DNA图谱 / 问答 / 问答详情

zdna基因表达的影响

2023-06-28 19:23:09
共1条回复
出投笔记
结构基因
基因中编码RNA或蛋白质的碱基序列。
(1)原核生物结构基因:连续的,RNA合成不需要剪接加工;
(2)真核生物结构基因:由外显子(编码序列)和内含子(非编码序列)两部分组成。
非结构基因
结构基因两侧的一段不编码的DNA片段(即侧翼序列),参与基因表达调控。
(1)顺式作用元件:能影响基因表达,但不编码RNA和蛋白质的DNA序列;
其中包括:
启动子:RNA聚合酶特异性识别结合和启动转录的DNA序列。有方向性,位于转录起始位点上游。
上游启动子元件:TATA盒上游的一些特定DNA序列,反式作用因子可与这些元件结合,调控基因的转录效率。
反应元件:与被激活的信息分子受体结合,并能调控基因表达的特异DNA序列。
增强子:与反式作用因子结合,增强转录活性,在基因任意位置都有效,无方向性。
沉默子:基因表达负调控元件,与反式作用因子结合,抑制转录活性。
Poly(A)加尾信号:结构基因末端保守的AAUAAA顺序及下游GT或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。
(2)反式作用因子:能识别和结合特定的顺式作用元件,并影响基因转录的一类蛋白质或RNA。

相关推荐

Z-DNA及其可能的生物学意义

【答案】:Z-DNA及其可能的生物学意义Z-DNA是左手双螺旋,在主链中各个磷酸根呈锯齿状排列,有如“之”字形一样,因此叫它Z构象(英文字Zigzag的第一个字母);这一构象中的重复单位是二核苷酸而不是单核苷酸;只有一个螺旋沟,它相当于B-DNA构象中的小沟,它狭而深,大沟则不复存在。目前,Z-DNA所具有的生物学意义还不清楚。应当指出Z-DNA的形成通常在热力学上是不利的,因为Z-αDNA中带负电荷的磷酸根距离太近了,这会产物静电排斥。但是,DNA链的局部不稳定区的存在就成为潜在的解链位点。DNA解螺旋却是DNA复制和转录等过程中必要的环节。此外,DNA螺旋上沟的特征在其信息表达过程中起关键作用。调控蛋白都是通过其分子上特定的氨基酸侧链与DNA双螺旋沟中的碱基对一侧的氢原子供体或受体相互作用,形成氢键从而识别DNA上的遗传信息的。沟的宽窄和深浅也直接影响到调控蛋白质对DNA信息的识别。Z-DNA中大沟消失,小沟狭而深,使调控蛋白识别方式也发生变化。这些都暗示Z-DNA的存在不仅仅是由于DNA中出现嘌呤一啶嘧交替排列之结果,也可能是在漫漫的进化长河中对DNA序列与结构不断调整与筛选的结果,有其内在而深刻的含意,只是人们还未充分认识而已。
2023-06-28 18:40:241

Z-DNA的产生

Z-DNA是比较特殊的,它与其他DNA不同之处在于它是在减数第一次分裂前期中的偶线期产生的,约占DNA总量的0.3%。结构 Z-DNA的双股螺旋为左旋型态,与B-DNA的右旋型态明显有所差别。其结构每两个碱基对重复出现一次。大小螺旋凹槽之间的差别较A型及B型小,只在宽度上有些微差异。这种型态并不常见,但某些特定情况可增加其存在的可能,如嘌呤-嘧啶交替序列、DNA超螺旋,或盐份与某些阳离子(如Na+)浓度高时(中和了带负电的磷酸基团,导致交替的嘌呤-嘧啶残基呈现左手螺旋现象)。Z-DNA能够与B-DNA构成相互结合型态,这种结构会使一对碱基突出于双螺旋之外。
2023-06-28 18:40:301

Z型DNA可以调控基因转录活性?

Z-DNA的形成通常在热力学上是不利的. 因为Z-DNA中带负电荷的磷酸根距离太近了,这会产生静电排斥. 但是,DNA链的局部不稳定区的存在就成为潜在的解链位点. DNA解螺旋却是DNA复制和转录等过程中必要的环节,因此认为这一结构与基因调节有关.
2023-06-28 18:40:431

Z-DNA的介绍

Z-DNA又称Z型DNA,是DNA双螺旋结构的一种形式,具有左旋型态的双股螺旋(与常见的B-DNA相反),并呈现锯齿形状。
2023-06-28 18:40:501

a,b,z-dna的结构各有何特点

  DNA的A/B/Z型是指DNA结构的多态性  A型:在高盐溶液或脱水的情况下,DNA分子趋向此形态。A型直径2.6nm,每一个螺旋11个碱基对,每个碱基上升0.23nm。与B型相比,直径变粗,长度变短。大沟变窄,变深;小沟变宽,变浅。  B型:Waston和Crick提出的DNA双螺旋结构属于这种。在生理盐水的条件下,92%相对湿度下时,DNA分子在水性环境和生理条件下最稳定的结构。右手螺旋。  Z型:左手螺旋,Z型DNA螺距延长(4.5nm左右),直径变窄(1.8nm)。每个螺旋含12个碱基,每个碱基上升0.38nm。不存在大沟,小沟深且窄。A.Rich在研究CGCGCG寡聚体的时候发现这种类型的DNA。
2023-06-28 18:41:031

Z构象的DNA有什么生物学意义

Z型DNA是左手双螺旋.在转录和复制等活动中,DNA在拓扑异构酶的作用下,形成负超螺旋,有利于缠绕双链的松开,此时即为左手螺旋构象,形成Z-DNA
2023-06-28 18:41:121

Z型DNA的介绍

Z型DNA(Z—DNA):左旋双螺旋DNA,发现含有GCGCGC的DNA能以Z-DNA存在。
2023-06-28 18:41:181

Z构象的DNA 有什么生物学意义啊?

