DNA图谱 / 问答 / 问答详情

光学显微镜 和 电子显微镜下分别能看到的细胞结构(及细胞器)

2023-06-28 06:31:23
共2条回复
小菜G的建站之路
光学显微镜和电子显微镜的区别是:光学显微镜只能看到某些细胞结构,如细胞壁、叶绿体、染色后的染色体、线粒体、细胞核等,电子显微镜可以看到细胞器的内部结构以及象核糖体这样较小的细胞器。
总之,光学显微镜看到细胞的显微结构,电子显微镜可以看到亚显微结构。
黑桃花

光学显微镜和电子显微镜的区别是:光学显微镜只能看到某些细胞结构,如细胞壁、叶绿体、染色后的染色体、线粒体、细胞核等,电子显微镜可以看到细胞器的内部结构以及象核糖体这样较小的细胞器。

相关推荐

光学显微镜电子显微镜有什么区别

光学显微镜电子显微镜是有原理不同、分辨率不同、成像方式不同、适用范围不同。具体如下:1、原理不同:光学显微镜是利用光的折射原理来观察样品的,而电子显微镜则是利用电子束的穿透和散射来观察样品的。2、分辨率不同:电子显微镜的分辨率比光学显微镜高得多,可以达到亚纳米级别,而光学显微镜的分辨率只能达到几百纳米级别。3、成像方式不同:光学显微镜的成像方式是透射成像,也就是通过透过样品的光来观察样品的,而电子显微镜的成像方式是散射成像,也就是通过电子束的散射来观察样品的。4、适用范围不同:光学显微镜主要适用于生物、材料等透明或半透明样品的观察,而电子显微镜则主要适用于金属、陶瓷、半导体等非透明或不易透明的样品的观察。
2023-06-28 02:27:101

电子显微镜原理

电子显微镜原理是电子光学。1958年,我国成功地研制了第一台电子显微镜。现在,随着计算机技术的发展,电子显微镜技术和功能也日益进步,放大倍数已超过1000多万倍,并在材料、生物、医学等领域得到广泛应用。电子显微镜可以获得许多引人入胜的显微图像,其逼真度和立体感令许多外行着迷。通过电子显微镜,人们可以观察到气味分子进入蝴蝶触须的途径。材料科学家利用电子显微镜可以从原子尺度研究得到材料的微观结构及化学成分的信息。生理学家可以通过电子显微镜对神经组织进行研究,还可以动态观察病毒进入细胞的过程。用显微镜检查计算机芯片制造过程中的焊接裂缝会十分清楚。
2023-06-28 02:27:491

什么是电子显微镜?

  【历史沿革】  1926年汉斯·布什研制了第一个磁力电子透镜。1931年厄恩斯特·卢斯卡和马克斯·克诺尔研制了第一台透视电子显微镜。展示这台显微镜时使用的还不是透视的样本,而是一个金属格。1986年卢斯卡为此获得诺贝尔物理学奖。1938年他在西门子公司研制了第一台商业电子显微镜。  1934年锇酸被提议用来加强图像的对比度。1937年第一台扫描透射电子显微镜推出。  一开始研制电子显微镜最主要的目的是显示在光学显微镜中无法分辨的病原体如病毒等。1949年可投射的金属薄片出现后材料学对电子显微镜的兴趣大增。  1960年代投射电子显微镜的加速电压越来越高来透视越来越厚的物质。这个时期电子显微镜达到了可以分辨原子的能力。  1980年代人们能够使用扫描电子显微镜观察湿样本。1990年代中电脑越来越多地用来分析电子显微镜的图像,同时使用电脑也可以控制越来越复杂的透镜系统,同时电子显微镜的操作越来越简单。  【简介】  电子显微镜由镜筒、真空装置和电源柜三部分组成。  镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。  电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏特之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。  样品可以稳定地放在样品架上,此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。  探测器用来收集电子的信号或次级信号。  真空装置用以保障显微镜内的真空状态,这样电子在其路径上不会被吸收或偏向,由机械真空泵、扩散泵和真空阀门等构成,并通过抽气管道与镜筒相联接。  电源柜由高压发生器、励磁电流稳流器和各种调节控制单元组成。
2023-06-28 02:28:111

电子显微镜在医学中的应用有哪些方面?

电子显微镜在医学中的应用为:1、用电子电子显微镜描绘神经回路。2、电子显微镜观察DNA形态。3、扫描软骨细胞的电子电子显微镜图像。4、通过电子电子显微镜发现动物肾脏早期纤维化。5、可观察真核细胞的细胞器。电子显微镜由镜筒、真空系统和电源柜三部分组成,它的分辨能力虽然远胜于光学显微镜,但电子显微镜因需在真空条件下工作,所以很难观察活的生物,而且电子束的照射也会使生物样品受到辐照损伤。扩展资料:电子显微镜工作原理是:电子枪发射出的电子束是波动前进的,经过电磁透镜后则变成向右呈螺旋状依光轴前进,电子束透过标本之后,再经过电磁透镜系统,此时标本上超微结构已得到不同程序的放大。高精度的透射电子显微镜有多个电磁透镜,它们分别是物镜衍射镜、中间镜、投射镜,电磁物镜内装有可变光阑,可以进一步提高电子显微镜的分辨力,使用衍射镜可以形成电子衍射像,以便于摄像,中间镜内装有光阑。
2023-06-28 02:28:201

电子显微镜是谁发明的

1、德国柏林工科大学的年轻研究员卢斯卡于1932年制作了世界上第一台电子显微镜; 2、电子显微镜,由镜筒、真空装置和电源柜三部分组成,该技术的应用是建立在光学显微镜的基础之上的,透射电子显微镜在光学显微镜的基础上放大了1000倍; 3、按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等,经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。
2023-06-28 02:28:291

电子显微镜和光学显微镜区别

电子显微镜和光学显微镜的区别主要有以下四点:一、光源不同光学显微镜采用可见光作为光源,电子显微镜采用电子束作为光源。二、成像原理不同光学显微镜利用几何光学成像原理进行成像,电子显微镜利用高能量电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的信号探测器接受物理信号转换成图像信息。三、分辨率不同光学显微镜因为光的干涉与衍射作用,分辨率只能局限于0.2-0.5um之间。电子显微镜因为采用电子束作为光源,其分辨率可达到1-3nm之间,因此光学显微镜的组织观察属于微米级分析,电子显微镜的组织观测属于纳米级分析。四、景深不同一般光学显微镜的景深在2-3um之间,因此对样品的表面光滑程度具有极高的要求,所以制样过程相对比较复杂。电子显微镜电镜的景深则可高达几个毫米,因此对样品表面的光滑程度几何没有任何要求,样品制备比较简单。有些样品几乎无需制样,体式显微镜虽然也具有比较大的景深。
2023-06-28 02:28:381

光学显微镜与电子显微镜有什么区别

光学显微镜与电子显微镜是两种不同的显微镜,二者在定义上,分类上,组成结构上有区别。1、定义不同光学显微镜(英文Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。2、分类不同光学显微镜有多种分类方法,按使用目镜的数目可分为三目,双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微分干涉对比显微镜等。电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。3、组成结构不同显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。电子显微镜由镜筒、真空装置和电源柜三部分组成。扩展资料:光学显微镜的原理:显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。参考资料来源:百度百科-光学显微镜参考资料来源:百度百科-电子显微镜
2023-06-28 02:28:471

