DNA图谱 / 问答 / 问答详情

分子克隆的基本方法

2023-06-29 07:14:13
共1条回复
可可科科
载体 所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。

基因库的建造

特异基因的筛选
核酸序列测定

 一、基因克隆的基本方法

  一个典型的基因克隆实验,主要有以下操作和结果:

  (1)包括有目的基因在内的DNA片断插入另一个DNA分子(克隆载体,通常是环状的),形成重组DNA分子。

  (2)重组DNA分子通过转化或其他类似的方法被导入受体细胞。大肠杆菌是使用较多的受体细胞。

  (3)在受体细胞中,克隆载体指导重组DNA分子复制,产生许多完全相同的拷贝。

  (4)当受体细胞分裂时,重组DNA分子的拷贝进入子细胞,克隆载体的复制将在子细胞中继续。

  (5)大量分裂的受体细胞形成克隆:一个细胞群体,其中每个细胞都含有许多重组DNA分子的拷贝。

  显而易见,基因克隆是一个比较直观而简单的操作程序。它之所以具有非常重要的生物学意义,是因为这一技术可以为我们提供一个纯粹的基因标本。通常,一个基因总是和细胞里其他基因同在。基因克隆技术诞生之前,我们根本无法纯化单个基因,这意味着我们只能对基因群、而不是特定基因的结构与功能进行研究和开发利用。

  1、重组DNA分子的构建

  构建重组DNA分子是基因克隆实验的第一步,亦即,把环状的载体在指定部位切断,然后把含目的基因的DNA分子插入其中,再将两者连接起来。这一过程需要两种DNA操作酶:限制性内切酶(restriction endonucleases)和连接酶(ligases)。

  限制性内切酶能够识别DNA分子上的特定核苷酸序列,并在该处特异性切断DNA分子。例如,PvuI(细菌Proteus vulgaris分离)只识别和切断6核苷酸序列CGATCG;从相同细菌分离的PvuII,却只识别并切断CAGCTG。许多限制性内切酶的识别位点是6个核苷酸,但是,也有识别4个或5个、甚至8个核苷酸顺序的限制性内切酶。此外,有些限制性内切酶的识别顺序可能不是唯一的,例如,HinfI可以识别并切断GAATC、GATTC,GAGTC和GACTC。因此,通常也将HinfI的识别位点记为GANTC,N代表A、T、G和C中的任意一种核苷酸。

  经限制性内切酶处理后的DNA分子断端有两种:平端和粘端,它们的性质对基因克隆的实验设计有重要影响。其中,具有不同识别位点的限制性内切酶可以产生相同的粘端。例如,BglII(AGATCT)和BamHI(GGATCC)产生与Sau3A相同的GATC粘端。显然,经上述三种酶处理的DNA分子片断之间均可以在相应的断端形成互补双链。

  DNA分子片断通过粘端形成的碱基互补并不能使之相互连接,后一过程需要连接酶的催化作用。所有生物细胞中都产生连接酶,但是,基因克隆中最常用的是T4噬菌体的连接酶。连接酶催化相邻核苷酸之间形成磷酸二酯键。由于平端不能使DNA片断保持相互接近的位置,因而,和粘端相比,连接酶对平端DNA分子之间连接反应的催化效率较差。

  2、克隆载体及其主要功能

相关推荐

分子克隆步骤

直接用DNA的分子扩增技术就可以了,就是PCR技术:使DNA分子先解螺旋,然后以得到的单恋为模版进行复制。步骤:  1.DNA变性(90℃-96℃):双链DNA模板在热作用下, 氢键断裂,形成单链DNA  2.退火(25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。  3.延伸(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的5′端→3′端延伸,合成与模板互补的DNA链。  每一循环经过变性、退火和延伸,DNA含量即增加一倍。
2023-06-29 00:30:571