在生理条件的湿度和盐度下,DNA一般为B型,DNA双螺旋为右手螺旋。湿度降低,DNA双螺旋变为A型,依然为右手螺旋。当DNA进行遗传信息表达时,DNA需要结双螺旋,不断引入负超螺旋,进而形成DNA左手螺旋,而Z型DNA就是左手螺旋,所以Z型DNA是遗传信息表达时DNA的构象状态。
2023-06-28 18:41:333

z-dna与b-dna在细胞内可以互相转变吗

z-dna与b-dna在细胞内可以互相转变一般将Watson&Crick提出的双螺旋构型,称为B-DNA.B-DNA是DNA在生理状态下的构型,生活在细胞中的极大多数DNA以B-DNA形式存在.当外界环境条件发生变化时,DNA的构型也会发生变化.实际生活在细胞内的B-DNA的一个螺圈并不正好是10个核苷酸对,平均一般为10.4对.当DNA在高盐浓度条件下时,则以A-DNA形式存在.A-DNA是DNA的脱水构型,它也是右手螺旋,每个螺圈含有11个核苷酸对.A-DNA比较短而密,平均直径为23.大沟深而窄,小沟浅而宽.在活体内DNA并不以A构型存在;在细胞内的DNA-RNA或RNA-RNA双螺旋结构,却与A-DNA非常相似.现在还发现:某些DNA序列可以以左手螺旋的形式存在,称为Z-DNA.当某些DNA序列富含G-C且嘌呤和嘧啶交替出现时,可以形成Z-DNA.Z-DNA除左手螺旋外,其每个螺圈含有12个碱基对.分子直径为18,只有一个深沟.现在还不知道,Z-DNA在体内是否存在.
2023-06-28 18:41:531

Z型DNA和癌细胞的关系?

天然B-DNA的局部区域可以形成Z-DNA,与癌细胞的基因无直接关系。该局部区的特点是单链中嘌呤和嘧啶交替排列,才呈Z型左手螺旋,外形细长。如图依次是A型B型Z型
2023-06-28 18:41:591

Z构象的DNA有什么生物学意义

界物理因素、氧化反应生物因素. 湿度,易被水解],有的DNA为线形:磷酸二酯键——维持一级结构氢键——维持二级结构碱基——与维持氢键有关温度,基因的遗传信息贮存在其碱基序列中.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近,主要分成A、湿度化学因素. 二级结构;大多数DNA含有两条这样的长链 [两条链间以氢键相连接——氢键在强电解质环境. 这些因素都直接与DNA的构型. [形成链的作用力——磷酸二脂键,5"-磷酸二酯键相连构成的长链,DNA双螺旋可有多种类型,碱基为含氮杂环化合物,后来这个模型得到科学家们的公认,易被氧化变性,综上可见:一级结构. 一般用几个层次描绘DNA的结构、分子组成有关 DNA分子结构,尤其在高酸度环境内易开键] 也有的DNA为单链.经深入研究: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",B构型最接近细胞中的DNA构象、水解反应、G4,并用以解释复制,易加速磷酸二酯键的水解:pH值:温度,它与双螺旋模型非常相似:DNA的一级结构即是其碱基序列. ——磷酸二酯键易被水解,发现因湿度和碱基序列等条件不同、参与磷酸二酯键的水解 2. 因此:维持DNA化学生物活性的关键在于其结构以及与其相结合的蛋白质:1.基因就是DNA的一个片段:高温,如大肠杆菌噬菌体φX174,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构、氢离子参与与催化磷酸二酯键的水解 2.这种构型适合多核苷酸链的嘌呤嘧啶交替区. 一般认为:酶解及微生物侵染等作用:1,其主链呈锯齿(Z)形.有的DNA为环形.Z-DNA以核苷酸二聚体为单元左向缠绕、过高或过低的PH值都易破坏氢键氧化反应、M13等、B和Z3大类:1953年,使其变性:氧化碱基中的含氮杂环,故名、转录等重要的生命过程、影响DNA螺旋的形成结构 PH值.而维持其结构的关键有,从而进一步改变一级与二级的DNA构象
2023-06-28 18:42:081

