子核上,引起这些原子核发生蜕变。然而是宇宙射线的什么成分引起了原子核的蜕变?经过深入的研究,他们证明,这一活跃的粒子是介子,其质量比电子大几百倍,带的是负电。有些蜕变还可以观察到慢速介子从原子核里抛出来。1947年鲍威尔和他的合作者报告说,发现了一种介子,在其运动过程中又产生了另一介子。分析初始介子和二次介子的径迹表明有可能存在两类具有不同质量的介子。后来的实验证实了这一理论。初始介子叫做π介子,二次介子叫做μ介子。初步测量表明π介子的质量大于μ介子的质量,而它们的电荷都等于基本电荷。鲍威尔在进一步的实验中确定π介子的质量是μ介子的1.35倍。这个关系与美国伯克利辐射实验室的研究者们用467.36厘米的回旋加速器所测定的结果——1.33倍符合甚好。他们还确定,π介子的质量比电子大285倍,而μ介子的质量比电子大216倍。两种介子都可带正电,也可带负电。μ介子的寿命约为百万分之一秒,而π介子还要短百倍。π介子是不稳定的,会自发地蜕变为μ介子。负π介子易于和原子核相互作用,所以在乳胶中它们在径迹末端被原子俘获,既可引起轻原子核的蜕变,也可引起重原子核的蜕变。由于鲍威尔用上一种对电子敏感的乳胶,他在1949年证明了μ介子会在其路程的末端蜕变为一个带电的轻粒子和两个以上的中性粒子。接着,鲍威尔又研究了π介子(现在叫做π子),其质量为电子的1 000倍。这一介子是别人发现的,但鲍威尔对之做了更加详尽的探讨。鲍威尔研究核乳胶的成功使布里斯托尔大学成了核物理研究的重要基地。他在1949年当选为英国皇家学会会员,1950年,也即核乳胶诞生的几年之后就获得了诺贝尔物理学奖。2023-08-04 17:27:131
大胆假设:人类怎样都会灭亡吧?不论将来的科技怎样…
[编辑本段]【形成】 宇宙射线(cosmic ray)一般指约在46亿年前刚从太阳星云形成的地球。初生的地球,固体物质聚集成内核,外周则是大量的氢、氦等气体,称为第一代大气[1]。 那时,由于地球质量还不够大,还缺乏足够的引力将大气吸住,又有强烈的太阳风(是太阳因高温膨胀而不断向外抛出的粒子流,在太阳附近的速度约为每秒350~450公里),所以以氢、氦为主的第一代大气很快就被吹到宇宙空间。地球在继续旋转和聚集的过程中,由于本身的凝聚收缩和内部放射性物质(如铀、钍等)的蜕变生热,原始地球不断增温,其内部甚至达到炽热的程度。于是重物质就沉向内部,形成地核和地幔,较轻的物质则分布在表面,形成地壳。 初形成的地壳比较薄弱,而地球内部温度又很高,因此火山活动频繁,从火山喷出的许多气体,构成了第二代大气即原始大气。 原始大气是无游离氧的还原性大气,大多以化合物的形式存在,分子量大一些,运动也慢一些,而此时地球的质量和引力已足以吸住大气,所以原始大气的各种成分不易逃逸。以后,地球外表温度逐渐降低,水蒸汽凝结成雨,降落到地球表面低凹的地方,便成了河、湖和原始海洋。当时由于大气中无游离氧(O2),因而高空中也没有臭氧(O3)层来阻挡和吸收太阳辐射的紫外线,所以紫外线能直射到地球表面,成为合成有机物的能源。此外,天空放电、火山爆发所放出的热量,宇宙间的宇宙射线(来自宇宙空间的高能粒子流,其来源目前还不了解)以及陨星穿过大气层时所引起的冲击波(会产生摄氏几千度到几万度的高温)等,也都有助于有机物的合成。但其中天空放电可能是最重要的,因为这种能源所提供的能量较多,又在靠近海洋表面的地方释放,在那里作用于还原性大气所合成的有机物,很容易被冲淋到原始海洋之中。 宇宙射线产生 太阳系是在圆盘状的银河系中运行的,运行过程中会发生相对于银河系中心位置的位移,每隔6200万年就会到达距离银河系中心的最远点。而整个“银河盘”又是在包裹着它的热气体中以每秒200公里的速度运行。“银河盘并不像飞盘那样圆滑,”科学家称,“它是扁平的。”当银河系的“北面”或前面与周围的热气摩擦时就会产生宇宙射线。[编辑本段]【研究】 出于对宇宙射线研究的重视,世界各国纷纷投入资金与设备对其展开研究。前苏联、日本、中国、美国、法国等国家相继建立了宇宙射线观测站。虽然宇宙射线的起源尚无定论,但科学家们仍然逐步了解了宇宙射线的种种特性,以及对地球和人类环境的影响。 我们知道,宇宙线主要是由质子、氦核、铁核等裸原子核组成的高能粒子流;也含有中性的珈玛射线和能穿过地球的中微子流。它们在星系际银河和太阳磁场中得到加速和调制,其中一些最终穿过大气层到达地球。人类对宇宙射线作微观世界的研究过程中采用的观测方式主要有三种,即:空间观测、地面观测、地下(或水下)观测。 为了有效和长期对宇宙射线进行观测,各国都相继建立了观测站。1943年,前苏联在亚美尼亚建立了海拔3200米的阿拉嘎兹高山站;日本在战后建立了海拔2770米的乘鞍山观测所;1954年我国建立了海拔3200米的云南东川站。1990年,中日双方共同合作建立了西藏羊八井宇宙射线观测站。几乎所有外来的高能宇宙线,除中微子外在穿过大气层时都要与大气中的氧、氮等原子核发生碰撞,并转化出次级宇宙线粒子,而超高能宇宙线的次级粒子又将有足够能量产生下一代粒子,如此下去,将会产生一个庞大的粒子群;这一现象是1938年由法国人奥吉尔在阿尔卑斯山观测发现的,并取名为“广延大气簇射”。 在广延大气簇射过程中,能量低于10的14次方电子伏特的粒子很难到达3000米以下的低空,而是在4000米处超高能粒子群发展到极大。由于西藏羊八井地处海拔4300米,终年无积雪,地势平坦开阔,在能源、交通及生活上都具有便利条件,科研人员可在此进行长年不间断观测。 以羊八井的闪烁体探测器为例,当粒子穿过闪烁体时在其中损失能量使闪烁体发生荧光,这一束闪光经过光阴极转换和光电倍增管放大后变为一个电脉冲信号。这个信号经过电缆被送到电子学记录系统,由磁带进行全年不间断记录。同时我们可以想到,如果我们在单位面积上安装的闪烁体越多、密度越大;所接收的射线粒子也越多,记录就更精密。除闪烁体探测器以外,羊八井站建成的宇宙射线采集方式还有:80平米乳胶室和地方性簇射探测器;中子堆中中子望远镜;试验型50平米RPC地毯式探测器。 宇宙射线还存在着转化、簇射的过程。除中微子外,几乎所有的高能宇宙射线,在穿过大气层时都要与大气中的氧、氮等原子核发生碰撞,并转化出次级宇宙线粒子,而超高能宇宙线的次级粒子又将有足够能量产生下一代粒子,如此下去,一级一级的转化,将会产生一个庞大的粒子群。1938年,法国人奥吉尔在阿尔卑斯山观测发现了这一现象,并将其命名为“广延大气簇射”。[编辑本段]【影响】 虽然当宇宙射线到达地球的时候,会有大气层来阻挡住部分的辐射,但射线流的强度依然很大,很可能对空中交通产生一定程度的影响。比方说,现代飞机上所使用的控制系统和导航系统均有相当敏感的微电路组成。一旦在高空遭到带电粒子的攻击,就有可能失效,给飞机的飞行带来相当大的麻烦和威胁。 还有科学家认为,长期以来普遍受到国际社会关注的全球变暖问题很有可能也与宇宙射线有直接关系。这种观点认为,温室效应可能并非全球变暖的惟一罪魁祸首,宇宙射线有可能通过改变低层大气中形成云层的方式来促使地球变暖。这些科学家的研究认为,宇宙射线水平的变化可能是解释这一疑难问题的关键所在。他们指出,由于来自外层空间的高能粒子将原子中的电子轰击出来,形成的带电离子可以引起水滴的凝结,从而可增加云层的生长。也就是说,当宇宙射线较少时,意味着产生的云层就少,这样,太阳就可以直接加热地球表面。对过去20年太阳活动和它的放射性强度的观测数据支持这种新的观点,即太阳活动变得更剧烈时,低空云层的覆盖面就减少。这是因为从太阳射出的低能量带电粒子(即太阳风)可使宇宙射线偏转,随着太阳活动加剧,太阳风也增强,从而使到达地球的宇宙射线较少,因此形成的云层就少。此外,在高层空间,如果宇宙射线产生的带电粒子浓度很高,这些带电离子就有可能相互碰撞,从而重新结合成中性粒子。但在低空的带电离子,保持的时间相对较长,因此足以引起新的云层形成。 此外,几位美国科学家还认为,宇宙射线很有可能与生物物种的灭绝与出现有关。他们认为,某一阶段突然增强的宇宙射线很有可能破坏地球的臭氧层,并且增加地球环境的放射性,导致物种的变异乃至于灭绝。另一方面,这些射线又有可能促使新的物种产生突变,从而产生出全新的一代。这种理论同时指出,某些生活在岩洞、海底或者地表以下的生物正是由于可以逃过大部分的辐射才因此没有灭绝。从这种观点来看,宇宙射线倒还真是名副其实的“宇宙飞弹”。[编辑本段]【意义】 今天,人类仍然不能准确说出宇宙射线是由什么地方产生的,但普遍认为它们可能来自超新星爆发、来自遥远的活动星系;它们无偿地为地球带来了日地空间环境的宝贵信息。科学家希望接收这些射线来观测和研究它们的起源和宇观环境中的微观变幻。 宇宙射线的研究已逐渐成为了天体物理学研究的一个重要领域,许多科学家都试图解开宇宙射线之谜。可是一直到现在,人们都并没有完全了解宇宙射线的起源。一般的认为,宇宙射线的产生可能与超新星爆发有关。对此,一部分科学家认为,宇宙射线产生于超新星大爆发的时刻,“死亡”的恒星在爆发之时放射出大能量的带电粒子流,射向宇宙空间;另一种说法则认为宇宙射线来自于爆发之后超新星的残骸。 不管最终的定论将会如何,科学家们总是把极大的热情投入到宇宙射线的研究中去。关于为什么要研究宇宙射线,罗杰·柯莱在其著作《宇宙飞弹》作出了精辟的阐释: “宇宙射线的研究已变成天体物理学的重要领域。尽管宇宙射线的起源至今未能确定, 人们 已普遍认为对宇宙射线的研究能获得宇宙绝大部分奇特环境中有关过程的大量信息:射电星系、类星体以及围绕中子星和黑洞由流入物质形成的沸腾转动的吸积盘的知识。