分子克隆知识

NLS 具有与核输出信号 nuclear export signal (NES) 相反的功能,后者针对细胞核外的蛋白质。** Tm值与退火温度: PCR产物纯化的方法 在PCR扩增完成后,反应体系中除了DNA片段,还存在离子、dNTP、引物及聚合酶等物质,这些物质会对后续的实验(克隆、测序等)产生不利的影响,需要对产物进行纯化回收。 回收DNA片段有两种途径,即直接回收和从凝胶中回收,每种纯化途径都有相对应的试剂盒。 在 PCR 扩增完成后进行琼脂糖凝胶电泳检测,在条带单一无其他杂带的情况下,可以用产物纯化试剂盒对 PCR 扩增产物直接进行纯化。目前市面上的产物纯化试剂盒大多是利用吸附柱的方法,其实验过程为“吸附-洗杂-洗脱”:将 PCR 产物置于 DNA 纯化柱中,产物中 DNA 片段会吸附于 DNA纯化柱上,利用 wash buffer 通过一系列快速漂洗-离心的步骤,将引物、核苷酸、蛋白、酶等杂质去除(洗杂需重复多次以尽可能的洗去杂质,提高产物纯度),最后用洗脱液将 DNA 片段洗脱。 如果电泳检测结果存在非特异性条带,则需要通过切胶将目的条带分离出来,随后利用胶回收试剂盒对凝胶回收纯化。凝胶回收纯化与产物直接纯化相比多了一个溶胶的过程,两者纯化原理基本相同。 产物直接纯化与凝胶回收纯化区别产物直接纯化的回收率比胶回收高,但只适用于电泳结果为单一条带的情况。凝胶回收纯化需要先跑胶然后将目的条带切胶回收,纯化产物更纯净。 PCR 产物纯化回收有两个重要的技术指标:纯度和回收率。回收率不理想会使工作量大大的增加, 如果质粒DNA打算用作PCR模板,建议将其用作线性DNA。圆形质粒大多具有超螺旋结构,其目的序列不易被引物和聚合酶获得。(If the plasmid DNA is intended for use as a PCR template, it is recommended to use it as a linear DNA. A circular plasmid mostly has a supercoiled conformation, where the target sequence is less accessible for primers and for polymerase.) 普通taq聚合酶: 只有5"-3"端聚合酶活性和5"-3"端外切酶活性。 高保真taq聚合酶: 还有3"-5"端外切酶活性,可以进行矫正。 因为TAE缓冲液的pH约为8.0,而DNA分子在pH为8.0时,磷酸基团全部解离,而碱基几乎不解离,从而使DNA分子带上负电荷,在电场的作用下会向正极移动 总结2:胶染料(Gelstain)和上样缓冲液(10x loading buffer) 1、胶染料作用:对核酸进行染色,使核酸分子在紫外光照射下能够被检测到。 2、上样缓冲液: ①溴酚蓝:可以指示电泳进度,当溴酚蓝染料移动到距离凝胶前沿1~2cm处停止电泳;②甘油、蔗糖:增加样品密度,使样品沉入胶孔。 Gibson无缝连接技术: poly(A) tail:真核生物mRNA的3"端都有一段) ,这种尾巴不由基因编码,而是在转录后加到mRNA上的。加尾过程受位于终止密码3"端的加尾信号序列所控制。 在结构基因的最后一个外显子中有一个保守的AATAAA序列,此位点下游有一段GT丰富区或T丰富区,这两部分序列共同构成poly(A)加尾信号。 哺乳动物细胞表达质粒主要是用于转录出mRNA, 常用的转录终止子有 SV40, hGH, BGH, 和rbGlob ,同时包含有AAUAAA基序促进聚腺苷酸化和转录终止。除了上面列出的, SV40 late polyA 和 rbGlob polyA 被认为可以更加有效的终止转录。 有一点特别需要注意的是,哺乳动物细胞的 poly(A) 信号和病毒包装系统的联合使用可能会降低病毒滴度,延长转录本的寿命,所以处理的时候需要谨慎一点。因为这个原因,病毒载体通常会使用其他非poly(A)的转录本稳定元件和出核元件,如 WPRE和CTE 或者使用其他弱的poly(A)信号,如 BGH 。 聚腺苷酸化一般认为是真核细胞特有的加工过程,但是原核细胞中它也会在RNA产物的末尾加上聚腺苷酸。与真核细胞不同的是,在真核细胞中poly(A)通常加在特定的poly(A)信号位点处,而在原核细胞中这个位点不是特异的,比较随机。poly(A)尾巴会加快RNA的降解,这一点与真核细胞也是不同的。由于加poly(A)尾没有特异性,所以poly(A)尾通常被认为是用来调节细胞内的RNA浓度水平,并作为一种质量控制机制来清楚错误折叠的RNA。
2023-06-29 00:31:091