A-DNA和Z-DNA两条链分别是什么核酸

这是指DNA有不同的螺旋型态:A, B, Z formB form最常见
2023-06-28 18:42:171

DNA的做用

脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播a. DNA是由核酸的单体聚合而成的聚合体。 b. 每一种核酸由三个部分所组成:一分子含氮盐基+一分子五碳糖(脱氧核糖)+一分子磷酸根。 c. 核酸的含氮盐基又可分为四类:鸟嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C) d. DNA的四种含氮盐基组成具有物种特异性。即四种含氮盐基的比例在同物种不同个体间是一致的,但再不同物种间则有差异。 e. DNA的四种含氮沿基比例具有奇特的规律性,每一种生物体DNA中 A≈T C≈G 加卡夫法则。 生命的遗传奥秘茂藏在DNA和RNA中 现在人们都知道DNA和RNA是遗传物质,但是什么叫DNA呢?其实DNA和RNA是一种核酸的东西,因为它藏在细胞核内,又具有酸性,因为在它刚被发现的时候就被称为核酸。 核酸是一个叫米歇尔的瑞士青年化学家发现的,那还是1869年的事,到了1909年,一位美国生化学家又发现核酸中的碳水化合物有两种核糖分子,因此核酸也有两种,一种叫脱氧核糖酸,英文缩写就是DNA,另一种是核糖核酸,英文缩写是RNA。DNA一般只在细胞核中,而RNA除了在细胞核中外,还分布在细胞质中。 DNA和RNA与生物遗传基因细菌学家艾弗里通过研究肺炎球菌转化时,偶然发现了DNA,就是那个被很多人找了很久的基因物质。在DNA上带着生命的遗传秘密的基因物质,这样,对于到底什么是决定生命遗传现象的探索,终于到了揭开秘密的时候了,这时已是20世纪40年代。 组成DNA的4种核苷酸的排列组合顺序大有奥秘 解开DNA的秘密 当发现基因就是DNA后,人们还是想知道,这个DNA是怎么样的一种东西,它又是通过什么具体的办法把生命的那么多信息传递给新的接班人的呢? 首先人们想知道DNA是由什么组成的,人类总是爱这样刨问底。结果有一个叫莱文的科学家通过研究,发现DNA是由四种更小的东西组成,这四种东西的总名字叫核苷酸,就像四个兄弟一样,它们都姓核苷酸,但名字却有所不同,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T),这四种名字很难记,不过只要记住DNA是由四种核苷酸只是随便聚在一起的、而且它们相互的连接没有什么规律,但后来核苷酸其实不一样,而且它们相互组合的方式也千变万化,大有奥秘。现在,人们已基本上了解了遗传是如何发生的。20世纪的生物学研究发现:人体是由细胞构成的,细胞由细胞膜、细胞质和细胞核等组成。已知在细胞核中有一种物质叫染色体,它主要由一些叫做脱氧核糖核酸(DNA)的物质组成。 生物的遗传物质存在于所有的细胞中,这种物质叫核酸。核酸由核苷酸聚合而成。每个核苷酸又由磷酸、核糖和碱基构成。碱基有五种,分别为腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)。每个核苷酸只含有这五种碱基中的一种。 单个的核苷酸连成一条链,两条核苷酸链按一定的顺序排列,然后再扭成“麻花”样,就构成脱氧核糖核酸(DNA)的分子结构。在这个结构中,每三个碱基可以组成一个遗传的“密码”,而一个DNA上的碱基多达几百万,所以每个DNA就是一个大大的遗传密码本,里面所藏的遗传信息多得数不清,这种DNA分子就存在于细胞核中的染色体上。它们会随着细胞分裂传递遗传密码。 人的遗传性状由密码来传递。人有10万个基因,而每个基因是由密码来决定的。人的基因中既有相同的部分,又有不同的部分。不同的部分决定人与人的区别,即人的多样性。人的DNA共有30亿个遗传密码,排列组成10万个基因。DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA
2023-06-28 18:42:523

简述甲基化抑制基因转录的机理?

在特异性表达某些基因的组织中,活化基因附近mCpG较非表达组织中明显降低至30%左右。同时,有Hl的压缩状态核小体中含有哺乳动物细胞核DNA中80%的甲基化CpG。因此认为基因表达与CG甲基化程度呈负相关。C的甲基化可能加强阻遏蛋白或降低激活蛋白与DNA的结合,或因mCpG的甲基伸入DNA双螺旋结构的大沟,影响DNA与结合蛋白的相互作用;也可能由于C的甲基化使DNA双螺旋大沟中过分拥挤从而改变了DNA不同构象间的平衡,更多地由B-DNA变为其他(如Z-DNA)构象以扩展大沟内的空间,影响了DNA结合蛋白对相应专一序列的结合。由于Z-DNA结构收缩,螺旋加深,使许多蛋白质因子赖以结合的元件收缩入大沟而不利于基因转录的起始。用序列相同但甲基化水平不同的DNA为材料进行实验,发现甲基的引入不利于模板与RNA聚合酶的结合,降低了其体外转录活性。DNA甲基化对转录的抑制主要决定于甲基化CpG的密度和启动子强度两个因素:启动子附近甲基化CpG的密度是阻遏作用的主要决定因素。弱的启动子可被散布的甲基化CpG完全阻遏,若外加增强子使启动子强化,则在同样程度的甲基化影响下转录可以恢复;如果甲基化CpG位点进一步增加,转录就会完全停止。阻遏的严重程度与甲基化CpG区对MeCP1(methylCpG-bindingprotein1)的亲和力成正比。可见在转录的充分激活和完全阻遏之间的调节开关决定于甲基化CpG密度和启动子强度的平衡。
2023-06-28 18:42:591

什么是dna甲基化修饰?其生物学意义是什么

dna甲基化修饰:DNA甲基化(DNA methylation)是最早发现的修饰途径之一,大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5"-CG-3"序列。大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5"端的非编码区,并成簇存在。甲基化位点可随DNA的复制而遗传,因为DNA复制后,甲基化酶可将新合成的未甲基化的位点进行甲基化。DNA的甲基化可引起基因的失活,DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,甲基化达到一定程度时会发生从常规的B-DNA向Z-DNA的过渡,由于Z-DNA结构收缩,螺旋加深,使许多蛋白质因子赖以结合的原件缩入大沟而不利于转录的起始,导致基因失活。另外,序列特异性甲基化结合蛋白(MBD/MeCP)可与启动子区的甲基化CpG岛结合,阻止转录因子与启动子作用,从而阻抑基因转录过程。DNA甲基化主要形成5-甲基胞嘧啶(5-mC)和少量的N6-甲基腺嘌呤(N6-mA)及7-甲基鸟嘌呤(7-mG)dna甲基化修饰的生物学意义:基因甲基化与单亲遗传病:单亲遗传病是指由非孟德尔遗传方式引起的人类遗传病。正常情况下,存在部分与疾病相关的等位基因,其父源与母源甲基化模式不同,几乎所有与单亲遗传疾病相关的等位基因并不是父代与母代都发生甲基化,而是存在一些序列或父代发生甲基化或母代发生甲基化,这些序列被称为“差异甲基化区域”。单亲遗传病能否出现,取决于非孟德尔遗传方式在“差异甲基化区域”上是否发生。这是因为,甲基化后的基因不表达或表达程度低,因而基因的正常表达必须依赖于特定亲本(非甲基化一方)等位基因的正常表达。基因甲基化与肿瘤基因组甲基化模式异常(包括DNA过低甲基化)与肿瘤发生一直是医学界关注热点之一。基因甲基化与老化随着年龄的老化,基因组总体DNA甲基化水平逐渐降低。这一甲基化水平的变化,是否仅与老化有关,还是也参与来华过程中的肿瘤高发,尚有待进一步的研究。
2023-06-28 18:43:051

为什么Z-DNA仅有一条小沟

由碱基排列方式决定
2023-06-28 18:43:321

为什么Z型DNA序列必须含鸟嘌呤?