我们对这些天体物理学客体的理解还很粗浅,当今宇宙射线研究的主要推动力是渴望了解大自然为什么在这些 天体上能产生如此超常能量的粒子。”[编辑本段]【研究历史】 1903年,卢瑟福(Ernest Rutherford,1871-1937)(左图)和库克(H.L.Cooke)研究过这个问题。他们发现,如果小心地把所有放射源移走,在验电器中每立方厘米内,每秒钟还会有大约十对离子不断产生。他们用铁和铅把验电器完全屏蔽起来,离子的产生几乎可减少十分之三。他们在论文中提出设想,也许有某种贯穿力极强,类似于γ射线的辐射从外面射进验电器,从而激发出二次放射性。 1909年,莱特(Wright)为了搞清这个现象的缘由,在加拿大安大略(Ontario)湖的冰面上重复上述实验,发现游离数略有减小。 1910年,法国的沃尔夫(Father Theodor Wulf)在巴黎300米高的埃菲尔塔顶上进行实验,比较塔顶和地面两种情况下残余电离的强度,得到的结果是塔顶约为地面的64%,比他预计的10%要高。他认为可能在大气上层有γ源,也可能是γ射线的吸收比预期的小。 1910-1911年,格克耳(Alfred Gockel)在瑞士的苏黎世让气球把电离室带到4500米高处,记录下几个不同高度的放电速率。他的结论是:“辐射随高度的增加而降低的现象……比以前观测到的还要显著。” 这种源的放射性与当时人们比较熟悉的放射性相比具有更大的穿透本领,因此人们提出这种放射性可能来自地球之外——这就是宇宙射线最初的迹象。 奥地利物理学家赫斯(Victor Franz Hess,1883-1964)是一位气球飞行的业余爱好者。他设计了一套装置,将密闭的电离室吊在气球下,电离室的壁厚足以抗一个大气压的压差。他乘坐气球,将高压电离室带到高空,静电计的指示经过温度补偿直接进行记录。他一共制作了十只侦察气球,每只都装载有2~3台能同时工作的电离室。 1911年,第一只气球升至1070米高,在那一高度以下,辐射与海平面差不多。翌年,他乘坐的气球升空达5350米。他发现离开地面700米时,电离度有些下降(地面放射性造成的背景减少所致),800米以上似乎略有增加,而后随着气球的上升,电离持续增加。在1400米~2500米之间显然超过海平面的值。在海拔5000米的高空,辐射强度竟为地面的9倍。由于白天和夜间测量结果相同,因此赫斯断定这种射线不是来源于太阳的照射,而是宇宙空间。 赫斯认为应该提出一种新的假说:“这种迄今为止尚不为人知的东西主要在高空发现……它可能是来自太空的穿透辐射。”1912年赫斯在《物理学杂志》发表题为“在7个自由气球飞行中的贯穿辐射”的论文。 赫斯的发现引起了人们的极大兴趣,从那时开始,科学界对宇宙射线的各种效应和起源问题进行了广泛的研究。最初,这种辐射被称为“赫斯辐射”,后来被正式命名为“宇宙射线”。当时,许多物理学家怀疑赫斯的测量,并认为这种大气电离作用不是来自太空,而是起因于地球物理现象,例如组成地壳的某种物质发出的放射性。现在认为,宇宙线是来自宇宙空间的高能粒子流的总称。 1914年,德国物理学家柯尔霍斯特(Werner Kolhorster,1887-1946)将气球升至9300米,游离电流竟比海平面大50倍,确证了赫斯的判断。 1922年,美国科学家密立根(Robert Andrews Millikan,1868-1953)(左图)和玻恩(I.S.Bowen)将这些实验拿到55000英尺的高空去做,为了解决这种辐射的来源,他们先是在高山顶上测量,后来又把装有验电器和电离器的不载人的气球升到高空来测量大气的电离作用。 1925年夏,密立根和助手们在加利福尼亚州群山中的Muir湖(缪尔湖)和Arrowhead湖(慈菇湖)的深处做实验,试图通过测量电离度与湖深的变化关系来确定宇宙射线的来源,之所以选择这两个湖,是因为它们都是由雪水作为水源,可以避免放射性污染;而且,这两个湖相距较远,高度相差6.675英尺,这样可以避免相互干扰和便于比较。 1925年11月9日,国家科学院在威斯康星州的Madison召开会议,密立根报告了测量的结果,他的结果表明,这些射线不是起源于地球或低层大气,而是从宇宙射来的,密立根同意当时大多数人的观点,认为宇宙射线是一种高频电磁辐射,其频率远高于X射线,是后者平均频率的1000倍。他认为,这种射线的穿透力既然比最硬的γ射线还强许多,当然不会由带电粒子组成。如果假定宇宙射线真是像阴极射线那样的带电粒子流,那它能穿透相当于6英尺厚度铅块的穿透力,将使这些粒子具有当时难以想像的高能量。如果假定宇宙射线由光子(即电磁辐射的量子)组成,那么宇宙射线辐射到地球时,其飞行路线将不受地磁的影响;相反,如果宇宙射线是由带电粒子组成,则它将肯定受到地磁场的影响,飞到高纬度地区的宇宙射线带电粒子将多于低纬度的地区,即有“纬度效应”(latitude effect),而密立根的测量结果表明,宇宙射线来自四面八方,不受太阳和银河系的影响,也不受大气层或地磁纬度的影响。 1927年,斯科别利兹(Dimitr Skobelzyn)利用云雾室摄得宇宙射线痕迹的照片,根据径迹在云雾室里的微小偏转,第一次确认了宇宙线粒子径迹。 1927-1929年,荷兰物理学家克莱(J.Clay,1882-1955)在从荷兰到印度尼西亚爪哇岛的旅行中,发现了纬度效应的踪迹——靠近赤道处宇宙射线强度比较低。 博思(Walther Bothe,1891-1957)提出的符合计数法是在盖革计数器的基础上发展起来的,他所做的革新是利用两个计数管,使得只有电离碰撞在两个计数管中同时发生时,这两个计数管才会计数。他利用符合法来判断能量和动量守恒定律对光子和电子的每一次碰撞是否都有效,或者说这些定律是否是作为一种统计平均才成立。为了利用计数器研究被散射的α粒子和反冲电子之间是否符合,他与盖革考察了单个的康普顿散射,得到的结论是:能量和动量守恒定律对光子和电子之间的每一次碰撞都是有效的。从此,符合法在宇宙线的研究中得到了广泛应用。1930年前后,宇宙线领域里的一些重要发现几乎都和符合法分不开。符合法的发明也为核物理、α射线和超声波等方面的研究提供了有效工具。博思与玻恩共同分享了1954年度诺贝尔物理学奖。 1931年秋季,在罗马召开的国际核物理会议上,物理学家们向密立根提出的宇宙射线的电磁本质假说发起了公开的挑战。意大利物理学家罗西(Bruno Benedetto Rossi,1905-1993)(右图)在分析大量实验数据的基础上提出:从海平面观察到的宇宙线,本质上是由能量非常高的带电粒子组成;从强磁场使其偏转显示的结果来看,它们的能量大约高于几十个亿电子伏,远大于密立根的估计值。这些带电粒子也许是在大气层中,由宇宙辐射源初始的高能γ辐射产生的,但这种γ辐射(即光子)的能量远远高于密立根所说的“原子构造”时释放的能量。还有第二种可能,即宇宙线中观察到的高能粒子就是最初的宇宙辐射,或者至少是它有意义的一部分。 密立根让研究生安德逊利用强磁场中的云室,直接测量宇宙射线的能量,但安德逊的工作却否定了密立根的假说,还导致了正电子的发现。 1932年,C.D.安德森(Carl David Anderson, 1905-1991)(左图)发现了正电子,这是宇宙射线研究的第一项引人注目的成果。 C.D.安德森是美国加州理工学院物理教授密立根(R.A.Millikan)的学生,从1930年开始跟密立根做宇宙射线的研究工作。从1930年起C.D.安德森负责用云室观测宇宙射线。安德森采用一个带有非常强磁铁的威尔逊云室来研究宇宙射线。他让宇宙射线中的粒子通过室内的强磁场,并快速拍下粒子径迹的照片,然后根据径迹长度、方向和曲率半径等数据来推断粒子的性质。 1932年8月2日,C.D.安德森在照片中发现一条奇特的径迹,这条径迹和负电子有同样的偏转度,却又具相反的方向(右图),显示这是某种带正电的粒子。从曲率判断,又不可能是质子。于是他果断地得出结论,这是带正电的电子。狄拉克预言的正电子就这样被安德森发现了。 当时C.D.安德森并不了解狄拉克的电子理论,更不知道他已经预言过正电子存在的可能性。狄拉克是在他的相对论电子理论中作出这一预言的。从他的方程式可以看出,电子不仅应具有正的能态,而且也应具有负能态。他认为这些负能态通常被占满,偶而有一个态空出来,形成“空穴”,他写道:“如果存在空穴,则将是一种新的,对实验物理学来说还是未知的粒子,其质量与电子相同,电荷也与电子相等,但符号不同。我们可以称之为反电子。”他还预言:“可以假定,质子也会有它自己的负态。……其中未占满的状态表现为一个反质子。”关于反质子的预言,到1945年才由西格雷(Emilio Segrè)证实。 英国物理学家布莱克特(Baron Patrick Maynard Stuart Blackett, 1897-1974)从1921年起进行改进威尔逊云室照相技术以研究原子核的人工转变。1924年,他用云室照片首次成功地验证了人工轻核转变,即氦-14核俘获α粒子变为氧-17。1925年,他创制了云室照相受自动计数器控制的装置。在C.D.安德森发现正电子后的短短几个月,布莱克特就用他拍摄的正负电子成对产生过程的宇宙线径迹照片有力地证实了正电子的存在。 由于宇宙射线和正电子的发现有密切联系,诺贝尔委员会将1936年诺贝尔物理学奖授予这两个相关项目的赫斯和安德森,而布莱克特因改进威尔逊云室以及由此在核物理领域和宇宙射线方面作出的一系列发现,获得了1948年度诺贝尔物理学奖。 