- 芝华塔尼欧的少年
-
金刚石、Si、SiO2、Ge等晶体的结构都是所谓金刚石型晶体结构。金刚石是碳的一种晶体,其中的碳原子之间都是以共价键结合起来的,故称其为共价键晶体。
(1)共价键晶体的形成:
金刚石这种共价键晶体的形成与碳原子的特殊电子结构有关。碳原子的原子序数是6,其电子结构是[He]2s22p2。因为碳原子的2s和2p亚壳层状态很接近,当附近有其他原子作用时,这两个亚壳层电子的状态即变得不好区分,则只能考虑主壳层——L壳层;由于L壳层共可容纳8个电子,则还有4个空位,于是碳原子就很容易与其他碳原子共用电子——形成共价键(属于s2p3杂化态),一个碳原子总共可以形成4个共价键,即可以与相邻的4个碳原子形成共价键,则构成正四面体分布的结构(共价键之间的夹角为109o28");采用这种原子排列的规律即可构成金刚石结构。晶体中一个原子周围的最近邻的原子数目称为配位数;金刚石晶体中碳原子的配位数为4,该数目较少,这是由于共价键的饱和性所决定的。
Si和Ge原子的电子结构也与碳原子的类似,其最外层的电子都是2s22p2状态。则Si和Ge晶体的结构也与金刚石晶体类似,即都是共价键晶体,并且它们的原子都具有正四面体分布的型式,即构成金刚石型晶体结构。
(2)共价键晶体的基本性质:
共价键中的电子与原子核之间存在着很强的Coulomb吸引力,故共价键的能量在所有价键中是最高的,因而共价键晶体具有很高的熔点和较高的弹性模量(即不容易发生弹性形变),脆而硬。金刚石的共价键能量很高(~7.4eV/原子),Si的共价键能量要低一些(~4eV/原子)。金刚石就是最坚硬的一种材料,熔点高达3550oC,弹性模量也高达827GPa。正由于共价键能量很高,所以共价键晶体就很难溶于几乎所有的溶剂中。也由于共价键的本质和高硬度,所以共价键晶体就很难延展,即无塑性、且易碎。
在电场作用下,共价键中的电子不能自由运动,因此共价键晶体的导电性很差。金刚石就是一种绝缘体,Si、Ge晶体在低温下也是绝缘体。不过,在较高温度时,由于共价键中电子热运动能量的升高,有的电子将有可能摆脱共价键的束缚、而成为自由电子,从而就可以产生导电(称为本征导电);显然,能够产生这种本征导电的温度与共价键能量有关,对于不同的共价晶体,共价键能量不同,温度也不相同。可见,共价键晶体实际上也就是一种半导体,只是产生本征导电的温度对于不同的晶体有所不同而已(金刚石在很高温度下也是半导体)。
(3)Bravais格子、复式晶格和晶格常数:
金刚石型晶体的晶胞是一个立方体,它是反映了晶体对称性(立方对称性)的一种体积最小的重复单元,或称为单胞。仔细观察该金刚石型结构的晶胞就会发现,这种结构也可以看成是由两套面心立方Bravais格子、沿着晶胞立方体对角线的方向错开(即相对移动)1/4对角线长度而套构起来的。晶体的原胞是只反映了晶体周期性的一种体积最小的重复单元,体积一般是小于或者等于晶胞的体积;面心立方格子的晶胞体积是其原胞体积的4倍。金刚石型晶体结构的Bravais格子形式就是面心立方格子,它的晶胞体积比原胞大4倍。
① 在面心立方晶胞内部的适当位置上(1/4体对角线上)、放置4个原子,就得到金刚石型晶格的晶胞。因为面心立方晶胞中共包含4个原子(一个顶角原子+3个面心原子),因此,每一个金刚石晶胞中共包含8个原子(面心立方的4个原子+4个内部的原子)。