你可以百度一下翻板假说。它说的是B型构象向Z型转变的时候鸟嘌呤绕着糖苷键由反式变为顺式,而胞嘧啶连同核糖一起转了个身。正因为如此,才使主链成为之字形。所以,Z-DNA都有鸟嘌呤。
2023-06-28 18:43:411

b型dna到z型dna

你这个问题有点毛病:B-DNA在体内的主要转化形式是A-DNA,既是在转录的时候B-DNA与组蛋白的结合松散,使双链处于较松散的状态,自然有利于RNA的结合,而使转录活性升高。此时,DNA的主要形式是A-DNA,而不是Z-DNA。Z-DNA,是一种体外形式的DNA,主要是人工合成来的,它是一种左手螺旋,而体内的B-DNA和A-DNA是右手螺旋的
2023-06-28 18:43:502

dna分子的结构式是什么?

螺旋结构。所谓DNA的一级结构,就是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。核苷酸序列对DNA高级结构的形成有很大影响,如B-DNA中多聚(G-C)区易出现左手螺旋DNA(Z-DNA),而反向重复的DNA片段易出现发卡式结构等。DNA不仅具有严格的化学组成,还具有特殊的高级结构,它主要以有规则的双螺旋形式存在,其基本特点是:1、DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的。2、DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。相关介绍:在繁殖过程中,父代把它们自己DNA的一半复制传递到子代中,从而完成性状的传播。原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色单体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA。
2023-06-28 18:44:051

研究A型DNA、Z型DNA有什么意义

Z-DNA有什么生物学意义呢?应当指出Z-DNA的形成通常在热力学上是不利的。因为Z-DNA中带负电荷的磷酸根距离太近了,这会产生静电排斥。但是,DNA链的局部不稳定区的存在就成为潜在的解链位点。DNA解螺旋却是DNA复制和转录等过程中必要的环节,因此认为这一结构与基因调节有关。比如SV40增强子区中就有此结构,又如鼠类微小病毒DNS复制区起始点附近有GC交替排列序列。此外,DNA螺旋上沟的特征在其信息表达过程中起关键作用。调控蛋白都是通过其分子上特定的氨基酸侧链与DNA双螺旋沟中的碱基对一侧的氢原子供体或受体相互作用,形成氢键从而识别DNA上的遗传信息的。大沟所带的遗传信息比小沟多。沟的宽窄和深浅也直接影响到调控蛋白质对DNA信息的识别。ZDNA中大沟消失,小沟狭而深,使调控蛋白识别方式也发生变化。这些都暗示ZDNA的存在不仅仅是由于DNA中出现嘌呤一啶嘧交替排列之结果,也一定是在漫漫的进化长河中对DNA序列与结构不断调整与筛选的结果,有其内在而深刻的含意,只是人们还未充分认识而已。 个人认为,我们知道A-DNA形态接近于DNA-RNA和RNA-RNA所形成的双螺旋结构,A-DNA可能是DNA进行转录时的特殊形态,由此可研究转录时DNA的变化,而且A-DNA是较低温度下观察到的结构,就可以设想,转录时DNA是否会局部降温? 这些还是我的疑问。
2023-06-28 18:44:321

如何区别B-DNA和Z-DNA?急

b-dna是右手螺旋,z-dna是左手螺旋,且b-dna有两条沟,一天大沟一条小沟。二者的命名可参考高中物理的右手定则和安培定则?。
2023-06-28 18:44:392

B-DNA与Z-DNA的主要区别

比较内容 B-DNA Z-DNA螺旋手性 右旋 左旋螺旋周期的核苷酸数目 10 12螺旋直径 20A 18A碱基平面的间距 3.4A 3.7A螺距 34A 45A相邻碱基对间的转角 36A 60A轴心与碱基的关系 穿过碱基对 不穿过碱基对
2023-06-28 18:44:482

DNA的结构

双螺旋结构
2023-06-28 18:44:573

DNA结构的大沟和小沟分别指什么?

大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对, 从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。 在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。
2023-06-28 18:45:132

DNA的二级结构?

DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。  1.DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。  每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮盐基的比例在同物种不同个体间是一致的,但再不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中A=TC=G查哥夫(Chargaff)法则。  2.DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。  3.DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。  4.核酸以反式作用存在(如核糖体、剪接体),这可以看作是核算的四级水平的结构。  5.此外,DNA的拓扑结构也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。
2023-06-28 18:45:271

DNA降解的外源因素有哪些?