美国物理学家康普顿(Arthur Holy Compton,1892~1962)(右图)因发现康普顿效应(也称“康普顿散射”)于1927年获诺贝尔物理学奖。他的主要兴趣是核物理研究,他预见核能会给人类带来巨大的利益,为了充分利用核能,康普顿决定先研究宇宙射线,计划在1932年对地磁纬度不同和高海拔的地方,进行宇宙射线强度等方面的测量,康普顿组织了6个远征队,到世界各地的高山、赤道附近低纬度区等进行了广泛测量,以便对初始的宇宙射线到底是光子还是带电粒子作出合理的判断,康普顿本人主持了美国中西部的落矶山脉以及欧洲南部的阿尔卑斯山脉、澳大利亚、新西兰、秘鲁和加拿大等地的两个远征队。 1932年3月18日,康普顿开始了行程5万余英里,遍历五大洲,跨越赤道5次的远征,远征开始时,康普顿倾向于接受密立根的(光子的)假说,在广泛测量之后,他的观点有了根本性的变化,他断定:海平面的宇宙射线强度可以相当满意地表示为只是地磁场倾角的函数;宇宙射线的强度随高度连续地增大,密立根所断言的在9000米处有最大值并不存在。9月份以后,康普顿陆续收到60多位科学家在分布范围极广的69个观测站测量到的数据,反映了纬度从北78°到南46°、经度从东175°到西173°这个地理经纬度的范围内,宇宙射线强度的分布情形,康普顿宣布宇宙线存在纬度效应,并认为宇宙射线是带电的高能粒子。 密立根在1932年也进行了范围较广泛的观测。加利福尼亚理工学院一位年青物理学家内赫(H.V.Neher)发明了一种高灵敏度的自动记录验电器。空军的负责人同意密立根使用轰炸机,可将测量仪器带到8000多米高空。9月底,密立根在气象署的帮助下利用气球到平流层作了测量。如果宇宙射线真是带电粒子流,密立根应当有条件得到康普顿相同的结论的,但他们由观测所得到的结论却完全不同(左图为密立根发表的文章)。 1932年12月底,美国物理学会在新泽西州大西洋城(Atlantic City)召开会议,密立根和康普顿这两位诺贝尔物理奖获得者就宇宙射线的本质进行了激烈的争论。康普顿在会议上报告:不同纬度处宇宙射线强度有明显不同,说明初始宇宙射线有带电粒子的特征,并提出了支持这种观点的三种实验。密立根在大西洋会议上宣读了内赫跨越赤道航行的测量结果,没有发现纬度效应。由于双方都宣称自己有实验为证,无法统一思想,但大多数物理学家已经开始转向承认康普顿的观点。 1935年11月11日,由两名勇敢的驾驶员(Albert W. Stevens和Orvil A. Anderson)驾驶探测者2号氦气球(体积为113000立方英尺)上升到官方记录的22066米的高空,收集了大气、宇宙线和其他数据。 美国加利福尼亚理工学院的内德梅耶(Seth Neddermeyer,1907-1988)(右图)和安德森(Carl D. Anderson)1934年提出假设:具有高度贯穿力的踪迹是质量在电子与质子之间的粒子的踪迹。(左图为安德森与内德梅耶) 1936年,他们在宇宙射线中发现了一种带单位正电荷或负电荷的粒子,质量为电子的206.77倍,人们以为它就是汤川秀树1930年预言的介子,称它为μ介子,后来发现这种粒子其实并不参与强相互作用,是一种轻子,所以改名为μ子。 1938年,奥格尔(Pierre Auger,1899-1993)(右图)发现了广延空气簇射。簇射是由原始高能粒子撞击产生的次级亚原子粒子。他发现簇射的能量高达 1015 电子伏特,即当时已知的一千万倍。 1940年3月9日,一架比奇AD-17双翼飞机在海拔21050英尺高空飞越南极,为美国探险队测量宇宙线。 1946年,物理学家罗西(Bruno Rossi)与查才品(Georgi Zatsepin)领导的小组进行了首次空气簇射结构的实验(右图)。研究小组创建了首个探测空气簇射的相关探测器阵列。 1946年,两位英国科学家罗彻斯特(George D.Rochester)和巴特勒(Clifford C.Butler,1922-1999)拍了许多云雾室事件的照片,在其中一张照片中,发现了些形状象字母V的径迹。只有承认质量近似为494MeV/c2 的粒子在飞行中衰变成二个π介子时生成这些径迹,才能对此作出解释。人们确信存在一种新的粒子,根据其径迹形状,就叫它V粒子(左图)。这种V粒子现在叫作K0粒子,这就是后来被称为奇异粒子的一系列新粒子发现的开始。 1947年8月16日,物理学家波默兰茨(Martin Pomerantz)宣布放飞了4个携带宇宙线探测仪的气球(左图),在至少127000英尺的高度越过了南极地区。 1947年,英国的鲍威尔(Cecil Frank Powell,1903-1969)等人创造了将核乳胶用气球送到高层空间去记录宇宙线的方法,在玻利维亚安第斯山地区从宇宙射线中发现了汤川秀树1930年所预言的π介子,质量约为电子质量273倍,它与原子核之间有很强的相互作用,称为带电π介子。π介子存在的时间仅有两亿分之二点五秒,之后便分裂为μ介子,μ介子存在时间相对较长,为百万分之一秒,并以每秒钟上万公里的速度飞行。 汤川秀树与鲍威尔分别于1949年和1950年获得诺贝尔物理学奖。 1948 年,剑桥大学的天文学教授霍伊尔(Fred Hoyle,1915-2001)(左图)与邦迪(Hermann Bondi )、戈尔德(Thomas Gold )一起提出了“稳恒态宇宙理论”,该理论认为宇宙在大尺度上,包括任何时候和任何地方,都是一样的。在这个“稳恒态”宇宙中没有开始,没有结束。星系在各个方向上简单地飞离,就像烤蛋糕时蛋糕上的葡萄干随着蛋糕膨胀而远离。为了填补星系退行后留下的虚空并保持宇宙总的外观,他们假定物质在星系际空间无中生有地创生,物质的创生率(每立方公里每年产生一个粒子)恰好用来形成新的星系。 1948年,伽莫夫(George Gamow,1904-1968)和阿尔法(Ralph Asher Alpher,1921-)也提出了宇宙是从一个原始高密状态演化而来的理论,并请著名核物理学家贝蒂(Hans Bethe)一起署名,这一理论被称作αβγ( Alpher, Bethe,& Gamow )理论,霍伊尔在1952 年把它称为“大爆炸理论”(the Big Bang ),但他认为宇宙不会在一声爆炸中产生。 1949年,费米(Enrico Fermi,1901~1954)发表宇宙射线理论,尝试以超新星爆发的磁力冲击波来解释宇宙射线的粒子加速机制,但未足以解释最高能宇宙射线的存在。 1962年,美国麻省理工学院的林斯里(John Linsley)与同事,利用新墨西哥州火山农场10平方公里的空气簇射探测器组探测到一个能量估计为 1020 电子伏特的宇宙射线。 1965年,美国贝尔电话实验室的彭齐亚斯(Arno Penzias,1933-和威尔逊(R.W.Wilson)无意中发现了大爆炸理论预言的宇宙微波背景辐射。他们本想要使用一根大型通信天线进行射电天文学的实验研究,但因不断受到一个连续不断本底噪声的干扰,使得实验无法进行下去。那个噪声的波长为7.35厘米,相当于3.5k温度的黑体辐射,其各向同性的程度极高,而且与季节变化无关。几乎一年,他们想尽办法跟踪和除去这个噪声但丝毫不起作用,便打电话给普林斯顿大学的罗伯特·迪克(Robert Henry Dick, 1916~),向他描述遇到的问题,希望他能作出一种解释。迪克马上意识到两位年轻人想要除去的东西正是迪克研究组正在设法寻找的东西——宇宙大爆炸残留下来的某种宇宙背景辐射。彭齐亚斯和威尔逊获得了1978年诺贝尔物理学奖。 1966年,格雷森( Kenneth Greisen)、查才品(Georgi Zatsepin)和古兹文(Vadem Kuzmin)认为,高能宇宙线与微波背景辐射相互影响减小了能量,因此宇宙射线的能量应低于5 x 1019电子伏特。(右图为卫星记录的宇宙微波背景图)[2023-08-04 17:27:258
受自然的启示做出的重大科学发现都有哪些?
模拟云雾形成导致我们与云雾室的发明 。日本著名化学家福井良一说: 大自然是深不可测的。在对自然的科学理解中,对科学创新最有影响的是直接和真实地了解自然。没有这种认知方法,整天处理复杂和简单自然的科学工作者就无法创造理论和新的科学规律来推进科学的发展。在科学史上,一些科学家 直接而真实地认识自然,并在自然现象的启发下取得了重大的科学发现。云室是由英国物理学威尔逊发明的,1894,他在尼维斯峰天文台工作,这是苏格兰山脉的最高峰。当太阳照在云层上,雾层照在山上时,他被奇妙的光学现象迷住了。他说: 特别是太阳周围的彩色环和光轮在山顶周围,人们在云雾上的阴影使我非常感兴趣。我想在实验室里模拟这些现象。1895,威尔逊设计一套设备凝结水汽形成云。当时,许多人认为灰尘一定是将水蒸气凝结成雾珠的核心。威尔逊小心翼翼地将仪器上的灰尘除去,发现当水蒸气饱和度超过一定限度时,也可以形成云。他认为,除了灰尘,水蒸气还可能与大气中的电离子核心一起凝结成雾珠。威尔逊使用x射线只是发现伦琴照亮云室和云出现, 他也使用铀射线和紫外线照亮,云也出现。这证明了我自己的假设, 雾珠的冷凝可以以离子为核心形成。经过多年的研究,他得出结论,当无尘空气的体积膨胀率为 1.25 时,负离子开始成为冷凝芯, 当膨胀率为 1.28 时,负离子都变成冷凝核心。对于正离子,当膨胀率为 1.31 时,它开始成为凝聚核,当膨胀率为 1.35 时,它全部成为凝聚核。2023-08-04 17:28:016
产生云雾的条件有哪些?