② 每一个共价键的长度,即共价键正四面体中的顶角原子与中心原子之间的距离,也就是晶胞体对角线长度的1/4,并因此共价键正四面体的顶角原子和中心原子分别处于不同的面心立方格子中,它们是不等价的。值得注意,在面心立方体晶胞的顶角和面心上的原子都是等价原子;但这些原子与在晶胞内部的4个原子却是不等价的(因为它们共价键的具体取向不同,虽然所有共价键都是<111>方向)。因此,金刚石型晶体结构中虽然只有一种元素的原子,但是处于共价键正四面体顶角的和中心的原子并不等价(它们各自都构成一套面心立方格子),从而金刚石型晶格是所谓复式晶格。实际上,从原胞中的原子数目也可以看到这一点;因为金刚石型晶格的原胞形状也像面心立方晶格的一样,都是平行四边形,面心立方晶格的原胞中只有一个原子,而金刚石型晶格的原胞中却共包含2个原子,所以是复式晶格。
③晶胞的边长称为晶格常数。对于金刚石型立方晶系的晶体,因为晶胞是一个立方体,所以只有一个晶格常数。但对于其他非立方晶体胞的晶体,晶格常数就不只一个(2个或3个)。
- 寸头二姐
-
金刚石就是我们常说的钻石(钻石是它的俗称),它是一种由纯碳组成的矿物。金刚石是自然界中最坚硬的物质,因此也就具有了许多重要的工业用途,如精细研磨材料、高硬切割工具、各类钻头、拉丝模。金刚石还被作为很多精密仪器的部件。金刚石有各种颜色,从无色到黑色都有。它们可以是透明的,也可以是半透明或不透明。多数金刚石大多带些黄色。金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。金刚石在X射线照射下会发出蓝绿色荧光。金刚石仅产出于金伯利岩筒中。金伯利岩是它们的原生地岩石,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。如果将金刚石加热到1000℃时, 它会缓慢地变成石墨。1977年山东省临沭县岌山乡常林的一名村民在地里发现了中国最大的金刚石(约鸡蛋黄大小,右图)。世界上最大的工业用金刚石和宝石级金刚石均产于巴西,都超过3100克拉(1克拉=200毫克)其中宝石级金刚石的尺寸为10×6.5×5厘米,名叫“库利南”。上个世纪50年代,美国以石墨为原料,在高温高压下成功制造出人造金刚石。现在人造金刚石已经广泛用于生产和生活中,只是造出大颗粒的金刚石还很困难。
钻石,也叫金刚石,俗称“金刚钻”。化学式为c,正八面体,没有杂质时,无色透明,与氧反应时,也会生成二氧化碳,与石墨同属于碳的单质。是一种具有超硬、耐磨、热敏、传热导、半导体及透远等优异的物理性能,素有“硬度之王”和宝石之王的美称,金刚石的结晶体的角度是54度44分8秒。习惯上人们常将加工过的称为钻石,而未加工过的称为金刚石。在我国,金刚石之名最早见于佛家经书中。钻石是自然界中最硬物质,最佳颜色为无色,但也有特殊色,如蓝色、紫色、金黄色等。这些颜色的钻石稀有,是钻石中的珍品。印度是历史上最著名的金刚石出产国,现在世界上许多著名的钻石如“光明之山”,“摄政王”,“奥尔洛夫”均出自印度。金刚石的产量十分稀少,通常成品钻是采矿量的十亿分之一,因而价格十分昂贵。经过琢磨后的钻石一般有圆形、长方形、方形、椭圆形、心形、梨形、榄尖形等。世界上最重的钻石是1905年产于南非的“库里南”,重3106.3克拉,已被分磨成9粒小钻,其中一粒被称为“非洲之星”的库里南1号的钻石重量仍占世界名钻首位。
晶体结构:晶胞为面心立方结构,每个晶胞含有2组8个C原子。
金刚石常呈黄、褐、蓝、绿和粉红等色,但以无色的为特佳。世界上重量超过620克拉(合124克)的特大宝石级金刚石共发现10粒,其中最大的名库里南(Cullinan),重3106克拉(合621.35克),大小5×6.5×10厘米,1905年发现于南非的普雷米尔岩管。中国常林钻石,重158.786克拉,1977年发现于山东临沭县,列为世界名钻。世界金刚石主要产地有澳大利亚、扎伊尔、博茨瓦纳、前苏联、南非、巴西、纳米比亚、加纳、中非、塞拉利昂和中国等。