外界物理因素:温度、湿度化学因素:pH值、水解反应、氧化反应生物因素:酶解及微生物侵染等作用。这些因素都直接与DNA的构型、分子组成有关DNA分子结构:DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。[形成链的作用力——磷酸二脂键,易被水解];大多数DNA含有两条这样的长链[两条链间以氢键相连接——氢键在强电解质环境,尤其在高酸度环境内易开键]也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。一般用几个层次描绘DNA的结构:一级结构:DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。——磷酸二酯键易被水解,碱基为含氮杂环化合物,易被氧化变性。二级结构:1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类。一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。因此,综上可见:维持DNA化学生物活性的关键在于其结构以及与其相结合的蛋白质。而维持其结构的关键有:磷酸二酯键——维持一级结构氢键——维持二级结构碱基——与维持氢键有关温度:高温,易加速磷酸二酯键的水解。湿度:1、参与磷酸二酯键的水解2、影响DNA螺旋的形成结构PH值:1、氢离子参与与催化磷酸二酯键的水解2、过高或过低的PH值都易破坏氢键氧化反应:氧化碱基中的含氮杂环,使其变性,从而进一步改变一级与二级的DNA构象。酶解:酶加速DNA的降解(主要是水解)
2023-06-28 18:45:361

Z构象DNA有什么生物学意义

界物理因素、氧化反应生物因素.湿度,易被水解],有的DNA为线形:磷酸二酯键——维持一级结构氢键——维持二级结构碱基——与维持氢键有关温度,基因的遗传信息贮存在其碱基序列中.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近,主要分成A、湿度化学因素.二级结构;大多数DNA含有两条这样的长链[两条链间以氢键相连接——氢键在强电解质环境.这些因素都直接与DNA的构型.[形成链的作用力——磷酸二脂键,5"-磷酸二酯键相连构成的长链,DNA双螺旋可有多种类型,碱基为含氮杂环化合物,后来这个模型得到科学家们的公认,易被氧化变性,综上可见:一级结构.一般用几个层次描绘DNA的结构、分子组成有关DNA分子结构,尤其在高酸度环境内易开键]也有的DNA为单链.经深入研究:DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",B构型最接近细胞中的DNA构象、水解反应、G4,并用以解释复制,易加速磷酸二酯键的水解:pH值:温度,它与双螺旋模型非常相似:DNA的一级结构即是其碱基序列.——磷酸二酯键易被水解,发现因湿度和碱基序列等条件不同、参与磷酸二酯键的水解2.因此:维持DNA化学生物活性的关键在于其结构以及与其相结合的蛋白质:1.基因就是DNA的一个片段:高温,如大肠杆菌噬菌体φX174,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构、氢离子参与与催化磷酸二酯键的水解2.这种构型适合多核苷酸链的嘌呤嘧啶交替区.一般认为:酶解及微生物侵染等作用:1,其主链呈锯齿(Z)形.有的DNA为环形.Z-DNA以核苷酸二聚体为单元左向缠绕、过高或过低的PH值都易破坏氢键氧化反应、M13等、B和Z3大类:1953年,使其变性:氧化碱基中的含氮杂环,故名、转录等重要的生命过程、影响DNA螺旋的形成结构PH值.而维持其结构的关键有,从而进一步改变一级与二级的DNA构象
2023-06-28 18:45:573

dna的一级结构是指的是什么

dna的一级结构是指的是4种脱氧核苷酸的链接及排列顺序,表示了该DNA分子的化学构成。DNA的概述:脱氧核糖核酸(英文DeoxyriboNucleic Acid,缩写为DNA)是生物细胞内含有的四种生物大分子之一核酸的一种。DNA携带有合成RNA和蛋白质所必需的遗传信息,是生物体发育和正常运作必不可少的生物大分子。DNA由脱氧核苷酸组成的大分子聚合物。脱氧核苷酸由碱基、脱氧核糖和磷酸构成。其中碱基有4种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。DNA的分级结构:1、DNA的一级结构DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3";5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。2、DNA的二级结构DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。3、DNA的三级结构DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。4、DNA的四级结构核酸以反式作用存在,这可以看作是核酸的四级水平的结构。此外,DNA的拓扑结构也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。
2023-06-28 18:46:041

A-DNA和Z-DNA两条链分别是什么核酸

这是指DNA有不同的螺旋型态:A, B, Z formB form最常见
2023-06-28 18:46:401

DNA的结构?

DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段. DNA的一级结构   是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序.  每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根.核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G).DNA的四种含氮碱基组成具有物种特异性.即四种含氮盐基的比例在同物种不同个体间是一致的,但在不同物种间则有差异.DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T ,C=G 查哥夫(Chargaff)法则. DNA的二级结构   是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构.DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA.詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图).也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等.有 的DNA为环形,有的DNA为线形.在碱A与T之间可以形成两个氢键,G   与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形 成互补的双链,  由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长   轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形   成双螺旋缠绕状.碱基对之间的距离是0.34nm,10个碱基对转一周,故   旋转一周(螺距)是3.4nm,这是β-DNA的结构,在生物体内自然生成的   DNA几乎都是以β-DNA结构存在. DNA的三级结构   是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构.如H-DNA或R-环等三级结构.DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间 结构,也称为超螺旋结构.DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变.超螺旋式克服张力而形成的.当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态.如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态.但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋. 核酸以反式作用存在(如核糖体、剪接体)   这可看作是核酸的四级水平的结构. DNA的拓扑结构   也是DNA存在的一种形式.DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构.超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变.
2023-06-28 18:46:491

DNA有几级结构?

DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。  1.DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。  每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮盐基的比例在同物种不同个体间是一致的,但再不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中A=TC=G查哥夫(Chargaff)法则。  2.DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。  3.DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。  4.核酸以反式作用存在(如核糖体、剪接体),这可以看作是核算的四级水平的结构。  5.此外,DNA的拓扑结构也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。
2023-06-28 18:47:091