电子显微镜怎么用

问题一:电子显微镜的使用方法 它与透过样品的电子束入射锥角和波长有关。可见光的波长约为300~700纳米,而电子束的波长与加速电压有关。当加速电压为50~100千伏时,电子束波长约为 0.0053~0.0037纳米。由于电子束的波长远远小于可见光的波长,所以即使电子束的锥角仅为光学显微镜的1%,电子显微镜的分辨本领仍远远优于光学显微镜。 电子显微镜由镜筒、真空系统和电源柜部分组成。镜筒主要有电子枪、电子透镜、样品架、荧光屏和照相机构等部件,这些部件通常是自上而下地装配成一个柱体;真空系统由机械真空泵、扩散泵和真空阀门等构成,并通过抽气管道与镜筒相联接;电源柜由高压发生器、励磁电流稳流器和各种调节控制单元组成。 电子透镜是电子显微镜镜筒中最重要的部件,它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与玻璃凸透镜使光束聚焦的作用相似,所以称为电子透镜。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。 电子枪是由钨丝热阴极、栅极和阴极构成的部件。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。 电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与 X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。 投射式电子显微镜因电子束穿透样品后,再用电子透镜成像放大而得名。它的光路与光学显微镜相仿。在这种电子显微镜中,图像细节的对比度是由样品的原子对电子束的散射形成的。样品较薄或密度较低的部分,电子束散射较少,这样就有较多的电子通过物镜光栏,参与成像,在图像中显得较亮。反之,样品中较厚或较密的部分,在图像中则显得较暗。如果样品太厚或过密,则像的对比度就会恶化,甚至会因吸收电子束的能量而被损伤或破坏。 透射式电子显微镜镜筒的顶部是电子枪,电子由钨丝热阴极发射出、通过第一,第二两个聚光镜使电子束聚焦。电子束通过样品后由物镜成像于中间镜上,再通过中间镜和投影镜逐级放大,成像于荧光屏或照相干版上。 中间镜主要通过对励磁电流的调节,放大倍数可从几十倍连续地变化到几十万倍;改变中间镜的焦距,即可在同一样品的微小部位上得到电子显微像和电子衍射图像。为了能研究较厚的金属切片样品,法国杜洛斯电子光学实验室研制出加速电压为3500千伏的超高压电子显微镜。 扫描式电子显微镜的电子束 *** 过样品,仅在样品表面扫描激发出次级电子。放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。显像管的偏转线圈与样品表面上的电子束保持同步扫描,这样显像管的荧光屏就显示出样品表面的形貌图像,这与工业电视机的工作原理相类似。 扫描式电子显微镜的分辨率主要决定于样品表面上电子束的直径。放大倍数是显像管上扫描幅度与样品上扫描幅度之比,可从几十倍连续地变化到几十万倍。扫描式电子显微镜不需要很薄的样品;图像有很强的立体感;能利用电子束与物质相互作用而产生的次级电子、吸收电子和 X射线等信息分析物质成分。 扫描式电子显微镜的电子枪和聚光镜与透射式电子显微镜的大致相同,但是为了使电子束更细,在聚光镜下又增加了物镜和消像散器,在物镜内部还装有两组互相垂直的扫描线圈。物镜下面的样品室内装有可以移动、转动和倾斜的样品台。...>> 问题二:怎么使用电子显微镜 分扫描电镜和透射电镜 都要经过专门培训的专业人员才可以使用 一般学校科研机构都有专门人员负责管理和使用 一般人要使用不能直接操作,只能把待观察样品做好送去让专业人员操作 电子显微镜不是普通光学显微镜,不是照着说明书做就可以的了 需要很多的经验才能用得好 问题三:电子显微镜如何用?求高人回答! 你这个和正常的显微镜用法一样,不过在眼睛目镜的位置加一个电子放大的视频输出设备就可以了,输出到显示器上就可以了,不是专业的设备,普及型观察用,一般医院用的多。好的是电子微调的,你的是手动调整的精度不足。国产:凤凰牌。底下有个光源。参考意见。 问题四:如何用电子显微镜找到螨虫 螨虫一般寄生在人脸上,你找个出油比较厉害脸上有痘痘的人,用挖耳勺一样的东西从他脸上在油区划一下。然后把油均匀的涂到一个玻璃片上(载玻片),放到显微镜的载物台上,调整焦距观察即可。应该可以找到几只螨虫。 地上和空气中的也需要把它弄到玻璃上才可以。 问题五:科学家是怎样在使用电镜看到细胞膜 通过电镜观察 问题六:电子显微镜是用来测量什么的 肉眼看不到的东西都可以测量,电子显微镜是一个大类,里面包含了很多很多几十种不同的显微镜,倍数唬同,测量的用途也不同。 问题七:电子显微镜的用途? 视频显微镜也可叫做数码显微镜 最早的雏形应该是相机型显微镜,将显微镜下得到的图像通过小孔成象的原理,投影到感光照片上,从而得到图片。或者直接将照相机与显微镜对接,拍摄图片。随着CCD摄像机的兴起,显微镜可以通过其将实时图像转移到电视机或者监视器上,直接观察,同时也可以通过相机拍摄。80年代中期,随着数码产业以及电脑业的发展,显微镜的功能也通过它们得到提升,使其向着更简便更容易操作的方面发展。到了90年代末,半导体行业的发展,晶圆要求显微镜可以带来更加配合的功能,硬件与软件的结合,智能化,人性化,使显微镜在工业上有了更大的发展。 荧光显微镜  在萤光显微镜上,必须在标本的照明光中,选择出特定波长的激发光,以产生萤光,然后必须在激发光和萤光混合的光线中,单把萤光分离出来以供观察。因此,在选择特定波长中,滤光镜系统,成为极其重要的角色。   萤光显微镜原理:   (A) 光源:光源幅射出各种波长的光(以紫外至红外)。   (B) 激励滤光源:透过能使标本产生萤光的特定波长的光,同时阻挡对激发萤光无用的光。   (C) 萤光标本:一般用萤光色素染色。   (D) 阻挡滤光镜:阻挡掉没有被标本吸收的激发光有选择地透射萤光,在萤光中也有部分波长被选择透过。 以紫外线为光源,使被照射的物体发出荧光的显微镜。电子显微镜是在1931年在德国柏林由克诺尔和哈罗斯卡首先装配完成的。这种显微镜用高速电子束代替光束。由于电子流的波长比光波短得多,所以电子显微镜的放大倍数可达80万倍,分辨的最小极限达0.2纳米。1963年开始使用的扫描电子显微镜更可使人看到物体表面的微小结构。   显微镜被用来放大微小物体的图像。一般应用于对生物、医药、微观粒子等观测。   (1)利用微微动载物台之移动,配全目镜之十字座标线,作长度量测。   (2)利用旋转载物台与目镜下端之游标微分角度盘,配全合目镜之址字座标线,作角度量测,令待测角一端对准十字线与之重合,然后再让另一端也重合。   (3)利用标准检测螺纹的节距、节径、外径、牙角及牙形等尺寸或外形。   (4)检验金相表面的晶粒状况。   (5)检验工件加工表面的情况。   (6)检测微小工件的尺寸或轮廓是否与标准片相符。 偏光显微镜  偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。 偏振光显微镜 (1)偏光显微镜的特点   将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。   (2)偏光显微镜的基本原理   偏光显微镜的原理比较复杂,在此不作过多介绍,偏光显微镜必须具备以下附件:起偏镜,检偏镜,补偿器或相位片,专用无应力物镜,旋转载物台。 超声波显微镜  超声波扫描显微镜的特点在于能够精确的反映出声波和微小样品的弹性介质之间的相互作用,并对从样品内部反馈回来的信号进行分析!图像上(C-Scan)的每一个象素对应着从样品内某一特定深度的一个二维空间坐标点上的信号反馈,具有良好聚焦功能的Z.A传感器同时能够发射和接收声波信号。一副完整的图像就是这样逐点逐行对样品扫描而成的。反射回来的超声波被附加了一个正的或负的振幅,这样就可以用信号传输的时间反映样品的深度。用户屏幕上的数字波形展示出接收到的反馈信息(A-Scan)。设置相应的门电路,用这种定量的时间差测......>> 问题八:怎么用电子显微镜观察噬菌体 建议先进行灭活,制成标本后,再用电镜观测,有条件的可以进行冰冻处理。国外有专门进行生物研究的电子显微镜,有兴趣的可以去google学术。另外,在观测时要尽快拍照,因为电子束对生物样品损坏很大。 问题九:生物什么需要使用电子显微镜才能观察的到 病毒。细菌光学显微镜就可以。
2023-06-28 02:29:211

电子显微镜的使用方法 电子显微镜的使用方法是什么

1、首先要转动转换器,使低倍物镜对准通光孔,物镜前端与载物台要保持2厘米的距离。 2、接着把一个较大的光圈对准通光孔,这是为了使光源更好的与物体接触,方便呈像 ,使图像更清晰,左眼注视目镜,右眼睁开,转动反光镜,使光线通过通光孔反射到镜筒内.直到看到较亮的视野再停止。 3、将所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心,这样可以使图像更加清晰。 4、转动粗准焦螺旋,使镜筒缓缓下降,眼睛从旁边看着,直到物镜接近玻片标本为止,以免物镜碰到玻片标本。 5、左眼向目镜内看,同时反方向转动粗准焦螺旋,使镜筒缓缓上升,直到看清物像为止.再略微转动细准焦螺旋,使看到的物像更加清晰,这就是电子显微镜的使用方法。
2023-06-28 02:29:421

光学显微镜和电子显微镜的区别

  光学显微镜和电子显微镜的区别是:光学显微镜只能看到某些细胞结构,如细胞壁、叶绿体、染色后的染色体、线粒体、细胞核等,电子显微镜可以看到细胞器的内部结构以及象核糖体这样较小的细胞器。   电子显微镜所用的照明源是电子枪发出的电子流,而光学显微镜的照明源是可见光(日光或灯光),由于电子流的波长远短于光波波长,故电子显微镜的放大及分辨率显著地高于光镜。   电子显微镜中起放大作用的物镜是电磁透镜(能在中央部位产生磁场的环形电磁线圈),而光学显微镜的物镜则是玻璃磨制而成的光学透镜。电子显微镜中的电磁透镜共有三组,分别与光学显微镜中聚光镜、物镜和目镜的功能相当。   总之,光学显微镜看到细胞的显微结构,电子显微镜可以看到亚显微结构。
2023-06-28 02:29:511

电子显微镜下可以看到什么?