在摩氏硬度计中它是第十类。
附:我国产出的巨粒和大粒金刚石:
1971年以来的二十年中,在我国陆续发现了几颗50克拉以上和100克拉以上的金刚石,按发现时间的先后排列如下:
[1]1971年9月25日,在江苏省宿迁公路旁发现一颗重52.71克拉的金刚石。
[2]1977年12月21日, 在山东省临沭县常林大队,女社员魏振芳发现1颗重158.786克拉的优质巨钻,全透明,色淡黄,可称金刚石的“中国之最”。被命名为“常林钻石”
[3]1981年8月15日,在山东郯城陈埠发现一颗124.27克拉的巨粒金刚石。被命名为“陈埠一号”。
[4]1982年9月,在山东郯城陈埠发现一颗96.94克拉的金刚石。
[5]1983年5月,在山东郯城陈埠发现一颗92.86克拉的金刚石。
[6]1983年11月14日,在山东蒙阴发现一颗119.01克拉的巨粒金刚石,被命名为“蒙山一号”。
据1987年资料,中国主要金刚石成矿区有:①辽东—吉南成矿区,有中生代和中古生代两期金伯利岩。②鲁西、苏北、皖北成矿区,下古生代可能有多期金伯利岩。③晋、豫、冀成矿区,已在太行山、嵩山、五台山等地发现金伯利岩。④湘、黔、鄂、川成矿区,已在湖南沅水流域发现了4个具工业价值的金刚石砂矿。
湖南金刚石,产于湖南省常德丁家港、桃源、黔阳等地。湖南金刚石以砂矿为主,主要分布在沅水流域,分布零散,品位低,但质量好,宝石级金刚石约占40%。相传在明朝年间,湖南沅江流域就有零星的金刚石发现,大规模的寻矿则始于二十世纪五十年代。沅江整个水域均有金刚石分布,但有开采价值的仅常德丁家港、桃源县车溪冲、溆浦县(黔阳)新庄垅、沅陵县窑头等4处。
湖南金刚石的颜色深浅不一,内外颜色差异明显,呈带状、斑状分布。其褐色系列金刚石,晶体呈黄褐色,内部洁净,表面有大量的褐色斑点,其褐斑的颜色有黄色、黄褐色、褐色、黑色等,主要分布在金刚石的溶蚀面上,褐色主要由自然界放射性粒子的辐照造成。金刚石总体颗粒小,但质地较好,以单晶为主,约占总产量的98%;晶体比较完整,以八面体、十二面体、六八面体为多;绝大多数晶体浅色透明或呈黄、褐色等;粒重多小于28mg,一般为10.9~15mg;22%晶体中含包裹体;60%的晶体表面有裂纹,表面溶蚀不重。
历史
直到19世纪中叶,人们还把金刚石视为一种神奇的石头。在已知的全部大约4200种矿物中,金刚石为什么会最坚硬?金刚石是在何地、如何产生出来的?所有这些,当时的人们还都全然不知。
人类同金刚石打交道有悠久的历史。早在公元1世纪,当时罗马的文献中就有了关于金刚石的记载。那时,罗马人还没有把金刚石当作装饰用的宝石,只是利用它们无比的硬度,当作雕琢工具使用。
后来,随着技术的进步,金刚石才被当作宝石用于饰品,而且价格越来越昂贵。到了15世纪,在欧洲的一些城市,如巴黎、伦敦和安特卫普(比利时北部城市)等,已经能够看到一些匠人利用金刚石的粉末来研磨大块金刚石,对金刚石进行加工。
金刚石作为宝石越来越昂贵,然而,对金刚石的科学研究却相对比较迟缓。一个重要原因就是,长期以来始终未能发现储藏有金刚石的“矿山”,已经发现的金刚石全都是在印度和巴西等地
的河沙及碎石中靠运气采集到的,数量极少,十分稀罕。特别是高品质的金刚石,极其昂贵,只有王公贵族才享用得起。对如此昂贵的金刚石进行研究,在那样一种情况下,几乎是不可能的。