分子克隆的载体应具备哪些条件

条件:①能在宿主细胞中复制繁殖,而且最好要有较高的自主复制能力。②容易进入宿主细胞,而且进入效率越高越好。③容易插入外来核酸片段,插入后不影响其进入宿主细胞和在细胞中的复制。这就要求载体DNA上要有合适的限制性核酸内切酶位点。④容易从宿主细胞中分离纯化出来, 这才便于重组操作。⑤有容易被识别筛选的标志,当其进入宿主细胞、或携带着外来的核酸序列进入宿主细胞都能容易被辨认和分离出来。这才介于克隆操作克隆载体通常采用从病毒、质粒或高等生物细胞中获取的DNA作为克隆载体,在载体上插入合适大小的 外源DNA片段,并注意不能破坏载体的自我复制性质。将重组后的载体引入到宿主细胞中,并在宿主细胞中大量繁殖。常见 的载体有质粒、噬菌粒、酵母人工染色体。扩展资料:分子克隆的意义和应用:1、在医学方面利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松弛素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产。还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量。2、在基因治疗方面通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞。为治疗半乳糖血症,用带有大肠杆菌乳糖操纵子的λ噬菌体去感染半乳糖血症患者的离体培养细胞,发现这种细胞的半乳糖苷酶达到了正常水平,并确实能代谢半乳糖。3、在工业生产方面以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用。许多化学试剂如丙烯酸、己二酸、乙二醇、甲醇、环氧乙烷、乌头酸和水杨酸等都可能利用分子克隆技术得到产品。在环境保护方面,人们根据需要进行基因操作,将某种微生物的基因转入另一微生物,创造一些对有害物质降解能力更强的新菌种,以分解工业污水中的有毒物质。在食品工业方面,细菌可为人类生产有价值的蛋白质、氨基酸和糖等。4、在农业生产方面植物遗传工程对提高农作物的产量、培育新的农作物品种提供了可能。有许多外源基因导入植物获得成功。参考资料来源:百度百科-分子克隆参考资料来源:百度百科-克隆载体
2023-06-29 00:31:194

分子遗传学领域的分子克隆是指

DNA的大量复制。分子遗传学领域的分子克隆是指DNA的大量复制,分子克隆是指分离一个已知DNA序列,并以invivo(活体内)方式获得许多复制品的过程,这一复制过程经常被用于增加并获取DNA片段中的基因。
2023-06-29 00:31:361

分子克隆中常用的连接方法及原理

方法:DNA片段的制备、载体的选择、片段与载体连接。在分子水平上提供一种纯化和扩增特定DNA片段的方法。原理:外源DNA片段和线状质粒载体的连接,也就是在双链DNA5"磷酸和相邻的3"羟基之间形成的新的共价链。如质粒载体的两条链都带5"磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口,当杂本导入感受态细胞后可被修复。载体DNA的选择质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松弛型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆。以上内容参考:百度百科-分子克隆
2023-06-29 00:31:441

DNA分子克隆与PCR反应都可扩增DNA片段,两种技术有何异同?

DNA分子克隆和PCR反应都是用来扩增DNA片段的方法,但是它们有一些明显的不同。DNA分子克隆是指在细胞中将某段DNA复制到一种载体上(如质粒或转基因菌),从而增加DNA的数量。该过程需要运用质粒介导的遗传克隆技术,通常需要进行一些操作,如酶切、酶连接、转录、翻译等。PCR反应是一种快速的增广DNA的技术,它可以通过从DNA样品中分离出任意一段DNA片段并进行多次复制,从而增加该片段的数量。该过程通常在实验室中进行,并不需要利用生物体内的生物机制。因此,两种技术的最大不同在于它们所采用的方法不同,一个是利用生物体内的生物机制,另一个是利用实验室条件和工具。此外,DNA分子克隆需要许多操作,比较复杂,而PCR反应简单快速,但是灵敏度较低。
2023-06-29 00:31:571