1894年秋天,英国物理学家威尔逊在苏格兰一个山上度假。山顶上经常云雾缠绕、变幻万千,游客们都被这迷人的景色所陶醉,威尔逊却突发奇想,要在实验室里制造云雾。回到实验室,威尔逊研究归纳了产生云雾的条件:一个条件是空气中的水蒸气必须处于过饱和状态,否则水蒸气不会凝结成小水珠;另一个条件是空气中要有一些“凝结核心”,通常,空气中的尘埃起凝结核心的作用,这些微小颗粒上面经常聚集了一些电荷,这些电荷会将过饱和水蒸气凝结成小水珠,无数直径很小的小水珠悬浮在空气中,构成了云雾的雾滴。作为物理学家的威尔逊,除了弄清楚云雾的生成条件外,还在想能否利用这个发现来研究物理现象呢?19世纪末,人类正在进入原子时代,微观世界的新发现接二连三地问世。然而,像原子这样的微观粒子极其微小,人眼是看不见的。有什么办法能把微观粒子的运动显现出来?威尔逊想到了云雾,在一只干净的瓶子里(即里面没有任何凝结核心)形成过饱和蒸气,这时如果有一个带电的微观粒子闯了进去,那么在其周围会凝结成一个雾滴,随着粒子的运动,在其运动轨迹上,就有一连串雾滴组成为一条径迹,这样,就把人眼看不见的微观粒子的运动轨迹,变成了人眼能看见的由一连串雾滴组成的径迹。威尔逊发明的这个装置叫“云室”,他因这项发明而荣获1927年的诺贝尔物理学奖。2023-08-04 17:28:371
云室的原理
显示能导致电离的粒子径迹的装置.是最早的带电粒子探测器 ,是C.T.R.威尔逊1896年提出的,故称威尔逊云室.它的原理是:射出云室的高能粒子引起的离子在过饱和蒸汽中可成为蒸汽的凝结中心,围绕着离子将生成微小的液滴,于是粒子经过的路径上就出现一条白色的雾,在适当的照明下就能看到或拍摄到粒子运动的径迹,根据径迹的长短、浓淡以及在磁场中弯曲的情况,就可分辨粒子的种类和性质.云室的下底是可上下移动的活塞,上盖是透明的,一小块放射性物质(放射源)放在室内侧壁附近.实验时,在室内加适量酒精,使室内充满酒精的饱和蒸汽.然后使活塞迅速下移,室内气体由于迅速膨胀而降低温度,于是饱和蒸汽沿粒子经过的路径凝结,显示出粒子运动的径迹.由于云室灵敏时间短,工作效率低等原因,在核物理实验中已很少应用.但在高能物理,特别是在宇宙射线研究中,膨胀云室仍不失为一种有用的探测工具.2023-08-04 17:28:461
云室是什么?请问
1896年由C.T.R.威尔逊发明,又称威尔C.T.R.威尔逊改进过的云室(1912)逊云室。利用纯净的蒸气绝热膨胀,温度降低达到过饱和状态,这时带电粒子射入,在经过的路径产生离子,过饱和气以离子为核心凝结成小液滴,从而显示出粒子的径迹,可通过照相拍摄下来。云室中的气体大多是空气或氩气,蒸气大多是乙醇或甲醇。根据径迹上小液滴的密度或径迹的长度可测定粒子的速度;将云室和磁场联用,根据径迹的曲率和弯曲方向可测量粒子的动量和电性,从而可确定粒子的性质。在历史上,云室对粒子物理起过重大作用,曾用它发现了e 、μ-、Κ 0和Λ、Ξ-等粒子。 显示能导致电离的粒子径迹的装置.是最早的带电粒子探测器[1],是C.T.R.威尔逊1896年提出的,故称威尔逊云室.它的原理是:射出云室的高能粒子引起的离子在过饱和蒸汽中可成为蒸汽的凝结中心,围绕着离子将生成微小的液滴,于是粒子经过的路径上就出现一条白色的雾,在适当的照明下就能看到或拍摄到粒子运动的径迹,根据径迹的长短、浓淡以及在磁场中弯曲的情况,就可分辩粒子的种类和性质.云室的下底是可上下移动的活塞,上盖是透明的,一小块放射性物质(放射源)放在室内侧壁附近.实验时,在室内加适量酒精,使室内充满酒精的饱和蒸汽.然后使活塞迅速下移,室内气体由于迅速膨胀而降低温度,于是饱和蒸汽沿粒子经过的路径凝结,显示出粒子运动的径迹. 由于云室灵敏时间短,工作效率低等原因,在核物理实验中已很少应用.但在高能物理,特别是在宇宙射线研究中,膨胀云室仍不失为一种有用的探测工具.现代云室的原理与结构 一个更加现代的设计是扩散云室,这个装置中云室的到顶部与底部维持着一个大的温度差,通常使用干冰来冷却云室底部,顶部的室温则意味着顶部毡制品中的酒精就会沿室壁向下翻滚并和室底附近的重冷空气混合在一起,随后悬浮在那里,云室中充满了空气和酒精蒸汽当温度低时的底部扩散时蒸汽变成了过饱和状态。底部的低温意味着一旦蒸汽下降,它就会被过度冷却,也就是在一个不可能产生蒸汽的温度下成蒸汽状态,所以蒸汽容易凝结成液态,一点宇宙射线就会让蒸汽电离,也就是说宇宙射线夺走了许多气体分子的电子,使原子带电,于是被电离的粒子互相吸引引发凝结过程,形成一个宇宙粒子的路径。2023-08-04 17:29:011
云室是什么?请问
云室 cloud chamber 早期的核辐射探测器,也是最早的带电粒子径迹探测器。1896年由C.T.R.威尔逊发明,又称威尔C.T.R.威尔逊改进过的云室(1912)逊云室。利用纯净的蒸气绝热膨胀,温度降低达到过饱和状态,这时带电粒子射入,在经过的路径产生离子,过饱和气以离子为核心凝结成小液滴,从而显示出粒子的径迹,可通过照相拍摄下来。云室中的气体大多是空气或氩气,蒸气大多是乙醇或甲醇。根据径迹上小液滴的密度或径迹的长度可测定粒子的速度;将云室和磁场联用,根据径迹的曲率和弯曲方向可测量粒子的动量和电性,从而可确定粒子的性质。在历史上,云室对粒子物理起过重大作用,曾用它发现了e+、μ-、Κ+0和Λ、Ξ-等粒子。编辑本段原理 显示能导致电离的粒子径迹的装置.是最早的带电粒子探测器[1],是C.T.R.威尔逊1896年提出的,故称威尔逊云室.它的原理是:射出云室的高能粒子引起的离子在过饱和蒸汽中可成为蒸汽的凝结中心,围绕着离子将生成微小的液滴,于是粒子经过的路径上就出现一条白色的雾,在适当的照明下就能看到或拍摄到粒子运动的径迹,根据径迹的长短、浓淡以及在磁场中弯曲的情况,就可分辩粒子的种类和性质.云室的下底是可上下移动的活塞,上盖是透明的,一小块放射性物质(放射源)放在室内侧壁附近.实验时,在室内加适量酒精,使室内充满酒精的饱和蒸汽.然后使活塞迅速下移,室内气体由于迅速膨胀而降低温度,于是饱和蒸汽沿粒子经过的路径凝结,显示出粒子运动的径迹. 由于云室灵敏时间短,工作效率低等原因,在核物理实验中已很少应用.但在高能物理,特别是在宇宙射线研究中,膨胀云室仍不失为一种有用的探测工具.编辑本段现代云室的原理与结构 一个更加现代的设计是扩散云室,这个装置中云室的到顶部与底部维持着一个大的温度差,通常使用干冰来冷却云室底部,顶部的室温则意味着顶部毡制品中的酒精就会沿室壁向下翻滚并和室底附近的重冷空气混合在一起,随后悬浮在那里,云室中充满了空气和酒精蒸汽当温度低时的底部扩散时蒸汽变成了过饱和状态。底部的低温意味着一旦蒸汽下降,它就会被过度冷却,也就是在一个不可能产生蒸汽的温度下成蒸汽状态,所以蒸汽容易凝结成液态,一点宇宙射线就会让蒸汽电离,也就是说宇宙射线夺走了许多气体分子的电子,使原子带电,于是被电离的粒子互相吸引引发凝结过程,形成一个宇宙粒子的路径。2023-08-04 17:29:082
云室是什么?请问
云室 cloud chamber 早期的核辐射探测器,也是最早的带电粒子径迹探测器。1896年由C.T.R.威尔逊发明,又称威尔C.T.R.威尔逊改进过的云室(1912)逊云室。利用纯净的蒸气绝热膨胀,温度降低达到过饱和状态,这时带电粒子射入,在经过的路径产生离子,过饱和气以离子为核心凝结成小液滴,从而显示出粒子的径迹,可通过照相拍摄下来。云室中的气体大多是空气或氩气,蒸气大多是乙醇或甲醇。根据径迹上小液滴的密度或径迹的长度可测定粒子的速度;将云室和磁场联用,根据径迹的曲率和弯曲方向可测量粒子的动量和电性,从而可确定粒子的性质。在历史上,云室对粒子物理起过重大作用,曾用它发现了e 、μ-、Κ 0和Λ、Ξ-等粒子。 显示能导致电离的粒子径迹的装置.是最早的带电粒子探测器[1],是C.T.R.威尔逊1896年提出的,故称威尔逊云室.它的原理是:射出云室的高能粒子引起的离子在过饱和蒸汽中可成为蒸汽的凝结中心,围绕着离子将生成微小的液滴,于是粒子经过的路径上就出现一条白色的雾,在适当的照明下就能看到或拍摄到粒子运动的径迹,根据径迹的长短、浓淡以及在磁场中弯曲的情况,就可分辩粒子的种类和性质.云室的下底是可上下移动的活塞,上盖是透明的,一小块放射性物质(放射源)放在室内侧壁附近.实验时,在室内加适量酒精,使室内充满酒精的饱和蒸汽.然后使活塞迅速下移,室内气体由于迅速膨胀而降低温度,于是饱和蒸汽沿粒子经过的路径凝结,显示出粒子运动的径迹. 由于云室灵敏时间短,工作效率低等原因,在核物理实验中已很少应用.但在高能物理,特别是在宇宙射线研究中,膨胀云室仍不失为一种有用的探测工具.现代云室的原理与结构 一个更加现代的设计是扩散云室,这个装置中云室的到顶部与底部维持着一个大的温度差,通常使用干冰来冷却云室底部,顶部的室温则意味着顶部毡制品中的酒精就会沿室壁向下翻滚并和室底附近的重冷空气混合在一起,随后悬浮在那里,云室中充满了空气和酒精蒸汽当温度低时的底部扩散时蒸汽变成了过饱和状态。底部的低温意味着一旦蒸汽下降,它就会被过度冷却,也就是在一个不可能产生蒸汽的温度下成蒸汽状态,所以蒸汽容易凝结成液态,一点宇宙射线就会让蒸汽电离,也就是说宇宙射线夺走了许多气体分子的电子,使原子带电,于是被电离的粒子互相吸引引发凝结过程,形成一个宇宙粒子的路径。2023-08-04 17:29:161
物理关于云室问题!!!