DNA左手螺旋结构是谁发现的

1953年4月25日,克里克和沃森在英国杂志《自然》上公开了他们的DNA模型。经过在剑桥大学的深入学习后,两人将DNA的结构描述为双螺旋,在双螺旋的两部分之间,由四种化学物质组成的碱基对扁平环连结着。他们谦逊地暗示说,遗传物质可能就是通过它来复制的。这一设想的意味是令人震惊的:DNA恰恰就是传承生命的遗传模板。1953年沃森和克里克提出著名的DNA双螺旋结构模型,他们构造出一个右手性的双螺旋结构。当碱基排列呈现这种结构时分子能量处于最低状态。沃森后来撰写的《双螺旋:发现DNA结构的故事》(科学出版社1984年出版过中文译本)中,有多张DNA结构图,全部是右手性的。这种双螺旋展示的是DNA分子的二级结构。那么在DNA的二级结构中是否只有右手性呢?回答是否定的。虽然多数DNA分子是右手性的,如A-DNA、B-DNA(活性最高的构象)和C-DNA都是右手性的,但1979年Rich提出一种局部上具有左手性的Z-DNA结构。左手螺旋并非只是双螺旋的补充,它在自然界是存在的,左手螺旋大概与病变有一定关系,而且左手螺旋与右手螺旋是会发生互变的。21世纪是信息时代或者生命信息的时代,仅北京就有多处立起了DNA双螺旋的建筑雕塑,其中北京大学后湖北大生命科学院的一个研究所门前立有一个巨大的双螺旋模型。人们容易把它想象为DNA模型,其实是不对的,因为雕塑是左旋的,整体具有左手性。就算Z-DNA可以有左手性,也只能是局部的。因此,雕塑造形整体为一左手性的双螺旋是不恰当的,至少用它暗示DNA的一般结构是错误的。
2023-06-28 18:47:181

脱氧核糖核酸是什么?

脱氧核糖核酸是生物细胞内含有的四种生物大分子之一核酸的一种。脱氧核糖核酸通常又称DNA,是染色体的主要组成部分。脱氧核糖核酸携带合成RNA和蛋白质的遗传信息,并通过半保留复制指导生物发展和生活技能的操作。脱氧核糖核酸由脱氧核糖、磷酸盐和碱基组成,碱基包括腺嘌呤、鸟嘌呤和胸腺嘧啶等。DNA的结构为双螺旋结构,结合非常稳定。脱氧核糖核酸可以存储和传输遗传信息,细胞通过DNA复制遗传信息,并通过互补的含氮碱基序列传递遗传信息。日常生活中,DNA可以用来识别罪犯和犯罪行为、指纹识别和亲子鉴定等,并且法医可以通过从血液、皮肤和唾液等组织和体液中分离出DNA进行法医鉴定。
2023-06-28 18:47:339

DNA的结构有何特点?(快,我在线等)

DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。DNA的一级结构  是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T ,C=G 查哥夫(Chargaff)法则(即碱基互补配对原则)。DNA的二级结构  是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有   的DNA为环形,有的DNA为线形。在碱A与T之间可以形成两个氢键,G   与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形 成互补的双链,   由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长   轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形   成双螺旋缠绕状。碱基对之间的距离是0.34nm,10个碱基对转一周,故   旋转一周(螺距)是3.4nm,这是β-DNA的结构,在生物体内自然生成的   DNA几乎都是以β-DNA结构存在。DNA的三级结构  是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间结构,也称为超螺旋结构。DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变。超螺旋是克服张力而形成的。当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态。如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态。但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋。核酸以反式作用存在(如核糖体、剪接体)  这可看作是核酸的四级水平的结构。DNA的拓扑结构  也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。希望能帮助你。^__^
2023-06-28 18:48:183

DNA有几级结构?

DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。  1.DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。  每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮盐基的比例在同物种不同个体间是一致的,但再不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中A=TC=G查哥夫(Chargaff)法则。  2.DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。  3.DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。  4.核酸以反式作用存在(如核糖体、剪接体),这可以看作是核算的四级水平的结构。  5.此外,DNA的拓扑结构也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。
2023-06-28 18:48:271

DNA有几级结构?

DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。  1. DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。   每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮盐基的比例在同物种不同个体间是一致的,但再不同物种间则有差异。 DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T C=G 查哥夫(Chargaff)法则。  2. DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。  3. DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。  4. 核酸以反式作用存在(如核糖体、剪接体),这可以看作是核算的四级水平的结构。  5. 此外,DNA的拓扑结构也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。
2023-06-28 18:48:371

DNA链为什么是细长,DNA长度是指的什么

DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。 一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T ,C=G 查加夫(Chargaff)法则(即碱基互补配对原则)。 二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形 成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状。碱基对之间的距离是0.34nm,10个碱基对转一周,故旋转一周(螺距)是3.4nm,这是β-DNA的结构,在生物体内自然生成的DNA几乎都是以β-DNA结构存在。是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间 三级结构结构,也称为超螺旋结构。DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变。超螺旋是克服张力而形成的。当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态。如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态。但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋。四级结构核酸以反式作用存在(如核糖体、剪接体),这可看作是核酸的四级水平的结构。拓扑结构也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,它可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。结构特点DNA的结构一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。
2023-06-28 18:48:452

DNA为什么是双链结构

DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构 DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA
2023-06-28 18:48:553

DNA是什么

DNA是双螺旋结构,RNA是单螺旋结构的。具体解释如下:RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。
2023-06-28 18:49:041

DNA的结构?

DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。DNA的一级结构  是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。   每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮盐基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T ,C=G 查哥夫(Chargaff)法则。DNA的二级结构  是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有   的DNA为环形,有的DNA为线形。在碱A与T之间可以形成两个氢键,G   与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形 成互补的双链,   由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长   轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形   成双螺旋缠绕状。碱基对之间的距离是0.34nm,10个碱基对转一周,故   旋转一周(螺距)是3.4nm,这是β-DNA的结构,在生物体内自然生成的   DNA几乎都是以β-DNA结构存在。DNA的三级结构  是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间结构,也称为超螺旋结构。DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变。超螺旋式克服张力而形成的。当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态。如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态。但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋。核酸以反式作用存在(如核糖体、剪接体)  这可看作是核酸的四级水平的结构。DNA的拓扑结构  也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。
2023-06-28 18:49:131

DNA三级结构超螺旋的正超螺旋和负超螺旋是怎样形成的?