在电子显微镜下能看到线粒体、内质网、中心体、叶绿体,高尔基体、核糖体等细胞器,在光学显微镜下能看到质体与液泡。通常将细胞器分为:线粒体;叶绿体;内质网;高尔基体;溶酶体;液泡,核糖体,中心体。其中,叶绿体只存在于植物细胞,液泡只存在于植物细胞和低等动物,中心体只存在于低等植物细胞和动物细胞。在中学阶段,细胞核并不承认为细胞器,而在大学阶段,细胞核则被认为是细胞中最大,最重要的细胞器。另外在细胞中,胞质溶胶约占细胞总体积55%,其中存在几千种酶。大多数中间代谢(包括糖酵解、糖原异生作用以及糖类、脂肪酸、核苷酸和氨基酸的合成)都是在胞质溶胶中进行的。细胞质基质实质上是一个在不同层次均有高度组织结构的系统,而不是一种简单的溶液。然而,在普通透射电子显微镜下却看不到细胞质基质内的有形构造。扩展资料:电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。对于电子显微镜分,辨能力是其的重要指标,电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示,即称为该仪器的最高点分辨率:d=δ。显然,分辨率越高,即d的数值(为长度单位)愈小,则仪器所能分清被观察物体的细节也就愈多愈丰富,也就是说这台仪器的分辨能力或分辨本领越强。对于光学显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大率。光学显微镜显微镜观察物体时通常视角甚小,因此视角之比可用其正切之比代替。参考资料:百度百科-细胞器百度百科-光学显微镜百度百科-电子显微镜
2023-06-28 02:29:581

电子显微镜的工作原理和使用方法

电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(tem)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜(scanning electron microscope,sem)。
2023-06-28 02:30:141

光学显微镜与电子显微镜有什么区别

光学显微镜与电子显微镜是两种不同的显微镜,二者在定义上,分类上,组成结构上有区别。1、定义不同光学显微镜(英文Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。2、分类不同光学显微镜有多种分类方法,按使用目镜的数目可分为三目,双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微分干涉对比显微镜等。电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。3、组成结构不同显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。电子显微镜由镜筒、真空装置和电源柜三部分组成。扩展资料:光学显微镜的原理:显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。参考资料来源:百度百科-光学显微镜参考资料来源:百度百科-电子显微镜
2023-06-28 02:30:258

电子显微镜的放大倍数一般是多少?

电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示.20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米).现在电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵.
2023-06-28 02:31:131

电子显微镜是谁发明的

电子显微镜的发明 恩斯特·奥古斯特·弗里德里希·鲁斯卡(德语:Ernst August Friedrich Ruska,1906年12月25日生于德国巴登市海德堡—1988年5月27日柏林),西德物理学家,电子显微镜的发明者,1986年获诺贝尔物理学奖。 鲁斯卡研制电子显微镜的历史实际上可以追溯到19世纪末。人们在研究阴极射线的过程中发现阴极射线管的管壁往往会出现阳极的阴影。1987年布劳恩设计并制成了最初的示波管。这就为电子显微镜的诞生准备了技术条件。1926年布什(H.Busch)发表了有关磁聚焦的论文,指出电子束通过轴对称电磁场时可以聚焦,如同光线通过透镜时可以聚焦一样,因此可以利用电子成像。这为电子显微镜做了理论上的准备。限制光学显微镜分辨率的主要因素是光的波长。由于电子束波长比光波波长短得多,可以预期运用电子束成像的电子显微镜得到比光学显微镜高得多的分辨率。 恩斯特·鲁斯卡1906年12月25日生于德国巴登市海德堡。他的父亲是柏林大学历史学教授.1925年-1927年,恩斯特上中学时就喜欢工程.并在慕尼黑两家公司学习电机工程。后随父到了柏林,1928年夏进入柏林恰洛廷堡的柏林技术大学学习,在大学期间参加过高压实验室工作,从事阴极射线示波管的研究。从1929年开始,鲁斯卡在组长克诺尔(M.Knoll)的指导下进行电子透镜实验。这对鲁斯卡的成长很有益处。 1928~1929年期间,鲁斯卡在参与示波管技术研究工作的基础上,进行了利用磁透镜和静电透镜使电子束聚焦成像的实验研究,证实电子束照射下直径为0.3毫米的光缆可以产生低倍(1.3倍)的像,并验证了透镜成像公式。这就为创制电子显微镜奠定了基础。1931年,克诺尔和鲁斯卡开始研制电子显微镜,他们用实验证明了为要获得同样的焦距,使用包铁壳的线圈,其安装的线圈匝数要比不包铁壳的线圈小得多。1931年4~6月,他们采用二级磁透镜放大的电子显微镜获得了16倍放大率。通过计算他们认识到,根据得布罗意的物质波理论,电子波长比光波波长短5个数量级,电子显微镜可能实现更高的分辨率。他们预测未来的电子显微镜,当加速电压为7.5万伏,孔径角为2×10-2弧度时,衍射限制的分辨率将是0.22纳米。 1932~1933年间,鲁斯卡和合作者波里斯(Borries)进一步研制了全金属镜体的电子显微镜,采用包有铁壳的磁线圈作为磁透镜。为了使磁场更加集中,他们在磁线圈铁壳空气间隙中镶嵌非磁导体铜环,并将铁磁上、下壳体内腔的端部做成漏斗形(磁极靴),使极靴孔径和间隙均减小到2毫米,而且焦距减小到3毫米。1932年3月,波里斯和鲁斯卡将此项磁透镜成果申请了德国专利。 1933年,鲁斯卡在加速电压7.5万伏下,运用焦距为3毫米的磁透镜获得12000倍放大率,还安装了聚光镜可以在高放大率下调节电子束亮度。他拍摄了分辨率优于光学显微镜的铝箔和棉丝的照片,并试验采用薄试样使电子束透射而形成电子放大像。 1934年鲁斯卡以题为《电子显微镜的磁物镜》的学位论文获得柏林技术大学工学博士学位。1934~1936年,鲁斯卡继续进行改进电子显微镜的实验研究。他采用了聚光镜以产生高电流密度电子束来实现高倍放大率成像,采用物镜和投影镜二级放大成像系统。可是,当时他们的发明并未立即获得学术界和有关部门承认,鲁斯卡和波里斯努力地说服人们,使他们相信可以研制出性能超过光学显微镜的电子显微镜。他们多次到政府和工业研究部门以争取财政支持。经过3年的奔走,1937年春西门子-哈斯克公司终于同意出资建立电子光学和电子显微镜实验室。许多青年学者纷纷前来参加研究工作。 恩斯特·鲁斯卡从1937年开始着手研制商品电子显微镜,1938年制成两台电子显微镜,且带有聚光镜,配以具有极靴的物镜及投影镜,备有更换样品、底片的装置,可获得30000倍放大率的图像。恩斯特·鲁斯卡的弟弟哈尔墨特·鲁斯卡(Helmut Ruska)和其他医学家立刻用来研究噬菌体等,获得很大的成功。1939年西门子公司制造的第一台商品电子显微镜终于问世。同年,电子显微镜首次在莱比锡国际博览会上展出,引起广泛注意。1940年,在恩斯特·鲁斯卡提议下,西门子-哈尔墨特·鲁斯卡任主任。实验室装备了4台电子显微镜,接纳各国学者前来做研究工作,推动了电子显微镜在金属、生物、医学等各个领域的应用与发展。在鲁斯卡工作的影响下,欧洲各国科学家先后开始了电子显微镜的研究和制造工作。 恩斯特·鲁斯卡及其合作者几十年孜孜不倦地为改进电子显微镜辛勤工作,为现代科学的发展做出了重要贡献。电子显微镜为人们观察物质微观世界开辟了新的途径。在50年代中期制成的中、高分辨率电子显微镜,能够观察浸提缺陷,促进了固体物理、金属物理和材料科学的发展。在70年代出现的超高分辨率电子显微镜使人们能够直接观察原子。这对于固体物理、固体化学、固体电子学、材料科学、地质矿物学和分子生物学的发展起了巨大的推动作用。 继他之后,不仅有高压电镜和扫描电镜问世,而且还出现了另一种原理完全不同的显微镜,这就是1982年发明的扫描隧道显微镜。扫描隧道显微镜是通向微观世界的又一项有力武器。 (以上是趣味科学丛书中《奇妙的发明》下所录用的)
2023-06-28 02:31:234

电子显微镜下都能看到什么?