进入19世纪,情况才有了变化。1866年,住在南非一家农场的一位叫做伊拉兹马斯·雅可比的少年在奥兰治河滩上玩耍,无意中捡到一块重达21.25克拉(4.25克。克拉,宝石的重量单位,1克拉=0.2克)的金刚石原石。那粒金刚石立即被英国的殖民总督送到巴黎的万国博览会(1867~1868)上展览,并取名为“尤瑞卡”(希腊语,意思是“我找到了”)。
听到在南非发现金刚石的消息,一时间有成千上万的探矿者赶到奥兰治河,形成了一股寻找金刚石的狂潮。其中有一对姓伯纳特的兄弟,不久就非常幸运地在金伯利附近发现了一座金刚石矿。
发现金刚石矿意义十分重大,通过研究矿山的地质结构,便有可能知道在哪些地点有可能形成金刚石。
产地
如前面所介绍的,伯纳特兄弟于1870年发现了金伯利金刚石矿。正是这一发现,使人们知道了在哪种岩石中有可能含有金刚石。
原来,那是一种在远古时代的岩浆冷却以后所形成的火山岩。接着,研究者又发现,在这种火山岩中除了金刚石,还含有被称为石榴石和橄榄石的两种矿物。因此,在那些出产石榴石和橄榄石的地点,找到金刚石矿的可能性就比较大。于是,石榴石和橄榄石就成为寻找金刚石的“指示矿物”。
根据指示矿物来寻找金刚石矿的方法并不是在哪一天突然发现的。上世纪70年代,美国史密森研究所的地球化学家约翰·贾尼在仔细研究了石榴石和金刚石之间的关系后发表了他的研究结果。但是,在那之前,即上世纪50年代,德比尔斯公司的地质人员早就在根据指示矿物在世界各地寻找金刚石矿了。
目前在世界各地都发现了金刚石矿。其中,澳大利亚、刚果、俄罗斯、博茨瓦纳和南非是著名的五大金刚石产地。
美国马萨诸塞大学的地球物理学家史蒂文·哈格蒂博士在1999年研究了世界各地含有金刚石的熔岩的年代,结果发现,这些含有金刚石的熔岩至少是在过去7个不同的时期在各地喷出的岩浆所形成的,其中最古老的熔岩则是在大约10亿年前形成的。在这7个岩浆喷发时期中,以在非洲各地和巴西等地区于1.2亿年前至8000万年前喷出的岩浆中所含有的金刚石为最多。那时正值恐龙时代极盛期的中生代白垩纪。含有金刚石的熔岩,最晚的,是在2200万年以前喷出的岩浆形成的。至于在那以后形成的熔岩中是否含有金刚石,则还无法肯定。
金刚石的性质
把任何两种不同的矿物互相刻划,两者中必定会有一种受到损伤。有一种矿物,能够划伤其他一切矿物,却没有一种矿物能够划伤它,这就是金刚石。
金刚石为什么会有如此大的硬度呢?
直到18世纪后半叶,科学家才搞清楚了构成金刚石的“材料”。如前所述,早在公元1世纪的文献中就有了关于金刚石的记载,然而,在其后的1600多年中,人们始终不知道金刚石的成分是什么。
直到18世纪的70至90年代,才有法国化学家拉瓦锡(1743~1794)等人进行的在氧气中燃烧金刚石的实验,结果发现得到的是二氧化碳气体,即一种由氧和碳结合在一起的物质。这里的碳就来源于金刚石。终于,这些实验证明了组成金刚石的材料是碳。
知道了金刚石的成分是碳,仍然不能解释金刚石为什么有那样大的硬度。例如,制造铅笔芯的材料是石墨,成分也是碳,然而石墨却是一种比人的指甲还要软的矿物。金刚石和石墨这两种矿物为什么会如此不同?
这个问题,是在1913年才由英国的物理学家威廉·布拉格和他的儿子做出回答。布拉格父子用X射线观察金刚石,研究金刚石晶体内原子的排列方式。他们发现,在金刚石晶体内部,每一个碳原子都与周围的4个碳原子紧密结合,形成一种致密的三维结构。这是一种在其他矿物中都未曾见到过的特殊结构。而且,这种致密的结构,使得金刚石的密度为每立方厘米约3.5克,大约是石墨密度的1.5倍。正是这种致密的结构,使得金刚石具有最大的硬度。换句话说,金刚石是碳原子被挤压而形成的一种矿物。
金刚石的原材料
金刚石的原材料是远古时代的浮游生物!?