分子学的克隆

自从1953年,沃森和克里克提出DNA分子双螺旋结构模型以来,基因的分子生物学迅速发展起来。1967年,DNA连接酶首次被分离出来,这种酶能使DNA分子的末端之间形成3",5"-磷酸二酯键,因此可以使2个DNA分子连接起来。1970年,科学家发现了第一种限制性内切酶,这种酶能识别特定的DNA顺序,并且在这个顺序内的一定位置上把DNA分子切断。1972年,美国斯坦福大学的伯格(P.Berg)等人设想,如果把猿病毒DNA和λ噬菌体DNA用同一种限制性内切酶切割后,再用DNA连接酶把这两种DNA分子连接起来,就会产生一种新的重组DNA分子,这是分子克隆的开创性工作。1973年,科恩(S.Cohen)等人将外源DNA片段与质粒DNA连接起来,构成一个重组质粒,并成功地将其转移到大肠杆菌中,从而首次建立了分子克隆体系。 克隆是clone的译音,是无性繁殖的意思。分子克隆又称重组DNA或基因工程,是指用人工方法取出某种生物的个别基因,把它转移到其它生物的细胞中去,并使后者表现出新的遗传性状,这是一种DNA的无性繁殖技术。这项技术从20世纪70年代开始,迅速发展起来,先后培育出一些具有商业价值的转基因产品。例如1988年,我国科学家合成了抗黄瓜花叶病毒基因,并把这一基因引入到烟草等作物的细胞中,得到抗病能力很强的新品种。1989年,中国科学院武汉水生生物研究所的朱作言等科学家将人的生长激素基因成功地导入泥鳅、鲤鱼、鲫鱼的卵细胞中,从而使这些鱼的生长速度明显加快。基因工程在改良生物品种,治疗人类的遗传病等方面潜力还很大,但仍有很多难题需突破。另外,在遗传工程中还有一种细胞水平的遗传。1997年,首例体细胞克隆羊问世。据1997年2月27日英国《自然》杂志报道,英国苏格兰卢斯林研究所的科学家们首次成功利用细胞核移殖技术,经人工繁殖产生哺乳动物—多莉羊。其克隆过程大致是:从一个6龄母羊身上取乳腺细胞,经培养后取核,利用电打孔使该核进入另一只羊的去核卵细胞中,经培养后植入第三只羊(替代母羊)的子宫中生长,直至分娩。经基因图分析,多莉与供核者(6龄母羊)基因组成相同,也就是说,多莉几乎是第一只羊的翻版,这就是无性繁殖——克隆,即细胞水平的遗传工程。这项实验的成功使由人体细胞克隆产生克隆人成为可能,从而引起了道德、伦理与法律等问题的激烈争论。总之,一次新的技术或新的理论的产生与成熟,必将会带来新的革命与挑战。随着道德、法律的不断完善,人们终将受益。在分子生物学飞速发展的今天,人们还是不能忘记它的创始人沃森和克里克。他们将一生都献给了20世纪的分子生物学,由他们两个人所掀起的狂澜,席卷了全球,带动一系列学科的发展。人们尊称他们为“分子生物学的元勋”。
2023-06-29 00:32:041

分子克隆转进去有两种情况

分子克隆转化步骤有两种情况,转化和非转化。在转化过程中根据合适的选择条件可以区分转化细胞和非转化细胞。体外连接的DNA分子必须尽快引入寄主细胞,否则会很快降解,而且只有导入到细胞中后,才能扩增及研究其功能的表达,细胞转化是常用也是最有效的方法之一,细菌转化是指裸露的(或纯化的)DNA被细菌吸收而导致基因转移的现象。大肠杆菌的感受态需诱导。将对数生长期的细菌放入0°C的CaCl2低渗溶液中,细胞膨胀,形成原生质球,诱导感受态。DNA加入后,形成抗DNase的羟基-磷酸钙复合物,粘附于原生质球表面,42°C热冲击,DNA被吸收,将细胞混合物涂布于合适的(筛选)培养基培养几小时,细胞得以恢复和增殖,转化基因得以表达。
2023-06-29 00:32:181

克隆的定义是什么?10字解答

克隆是指生物体通过体细胞进行的无性繁殖,以及由无性繁殖形成的基因型完全相同的后代个体。通常是利用生物技术由无性生殖产生与原个体有完全相同基因的个体或种群。
2023-06-29 00:32:2912