在电子显微镜下能看到线粒体、内质网、中心体、叶绿体,高尔基体、核糖体等细胞器,在光学显微镜下能看到质体与液泡。通常将细胞器分为:线粒体;叶绿体;内质网;高尔基体;溶酶体;液泡,核糖体,中心体。其中,叶绿体只存在于植物细胞,液泡只存在于植物细胞和低等动物,中心体只存在于低等植物细胞和动物细胞。在中学阶段,细胞核并不承认为细胞器,而在大学阶段,细胞核则被认为是细胞中最大,最重要的细胞器。另外在细胞中,胞质溶胶约占细胞总体积55%,其中存在几千种酶。大多数中间代谢(包括糖酵解、糖原异生作用以及糖类、脂肪酸、核苷酸和氨基酸的合成)都是在胞质溶胶中进行的。细胞质基质实质上是一个在不同层次均有高度组织结构的系统,而不是一种简单的溶液。然而,在普通透射电子显微镜下却看不到细胞质基质内的有形构造。扩展资料:电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。对于电子显微镜分,辨能力是其的重要指标,电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示,即称为该仪器的最高点分辨率:d=δ。显然,分辨率越高,即d的数值(为长度单位)愈小,则仪器所能分清被观察物体的细节也就愈多愈丰富,也就是说这台仪器的分辨能力或分辨本领越强。对于光学显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大率。光学显微镜显微镜观察物体时通常视角甚小,因此视角之比可用其正切之比代替。参考资料:百度百科-细胞器百度百科-光学显微镜百度百科-电子显微镜
2023-06-28 02:31:421

电子显微镜的发展历史

1926年汉斯·布什研制了第一个磁力电子透镜。世界第一台电子显微镜1931年厄恩斯特·卢斯卡和马克斯·克诺尔研制了第一台透视电子显微镜。展示这台显微镜时使用的还不是透视的样本,而是一个金属格。1986年卢斯卡为此获得诺贝尔物理奖。1934年锇酸被提议用来加强图像的对比度。1937年第一台扫描透射电子显微镜推出。一开始研制电子显微镜最主要的目的是显示在光学显微镜中无法分辨的病原体如病毒等。1938年他在西门子公司研制了第一台商业电子显微镜。1949年可透射的金属薄片出现后材料学对电子显微镜的兴趣大增。电子显微镜1960年代透射电子显微镜的加速电压越来越高来透视越来越厚的物质。这个时期电子显微镜达到了可以分辨原子的能力。电子显微镜观察区间1980年代人们能够使用扫描电子显微镜观察湿样本。1990年代中电脑越来越多地用来分析电子显微镜的图像,同时使用电脑也可以控制越来越复杂的透镜系统,同时电子显微镜的操作越来越简单。
2023-06-28 02:31:581

光学显微镜与电子显微镜有什么区别

光学显微镜与电子显微镜是两种不同的显微镜,二者在定义上,分类上,组成结构上有区别。1、定义不同光学显微镜(英文OpticalMicroscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。2、分类不同光学显微镜有多种分类方法,按使用目镜的数目可分为三目,双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微分干涉对比显微镜等。电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。3、组成结构不同显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。电子显微镜由镜筒、真空装置和电源柜三部分组成。扩展资料:光学显微镜的原理:显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。参考资料来源:百度百科-光学显微镜参考资料来源:百度百科-电子显微镜
2023-06-28 02:32:253

电子显微镜的分辨率是多少?

电子显微镜的分辨率(约0.2纳米)远高于光学显微镜的分辨率(约200纳米)
2023-06-28 02:32:351

电子显微镜和光学显微镜的区别及用途

你好,很高兴为你解答!【电子显微镜】电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。【光学显微镜】光学显微镜有多种分类方法:智泰按使用目镜的数目可分为三目,双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微分干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目连续变倍体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。粗准焦螺旋:大范围上下调动镜筒。【参考】http://baike.baidu.com/link?url=fQjFxUzzOpX4WvDROS4nDtu4v9STU6EZaMPhQq2j51fDrh5T5d3dGZiWvvYYBUpnwkCZstCV3x09F578VTUBV_http://baike.baidu.com/link?url=qDQu_OWnPTctOICKNGSaKfjnsvBeykvkezpbSnc5HibSiTonv8GrGMRgzBpNdzH4FGrd2lJTYDCkjuTgEfN1nK
2023-06-28 02:32:441

电子显微镜是怎么被发明的?

除了动植物以外,自然界还有一个庞大的生物世界,就是微生物。它们都很小,小到把几亿个微生物堆积在一起时,也只有一粒米那么大小。显微镜的发明打开了人类通向微生物等微观世界的大门。1590年,杨斯岑兄弟发明了世界上最早的显微镜。17世纪中期人类发明了光学显微镜,18世纪荷兰人列文·虎克借助显微镜发现了组成动植物身体的细胞,逐步认识了细胞核及其作用,这是显微镜发展史上的第一个里程碑。随着对细胞的不断深入研究,光学显微镜的局限性日益明显。由于它以可见光作为光源,分辨能力受到光波影响,无法进一步了解细胞的微细结构。人们期待分辨本领更高、功能更强的超级显微镜。1931年,生于德国海德尔堡的工程师恩斯特·鲁斯卡在其组长马克斯·克诺尔博士指导下对显微镜进行了自16世纪荷兰人加装第二块透镜以来最重要的革新:他们研制出了一台电子显微镜。这台显微镜能将物体放大十几倍。1932年,恩斯特·鲁斯卡致力于提高电子显微镜的分辨本领,在德国《物理学进展》杂志上发表了以“几何电子光学的进展”为题的论文,第一次使用电子显微镜的名称,所以1932年被认为是电子显微镜的发明年份。此后电子显微镜成了20世纪后期科学家对微观物质结构和生命形式进行探索的强有力的工具。有两次“发现”为克诺尔和鲁斯卡的研究奠定了基础。1924年,法国物理学家路易·德布罗意发现电子束呈波状运动,但其波长要比光的波长短得多。德布罗意的发现意味着如果能找到使电子束聚集的方法,就能将其用来放大物像。两年后,德国物理学家汉斯·布施发现了调节焦点所产生的效果:电磁场或静电场中不再有电子了。实际上,电磁场或静电场成了一个透镜,电子变成了光。结合两者,电子显微镜被发明并以惊人的速度发展。20世纪30年代末,德国西门子公司、英国的大都会·维克尔公司和美国无线电公司等这样的著名高科技公司,完善了电子透镜的基本原理,将电子束聚集在真空腔内形成的电磁场或静电场中,从而达到放大物体的目的。1938年,可将照片放大3万倍的电子显微镜研制成功。此后,出现了一种改进型的电子显微镜,这种显微镜可将物体放大10万倍。伴随着技术和设备的不断改进和提高,人们终于实现了观察原子的理想。光学显微镜的最高分辨本领约为200纳米,与此相对应的最高有效放大倍数是1500倍。现代高分辨电子显微镜的分辨本领已达0.1纳米、放大倍数在150万倍以上,这相当于把一个直径4米的气球放大到地球那么大。它还可以把原子放大成一个个小馒头那么大、那么清晰可见。这里,要提一句的是,从19世纪末到20世纪20年代,尽管已有不少杰出的科学家发现了电子束可以聚焦并得到了成像公式,但为什么没有引导他们让电子束代替光束发明电子显微镜呢?主要原因之一是他们远离科学实验。而鲁斯卡敢于排除人们的偏见和责难,勇于实践,终于发明了电子显微镜。
2023-06-28 02:32:541

电子显微镜的优缺点分别是什么

优点:1、分辨率高,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。2、透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。缺点:1、在电子显微镜中样本必须在真空中观察,因此无法观察活样本。随着技术的进步,环境扫描电镜将逐渐实现直接对活样本的观察;2、在处理样本时可能会产生样本本来没有的结构,这加剧了此后分析图像的难度;3、由于电子散射能力极强,容易发生二次衍射等;4、由于为三维物体的二维平面投影像,有时像不唯一;5、由于透射电子显微镜只能观察非常薄的样本,而有可能物质表面的结构与物质内部的结构不同;6、超薄样品(100纳米以下),制样过程复杂、困难,制样有损伤;7、电子束可能通过碰撞和加热破坏样本;8、此外电子显微镜购买和维护的价格都比较高。扩展资料生物电镜研究对象:1、生物体体表及形态研究:主要是通过扫描电镜观察分析比如昆虫体表表面结构(如眼睛、翅膀及体表微结构)及细菌病毒等微生物形态结构、大小等研究。2、细胞超微结构及超微病理研究:主要通过透射电镜观察分析各种组织中细胞的形态及诸如线粒体、内质网、核糖体、溶酶体、分泌颗粒等细胞器,细胞连接如桥粒连接、紧密连接等,特化结构如纤毛、微绒毛等。间质成分如胶原纤维,基质结构及血管结构等,还可以通过辅助仪器分析细胞内各种元素的分布情况等。通过连续切片技术进行三维重构对细胞器、细胞连接结构等三维结构进行研究。3、膜蛋白结构研究:主要通过冷冻电镜和三维重构技术观察分析蛋白形态结构及其成分构成包括各种膜结构蛋白及蛋白定位及定性研究;酶细胞化学研究;抗原抗体研究(胶体金技术)等等。4、临床超微病理研究:主要通过透射电镜对活检组织进行观察分析,做出病理判断,比如肾脏病疾病分型、肝炎分型、肿瘤组织来源、病毒类型判断等。参考资料来源:百度百科-电子显微镜
2023-06-28 02:33:031

显微镜的原理是什么?