碳是一种常见的元素。动植物的体内,甚至空气中,都含有大量的碳。我们的身体也不例外,其中也有大量的碳原子。人体内含有大约18%的碳。
然而,碳虽然是地面上常见的元素,在地球内部,数量却十分稀少。通过对太阳光谱和坠落到地球上的陨石所进行的分析,据推测,组成地球的化学元素,最多的是氧,接下来依次是硅、铝和铁。这4种元素占到了地球总质量的87%;若再加上钙、钠和钾3种元素,则总共占到了96%。剩下的4%,才是包括碳在内的其他所有的元素。
此外,组成地球的元素,质量越大的元素越倾向于聚集在地球的中心。碳是比较轻的元素,集中在地表附近,因而在地球深处基本上不会有碳。日本东京大学物性研究所专门研究地球深部结构的八木健彦教授说:“地球自46亿年前诞生以来,内部存在的碳都是极其稀少的,因此,地球内部不会有很多形成金刚石的原材料。”
另一方面,科学家通过同位素分析还知道,在构成金刚石的材料中,至少有一部分是属于有机物遗留下来的碳。这意味着,在几亿到几十亿年前沉积到海底的浮游生物(动物和植物)的遗骸,随着构造板块的运动,它们从沉积层被带到地球的内部,那里就有可能形成金刚石。
八木教授说:“总之,碳在地球内部属于微量元素,数量如此少,金刚石极其稀少也就不足为奇了。”
- LuckySXyd
-
金刚石金刚石就是我们常说的钻石(钻石是它的俗称),它是一种由纯碳组成的矿物。金刚石是自然界中最坚硬的物质,因此也就具有了许多重要的工业用途,如精细研磨材料、高硬切割工具、各类钻头、拉丝模。还被作为很多精密仪器的部件。 金刚石有各种颜色,从无色到黑色都有,以无色的为特佳。它们可以是透明的,也可以是半透明或不透明。多数金刚石大多带些黄色。金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。金刚石在X射线照射下会发出蓝绿色荧光。金刚石仅产出于金伯利岩筒中。金伯利岩是它们的原生地岩石,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。如果将金刚石加热到1000℃时,它会缓慢地变成石墨。 1977年山东省临沭县岌山乡常林的一名村民在地里发现了中国最大的金刚石(约鸡蛋黄大小,右图)。世界上最大的工业用金刚石和宝石级金刚石均产于巴西,都超过3100克拉(1克拉=200毫克)。其中宝石级金刚石的尺寸为10×6.5×5厘米,名叫“库利南”,1905年发现于南非的普雷米尔岩管。中国常林钻石,重158.786克拉,1977年发现于山东临沭县,列为世界名钻。世界金刚石主要产地有澳大利亚、扎伊尔、博茨瓦纳、前苏联。 金刚石与石墨同属于碳的单质。是一种具有超硬、耐磨、热敏、传热导、半导体及透远等优异的物理性能,素有“硬度之王”和宝石之王的美称,金刚石的结晶体的角度是54度44分8秒。上个世纪50年代,美国以石墨为原料,在高温高压下成功制造出人造金刚石。现在人造金刚石已经广泛用于生产和生活中,只是造出大颗粒的金刚石还很困难。
[编辑本段]原料特点
金天然金刚石刚石的化学成分为C,与石墨同是碳的同质多象变体。在矿物化学组成中,总含有Si、Mg、Al、Ca、Mn、Ni等元素,并常含有Na、B、Cu、Fe、Co、Cr、Ti、N等杂质元素,以及碳水化合物。 金刚石矿物晶体构造属等轴晶系同极键四面体型构造。碳原子位于四面体的角顶及中心,具有高度的对称性。单位晶胞中碳原子间以同极键相连结,距离为1.54(10-10m)。常见晶形有八面体、菱形十二面体、立方体、四面体和六八面体等。 金刚石莫氏硬度为10,显微硬度为98 654.9MPa(100060kg/mm2),绝对硬度大于石英的1000倍,大于刚玉的150倍。 矿物性脆,贝壳状或参差状断口,在不大的冲击力下会沿晶体解理面裂开,具有平行八面体的中等或完全解理,平行十二面体的不完全解理。矿物质纯,密度一般为3 470-3 560kg/m3。 金刚石的颜色取决于纯净程度、所含杂质元素的种类和含量,极纯净者无色,一般多呈不同程度的黄、褐、灰、绿、蓝、乳白和紫色等;纯净者透明,含杂质的半透明或不透明;在阴极射线、X射线和紫外线下,会发出不同的绿色、天蓝、紫色、黄绿色等色的荧光;在日光曝晒后至暗室内发淡青蓝色磷光;金刚光泽,少数油脂或金属光泽,高折射率,一般为2.40-2.48。 