SnapGene软件教程之分子克隆功能&技术原理

最近在做克隆载体,入手了一款非常好用的软件 SnapGene 。网上教程挺多的,其中最推崇 四方居士 的 视频教程 ,在优酷上可以直接观看。 这款软件用来绘制图谱,编辑序列,设计引物,重组克隆都非常方便。对于克隆,在软件的Action工具栏内除了常规的限制性酶切插入克隆 ,PCR等常规操作,还列出了5种成熟的商业化的 无缝克隆 供使用者选择。这5种克隆技术分别是: <!> 本文作为观后笔记,将四方居士讲解的克隆技术的原理进行文字记录和整理,以便收藏和分享。更多内容,请大家一定去观看四方居士的视频教程! PCR是所有分子生物学实验的基础,全称为聚合酶链式反应,通过高温变性,退火和延伸反应三部曲来扩增目的DNA序列。通过引物的设计变化,扩增反应的组合,特殊酶的使用等等,基础的PCR反应可以有千万种变化。下面介绍两种在克隆构建中经常会被用到的PCR方法。 不论变种PCR设计得多么复杂,只要画成示意图,就能一目了然。真是一图抵千言。 如图所示,重叠延伸PCR中的“重叠”指的就是两组PCR的产物,通过引物引入一段相同的序列。这段相同的序列,使得两组PCR产物的单链能够在退火时结合,这种杂交产物在DNA聚合酶的帮助下延伸成完整的DNA双链。再通过最两端的引物对融合的长篇段DNA进行扩增。 需要注意的是,引物设计时引入的“重叠”序列是反向互补配对的。 重叠延伸PCR可以将两段DNA序列进行融合,通过这种方法可以构建融合基因,也可以用来将无法一次获得全长的DNA序列,通过分段扩增,再拼接的方法获得。此外,如果“重叠”序列也可以经过特殊设计,来引入一段插入序列,如酶切位点等。 由于引物与模版不完全互补配对并不影响延伸,所以用PCR引入突变主要是在引物上“做手脚”。(但注意,引物3‘末端的碱基必须互补配对!) 在引物上添加一段序列即可获得插入突变。这时候需要注意,对于表达序列,插入碱基的数目一定要是三的倍数,否则会造成阅读框移码。在引物上替换几个碱基也可以引入突变,一般用于表达产物的氨基酸突变。此外,还需要提防改造后的引物匹配到模版中的其它位置。这里可以提前用blast预测看看。 限制性酶切和连接是最常见的载体构建方法。利用限制性内切酶对DNA序列和载体质粒进行酶切,暴露出相同的黏性末端或者平末端,再利用DNA连接酶(一般是T4 ligase)进行连接。 由于限制性酶切和连接的方法依赖限制性内切酶的使用,构建成功与否取决于目的DNA和载体序列上是否存在合适的酶切位点以及对应的酶。因此开发出无缝克隆的技术,不依赖限制性内切酶,使得克隆更加便捷,应用范围更广。 Gateway Cloning,翻译成门途径克隆,是由invitrogen公司研发的技术,目前经过多轮收购,属于Thermo公司。Gateway的核心是利用λ噬菌体位点同源重组。 目的基因和载体基因ccdB的序列两段带有 att X 序列,这个 att X 可以看作是同源重组的“信号序列”,分为 "att B"、"att P"、"att L"、"att R" 四种。其中 "att B" 和 "att P" 通过BP重组酶进行交换(BP反应);其中 "att L" 和 "att R" 通过LR重组酶进行交换(LR反应)。 目的基因首先通过与供体质粒(Donor vector)进行BP反应,获得含有目的基因序列的克隆载体,算是“入门”。随后可以与多种目的载体进行LR反应,将目的基因置换到目的载体当中。 ccd B 是一种致死性基因,载体上表达 ccd B 时,感受态细胞无法存活,由此来清除Gateway cloning过程中的副产物。 吉布森无缝克隆是JCVI研究所的“吉布森”教授(Daniel G. Gibson)发明,利用DNA同源重组原理,比GAteway cloning更加简单,应用非常广泛,基本上各大公司都有相应的产品。 首先目的DNA和载体两段需要有15bp的同源序列。由于这段序列可以源自载体序列,通过PCR加到目的序列上,所以实际获得的拼接是无缝的。然后通过5‘外切酶是的目的序列和载体都暴露出单链DNA,形成类似于黏性末端的单链接头,退火使目的序列和载体互补配对,利用DNA聚合酶补齐末端缺失的碱基,再用DNA连接酶“缝合”切口,从而完成克隆。 看似用到多个酶的多步反应,通过混合酶或重组酶也可以Mix的体系,进行一步操作。 In-Fusion cloning是由clontech公司开发的,其原理与Gibson cloning大体相同,主要区别也是在于使用的酶,也属于专利产品。 NEB公司的高保真DNA组装与Gibson cloning的原理类似,使用的就是经过改造的重组酶,为其公司的专利产品。可以用一步反应进行DNA组装。它的特色还在于反应中使用的酶的高保真性。 NEB公司自己就拥有上述三种克隆方法对应的产品,官网中有对它们自家的三款产品平行比较。仅供参考。 TA克隆和GC克隆是最简单,也是最“小学生”的克隆。TA克隆利用Tag酶在PCR产物3‘末端加A的特性,设计对应5‘末端加T的载体与之配对。这样PCR的产物不用经过任何处理就可以与载体进行连接,一步完成。GC克隆与之相同,是利用了另一种DNA聚合酶3"末端加G的原理,当然目前这种酶用得越来越少了,几乎是停产,所以一般没人使用了。
2023-06-29 00:32:561