显微镜的原理为:目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。扩展资料:显微镜的分类:1、光学显微镜通常皆由光学部分、照明部分和机械部分组成。无疑光学部分是最为关键的,它由目镜和物镜组成。早于1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。2、电子显微镜电子显微镜有与光学显微镜相似的基本结构特征,但它有着比光学显微镜高得多的对物体的放大及分辨本领,它将电子流作为一种新的光源,使物体成像。自1938年Ruska发明第一台透射电子显微镜至今,除了透射电镜本身的性能不断的提高外,还发展了其他多种类型的电镜。3、数码显微镜数码显微镜是将精锐的光学显微镜技术、先进的光电转换技术、液晶屏幕技术完美地结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。参考资料来源:百度百科-显微镜
2023-06-28 02:33:332

什么是透射电子显微镜

透射电子显微镜(Transmission electron microscopy,TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,适于观察超微结构。透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。
2023-06-28 02:34:091

亚显微镜,电子显微镜,光学显微镜的区别

亚显微结构又称为超微结构.指在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构.普通光学显微镜的分辨力极限约为0.2微米,细胞膜、内质网膜和核膜的厚度,核糖体、微体、微管和微丝的直径等均小于0.2微米,因而用普通光学显微镜观察不到这些细胞结构,要观察细胞中的各种亚显微结构,必须用分辨力更高的电子显微镜.光学显微镜电子显微镜区别:光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。电子显微镜(英语:electron microscope,简称:电镜)是利用电子与物质作用所产生之讯号来监定微区域晶体结构,微细组织,化学成份,化学键结和电子分布情况的电子光学装置。常用的有透射电子显微镜和扫描电子显微镜。与光学显微镜相比电子显微镜用电子束代替了可见光,用电磁透镜代替了光学透镜并使用荧光屏将肉眼不可见电子束成像
2023-06-28 02:34:211

电子显微镜的工作原理是什么?为什么电子显微镜分辨率更高?

显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志.主要用于放大微小物体成为人的肉眼所能看到的仪器.显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的杨森父子所首创.现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm.国内主要生产厂家上海光学仪器厂 等 光学显微镜的种类很多,除一般的外,主要有: ①暗视野显微镜,一种具有暗视野聚光镜,从而使照明的光束不从中央部分射入,而从四周射向标本的显微镜. ②荧光显微镜,以紫外线为光源,使被照射的物体发出荧光的显微镜.电子显微镜是在1931年在德国柏林由克诺尔和哈罗斯卡首先装配完成的.这种显微镜用高速电子束代替光束.由于电子流的波长比光波短得多,所以电子显微镜的放大倍数可达80万倍,分辨的最小极限达0.2纳米.1963年开始使用的扫描电子显微镜更可使人看到物体表面的微小结构. ■主要用途 显微镜被用来放大微小物体的图像.一般应用于生物、医药、微观粒子等观测. (1)利用微微动载物台之移动,配全目镜之十字座标线,作长度量测. (2)利用旋转载物台与目镜下端之游标微分角度盘,配全合目镜之址字座标线,作角度量测,令待测角一端对准十字线与之重合,然再让另一端也重合. (3)利用标准检测螺纹的节距、节径、外径、牙角及牙形等尺寸或外形. (4)检验金相表面的晶粒状况. (5)检验工件加工表面的情况. (6)检测微小工件的尺寸或轮廓是否与标准片相符
2023-06-28 02:34:311

买电子显微镜要多少钱

普通的也在13000到20000之间,大型的十几万到几十万、几百万甚至更高。电子显微镜由镜筒、真空装置和电源柜三部分组成。镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不像光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏特之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。样品可以稳定地放在样品架上,此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。透射电子显微镜因电子束穿透样品后,再用电子透镜成像放大而得名。它的光路与光学显微镜相仿,可以直接获得一个样本的投影。通过改变物镜的透镜系统人们可以直接放大物镜的焦点的像。由此人们可以获得电子衍射像。使用这个像可以分析样本的晶体结构。在这种电子显微镜中,图像细节的对比度是由样品的原子对电子束的散射形成的。由于电子需要穿过样本,因此样本必须非常薄。组成样本的原子的原子量、加速电子的电压和所希望获得的分辨率决定样本的厚度。样本的厚度可以从数纳米到数微米不等。原子量越高、电压越低,样本就必须越薄。样品较薄或密度较低的部分,电子束散射较少,这样就有较多的电子通过物镜光栏,参与成像,在图像中显得较亮。反之,样品中较厚或较密的部分,在图像中则显得较暗。如果样品太厚或过密,则像的对比度就会恶化,甚至会因吸收电子束的能量而被损伤或破坏。扫描电子显微镜扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。入射的电子导致样本表面被激发出次级电子。显微镜观察的是这些每个点散射出来的电子,放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。图像为立体形象,反映了标本的表面结构。显像管的偏转线圈与样品表面上的电子束保持同步扫描,这样显像管的荧光屏就显示出样品表面的形貌图像,这与工业电视机的工作原理相类似。由于这样的显微镜中电子不必透射样本,因此其电子加速的电压不必非常高。
2023-06-28 02:34:413

扫描电子显微镜有何特点和用途

一.扫描电镜的特点能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。样品制备过程简单,不用切成薄片。样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。电子束对样品的损伤与污染程度较小。在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。二.扫描电镜的用途显微结构的分析纳米尺寸的研究铁电畴的观测
2023-06-28 02:34:502

电子显微镜是电镜吗?光学显微镜是光镜吗?

电子显微镜是电镜,光学显微镜是光镜。二者主要是原理和结构不同:电镜主要靠电子束光源,组成包括镜筒,真空室和光源。一般有透射电镜和扫描电镜,使用时要在真条件下蒸金,准备时间一般要50分钟才能观察到样品效果,放大到几万倍以上,效果很逼真震撼,可以搜索下电镜的图片。光镜主要通过纯光学原理成像,成为光学显微镜。光源一般为LED,卤素灯钨丝灯等,组成包括镜筒,物镜,目镜光源等,一般放大1-5000倍,开机即可观察效果,很直接方便,应用场合较多。以上希望对你有用。
2023-06-28 02:34:591

光学显微镜与电子显微镜哪个厉害

原理不同,光学镜是利用反光来观察,而电镜是利用电子束.电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示,它与透过样品的电子束入射锥角和波长有关.可见光的波长约为300~700纳米,而电子束的波长与加速电压有关.依据波粒二象性原理,高速的电子的波长比可见光的波长短,而显微镜的分辨率受其使用的波长的限制,因此电子显微镜的分辨率(约0.2纳米)远高于光学显微镜的分辨率(约200纳米).当加速电压为50~100千伏时,电子束波长约为0.0053~0.0037纳米.由于电子束的波长远远小于可见光的波长,所以即使电子束的锥角仅为光学显微镜的1%,电子显微镜的分辨本领仍远远优于光学显微镜
2023-06-28 02:35:091

【光学显微镜和电子显微镜】两者区别

光学显微镜只能看到细胞和部分细胞器,如线粒体和叶绿体,但只能看到其存在,看不到细胞器的具体结构(如叶绿体的基粒、线粒体的脊就不能看到)电子显微镜可以看到细胞器的精细结构,甚至可以看到病毒这种最小生物的结构,更甚至可以看到大分子,如蛋白质
2023-06-28 02:35:181

什么是电子显微镜?

  【历史沿革】  1926年汉斯·布什研制了第一个磁力电子透镜。1931年厄恩斯特·卢斯卡和马克斯·克诺尔研制了第一台透视电子显微镜。展示这台显微镜时使用的还不是透视的样本,而是一个金属格。1986年卢斯卡为此获得诺贝尔物理学奖。1938年他在西门子公司研制了第一台商业电子显微镜。  1934年锇酸被提议用来加强图像的对比度。1937年第一台扫描透射电子显微镜推出。  一开始研制电子显微镜最主要的目的是显示在光学显微镜中无法分辨的病原体如病毒等。1949年可投射的金属薄片出现后材料学对电子显微镜的兴趣大增。  1960年代投射电子显微镜的加速电压越来越高来透视越来越厚的物质。这个时期电子显微镜达到了可以分辨原子的能力。  1980年代人们能够使用扫描电子显微镜观察湿样本。1990年代中电脑越来越多地用来分析电子显微镜的图像,同时使用电脑也可以控制越来越复杂的透镜系统,同时电子显微镜的操作越来越简单。  【简介】  电子显微镜由镜筒、真空装置和电源柜三部分组成。  镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。  电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏特之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。  样品可以稳定地放在样品架上,此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。  探测器用来收集电子的信号或次级信号。  真空装置用以保障显微镜内的真空状态,这样电子在其路径上不会被吸收或偏向,由机械真空泵、扩散泵和真空阀门等构成,并通过抽气管道与镜筒相联接。  电源柜由高压发生器、励磁电流稳流器和各种调节控制单元组成。
2023-06-28 02:35:381

什么是电子显微镜?