云室的原理:显示能导致电离的粒子径迹的装置.是最早的带电粒子探测器,是C.T.R.威尔逊1896年提出的,故称威尔逊云室.它的原理是:射出云室的高能粒子引起的离子在过饱和蒸汽中可成为蒸汽的凝结中心,围绕着离子将生成微小的液滴,于是粒子经过的路径上就出现一条白色的雾,在适当的照明下就能看到或拍摄到粒子运动的径迹,根据径迹的长短、浓淡以及在磁场中弯曲的情况,就可分辩粒子的种类和性质.云室的下底是可上下移动的活塞,上盖是透明的,一小块放射性物质(放射源)放在室内侧壁附近.实验时,在室内加适量酒精,使室内充满酒精的饱和蒸汽.然后使活塞迅速下移,室内气体由于迅速膨胀而降低温度,于是饱和蒸汽沿粒子经过的路径凝结,显示出粒子运动的径迹. 由于云室灵敏时间短,工作效率低等原因,在核物理实验中已很少应用.但在高能物理,特别是在宇宙射线研究中,膨胀云室仍不失为一种有用的探测工具.现代云室的设计原理:一个更加现代的设计是扩散云室,这个装置中云室的到顶部与底部维持着一个大的温度差,通常使用干冰来冷却云室底部,顶部的室温则意味着顶部毡制品中的酒精就会沿室壁向下翻滚并和室底附近的重冷空气混合在一起,随后悬浮在那里,云室中充满了空气和酒精蒸汽当温度低时的底部扩散时蒸汽变成了过饱和状态。底部的低温意味着一旦蒸汽下降,它就会被过度冷却,也就是在一个不可能产生蒸汽的温度下成蒸汽状态,所以蒸汽容易凝结成液态,一点宇宙射线就会让蒸汽电离,也就是说宇宙射线夺走了许多气体分子的电子,使原子带电,于是被电离的粒子互相吸引引发凝结过程,形成一个宇宙粒子的路径。综上所述:一是传递温度,将蒸汽温度降低形成过饱和状态;二是,保护离子使其不被吸附。之所以选择空气一是因为蒸汽与气体容易混合;二是空气或氩气能够更好地保护离子。2023-08-04 17:29:241
威尔士云室中显示粒子径迹原因是电离,这句话对吗
不对。威尔逊云室利用纯净的蒸气绝热膨胀,温度降低达到过饱和状态,这时带电粒子射入,在经过的路径产生离子,过饱和气以离子为核心凝结成小液滴,从而显示出粒子的径迹,可通过照相拍摄下来。 云室中的气体大多是空气或氩气,蒸气大多是乙醇或甲醇。根据径迹上小液滴的密度或径迹的长度可测定粒子的速度;将云室和磁场联用,根据径迹的曲率和弯曲方向可测量粒子的动量和电性,从而可确定粒子的性质。在历史上,云室对粒子物理起过重大作用,曾用它发现了e+、μ-、Κ+0和Λ、Ξ-等粒子。2023-08-04 17:29:442
云室,气泡室,乳胶的工作原理及区别。
云室原理:显示能导致电离的粒子径迹的装置.是最早的带电粒子探测器[1],是C.T.R.威尔逊1896年提出的,故称威尔逊云室.它的原理是:射出云室的高能粒子引起的离子在过饱和蒸汽中可成为蒸汽的凝结中心,围绕着离子将生成微小的液滴,于是粒子经过的路径上就出现一条白色的雾,在适当的照明下就能看到或拍摄到粒子运动的径迹,根据径迹的长短、浓淡以及在磁场中弯曲的情况,就可分辩粒子的种类和性质.云室的下底是可上下移动的活塞,上盖是透明的,一小块放射性物质(放射源)放在室内侧壁附近.实验时,在室内加适量酒精,使室内充满酒精的饱和蒸汽.然后使活塞迅速下移,室内气体由于迅速膨胀而降低温度,于是饱和蒸汽沿粒子经过的路径凝结,显示出粒子运动的径迹. 由于云室灵敏时间短,工作效率低等原因,在核物理实验中已很少应用.但在高能物理,特别是在宇宙射线研究中,膨胀云室仍不失为一种有用的探测工具.气泡室原理:密闭容器中的工作液体在特定的温度和压力下进行绝热膨胀时﹐可以在一定的时间间隔内(一般约50毫秒)处于过热的亚稳状态而不马上沸腾。此时如果有高能带电粒子通过﹐在粒子飞行路线上与液体中的原子碰撞而产生低能电子(δ射线)因而产生很多离子对﹐这些离子对在复合时引起局部发热或热针﹐从而形成胚胎气泡。逐渐经过不短于0.3毫秒(一般为1毫秒)之后﹐气泡长大﹐就可以对它进行照相。这时把这一连串气泡拍摄下来﹐就得到了高能带电粒子的径迹底片。照相结束后﹐立即(在沸腾之前)再压缩工作液体﹐使粒子径迹气泡消失﹐从而使整个系统回到原先的状态﹐并进入下一个工作循环。 整个泡室装置包括室本体及真空系统﹑压缩-膨胀系统﹑安全系统﹑热交换恒温系统﹑照明及照相系统﹑控制系统。由于物理测量的要求﹐还需要有一个庞大的磁铁系统(一般的常规磁铁或超导磁体)。云室:可以部分或全部控制气压、温度、湿度等条件以制造云雾的箱室装置。 气泡室:气泡室(bubble chamber)是探测高能带电粒子径迹的一种有效的手段,它曾在50年代以后一度成了高能物理实验的最风行的探测设备,为高能物理学创造了许多重大发现的机会。它是1952年美国人D.A.格拉泽发明的。它曾给高能物理实验带来许多重大的发现,如新粒子、共振态、弱中性流等等。天然乳胶物理性能:(一) 浓度胶乳的浓度用总固体含量和干胶含量表示。干胶含量指胶乳中干橡胶的含量,总固体含量则指胶乳中除去水分和挥发性成分后的所有固体物质的含量,用百分率表示。总固体含量与干胶含量一般都有一差值,此值叫总干差,用以说明胶乳中不挥发性非橡胶成分的含量。这些指标对于指导生产和产品质量都有重要的意义。 新鲜胶乳的浓度随树龄、季节、割胶制度的不同而有差异,一般只有20%-40%的总固体含量。 (二) 相对密度 新鲜胶乳的相对密度约在0.96-0.98之间,它是由乳清的相对密度(1.02)和橡胶烃的相对密度(0.9064)决定的,从相对密度可以近似地衡量胶乳中橡胶烃的含量。橡胶烃的含量愈高,胶乳的相对密度就愈小,如表所示。 (三) 黏度 总固体含量在35%左右的新鲜胶乳其黏度约为12-15mPa·s,随采集时期和其他因素而有较大变化。一般总固体含量高者黏度高,但是同一总固体含量的胶乳,由于保存的方法、储存的时间、粒子的大小等的不同,黏度会发生差异。 (四)表面张力 表面张力的大小表明胶乳均匀分布于固体表面性能---所谓湿润性能的好坏。橡胶是不溶于水的, 但胶乳中含有大量能降低水表面张力的表面活性物质,如蛋白质、脂肪酸等,它们能降低胶乳的表面张力。如总固体含量为38%~40%的胶乳,其表面张力约为38~40mN/m,远比水(72Mn/m)低,因而对亲水表面如布类、皮革等的湿润和浸透能力能常都随着其表面张力的降低而增加,生产上当胶乳仍不能满足工艺要求时,需再加入一些表面活性剂,以进一步改善表面性能,增加湿润性。 (五)PH值 胶乳的PH值对它的稳定性有很大影响。新鲜胶乳呈中性,稍有弱碱性倾向,PH值为7~7.2。经过数小时到十多个小时,由于胶乳中细菌和酶的影响,PH值会降低而变为酸性,以致引起凝固。为此,常加入氨或其他碱,使PH值提高至10~10.5,以便能能较长时间地保存。天然乳胶具有良好的成膜性能,湿凝胶强力高,力学性能良好,非橡胶成分含量少机械稳定性高(一般不低于600s),颜色洁白,泡沫稳定性好。2023-08-04 17:30:031
威尔逊云室 先往云室里加入少量酒精,使室内充满酒精的饱和蒸气,然后迅速向下拉动活塞,室内气体膨胀
1回答:没错。气体对外做功的这个“外”,在这里指的就是气体压力作用的物体——活塞,同时,活塞在力的方向上发生位移。所以气体膨胀做功的条件就是,第一,气体对物体有压力,第二,物体在压力方向有位移。你举的例子,理论上当然有此结果——气体温度会降低。2、过饱和蒸汽的原子其核外电子受到原子核的束缚(结合能)较小,当阿尔法粒子(或者其他的带电粒子)通过原子的附近时,阿尔法粒子的电场作用于原子的核外电子(库仑引力),使原子电离,过饱和气以离子为核心凝结成小液滴。2023-08-04 17:30:102
电子质量最先是哪位科学家得到的
电子的发现和阴极射线的实验研究联系在一起的,而阴极射线的发现和研究又是以真空管放电现象开始的.早在1858年,德国物理学家普吕克在利用放电管研究气体放电时发现了阴极射线.普吕克利用真空泵,发现随着玻璃管内空气稀薄到一定程度时,管内放电逐渐消失,这时在阴极对面的玻璃管壁上出现了绿色荧光.当改变管外所加的磁场时,荧光的位置也会发生变化,可见,这种荧光是从阴极所发出的射线撞击玻璃管壁所产生的。阴极射线究竟是什么呢?在19世纪后30年中,许多物理学家投入了研究.当时英国物理学家克鲁克斯等人已经根据阴极射线在磁场中偏转的事实,提出阴极射线是带负电的微粒,根据偏转算出阴极射线粒子的荷质比(e/m),要比氢离子的荷质比大1000倍之多.当时,赫兹和他的学生勒纳德,在阴极射线管中加了一个垂直于阴极射线的电场,企图观察它在电场中的偏转,为此他们认为阴极射线不带电.实际上当时是由于真空度还不高,建立不起静电场.J.J.汤姆生设计了新的阴极射线管(图1),在电场作用下由阴极C发出的阴极射线,通过Α和B聚焦,从另一对电极D和E间的电场中穿过.右侧管壁上贴有供侧量偏转用的标尺.他重复了赫兹的电场偏转实验,开始也没有看见任何偏转.但他分析了不发生偏转的原因可能是电场建立不起来。于是,他利用当时最先进的真空技术获得高真空,终于使阴极射线在电场中发生了稳定的电偏转,从偏转方向也明确表明阴极射线是带负电的粒子.他还在管外加上了一个与电场和射线速度都垂直的磁场(此磁场由管外线圈产生),当电场力eE与磁场的洛仑兹力evB相等时,可以使射线不发生偏转而打到管壁中央。经过推算可知,阴极射线粒子的荷质比e/m≈1011C/kg.通过进一步的实验,汤姆生发现用不同的物质材料或改变管内气体种类,测得射线粒子的荷质比e/m保持不变.可见这种粒子是各种材料中的普适成分。1898年,汤姆生又和他的学生们继续做直接测量带电粒子电量的研究.其中之一就是用威尔逊云室,测得了电子电荷是1.1x10-19C,并证明了电子的质量约是氢离子的千分之一.于是,汤姆生最终解开了阴极射线之谜.这以后不少科学家较精确地测量了电子的电荷值,其中有代表性的是美国科学家密立根,在1906年第一次测得电子电荷量e=l.34X10-19C,1913年最后测得e=1.59x10-19C.在当时条件下,这是一个高精度的测量值.近代精确的电子电荷量e=1.60217733(49)x10-19C(括号中的值是测量误差).2023-08-04 17:30:181
物理高考会考科学家和他们的发现等等吗?