环形DNA分子如果具有上节表中B型DNA的结构特点,则称为处于松弛状态的分子。如果环形DNA被切断,形成一个线性双螺旋分子,然后用两手分别捏住线性DNA分子的两端,捻动其中的一端或两端同时向相反的方向捻动,双螺旋可以形成过旋(overwound,沿右手螺旋方向捻动)或欠旋(underwound,沿右手螺旋相反方向捻动)结构。过旋和欠旋都会给双螺旋DNA分子增加了额外的扭转张力。  当将线性过旋或欠旋的DNA连接成环状时,为了维持B构象,DNA分子会自动形成额外的超螺旋(supercoils)来抵消过旋或欠旋造成的应力。过旋DNA会自动形成额外左手螺旋,称为正超螺旋(positive supercoils);而欠旋形成额外右手螺旋,称为负超螺旋(negative supercoils)(右图)。生物体内大多数DNA分子都处于负超螺旋结构,而正超螺旋DNA在自然界还没有发现。负超螺旋也可以通过DNA的局部解旋消除。局部解旋在DNA复制和转录的起始期间是非常重要的。
2023-06-28 18:50:121

什么是正,负超螺旋

supercoil 超螺旋:DNA双螺旋本身进一步盘绕称超螺。旋超螺旋有正超螺旋和负超螺旋两种,负超螺旋的存在对于转录和复制都是必要的。正超螺旋:两股以右旋方向缠绕的螺旋,在外力往紧缠的方向捻转时,会产生一个左旋的超螺旋,以解除外力捻转造成的胁变。这样形成的螺旋为正超螺旋。 负超螺旋:两股以右旋方向缠绕的螺旋在外力向松缠的方向捻转时,产生一个右旋的超螺旋以解除外力捻转造成的胁迫。这样形成的超螺旋为负超螺旋。----------------------------------------旋超螺旋有正超螺旋和负超螺旋两种,负超螺旋的存在对于转录和复制都是必要的。 两种说法都没错
2023-06-28 18:50:212

关于正超螺旋与负超螺旋

所属位置:染色体与DNA-DNA的结构-DNA的高级结构 “正常的DNA双螺旋额外地多转或少转几圈”,为什么就形成“额外张力”了,这个“额外张力”又是如何引导超螺旋形成的,看完这段其实不是很懂。在《GENEⅩ》里的解释感觉因果顺序又不太一样: 究竟是正常DNA wound around each other 的时候多绕/少绕了几圈导致“额外张力”,导致了超螺旋的形成,还是超螺旋导致了“额外张力”,写到这里还不清楚。那么就先不管了,来看看正超螺旋和负超螺旋的定义: 关于负超螺旋,其在细胞内是更常见的DNA高级结构,想必有一些重要的生物学意义。《GENEⅩ》是这样描述的: 我觉得这样写就是把 more base pairs per turn 等价为了 unwinding。 感觉感觉吧。如果按GENEⅩ的因果逻辑,只有负超螺旋才能使得DNA more base pairs per turn, 才能使得某些地方解链,因此生物中负超螺旋占大多数。 其实GENEⅩ的下一段貌似也提到了以unwinding作为因,可能导致的结果,而这里并没有提到会引入负超螺旋,而是说unwinding远段DNA会increase winding,从而导致了正超螺旋? 还配了一张感觉非常符合常识的图:所以,按它的意思,大概指的是unwinding在该段内引入的负超螺旋,跟unwinding后再远端引入的more winding以及正超螺旋,是两件事吧。也只能这样强行make sense了。关于linking number (L),writhing number (W) and the twisting number (T) 有空来写。反正也从来没有搞懂过。
2023-06-28 18:50:281

为什么细胞中的DNA中的通常是负超螺旋?

这个和DNA结构有,根据螺旋的方向可分为正超螺旋和负超螺旋.正超螺旋使双螺旋结构更紧密,双螺旋圈数增加,而负超螺旋可以减少双螺旋的圈数.几乎所有天然DNA中都存在负超螺旋结构.
2023-06-28 18:50:361

为什么自然界的超螺旋DNA都是负超螺旋

为什么自然界的超螺旋DNA都是负超螺旋环DNA(closed circular DNA)没有断口的双链环状DNA,亦称为超螺旋DNA.由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构.自然界中主要是负超螺旋另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子.从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子.可根据两者与色素结合能力的不同,而将两者分离开来.在双螺旋结构中,没旋转一圈含有10个碱基对处于能量最低的状态,少于10个就会形成右手超螺旋,反之为左手超螺旋.前者称为负超螺旋,后者称为正超螺旋..原核细胞中的DNA超螺旋是在DNA旋转酶作用下,由ATP提供能量形成的环状DNA负超螺旋,真核细胞中的DNA与组蛋白形成的核小体以正超螺旋结构存在
2023-06-28 18:50:444

cDNA文库必须满足什么条件?其构建包括哪些步骤?

条件:1、要使用mRNA经过反转录PCR产生cDNA。2、要进一步获得cDNA全长3、加适当接头,连接到适当的载体内。4、转化受体细胞,构建为cDNA文库。基本步骤包括:RNA的提取(例如异硫氰酸胍法,盐酸胍—有机溶剂法,热酚法等等,提取方法的选择主要根据不同的样品而定),要构建一个高质量的cDNA文库,获得高质量的mRNA是至关重要的,所以处理mRNA样品时必须仔细小心。由于RNA酶存在所有的生物中,并且能抵抗诸如煮沸这样的物理环境,因此建立一个无RNA酶的环境对于制备优质RNA很重要。在获得高质量的mRNA后用反转录酶Oligo(dT)引导下合成cDNA第1链,cDNA第2链的合成(用RNA酶H和大肠杆菌DNA聚合酶I,同时包括使用T4噬菌体多核苷酸酶和大肠杆菌DNA连接酶进行的修复反应),合成接头的加入、将双链DNA克隆到载体中去、分析cDNA插入片断。扩增cDNA文库、对建立的cDNA文库进行鉴定。这里强调的是对载体的选择,常规用的是λ噬菌体,这是因为λDNA两端具有由12个核苷酸的粘性末端,可用来构建柯斯质粒,这种质粒能容纳大片段的外源DNA。
2023-06-28 18:40:061

请问什么是cDNA第一链?