金刚石的热导率一般为136.16w/(m·k),其中Ⅱa型金刚石热导率极高,在液氮温度下为铜的25倍,并随温度的升高而急剧下降,如在室温时为铜的5倍;比热容随温度上升而增加,如在-106℃时为399.84J/(kg·k),107℃时为472.27J/(kg·k);热膨胀系数极小,随温度上升而增高,如在-38.8℃时为0,0℃时为5.6×10-7;在纯氧中燃点为720~800℃,在空气中为850-1 000℃,在绝氧下2 000-3 000℃转变为石墨。 金刚石化学性质稳定,具有耐酸性和耐碱性,高温下不与浓HF、HCl、HNO3作用,只在Na2CO3、NaNO3、KNO3的熔融体中,或与K2Cr2O7和H2SO4的混合物一起煮沸时,表面会稍有氧化;在O、CO、CO2、H、Cl、H2O、CH4的高温气体中腐蚀。 金刚石还具有非磁性、不良导电性、亲油疏水性和摩擦生电性等。唯Ⅱb型金刚石具良好的半导体性能。 根据金刚石的氮杂质含量和热、电、光学性质的差异,可将金刚石分为Ⅰ型和Ⅱ型两类,并进一步细分为Ⅰa、Ⅰb、Ⅱa、Ⅱb四个亚类。Ⅰ型金刚石,特别是Ⅰa亚型,为常见的普通金刚石,约占天然金刚石总量的98%。Ⅰ型金刚石均含有一定数量的氮,具有较好的导热性、不良导电性和较好的晶形。Ⅱ型金刚石极为罕见,含极少或几乎不含氮,具良好的导热性和曲面晶体的特点。Ⅱb亚型金刚石具半导电性。由于Ⅱ型金刚石的性能优异,因此多用于空间技术和尖端工业。
[编辑本段]性质介绍
化学性质
在钻石晶体中,碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。由于钻石中的C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以钻石不仅硬度大,熔点极高,而且不导电。在工业上,钻石主要用于制造钻探用的探头和磨削工具,形状完整的还用于制造手饰等高档装饰品,其价格十分昂贵。
物理性质
钻石的摩氏硬度为10;由于硬度最高,钻石的切削和加工必须使用钻石粉来进行。钻石的密度为3.52g/cm3,折射率为2.417,色散率为0.044。
金刚石的硬度
摩氏硬度10,新摩氏硬度15,显微硬度10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。金刚石硬度具有方向性,八面体晶面硬度大于菱形十二面体晶面硬度,菱形十二面体晶面硬度大于六面体晶面硬度。 依照摩氏硬度标准(Mohs hardness scale)共分10级,钻石(金刚石)为最高级第10级;如小刀其硬度约为5.5、铜币约为3.5至4、指甲约为2至3、玻璃硬度为6。 等级1 滑石 等级2 石膏 等级3 方解石 等级4 萤石 等级5 磷灰石 等级6 正长石 等级7 石英 等级8 黄玉 等级9 刚玉 等级10 钻石 把任何两种不同的矿物互相刻划,两者中必定会有一种受到损伤。有一种矿物,能够划伤其他一切矿物,却没有一种矿物能够划伤它,这就是金刚石。 金刚石为什么会有如此大的硬度呢? 直到18世纪后半叶,科学家才搞清楚了构成金刚石的“材料”。如前所述,早在公元1世纪的文献中就有了关于金刚石的记载,然而,在其后的1600多年中,人们始终不知道金刚石的成分是什么。 直到18世纪的70至90年代,才有法国化学家拉瓦锡(1743~1794)等人进行的在氧气中燃烧金刚石的实验,结果发现得到的是二氧化碳气体,即一种由氧和碳结合在一起的物质。这里的碳就来源于金刚石。终于,这些实验证明了组成金刚石的材料是碳。 知道了金刚石的成分是碳,仍然不能解释金刚石为什么有那样大的硬度。例如,制造铅笔芯的材料是石墨,成分也是碳,然而石墨却是一种比人的指甲还要软的矿物。金刚石和石墨这两种矿物为什么会如此不同? 这个问题,是在1913年才由英国的物理学家威廉·布拉格和他的儿子做出回答。布拉格父子用X射线观察金刚石,研究金刚石晶体内原子的排列方式。他们发现,在金刚石晶体内部,每一个碳原子都与周围的4个碳原子紧密结合,形成一种致密的三维结构。这是一种在其他矿物中都未曾见到过的特殊结构。而且,这种致密的结构,使得金刚石的密度为每立方厘米约3.5克,大约是石墨密度的1.5倍。正是这种致密的结构,使得金刚石具有最大的硬度。换句话说,金刚石是碳原子被挤压而形成的一种矿物。