选择题第一道考物理基础知识有可能会考到(每两三年一次吧)1、胡克:英国物理学家;发现了胡克定律(F弹=kx)2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。3、牛顿:英国物理学家; 动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。13、安培:法国科学家;提出了著名的分子电流假说。14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。31、玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。32、约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素2023-08-04 17:30:292
高中物理,关于牛顿,和物理课本出现的其他科学家的知识点。
这个问题涵盖面那叫一个字,大啊,2023-08-04 17:30:481
物理的发展史
公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研究发表于1802年。 公元1914年,英国科学家莫塞莱发现原子序数与元素辐射特征线之间的关系,奠定了X射线光谱学的基础。 公元1914年,德国科学家弗朗克与赫兹测量汞的激发电位。 1915年,丹麦科学家玻尔判定他们测的结果实际上是第一激发电位,这正是玻尔1913年定态跃迁原子模型理论的极好证据。 公元1914年,英国科学家查德威克发现β能谱。 公元1915年,在爱因斯坦的倡议下,荷兰科学家德哈斯首次测量回转磁效应。 公元1916年,荷兰科学家德拜提出X射线粉末衍射法。 公元1919年,英国科学家阿斯顿发明质谱仪,为同位素的研究提供重要手段。 公元1919年,卢瑟福首次实现人工核反应。 公元1919年,德国科学家巴克家森发现磁畴。 公元1922年,德国科学家斯特恩与盖拉赫使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。 公元1923年,美国科学家康普顿用光子和电子相互碰撞解释X射线散射中波长变长的实验结果,称康普顿效应。 公元1927年,美国科学家戴维森与革末用低速电子进行电子散射实验,证实了电子衍射。同年,英国科学家G.P.汤姆逊用高速电子获电子衍射花样,他们的工作为法国科学家德布罗意的物质波理论提供了实验证据。 公元1928年,卡文迪许实验室的印度科学家喇曼等人发现散射光的频率变化,即喇曼效应。 公元1931年,美国科学家劳伦斯等人建成第一台回旋加速器。 公元1932年,英国科学家考克拉夫特与爱尔兰科学家瓦尔顿共同发明高电压倍加器,用以加速质子,实现人工核蜕变。 公元1932年,美国科学家尤里将天然液态氢蒸发浓缩后,发现氢的同位素—氘的存在。 公元1932年,查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒子,质量大体与质子相等。据此曾安排实验,但末获成果。1930年,德国科学家玻特等人在α射线轰击铍的实验中,发现过一种穿透力极强的射线,误认为γ射线;1931年,法国科学家约里奥与伊仑·居里让这种穿透力极强的射线通过石蜡,打出高速质子。查德威克接着做了大量实验,并利用威尔逊云室拍照,以无可辩驳的事实说明这一射线即是卢瑟福预言的中子。 公元1932年,美国科学家安德森从宇宙线中发现正电子,证实狄拉克的预言。 公元1933年,美国科学家图夫建立第一台静电加速器。 公元1933年,英国科学家布拉凯特等人从云室照片中发现正负电子对。 公元1934年,前苏联科学家切仑柯夫发现液体在β射线照射下发光的一种现象,称切仑柯夫辐射。 公元1934年,法国科学家约里奥·居里夫妇发现人工放射性。 公元1936年,安德森等人发现μ介子。 公元1938年,德国科学家哈恩与史特拉斯曼发现铀裂变。 公元1938年,前苏联科学家卡皮查用实验证实液氦的超流动性。 公元1939年,奥地利裔美国科学家拉比等人用分子束磁共振法测核磁矩。 公元1940年,美国科学家开尔斯特等人用分子建造第一台电子感应加速器。 公元1946年,美国科学家珀塞尔用共振吸收法测核磁矩,布拉赫用核感应法测核磁矩,两人从不同的角度实现了核磁共振。这种方法可以使核磁矩和磁场的测量精度大大提高。 公元1947年,德裔美国科学家库什精确测量电子磁矩,发现实验结果与理论预计有微小偏差。 公元1947年,美国科学家兰姆与雷瑟福用微波方法精确测出氢原子能级的差值,发现英国科学家狄拉克的量子理论仍与实际有不符之处。这一实验为量子电动力学的发展提供了实验依据。 公元1948年,美国科学家肖克利、巴丁与布拉顿共同发明晶体三级管。 公元1952年,美国科学家格拉塞发明气泡室,比威尔逊云室更为灵敏。 公元1954年,美国科学家汤斯等人制成受激辐射的微波放大器——曼塞。 公元1955年,美国科学家张伯伦与希格里等人发现反质子。1957年,希格里等人又发现反中子。 公元1956年,华裔美国科学家吴健雄等人实验验证了华裔美国科学家李政道、杨振宁提出的在弱相互作用下宇称不守恒的理论(1956年)。实验方法是将钴-60置于极低温(0.01K)的环境中测量β蜕变。 公元1958年,德国科学家穆斯堡尔实现γ射线的无反冲共振吸收(穆斯堡尔效应)。 公元1960年,美国科学家梅曼制成红宝石激光器,实现了肖洛和汤斯1958年的预言。 公元1962年,英国科学家约瑟夫森发现约瑟夫森效应。 另附 1900--1909 1900年,瑞利发表适用于长波范围的黑体辐射公式。 1900年,普朗克(M.Plank,1858—1947)提出了符合整个波长范围的黑体辐射公式,开 用能量量子化假设从理论上导出了这个公式。 1900年,维拉尔德(P.Willard,1860一1934)发现γ射线。 1901年,考夫曼(W.Kaufmann,1871—1947)从镭辐射测射线在电场和磁场中的偏转,从 而发现电子质量随速度变化。 1901年,理查森(O.W.Richardson,1879—1959)发现灼热金属表面的电子发射规律。 后经多年实验和理论研究,又对这一定律作进一步修正。 1902年,勒纳德从光电效应实验得到光电效应的基本规律:电子的最大速度与光强无关, 为爱因斯坦的光量子假说提供实验基础。 1902年,吉布斯出版《统计力学的基本原理》,创立统计系综理论。 1903年,卢瑟福和索迪(F.Soddy,1877一1956)发表元素的嬗变理论。 1905年,爱因斯坦(A.Einstein,1879—1955)发表关于布朗运动的论文,并发表光量子 假说,解释了光电效应等现象。 1905年,朗之万(P.Langevin,1872—1946)发表顺磁性的经典理论。 1905年,爱因斯坦发表《关于运动媒质的电动力学》一文,首次提出狭义相对论的基本原 理,发现质能之间的相当性。 1906年,爱因斯坦发表关于固体热容的量子理论。 1907年,外斯(P.E.Weiss,1865—1940)发表铁磁性的分子场理论,提出磁畴假设。 1908年,昂纳斯(H.Kammerlingh—Onnes,1853—1926)液化了最后一种“永久气体”氦。 1908年,佩兰(J.B.Perrin,1870—1942)实验证实布朗运动方程,求得阿佛伽 德罗常数。 1908—1910年,布雪勒(A.H.Bucherer,1863—1927)等人,分别精确测量出电子质量 随速度的变化,证实了洛仑兹-爱因斯坦的质量变化公式。 1908年,盖革(H.Geiger,1882—1945)发明计数管。卢瑟福等人从粒子测定电子电荷e 值。 1906—1917年,密立根(R.A.Millikan,1868—1953)测单个电子电荷值,前后历经11 年,实验方法做过三次改革,做了上千次数据。 1909年,盖革与马斯登(E.Marsden)在卢瑟福的指导下,从实验发现粒子碰撞金属箔产 生大角度散射,导致1911年卢瑟福提出有核原子模型的理论。这一理论于1913年为盖 革和马斯登的实验所证实。 1910--1919 1911年,昂纳斯发现汞、铅。锡等金属在低温下的超导电性。 1911年,威尔逊(C.T.R.Wilson,i869—1959)发明威尔逊云室,为核物理的研究提供 了重要实验手段。 1911年,赫斯(V.F.Hess,1883—1964)发现宇宙射线。 1912年,劳厄(M.V.Laue,1879—1960)提出方案,弗里德里希(W. Friedrich),尼平 (P.KniPning,1883—1935)进行X射线衍射实验,从而证实了X射线的波动性。 1912年,能斯特(W. Nernst,1864—1941)提出绝对零度不能达到定律(即热力学第三定 律)。 1913年,斯塔克(J.Stark,1874—1957)发现原子光谱在电场作用下的分裂象(斯塔克效应)。 1913年,玻尔(N.Bohr,1885—1962)发表氢原子结构理论,解释了氢原子光谱。 1913年,布拉格父子(W.H.Bragg,1862—l942;W.L.Bragg,1890—1971)研究X射 线衍射,用X射线晶体分光仪,测定X射线衍射角,根据布拉格公式:Zdsin6=算出晶 格常数d。 1914年,莫塞莱(H.G.J.Moseley,1887—1915)发现原子序数与元素辐射特征线之间 的关系,奠定了X射线光谱学的基础。 1914年,弗朗克(J. Franck,1882——1964)与 G.赫兹(G.Hertz,1887—1975)测 汞的激发电位。 1914年,查德威克(J.Chadwick,1891—1974)发现能谱。 1914年,西格班(K.M.G.Siegbahn,1886—1978)开始研究 X射线光谱学。 1915年,在爱因斯坦的倡仪下,德哈斯(W.J.de Hass,1878—1960)首次测量回转磁效 应。 1915年,爱因斯坦建立了广义相对论。 1916年,密立根用实验证实了爱因斯坦光电方程。 1916年,爱因斯坦根据量子跃迁概念推出普朗克辐射公式,同时提出了受激辐射理论,后 发展为激光技术的理论基础。 1916年,德拜(P.J.W.Debye,1884—1966)提出 X射线粉末衍射法。 1919年,爱丁顿(A.S.Eddington,1882—1944)等人在日食观测中证实了爱因斯坦关于 引力使光线弯曲的预言。 1919年,阿斯顿(F.W.Aston,1877—1945)发明质谱仪,为同位素的研究提供重要手段。 1919年,卢瑟福首次实现人工核反应。 1919年,巴克豪森(H.G.Barkhausen)发现磁畴。 1920--1929 1921年,瓦拉塞克发现铁电性。 1922年,斯特恩(O.Stern,1888—1969)与盖拉赫(W.Gerlach,1889—1979) 使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。 1923年,康普顿(A.H.Compton,1892—1962)用光子和电子相互碰撞解释X射线散射中 波长变长的实验结果,称康普顿效应。 1924年,德布罗意(L.de Broglie,1892—1987)提出微观粒子具有波粒二象性的假设。 