反转录生成的单链cDNA就是第一链cDNA,后面要拿这个单链cDNA去合成互补配对的另外一条cDNA
2023-06-28 18:39:592

cDNA和gDNA区别

<p>gDNA(genomic DNA,基因组DNA):是指有机体在单倍体状态下的DNA全部含量。广义的基因组也指某一体系(如核或细胞器)中的DNA,它包括编码或细胞中固有的核糖体DNA(rDNA)、线粒体DNA(mtDNA)、tRNA基因及其它RNA编码。</p><p>cDNA:与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由RNA与DNA进行一定条件下合成的,就是cDNA。</p><p>两者从定义就可以看出区别,从某种意义上来说,前者包括后者.</p><p></p>
2023-06-28 18:39:441

在什么情况下需要构建cDNA?

构建全长cDNA文库分为噬菌体文库和质粒文库,二者大同小异。无论怎样,应当注意如下几个方面:一、保证获得数量足够的高质量的起始RNA,一般至少要1g材料。构建cDNA文库要求的RNA量比做RACE和Northern blot的要多,在材料允许的情况下一般的试剂盒均推荐采用纯化总mRNA后进行反转录,这比直接采用总RNA进行反转录而构建的cDNA文库好,虽然后者也并不是不能做。老版本CLONTECH的SMART 4的中级柱子要求纯化后的总mRNA量最好在0.5-5微克左右,这就要求起始总RNA量较多。虽然有的试剂盒声称少至几十个纳克的总RNA也可以构建cDNA文库,但这是针对材料极为稀缺者而言,但起始RNA太少还是会或多或少影响文库构建成功的风险和文库的代表性。至于RNA的质量,如果采用纯化总mRNA后反转录,则对总RNA的杂质方面要求稍松,但对RNA的完整性则一丝不苟,要求未降解。如果直接采用总RNA进行反转录,则对总RNA的质量要求非常高,不仅要求RNA相当完整而无降解,而且要求多酚、多糖、蛋白、盐、异硫氰酸胍等杂质少,最好是试剂盒抽提的。二、反转录成功与否及反转录效率是关键中的关键。这是构建cDNA文库中最贵的一步,也是核酸质变的一步,它将易降解的RNA变成了不易降解的cDNA。反转录不成功,说明一次文库方案的夭折。反转录效率不高表现在一是部分mRNA被反转录了,但还有相当一部分本该反转录的mRNA未被反转;二是只有少部分mRNA被反转录通了即达到帽子结构最近处,而很大一部分mRNA没有反转录完全,总的全长cDNA太少,这就难以构建好的全长cDNA文库。少量程度的mRNA降解或反转录不完全在SMART 4等试剂盒及手工方法构建中对文库的滴度影响不大,但对文库的全长性则有很大影响。Invitrogen公司基于去磷酸化、去帽、RNA接头连接后再反转录的新技术(可参考其GeneRacer说明书)从原理上是保证最终获得全长cDNA的最好方法,但对mRNA的完整性要求非常高,理论上讲必须是带有帽子结构和Poly A结构的全长mRNA且反转录完全,才能进入文库中。反转录完成后点样检测cDNA的浓度及分子量分布是很重要的。三、反转录后至包装到噬菌体外壳蛋白之前的诸多步骤的操作相对容易,但其中的层析柱cDNA分级很关键。这一步稍不注意会影响成功性或影响获得的cDNA的片段分布特点。这一步的操作要小心,尤其要在加入cDNA之前通过反复悬浮和试滴保证柱子能正常工作,cDNA的加入和收集要精力集中。获得的每一级的cDNA量很少,检测时带型很暗,所以要用新鲜做的透明薄胶检测,根据检测结果一定要舍弃太短的cDNA(一般400bp以下就不要了,因为短片段太多会严重影响后面的连接转化效果及文库质量)。四、噬菌体文库或质粒文库均对载体与cDNA的连接效率要求很高,也对连接产物转染或转化大肠杆菌的效率要求很高。连接效率高低直接关系到文库构建是否成功,更要注意的是文库连接与一般的片段克隆的连接不一样。一般的片段克隆连接是固定长度的载体与固定长度的目的DNA连接,而文库连接是固定长度的载体与非固定长度的目的DNA连接,目的基因cDNA长的有10kb以上,短的只有500bp或更短。一系列长度不等的cDNA与载体在一起连接的结果,不同长度cDNA的连接效率就不一样。有的专家的经验是,根据分级结果,有意识地将长度不同的cDNA群分别与载体连接,再分别转化或转染大肠杆菌,分别完成滴度检测,最后将不同长度级别的文库混合在一起供杂交筛选。看看一个初学者从库中P基因的经历,有些体会送给即将要做库的同学。实验要好好总结,失败不可怕,怕的是自己没信心没有办法解决出现的问题。http://hi.baidu.com/geneyouth/blog/item/70a36f06a5d33f7b02088196.html
2023-06-28 18:39:352

有关cDNA的保存

这要看你们实验室的保存条件是什么!一般情况下将反转录产物稀释一部分放置-20℃用于日常实验,这部分面临的就是不停的冻融,它的保存时间一般也就2个月左右吧!另一部分剩余的cdna可以保存在-80℃,它放置几年都没有问题!希望我的解释对你有帮助!
2023-06-28 18:39:282