电子显微镜常用的有透射电镜(transmission electron microscope,TEM)和扫描电子显微镜(scanning electron microscope,SEM)。与光镜相比电镜用电子束代替了可见光,用电磁透镜代替了光学透镜并使用荧光屏将肉眼不可见电子束成像。与光镜相比电镜用电子束代替了可见光,用电磁透镜代替了光学透镜并使用荧光屏将肉眼不可见电子束成像。 成像原理1. 透射电镜技术透射电镜技术 透射电镜是以电子束透过样品经过聚焦与放大后所产生的物像, 投射到荧光屏上或照相底片上进行观察。透射电镜是以电子束透过样品经过聚焦与放大后所产生的物像,投射到荧光屏上或照相底片上进行观察。 透射电镜的分辨率为0.1~0.2nm,放大倍数为几万~几十万倍。透射电镜的分辨率为0.1~0.2nm,放大倍数为几万~几十万倍。 由於电子易散射或被物体吸收,故穿透力低,必须制备更薄的超薄切片(通常为50~100nm)。由于电子易散射或被物体吸收,故穿透力低,必须制备更薄的超薄切片(通常为50~100nm)。 其制备过程与石蜡切片相似,但要求极严格。其制备过程与石蜡切片相似,但要求极严格。 要在机体死亡后的数分钟钓取材,组织块要小(1立方毫米以内),常用戊二醛和饿酸进行双重固定树脂包埋,用特制的超薄切片机(ultramicrotome)切成超薄切片,再经醋酸铀和柠檬酸铅等进行电子染色。要在机体死亡后的数分钟钓取材,组织块要小(1立方毫米以内),常用戊二醛和饿酸进行双重固定树脂包埋,用特制的超薄切片机(ultramicrotome)切成超薄切片,再经醋酸铀和柠檬酸铅等进行电子染色。电子束投射到样品时,可随组织构成成分的密度不同而发生相应的电子发射,如电子束投射到质量大的结构时,电子被散射的多,因此投射到荧光屏上的电子少而呈暗像,电子照片上则呈黑色。电子束投射到样品时,可随组织构成成分的密度不同而发生相应的电子发射,如电子束投射到质量大的结构时,电子被散射的多,因此投射到荧光屏上的电子少而呈暗像,电子照片上则呈黑色。 称电子密度高(electron dense)。称电子密度高(electrondense)。 反之,则称为电子密度低(electron lucent)。反之,则称为电子密度低(electronlucent)。 2. 扫描电镜术扫描电镜术 扫描电镜是用极细的电子束在样品表面扫描,将产生的二次电子用特制的探测器收集,形成电信号运送到显像管,在荧光屏上显示物体。扫描电镜是用极细的电子束在样品表面扫描,将产生的二次电子用特制的探测器收集,形成电信号运送到显像管,在荧光屏上显示物体。 (细胞、组织)表面的立体构像,可摄制成照片。 (细胞、组织)表面的立体构像,可摄制成照片。 扫描电镜样品用戊二醛和饿酸等固定,经脱水和临界点干燥后,再於样品表面喷镀薄层金膜,以增加二波电子数。扫描电镜样品用戊二醛和饿酸等固定,经脱水和临界点干燥后,再于样品表面喷镀薄层金膜,以增加二波电子数。 扫描电镜能观察较大的组织表面结构,由於它的景深长,1mm左右的凹凸不平面能清所成像,故放样品图像富有立体感。扫描电镜能观察较大的组织表面结构,由于它的景深长,1mm左右的凹凸不平面能清所成像,故放样品图像富有立体感。相关知识1. 光学显微镜以可见光为介质,电子显微镜为电子束为介质,由於电子束波长远较可见光小,故电子显微镜解析度远比光学显微镜高。 光学显微镜以可见光为介质,电子显微镜为电子束为介质,由于电子束波长远较可见光小,故电子显微镜解析度远比光学显微镜高。 光学显微镜放大倍率最高只有约 1500 倍,扫描式显微镜可放大到 10000 倍以上。 光学显微镜放大倍率最高只有约 1500 倍,扫描式显微镜可放大到 10000 倍以上。 2. 根据 de Broglie 波动理论,电子的波长仅与加速电压有关: 根据 de Broglie 波动理论,电子的波长仅与加速电压有关: λ e = h / mv = h / (2qmV) 1/2 = 12.2 / (V) 1/2 (03) λ e = h / mv = h / (2qmV) 1/2 = 12.2 / (V) 1/2 (03) 在 10 KV 的加速电压之下,电子的波长仅为 0.1203 ,远低於可见光的 4000 - 700003 ,所以电子显微镜解析度自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在 50 - 10003 之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的解析度比扫描式电子显微镜高。 在 10 KV 的加速电压之下,电子的波长仅为 0.1203 ,远低于可见光的 4000 - 700003 ,所以电子显微镜解析度自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在 50 - 10003 之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的解析度比扫描式电子显微镜高。 3. 扫描式显微镜有一重要特色是具有超大的景深 (depth of field) ,约为光学显微镜的 300 倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的试片。 扫描式显微镜有一重要特色是具有超大的景深 (depth of field) ,约为光学显微镜的 300 倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的试片。 4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦後,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸 (Beam Size) 後,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在试片上,在试片的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。 扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸 (Beam Size) 后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在试片上,在试片的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron ) 或背向散射电子 (Backscattered Electron) 成像。 5. 电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨 (W) 灯丝、六硼化鑭 (LaB 6 ) 灯丝、场发射 (Field Emission) ,不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。 电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨 (W) 灯丝、六硼化镧 (LaB 6 ) 灯丝、场发射 (Field Emission) ,不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。 透射电子显微镜 透射电子显微镜(英文:Transmission electron microscopy,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍, 用于观察超微结构,即小于0.208m、光学显微镜下无法看清的结构,又称“亚显微结构”。 成像原理 透射电子显微镜的成像原理可分为三种情况: 吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。 衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。 相位像:当样品薄至10003以下时,电子可以传过样品,波的振幅变化可以忽略,成像来自于相位的变化。 组件 电子枪:发射电子,由阴极、栅极、阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。 聚光镜:将电子束聚集,可用已控制照明强度和孔径角。 样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热、冷却等设备。 物镜:为放大率很高的短距透镜,作用是放大电子像。物镜是决定透射电子显微镜分辨能力和成像质量的关键。 中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。 透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。 此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。 透射电子显微镜结构包括两大部分:主体部分为照明系统、成像系统和观察照相室;辅助部分为真空系统和电气系统。 1、照明系统 该系统分 成两部分:电子枪和会聚镜。电子枪由灯丝(阴极)、栅级和阳极组成。加热灯丝发射电子束。在阳极加电压,电子加速。阳极与阴极间的电位差为总的加速电压。经加速而具有能量的电子从阳极板的孔中射出。射出的电子束能量与加速电压有关,栅极起控制电子束形状的作用。电子束有一定的发散角,经会聚镜调节后,可望 得到发散角,很小甚至为0的平行电子束。电子束的电流密度(束流)可通过调节会聚镜的电流来调节。 样品上需要照明的区域大小与放大倍数有关.放大倍数愈高,照明区域愈小,相应地要求以更细的电子束照明样品.由电子枪直接发射出的电子束的束斑尺寸较大,相干性也较差。为了更有效地利用这些电子,获得亮度高、相干性好的照明电子束以满足透射电镜在不同放大倍数下的需要,由电子枪子枪发射出来的电子束还需要进 一步会聚,提供束斑尺寸不同、近似平行的照明束.这个任务通常由两个被叫做聚光镜的电磁透镜完成.图中C1和C2分别表示第一聚光镜和第二聚光镜.C1通 常保持不变,其作用是将电子枪的交叉点成一缩小的像,使其尺寸缩小一个数量级以上.此外,在照明系统中还安装有束倾斜装置,可以很方便地使电子束在 2°~3°的范围内倾斜,以便以某些特定的倾斜角度照明样品。 2、成像系统 该系统包括样品室、物镜、中间镜、反差光栏、衍射光栏、投射镜以及其它电子光学部件。样品室有一套机构,保证样品经常更换时不破坏主体的真空。样品可在X、Y二方向移动,以便找到所要观察的位置。经过会聚镜得到的平行电子束照射到样品上,穿过样品后就带有反映样品特征的信息,经物镜和反差光栏作用形成一次电子图象,再经中间镜和投射镜放大一次后,在荧光屏上得到最后的电子图象。 照明系统提供了一束相干性很好的照明电子束,这些电子穿越样 品后便携带样品的结构信息,沿各自不同的方向传播(比如,当存在满足布拉格方程的晶面组时,可能在与入射束交成2θ角的方向上产生衍射束).物镜将来自样 品不同部位、传播方向相同的电子在其背焦面上会聚为一个斑点,沿不同方向传播的电子相应地形成不同的斑点,其中散射角为零的直射束被会聚于物镜的焦点,形成中心斑点.这样,在物镜的背焦面上便形成了衍射花样.而在物镜的像平面上,这些电子束重新组合相干成像.通过调整中间镜的透镜电流,使中间镜的物平面与 物镜的背焦面重合,可在荧光屏上得到衍射花样若使中间镜的物平面与物镜的像平面重合则得到显微像.通过两个中间镜相互配合,可实现在较大范围内调整相机长度和放大倍数。 透射电子显微镜与透射光学显微镜光路比较 3、观察照相室 电子图像反映在荧光屏上。荧光发光和电子束流成正比。把荧光屏换成电子干板,即可照相。干板的感光能力与其波长有关。 4、真空系统 真 空系统由机械泵、油扩散泵、离子泵、真空测量仪表及真空管道组成。它的作用是排除镜筒内气体,使镜筒真空度至少要在10-5托以上,目前最好的真空度可以 达到10-9—10-10托。如果真空度低的话,电子与气体分子之间的碰撞引起散射而影响衬度,还会使电子栅极与阳极间高压电离导致极间放电,残余的气体还会腐蚀灯丝,污染样品。 5、供电控制系统 加速电压和透镜磁电流不稳定将会产生严重的色差及降低电镜的分辨本领,所以加速电压和透 镜电流的稳定度是衡量电镜性能好坏的一个重要标准。透射电镜的电路主要由以下部分组成,高压直流电源、透镜励磁电源、偏转器线圈电源、电子枪灯丝加热电源,以及真空系统控制电路、真空泵电源、照相驱动装置及自动曝光电路等。 另外,许多高性能的电镜上还装备有扫描附件、能谱议、电子能量损失谱等仪器。透射电子显微镜结构和成像原理 应用 透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂预处理过的铜网上进行观察。
2023-06-28 02:35:482