1924年,玻色(S.Bose,1894—1974)发表光子所服从的统计规律,后经爱因斯坦补充建立了玻色一爱因斯坦 统计。 1925年,泡利(W.Pauli,1900—1958)发表不相容原理。 1925年,海森伯(W.K.Heisenberg,1901—1976)创立矩阵力学。 1925年,乌伦贝克(G.E.Uhlenbeck,1900--)和高斯密特(S.A.Goudsmit,1902—1979)提出电子自旋假设。 1926年,薛定愕(E.Schrodinger,1887—1961)发表波动力学,证明矩阵力学和波动力 学的等价性。 1926年,费米(E.Fermi,1901—1954)与狄拉克(P.A.M.Dirac,1902—1984)独立 提出费米-狄拉克统计。 1926年,玻恩(M.Born,1882—1970)发表波函数的统计诠释。 1927年,海森伯发表不确定原理。 1927年,玻尔提出量子力学的互补原理。 1927年,戴维森(C.J.Davisson,1881—1958)与革末(L.H.Germer,1896-- 1971)用低速电子进行电子散射实验,证实了电子衍射。同年,G.P.汤姆生 (G.P.Thomson,1892—1975)用高速电子获电子衍射花样。 1928年,拉曼(C.V.Raman,1888--1970)等人发现散射光的频率变化,即拉曼效应。 1928年,狄拉克发表相对论电子波动方程,把电子的相对论性运动和自旋、磁矩联系了起 来。 1928—1930年,布洛赫(F.BIoch,1905—1983)等人为固体的能带理论奠定了基础。 1930--1939 1930—1931年,狄拉克提出正电子的空穴理论和磁单极子理论。 1931年,A.H.威尔逊(A.H.Wilson)提出金属和绝缘体相区别的能带模型,并预言介 于两者之间存在半导体,为半导体的发展提供了理论基础。 1931年,劳伦斯(E.O.Lawrence,1901—1958)等人建成第一台回旋加速器。 1932年,考克拉夫特(J.D.Cockcroft,1897—1967)与沃尔顿(E.T.Walton)发明高 电压倍加器,用以加速质子,实现人工核蜕变。 1932年,尤里(H.C.Urey,1893—1981)将天然液态氢蒸发浓缩后,发现氢的同位素 ——氘的存在。 1932年,查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒 子,质量大体与质予相等。据此曾安排实验,但未获成果。 193O年,玻特(w.B大成,18盯一1的7)等人在。射线轰击被的实验中,发现过一种穿 透力极强的射线,一误认为、射线,1931年约里奥(F.Joliot,1900—1958)与伊 伦·居里(1.Curie,1897—1956)让这种穿透力极强的射线,通过石蜡,打出高速 质子。查德威克接着做了大量实验,并用威尔逊云室拍照,以无可辩驳的事实说明这 一射线即是卢瑟福预言的中子。 1932年,安德森(C.D.Anderson,1905一)从宇宙线中发现正电子,证实狄拉克的预言。 1932年,诺尔(M.Knoll)和鲁斯卡(E.Ruska)发明透射电子显微镜。 1932年,海森伯、伊万年科(Д.Д.Иваненко)独立发表原子核由质子和中子 组成的假说。 1933年,泡利在索尔威会议上详细论证中微于假说,提出β衰变。 1933年,盖奥克(W.F.Giauque)完成了顺磁体的绝热去磁降温实验,获得千分之几开的 低温。 1933年,迈斯纳(W.Meissner,1882—1974)和奥克森菲尔德(R.Ochsenfeld)发现超 导体具有完全的抗磁性。 1933年,费米发表p衰变的中微子理论。 1933年,图夫(M.A.Tuve)建立第一台静电加速器。 1933年,布拉开特(P.M.S.Blackett,1897—1974)等人从云室照片中发现正负电子对。 1934年,切仑柯夫(Π.A.Черенков)发现液体在β射线照射下发光的一种现象, 称切仑柯夫辐射。 1934年,约里奥-居里夫妇发现人工放射性。 1935年,汤川秀村发表了核力的介于场论,预言了介子的存在。 1935年,F.伦敦和H.伦敦发表超导现象的宏观电动力学理论。 1935年,N.玻尔提出原子核反应的液搞核模型。 1938年,哈恩(O.Hahn,1879—1968)与斯特拉斯曼(F.Strassmann)发现铀裂变。 1938年,卡皮查(П.Л.Капича,1894--)实验证实氦的超流动性。 1998年,F.伦敦提出解释超流动性的统计理论。 1939年,迈特纳(L.Meitner,1878—1968)和弗利行(O.Frisch)根据获滴核模型指出, 哈恩-斯特拉斯曼的实验结果是一种原子核的裂变现象。 1939年,奥本海默(J.R.Oppenheimer,1904—1967)根据广义相对论预言了黑洞的存在。 1939年,拉比(I.I.Rabi,1898—1987)等人用分子束磁共振法测核磁矩。 1940--1949 1940年,开尔斯特(D.W.Kerst)建造第一台电子感应加速器。 1940—1941年,朗道(Л.И.Ландау,1908—1968)提出氦Ⅱ超流性的量子理论。 1941年,布里奇曼(P.W.Bridgeman,1882—1961)发明能产生 10万巴高压的装置。 1942年,在费米主持下美国建成世界上第一座裂变反应堆。 1944—1945年,韦克斯勒(ВИВеклер.1907--1966)和麦克米伦(E.M.McMillan, 1907—)各自独立提出自动稳相原理,为高能加速器的发展开辟了道路。 1946年,阿尔瓦雷兹(L.W.Alvarez,1911--)制成第一台质子直线加速器。 1946年,柏塞尔(E.M.Purcell)用共振吸收法测核磁矩,布洛赫(F.Bloch,1905—1983)用核感应法测核磁矩,两人从不同的角度实现核磁共振。这种方法可以使核磁矩和磁场的测量精度大大提高。 1947年,库什(P.Kusch)精确测量电子磁矩,发现实验结果与理论预计有微小偏差。 1947年,兰姆(W.E.Lamb,Jr.)与雷瑟福(R.C.Retherford)用微波方法精确测出氢原子能级的差值,发现狄拉克的量子理论仍与实际有不符之处。这一实验为量子电动力学的 发展提供了实验依据。 1947年,鲍威尔(C.F.Powell,1903—1969)等用核乳胶的方法在宇宙线中发现π介子。 1947年,罗彻斯特和巴特勒(C.Butler,1922--)在宇宙线中发现奇异粒子。 1947年,H,P.卡尔曼和J.W.科尔特曼等发明闪烁计数器。 1947年,普里高金(I.Prigogine,1917--)提出最小熵产生原理。 1948年,奈耳(L.E.F.Neel,1904--)建立和发展了亚铁磁性的分子场理论。 1948年,张文裕发现μ子系弱作用粒子,并发现了μˉ子原子。 1948年,肖克利(w.Shockley),巴丁(J.Bardeen)与布拉顿(W.H.Brattain) 发明晶体三极管。 1948年,伽柏(D.Gabor,1900—1979)提出现代全息照相术前身的波阵面再现原理。 1948年,朝永振一郎、施温格(1.Schwinger)费因曼(R.P.Feynman,1918-- 1988)等分别发表相对论协变的重正化的量子电动力学理论,逐步形成消除发散困难的重 正化方法。 1949年,迈耶(M.G.Mayer)和简森(J.H.D.Jensen)等分别提出核壳层模型理论。 1950-1959 ???? 1960--现在 1960年,梅曼(T.H.Maiman)制成红宝石激光器,实现了肖洛(A.L.Schawlow)和 汤斯1958年的预言。 1962年,约瑟夫森(B.D.Josephson)发现约瑟夫森效应。 1964年,盖耳曼(M.Gell-Mann)等提出强子结构的夸克模型。 1964年,克洛宁(J.W.Cronin)等实验证实在弱相互作用中CP联合变换守 恒被破坏。 1967—1968年,温伯格(S.Weinberg)、萨拉姆(A.salam)分别提出电弱统一理论标准模型。 1969年,普里高金首次明确提出耗散结构理论。 1973年,哈塞尔特(F.J.Hasert)等发现弱中性流,支持了电弱统一理论。 1974年,丁肇中(1936--)与里希特(B.Richter,1931--)分别发现J/ψ粒子。 1980年,克利青(V.Klitzing,1943--)发现量子霍尔效应。 1983年,鲁比亚(C.Rubbia,1934--)和范德梅尔(S.V.d.Meer,1925--)等人在欧洲核子研究中心发现W±和Z0粒子。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。 公元1799年,英国科学家戴维做真空中的摩擦实验,以证明热是物体微粒的振动所致。 公元1800年,英国科学家赫休尔从太阳光谱的辐射热效应发现红外线。 公元1801年,德国科学家里特尔从太阳光谱的化学作用,发现紫外线。 公元1801年,英国科学家托马斯·杨用干涉法测光波波长。 公元1802年,英国科学家沃拉斯顿发现太阳光谱中有暗线。 公元1808年,法国科学家马吕斯发现光的偏振现象。 公元1811年,英国科学家布儒斯特发现偏振光的布儒斯特定律。 公元1815年,德国科学家夫琅和费开始用分光镜研究太阳光语中的暗线。 公元1819年,法国科学家杜隆与珀替发现克原子固体比热是一常数,约为6卡/度·克原子,称杜隆·珀替定律。 公元1820年,丹麦科学家奥斯特发现导线通电产生磁效应。 公元1820年,法国科学家毕奥和沙伐由实验归纳出电流元的磁场定律。 公元1820年,法国科学家安培由实验发现电流之间的相互作用力,1822年进一步研究电流之间的相互作用,提出安培作用力定律。 公元1821年,爱沙尼亚科学家塞贝克发现温差电效应(塞贝克效应)。 公元1827年,英国科学家布朗发现悬浮在液体中的细微颗粒作不断地杂乱无章运动,是分子运动论的有力证据。 公元1830年,诺比利发明温差电堆。 公元1831年,法拉第发现电磁感应现象。 公元1834年,法国科学家珀耳帖发现电流可以致冷的珀耳帖效应。2023-08-04 17:30:581
谁帮我把初中历史人教版所有的事件按时间排列下?急求!
通常这些教科书最后都有个时代表的.你都没发现..说明你看书看得不仔细啊2023-08-04 17:31:074
威尔逊云室中为什么γ射线轨迹不明显
伽玛射线是电磁波,电离能力弱。2023-08-04 17:31:271
高中物理 下列有关探测α、β、γ射线的描述正确的是()A 在威尔逊云室中,由于粒子的质
a粒子是氦核,体积相对较大,所以在云室中运动会把半径更大的云气凝结成液体,动能损失就更快,一般的云室都是酒精气体。。β粒子是核外电子,半径小,所以在云室中的轨迹更细。γ射线应该算一种电磁波,所以基本上看不到它的云室轨迹。 一般的可以直接观察到的带点物体在经过电场时会偏转,因而我们能根据其偏转方向判断其带电性,但微观粒子我们无法直接观察轨迹,只能借助云室来显示轨迹。原理同上。。纯手打,望采纳。2023-08-04 17:31:361
我叫伟程,想取个好听的英文名字?