金刚石的光学性质
(1) 光学鉴定之亮度(Brilliance)金刚石因为具有极高的反射率,其反射临界角较小,全反射的范围宽,光容易发生全反射,反射光量大,从而产生很高的亮度。 (2) 闪烁(Scintillation)金刚石的闪烁就是闪光,即当金刚石或者光源 、 观察者相对移动时其表面对于白光的反射和闪光。无色透明、结晶良好的八面体或者曲面体聚形钻石,即使不加切磨也可展露良好的闪烁光。 (3) 色散或出火(Dispersion or fire)金刚石多样的晶面象三棱镜一样,能把通过折射 、反射和全反射进入晶体内部的白光分解成白光的组成颜色——红、橙、黄、绿、蓝、靛、紫等色光。 (4) 光泽(Luster)刚石出类拔萃般坚硬的、平整光亮的晶面或解理面对于白光的反射作用特别强烈,而这种非常特征的反光作用就叫作金刚光泽。
[编辑本段]分类情况
金刚石是碳在高温高压条件下的结晶体,是自然界最硬的矿物。其名称来源于希腊文“Adamas”,意为坚硬无敌。金刚石是一种稀有、贵重的非金属矿产,在国民经济中具有重要的作用。金刚石按用途分为两类:质优粒大可用作装饰品的称宝石级金刚石,质差粒细用于工业的称工业用金刚石。 宝石级金刚石,又称钻石,光泽灿烂,晶莹剔透,被誉为“宝石之王”,价值昂贵,是世界公认的第一货品,其占有程度和消费水平往往被视为是衡量个人和国家经济富裕程度的标志。达不到宝石级的金刚石(工业用金刚石),以其超硬性广泛用于机电、光学、建筑、交通、冶金、地勘、国防等工业领域和现代高、新技术领域。 金刚石按所含微量元素可分为Ⅰ型金刚石和Ⅱ型金刚石两个类型。Ⅰ型金刚石多为常见的普通金刚石。Ⅱ型金刚石比较罕见,仅占金刚石总量的1%~2%。Ⅱ型金刚石因常具有良好的导热性、解理性和半导体性等,多用于空间技术和尖端工业。具微蓝色彩的优质大粒Ⅱ型金刚石视为钻石中之珍品,如重3 106ct(Carat,克拉)世界著名的“库利南”钻石,即属此类。
- 西柚不是西游
-
与金刚石结构的晶体类似的碳了
金刚石的晶体结构
金刚石是典型的原子晶体,在这种晶体中的基本结构微粒是碳原子。每个碳原子都以 sp3杂化轨道与四个碳原子形成共价单键,键长为15.5nm,键角为109°28′,构成正四面体。每个碳原子位于正四面体的中心,周围四个碳原子位于四个顶点上,在空间构成连续的、坚固的骨架结构。因此,可以把整个晶体看成为一个巨大的分子。由于C—C键的键能大(为347kJ/mol),价电子都参与了共价键的形成,使晶体中没有自由电子,所以金刚石是自然界中最坚硬的固体,熔点高达3550℃,并且不导电。
2.石墨的晶体结构
石墨晶体是属于混合键型的晶体。石墨中的碳原子用sp2杂化轨道与相邻的三个碳原子以σ键结合,形成正六角形蜂巢状的平面层状结构,而每个碳原子还有一个2p轨道,其中有一个2p电子。这些p轨道又都互相平行,并垂直于碳原子sp2杂化轨道构成的平面,形成了大π键。因而这些π电子可以在整个碳原子平面上活动,类似金属键的性质。而平面结构的层与层之间则依靠分子间力(范德华力)结合起来;形成石墨晶体。石墨有金属光泽,在层平面方向有很好的导电性质。由于层间的分子间作用力弱,因此石墨晶体的层与层间容易滑动,工业上用石墨作固体润滑剂。
金刚石和石墨的晶体结构之二
世界上金刚石的主要产地在非洲,近年来我国也发现了有工业开采价值的金刚石矿。金刚石也可以人工合成,它是以石墨为原料,用FeS作溶剂,在高温高压的条件下制成的。人造金刚石在某些性能方面还胜过天然金刚石(如耐用性),在石油和地质钻探工作中已广泛采用以金刚石制成的钻具。
金刚石是物质中硬度最大的,比重平均为3.5,室温下对所有化学试剂都显惰性,在空气和氧中加热到800℃左右能燃烧生成二氧化碳,它的熔点(3570℃)是所有元素中最高的。