电子显微镜成像原理

电子显微镜(TEM)与投射式光学显微镜的原理很相近,它们的光源、透镜虽不相同,但照放大和成像的方式却完全一致。透射电镜,通常采用热阴极电子枪来获得电子束作为照明源。热阴极发射的电子,在阳极加速电压的作用下,高速地穿过阳极孔,然后被聚光镜会聚成具有一定直径的束斑照到样品上。这种具有一定能量的电子束与样品发生作用。产生反映样品微区的厚度、平均原子序数、晶体结构或位向差别的多种信息。透过样品的电子束强度,其取决于这些信息,经过物镜聚焦放大在其平面上形成一幅反映这些信息的透射电子像,经过中间镜和投影镜进一步放大。在荧光屏上得到三级放大的最终电子图像,还可将其记录在电子感光板或胶卷上。拓展资料:电子显微镜,简称电镜,英文名Electron Microscope(简称EM),经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。电子显微镜由镜筒、真空装置和电源柜三部分组成。电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。参考链接:电子显微镜_百度百科
2023-06-28 02:36:058

电子显微镜的原理?

电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。 电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。 1931年,德国的克诺尔和鲁斯卡,用冷阴极放电电子源和三个电子透镜改装了一台高压示波器,并获得了放大十几倍的图象,证实了电子显微镜放大成像的可能性。1932年,经过鲁斯卡的改进,电子显微镜的分辨能力达到了50纳米,约为当时光学显微镜分辨本领的十倍,于是电子显微镜开始受到人们的重视。 到了二十世纪40年代,美国的希尔用消像散器补偿电子透镜的旋转不对称性,使电子显微镜的分辨本领有了新的突破,逐步达到了现代水平。在中国,1958年研制成功透射式电子显微镜,其分辨本领为3纳米,1979年又制成分辨本领为0.3纳米的大型电子显微镜。 电子显微镜的分辨本领虽已远胜于光学显微镜,但电子显微镜因需在真空条件下工作,所以很难观察活的生物,而且电子束的照射也会使生物样品受到辐照损伤。其他的问题,如电子枪亮度和电子透镜质量的提高等问题也有待继续研究。 分辨能力是电子显微镜的重要指标,它与透过样品的电子束入射锥角和波长有关。可见光的波长约为300~700纳米,而电子束的波长与加速电压有关。当加速电压为50~100千伏时,电子束波长约为0.0053~0.0037纳米。由于电子束的波长远远小于可见光的波长,所以即使电子束的锥角仅为光学显微镜的1%,电子显微镜的分辨本领仍远远优于光学显微镜。 电子显微镜由镜筒、真空系统和电源柜三部分组成。镜筒主要有电子枪、电子透镜、样品架、荧光屏和照相机构等部件,这些部件通常是自上而下地装配成一个柱体;真空系统由机械真空泵、扩散泵和真空阀门等构成,并通过抽气管道与镜筒相联接;电源柜由高压发生器、励磁电流稳流器和各种调节控制单元组成。 电子透镜是电子显微镜镜筒中最重要的部件,它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与玻璃凸透镜使光束聚焦的作用相似,所以称为电子透镜。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。 电子枪是由钨丝热阴极、栅极和阴极构成的部件。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。 电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与 X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。 投射式电子显微镜因电子束穿透样品后,再用电子透镜成像放大而得名。它的光路与光学显微镜相仿。在这种电子显微镜中,图像细节的对比度是由样品的原子对电子束的散射形成的。样品较薄或密度较低的部分,电子束散射较少,这样就有较多的电子通过物镜光栏,参与成像,在图像中显得较亮。反之,样品中较厚或较密的部分,在图像中则显得较暗。如果样品太厚或过密,则像的对比度就会恶化,甚至会因吸收电子束的能量而被损伤或破坏。 透射式电子显微镜镜筒的顶部是电子枪,电子由钨丝热阴极发射出、通过第一,第二两个聚光镜使电子束聚焦。电子束通过样品后由物镜成像于中间镜上,再通过中间镜和投影镜逐级放大,成像于荧光屏或照相干版上。 中间镜主要通过对励磁电流的调节,放大倍数可从几十倍连续地变化到几十万倍;改变中间镜的焦距,即可在同一样品的微小部位上得到电子显微像和电子衍射图像。为了能研究较厚的金属切片样品,法国杜洛斯电子光学实验室研制出加速电压为3500千伏的超高压电子显微镜。扫描式电子显微镜结构示意图 扫描式电子显微镜的电子束不穿过样品,仅在样品表面扫描激发出次级电子。放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。显像管的偏转线圈与样品表面上的电子束保持同步扫描,这样显像管的荧光屏就显示出样品表面的形貌图像,这与工业电视机的工作原理相类似。 扫描式电子显微镜的分辨率主要决定于样品表面上电子束的直径。放大倍数是显像管上扫描幅度与样品上扫描幅度之比,可从几十倍连续地变化到几十万倍。扫描式电子显微镜不需要很薄的样品;图像有很强的立体感;能利用电子束与物质相互作用而产生的次级电子、吸收电子和 X射线等信息分析物质成分。 扫描式电子显微镜的电子枪和聚光镜与透射式电子显微镜的大致相同,但是为了使电子束更细,在聚光镜下又增加了物镜和消像散器,在物镜内部还装有两组互相垂直的扫描线圈。物镜下面的样品室内装有可以移动、转动和倾斜的样品台。
2023-06-28 02:37:331

电子显微镜的使用方法 电子显微镜的使用方法是什么

1、首先要转动转换器,使低倍物镜对准通光孔,物镜前端与载物台要保持2厘米的距离。 2、接着把一个较大的光圈对准通光孔,这是为了使光源更好的与物体接触,方便呈像 ,使图像更清晰,左眼注视目镜,右眼睁开,转动反光镜,使光线通过通光孔反射到镜筒内.直到看到较亮的视野再停止。 3、将所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心,这样可以使图像更加清晰。 4、转动粗准焦螺旋,使镜筒缓缓下降,眼睛从旁边看着,直到物镜接近玻片标本为止,以免物镜碰到玻片标本。 5、左眼向目镜内看,同时反方向转动粗准焦螺旋,使镜筒缓缓上升,直到看清物像为止.再略微转动细准焦螺旋,使看到的物像更加清晰,这就是电子显微镜的使用方法。
2023-06-28 02:37:421

电子显微镜在医学中的应用有哪些方面?