Wilson威尔逊(①姓氏, 男子名 ②Charles Thomson Rees, 1869-1959, 英国物理学家, 曾获1927年诺贝尔物理学奖 ③Thomas Woodrow, 1856-1924, 美国第28届总统, 曾获1919年诺贝尔和平奖)Mount Wilson(美国 California南西部 Pasadena 附近高1742米的)威尔逊山(设有威尔逊山天文台)Wilson (cloud) chamber(=cloud chamber)【物】(威尔逊)云室2023-08-04 17:31:466
查尔斯·汤姆逊·里斯·威尔逊的生平事迹
1892年毕业于剑桥大学西得尼·萨赛克斯学院,后在剑桥大学一面做实验研究,一面当医学系的实验演示员.当时卢瑟福等一些青年科学家都是剑桥大学卡文迪许实验室的研究生,威尔逊经常和他们一起参加茶余饭后的讨论.1894年,威尔逊在英国第一高峰苏格兰的本内维斯峰的天文台度过了几个星期的时间.在那里,他看到了阳光返照云彩的奇景,使他想在实验室中再现它们,这就使他走上了发明云室(又称云雾室)的道路.1895年,他设计了一套设备,使水蒸气冷凝来形成云雾.当时人们认为,要使水蒸气凝结,每颗雾珠必须有一个尘埃为核心.威尔逊仔细除去仪器中的尘埃后发现,无需尘埃,而用X射线照射云室时,云雾立即出现,这证明凝聚现象是以离子为中心出现的.?经过四年研究,他总结出,当无尘空气的体积膨胀比为1.25时,负离子开始成为凝聚核心;当膨胀比为1.28时,负离子全部成为凝聚核心.对于正离子来说,膨胀比为1.31时开始成为凝聚核心,膨胀比为1.35时全部成为凝聚核心.另一方面,他还指出,离子的电荷对水蒸气分子产生作用力,有助于雾珠的扩大.1912年,威尔逊为云室增设了拍摄带电粒子径迹的照相设备,使它成为研究射线的重要仪器.用这个云室拍摄了α粒子的图象.1927年,威尔逊因发明云室而与康普顿同获诺贝尔物理学奖.威尔逊还研制了灵敏静电计,用拴住的气球升到不同高度测量大气中的电场,发现在晴朗的天空中,总存在方向指向地面的电场,电位梯度为100V/m~200V/m,整个地球的负电荷总量约为5×105 C.威尔逊从他的云室研究中知道负电荷核心聚集的水滴较大,他认为雨云一定是顶部带正电,底部带负电的,因此雨水落下来使地球带负电.1959年11月15日,威尔逊在苏格兰卡洛普斯去世,终年90岁.1956年,当他87岁时,他作为英国皇家学会年纪最大会员,还向学会递交了最后一篇论文《雨云电学原理》.威尔逊(Charles Thomson Rees Wilson)是英国著名物理学家、威尔逊云雾室的发明者,1869年2月14日出生于苏格兰爱丁堡附近的格伦科西,其父是个农庄主。当威尔逊只有4岁时,父亲就去世了。后来威尔逊随同他的母亲迁居曼彻斯特。年轻时,威尔逊在曼彻斯特受教育,学习过地质学、植物学与动物学。他原想当医生,所以在欧文斯学院(现为曼彻斯特大学)时还学习生物学。1888年,威尔逊转学到剑桥大学(Sussex学院),在这里,他对物理学与化学发生浓厚的兴趣,1896年获得物理学博士学位。1900年,威尔逊博士担任剑桥大学物理学讲师和物理学演示法教学者;1913年在气象台担任气象物理观测员;1916年起,研究闪电。1918年成为大气电学的讲师;1925年教委任为剑桥大学杰克逊(Jackson)讲座自然哲学教授,一直到1934年。1895年以后,威尔逊的研究涉及到大气电学问题,特别是下雨和下雪时的放射性现象,也涉及应用金箔静电计测量大气电学问题。他想使基本粒子的径迹处于可见状态,乃至于可以拍成照片,于是作了一个杰出的实验,让放射性物质发射出来的粒子,穿过具有过饱和水蒸汽的空气,从而使粒子的径迹呈现为细小而又可见的云雾状线条。据说1894年,威尔逊在海拔4000多米的尼维斯山顶旅游时,发现高山之巅很容易形成奇丽的迷茫雾景,便引起极大兴趣。经过艰苦的研究,他终于知道了这是气压较低,的缘故。1895年,这位眼光锐利、头脑敏捷的气象学家在卡文迪许实验室中设计一种方法使潮湿空气在紧闭的容器内绝热膨胀,从而使空气冷却,变成过饱和,让水分凝结在尘粒上。他试图通过这种方法从实验室中复制出山顶上某些云雾效应所造成的那样一幅美丽的自然图景。继而,他费尽心思从理论上研究雾点的成因。当他得知X射线的发现时,他便联想空气中离子的存在可能导致云雾的形成。他作了实验,并在云雾室中找出由辐射留下的凝结水滴的轨迹。经过不懈努力,他终于发现雾点是由于水蒸汽附着在带电粒子上而形成的。十一年之后,威尔逊所发明的云雾室装置经过不断改选已经达到完善的地步。实践表明,云雾室在研究核物理中是不可缺少的工具,它还导致了后来汽泡室的发展。威尔逊于1911年制造的第一个云雾室,现在看来是比较简单的,然而却是攻克现代科学堡垒的相当有用的一件锐利武器,尤其是早期对基本粒子的研究更是不可缺少的。因为有了它,观察带电基本粒子或离子的运动径迹才成为可能。也正因为有了它,才打开了洞察微观世界的窗户。利用威尔逊云雾室取得的最重要的成就有:康普顿利用它演示康普顿反冲电子的存在,从而毫无疑问地证明康普顿效应的正确队,康普顿因此于1927年与威尔逊分享诺贝尔物理学奖金;安德逊利用威尔逊云雾室从宇宙射线中法现正电子的存在,证实了狄拉克的理论预言,由于这一功绩,安德逊于1936年获得诺贝尔物理学奖金的一半;布菜克等人利用威尔逊云雾室做了关于电子和正电子同时产生和消失过程的可见演示,后来布莱夫由于进一步发展云雾室和由此而来的发现也于1948获得诺贝尔物理学奖金;科克洛夫特等人所做的原子核衰变,也是依靠了威尔逊云雾室的帮助。以上所举事实证明,如果没有威尔逊云雾室,许多重要的原子核物理现象的揭露和研究都是不可能的。在漫长的90年的生活中,威尔逊在其他方面也有很大贡献。1956年,年已87高龄的威尔逊教授还发表了雷电的理论。他一生中,由于成绩显赫,获得了各种荣誉与勋章;1900年被选为皇家学会成员;1911年获得休斯奖章;1922年获得皇家奖章;1920年获得剑桥哲学学会的霍普金斯奖金;1921年获得爱丁堡皇家学会的冈宁(Gunning)奖金;1925年获得富兰克林研究所的霍华德·波茨(Howard Potts)奖章;1927年于美国物理学家康普顿分享诺贝尔物理学奖金。他发明的威尔逊云雾室,已广泛地应用于放射线、X射线、宇宙射线和其他核现象的研究。1959年11月15日威尔逊在英国逝世,享年90岁。2023-08-04 17:32:121
云雾室的云雾室的由来
英国物理学家威尔逊(Charles Thomson Rees Wilson, 1869-1959)经过研究,他于1894年发明了一个叫“云雾室”(Cloud Chamber, Wilson Chamber)的装置,它里面充满了干净空气和酒精(或乙醚)的饱和汽。如果闯进去一个肉眼看不见的带电微粒,它就成了“云雾”凝结的核心,形成雾点,这些雾点便显示出微粒运动的“足迹”。因此,科学家可以通过“云雾室”,来观察肉眼看不见的基本粒子(电子质子等)的运动和变化情况。同时,还发现了不少新的基本粒子。威尔逊云雾室,为研究微观世界作出了卓越贡献。1927年,他因此荣获了诺贝尔物理学奖金。威尔逊(Charles Thomson Rees Wilson,1869-1959),1894年起研究云雾中的光学现象。1895年,他设计了一套设备,使水蒸气冷凝来形成云雾。当时普遍认为,要使水蒸气凝结,每颗雾珠必须有一个尘埃为核心。威尔逊发现:潮湿而无尘的空气膨胀时出现水滴。他认为这可能是水蒸气以大气中导电离子为核心而凝聚的结果。1895年,威尔逊在卡文迪什实验室时便开始了他对云的形成的研究。他让水蒸气在他设计好的玻璃容器中膨胀,发现达到饱和状态的水蒸气遇到游离的灰尘或者带电离子核,便会凝结成小水珠,这就是云雾形成的原因。据此,他经过反复实验,于1911年发明了著名的威尔逊云雾室。这种云雾室,利用蒸气绝热膨胀,温度降低,达到饱和状态,当带电粒子通过时,蒸气沿粒子轨道发生凝结,从而显示粒子径迹。利用其电离密度还可以测量粒子的能量和速度。1896年他用当时新发现的X射线照射云室中的气体,观察到X射线穿过之处空气被电离,带电离子会形成细微的水滴,显示出X射线的运动轨迹,威尔逊为云室增设了拍摄带电粒子径迹的照相设备,使它成为研究射线的重要仪器。1911年他首先用云室观察到并照相记录了α和β粒子的径迹。威尔逊云雾室是历史上最早建造的粒子径迹探测器,它对粒子物理学的发展起过重大作用,正电子、μ子、K0介子和Ξ­超子等都是通过拍摄它们在云雾室中的径迹而发现的。2023-08-04 17:32:271
信长之野望13PK版如何触发松平清康遇刺事件?即守山崩塌
守山崩れ1535年12月以降■ 条件 1. 松平清康が松平家の当主 2. 织田信秀が织田家の当主 3. 安祥城が松平家の所属 4. 阿部定吉が松平家の配下■ 松平家 * 定吉を信じる o 松平清康が死亡 o 松平広忠が松平家の当主に o 安祥城が织田家の所属に o 佐久间盛重が安祥城に移动 o 松平家と今川家が120ヶ月の同盟を组む o 配下の忠诚度が上升 (未确认) * 定吉を追放する o 阿部定吉が追放される■ 织田家 * 侵攻する o 安祥城が织田家の所属に o 佐久间盛重が安祥城に移动 o 松平家と今川家が120ヶ月の同盟を组む * 侵攻しない o 変化なし■ 今川家 * 同盟を结ぶ o 安祥城が织田家の所属に o 佐久间盛重が安祥城に移动 o 松平家と今川家が120ヶ月の同盟を组む * 同盟を结ばない o 安祥城が织田家の所属に o 佐久间盛重が安祥城に移动2023-08-04 17:34:401