金刚石是典型的原子晶体,每个碳原子都以sp3杂化轨道与四个碳原子形成共价单键,组成正四面体排布。由于C—C键的键能大(为83kcal/mol),所有价电子都参予了共价键的形成,使晶体中没有自由电子,所以金刚石不仅硬度大、熔点高,并且不导电。
碳的另一种单质是石墨。石墨与金刚石性质大不相同,石墨很软,颜色灰黑,比重2.2,熔点3527℃,对化学试剂也显惰性,能导电。
石墨的性质决定于石墨晶体的结构。在石墨晶体中碳原子以sp2杂化轨道和邻近的三个碳原子形成共价单键并排列成六角平面的网状结构,这些网状结构又联成互相平行的平面,构成片层结构。在石墨晶体
为石墨片层之间是以分子间作用力结合起来的,而不是化学键。所以石墨片层之间容易滑动。那个未参予杂化的p电子比较自由,相当于金属晶体中的自由电子,所以石墨质软,具有导电导热等基本性质。
在隔绝空气的条件下将金刚石加热到 1000℃可转变成石墨:
这个转变是一个放热反应,说明石墨晶体的能量比金刚石低,所以石墨是更稳定的晶形。
由于石墨能抗高温(蒸发温度高)、抗化学药品,又能导电导热,所以大量用来制作电极、坩埚、电刷等,此外由于质软和具有片层结构,也用来制造铅笔芯、颜料和润滑剂。
- 北营
-
金刚石结构(Diamond structure )就是金刚石晶体的结构;具有这种类型的晶体结构即称为金刚石型结构。
金刚石是碳原子的一种结晶体。其中的碳原子都以共价键结合,原子排列的基本规律是每一个碳原子的周围都有4个按照正四面体分布的碳原子;这种结构可看成是由两套面心立方Bravais格子套构而成的,套构的方式是沿着单胞 [结晶学元胞]立方体对角线的方向移动1/4距离;也可以看成是由许多(111)的原子密排面沿着[111]方向、按照ABCABCABC···规律堆积起来而构成的;每个单胞中包含有8个原子,每个原胞中包含有2个不等价的原子,是一种复式晶格。重要的半导体Si和Ge就具有金刚石型的晶体结构。
除了单质硅和单质锗以外,具有类似金刚石结构的还有六方氮化硼、碳化硅。
- bikbok
-
(1)共价键晶体的形成:
金刚石这种共价键晶体的形成与碳原子的特殊电子结构有关。碳原子的原子序数是6,其电子结构是[He]2s22p2。因为碳原子的2s和2p亚壳层状态很接近,当附近有其他原子作用时,这两个亚壳层电子的状态即变得不好区分,则只能考虑主壳层——L壳层;由于L壳层共可容纳8个电子,则还有4个空位,于是碳原子就很容易与其他碳原子共用电子——形成共价键(属于s2p3杂化态),一个碳原子总共可以形成4个共价键,即可以与相邻的4个碳原子形成共价键,则构成正四面体分布的结构(共价键之间的夹角为109o28");采用这种原子排列的规律即可构成金刚石结构。晶体中一个原子周围的最近邻的原子数目称为配位数;金刚石晶体中碳原子的配位数为4,该数目较少,这是由于共价键的饱和性所决定的。
- 阿里阿涅德
-
哈也!分高,什么乱七八糟的东西都正在里面呢!
在高中化学内,必须记住的是:晶体硅(Si)、金刚石、碳化硅(SiC)(也叫金刚砂)、二氧化硅(SiO2);
其他可了解一下,晶体锗(Ge)、晶体硼(B)、氧化铝(Al2O3)(用于制砂纸)。
注意了,石墨晶体属于过渡型晶体,别被误导。
如果有疑问,直接问我,我就是高中化学教师。
- volcanoVol
-
金刚石、Si、SiO2、Ge等晶体的结构都是所谓金刚石型晶体结构。金刚石是碳的一种晶体,其中的碳原子之间都是以共价键结合起来的,故称其为共价键晶体。
- 天线宝宝说害怕
-
纯净的、单质状态有金刚石、石墨和C60(又称富勒烯或足球烯),此外,还有C36、C70、C84、C240、C540、碳纳米管等。它们是碳的同素异形体。而作为混合物无定形碳,又由4个成员组成:焦炭,炭黑,活性炭,木炭。
- 苏州马小云
-
空间网状结构,键角109°28"正四面体 金刚石、Si、SiO2 这三个足够了。我也是高中的,大概就讲这些 竞赛或大学课本讲的多,但用不到
- CPS小天才
-
金刚石晶体呈正四面体结构,高中阶段所学的大概只有硅晶体、碳化硅晶体和二氧化硅晶体了。
- 一自萧关起战尘
-
金刚石、Si、SiO2、Ge等晶体的结构都是金刚石型晶体结构
- 瑞瑞爱吃桃
-
原子晶体 高中需要掌握的有C(金刚石) Si SiO2 SiC