电子显微镜在医学中的应用为:1、用电子电子显微镜描绘神经回路。2、电子显微镜观察DNA形态。3、扫描软骨细胞的电子电子显微镜图像。4、通过电子电子显微镜发现动物肾脏早期纤维化。5、可观察真核细胞的细胞器。电子显微镜由镜筒、真空系统和电源柜三部分组成,它的分辨能力虽然远胜于光学显微镜,但电子显微镜因需在真空条件下工作,所以很难观察活的生物,而且电子束的照射也会使生物样品受到辐照损伤。扩展资料:电子显微镜工作原理是:电子枪发射出的电子束是波动前进的,经过电磁透镜后则变成向右呈螺旋状依光轴前进,电子束透过标本之后,再经过电磁透镜系统,此时标本上超微结构已得到不同程序的放大。高精度的透射电子显微镜有多个电磁透镜,它们分别是物镜衍射镜、中间镜、投射镜,电磁物镜内装有可变光阑,可以进一步提高电子显微镜的分辨力,使用衍射镜可以形成电子衍射像,以便于摄像,中间镜内装有光阑。
2023-06-28 02:37:523

光学显微镜和电子显微镜的区别是什么?

您好:光学显微镜和电子显微镜最大的区别在于所使用波长不同,前者使用可见光,分辨率最高达0.1微米级,最高有效放大倍率只能到1600倍左右,而且相应的景深也很小(微米级)。后者使用电子,根据物质波波长理论,在几十千伏至几百千伏的电压加速下,可使电子显微镜的分辨率达到纳米级,比光学显微镜的分辨率高千倍。当电子显微镜的放大倍数较小时,其景深很大,可以拍出很有立体感的照片来1,光学几万到几十万。电子,百万元以上。2,光学是用光,电子显微镜是用电子束来看东西。所以肯定是电子显微镜的放大倍数大希望对您的学习有帮助【满意请采纳】O(∩_∩)O谢谢欢迎追问O(∩_∩)O~祝学习进步~
2023-06-28 02:38:041

电子显微镜有多少倍

300万倍左右。现在的光学显微镜,就是那种经典传统看细菌的望远镜,放大倍数最高只能达到1600~2000倍,不要说看原子,就是看病毒也无法看到。因为光学望远镜的分辨率只有200~300nm,一般病毒大小在几十到100nm之间;而原子尺寸在0.1nm,就更看不到了。电子显微镜保养注意事项微调是显微镜机械装置中较精细而又容易损坏的元件,拧到了限位以后,就拧不动了。此时,决不能强拧。否则,必然损坏。调焦时,遇到这种情况,应将微调退回3~5圈,重用粗调调焦,待初见物像后,再改用微调。如能事先将微调调至中间位置(一般在微动燕尾的侧面上刻有位置标记“-=”,当微动燕尾上的单线对着两横线的中间时,微调即处于中间位置),使正反两个方向都有大体相等的调节余量,当然更好。
2023-06-28 02:38:131

电子显微镜比扫描隧道显微镜先进吗?

两种显微镜用途是不一样的,无法直接比较哪种更先进。如果比精确度,电子显微镜比扫描隧道显微镜先进,比穿透能力是扫描隧道显微镜更先进。扫描隧道显微镜缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。扩展资料:扫描隧道显微镜的工作原理:扫描隧道显微镜的工作原理简单得出乎意料。就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有落,如此便极其细致地探出它的轮廓。在许多的流通后,通过绘出电流量的波动,人们可以得到组成一个网格结构的单个原子的美丽图片。参考资料:扫描隧道显微镜-百度百科电子显微镜-百度百科
2023-06-28 02:38:292

电子显微镜的使用方法有哪些?

电子显微镜的使用方法有哪些的回答如下:1、答案:1)首先要转动转换器,使低倍物镜对准通光孔,物镜前端与载物台要保持2厘米的距离。2)接着把一个较大的光圈对准通光孔,这是为了使光源更好的与物体接触,方便呈像 ,使图像更清晰,左眼注视目镜,右眼睁开,转动反光镜,使光线通过通光孔反射到镜筒内.直到看到较亮的视野再停止。3)将所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心,这样可以使图像更加清晰。4)转动粗准焦螺旋,使镜筒缓缓下降,眼睛从旁边看着,直到物镜接近玻片标本为止,以免物镜碰到玻片标本。5)左眼向目镜内看,同时反方向转动粗准焦螺旋,使镜筒缓缓上升,直到看清物像为止.再略微转动细准焦螺旋,使看到的物像更加清晰,这就是电子显微镜的使用方法。2、相关内容:电子显微镜,简称电镜,经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。电子显微镜由镜筒、真空装置和电源柜三部分组成。3、英文表示:Electron Microscope
2023-06-28 02:38:561

光学显微镜与电子显微镜有什么区别

光学显微镜和电子显微镜最大的区别在于所使用波长不同,前者使用可见光,分辨率最高达0.1微米级,最高有效放大倍率只能到1600倍左右,而且相应的景深也很小(微米级).后者使用电子,根据物质波波长理论,在几十千伏至几百千伏的电压加速下,可使电子显微镜的分辨率达到纳米级,比光学显微镜的分辨率高千倍.当电子显微镜的放大倍数较小时,其景深很大,可以拍出很有立体感的照片来
2023-06-28 02:39:051

电子显微镜的工作原理是什么?

顾名思义,所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜(Scanning Electron Microscope,SEM)。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。事实上,现代电子显微镜的分辨本领已经可达0.1nm。高三物理选修书上讲得更详细(光电效应后面的小资料)
2023-06-28 02:39:162

高中生物光学显微镜与电子显微镜的区别

光学显微镜只能看到细胞和部分细胞器,如线粒体和叶绿体,但只能看到其存在,看不到细胞器的具体结构(如叶绿体的基粒、线粒体的脊就不能看到)电子显微镜可以看到细胞器的精细结构,甚至可以看到病毒这种最小生物的结构,更甚至可以看到大分子,如蛋白质望采纳!!!
2023-06-28 02:39:323

光学显微镜和电子显微镜的区别

你好,很高兴为你解答!【电子显微镜】电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。【光学显微镜】光学显微镜有多种分类方法:智泰按使用目镜的数目可分为三目,双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微分干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目连续变倍体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。粗准焦螺旋:大范围上下调动镜筒。【参考】http://baike.baidu.com/link?url=fQjFxUzzOpX4WvDROS4nDtu4v9STU6EZaMPhQq2j51fDrh5T5d3dGZiWvvYYBUpnwkCZstCV3x09F578VTUBV_http://baike.baidu.com/link?url=qDQu_OWnPTctOICKNGSaKfjnsvBeykvkezpbSnc5HibSiTonv8GrGMRgzBpNdzH4FGrd2lJTYDCkjuTgEfN1nK
2023-06-28 02:39:511

光学显微镜与电子显微镜的区别(高中生物)

1、发展历史不同光学显微镜的发展是电子显微镜发展的基础。17世纪中叶,英国的罗伯特·胡克和荷兰的列文虎克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。而电子显微镜的发展历史较短,1926年汉斯·布什研制了第一个磁力电子透镜。2、原理不同光学显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸。而电子显微镜主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生放大的效应。3、组成不同光学显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。而电子显微镜由镜筒、真空装置和电源柜三部分组成。4、焦点不同光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不像光学显微镜那样有可以移动的透镜系统。5、分辨率不同电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。参考资料来源:百度百科-光学显微镜参考资料来源:百度百科-电子显微镜
2023-06-28 02:40:001

高中生物 光学显微镜能观察到什么 电子显微镜呢

光学显微镜:适用于细胞水平,如洋葱表皮失水、观察DNARNA的分布,观察细胞分裂、细胞结构观察等。电子显微镜:适用于细胞器水平,如观察叶绿体的结构,线粒体的结构等(病毒的观察也借助于电子显微镜)。
2023-06-28 02:40:272

光学显微镜和电子显微镜分别能观察到什么?

光学显微镜最小能观察到细菌个体,而电子显微镜能观察到细胞内结构,最牛的可以观察到原子结构。
2023-06-28 02:40:362

电子显微镜的工作原理是什么?

用软件放大处理,和光学显微镜原理不同;电子显微镜主要核心部分是软件,光学显微镜主要核心是镜片谢谢
2023-06-28 02:40:464

电子显微镜和光学显微镜分别用在什么地方?

光学显微镜和电子显微镜最大的区别在于二者用作观测的光不一样。光学显微镜使用可见光,电子显微镜使用高能电子束。根据瑞利判据,显微镜的分辨率约为使用光波长的一半。可见光的波长是300-600个纳米,所以几百个纳米的结构,比如细胞,细菌就可以用光学显微镜。(另外有特殊的光学显微镜,近场光学显微镜可以看到更小的结构)。高能电子束的波长是与加速电压有关的,常用的200kv的加速电压下,电子的波长为0.0027nm,但是由于像差,球差以及工艺上的缺陷,在电子显微镜刚刚出现时分辨率还不如光学显微镜,但是随着技术进步,特别是近十年球差电子显微镜的发展,使得目前分辨率能够达到0.01nm的量级,可以观测氢原子像。电镜一般用来观测金属,导电,无磁的材料,如果不导电不要进行喷碳或者喷金处理,一般是失活的样品。
2023-06-28 02:41:037