分子克隆技术包括哪些基本步骤?

1、提取DNA基因组或则mRNA(可用试剂盒完成,一般问题都能解决)。2、设计引物,PCR扩增目的片段。3、选择合适质粒载体,进行酶连接,构建亚克隆子(有商品化质粒可供选择)。4、用构建好的质粒转化感受态细胞(方法生物技术实验书中有详细介绍)。5、筛选阳性克隆。
2023-06-29 00:33:165

分子克隆中常用的工具酶有哪几种

工具酶:基因工程涉及众多的工具酶可粗略的分为限制酶,连接酶,聚合酶,核酸酶和修饰酶五大类。其中,以限制性核酸内切酶和DNA连接酶在分子克隆中的作用最为突出。1、DNA限制性内切酶生物体内能识别并切割特异的双链DNA序列的一种内切核酸酶。它是可以将外来的DNA切断的酶,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息;2、连接酶它是一种封闭DNA链上缺口酶,借助ATP或NAD水解提供的能量催化DNA链的5"-PO4与另一DNA链的3"-OH生成磷酸二酯键;3、聚合酶系专司生物催化合成脱氧核糖核酸和核糖核酸的一类酶的统称;4、核酸酶核酸酶有DNase、RNase、核酸酶S1等,可水解相应的DNA和RNA,核酸酶S1可降解单链DNA和RNA,用量增大也可降解双链核酸,它可用于切去ds-cDNA合成中产生的发夹环;5、修饰酶体内有些酶可在其他酶的作用下,将酶的结构进行共价修饰,使该酶活性发生改变,这种调节称为共价修饰调节。
2023-06-29 00:33:321

求分子克隆具体实验步骤一份~~多谢各位大侠啦~

分子克隆实验流程第一天一:目的片段的扩增(PCR)PCR反应的基本成分包括:模板DNA(待扩增DNA)、引物、4种脱氧核苷酸(dNTPs)、DNA聚合酶和适宜的缓冲液。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的高温变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的低温退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的适温延伸:DNA模板--引物结合物在。1.PCR(50ul) ddH2O 37.5ul10x buffer 5ulMgCl2(25mmol) 3uldNTP (10mmol) 1ulprimer 1(10mmol) 1ulprimer 2(10mmol) 1ulcDNA 1ulTaq 0.5ulPCR反应条件:94℃ 5min(94℃ 30s . 55℃ 30s . 72℃ 45s)x30 72℃ 5min.4℃保温 或者94℃ 5min (94℃ 30s . 64℃ 30s . 72℃ 45s)x10 (94℃ 30s . 66℃ 30s . 72℃ 45s)x10(94℃ 30s . 68℃ 30s . 72℃ 45s)x10 72℃ 5min.4℃保温注意:当所要扩增的目的片段较大时需要适当的增加延伸时间(一般产物越长,需要的时间越长: 1分钟/1kb)2.琼脂糖凝胶电泳检测:取5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,保存电泳图片。(琼脂糖凝胶的配制:1xTAE缓冲液+琼脂糖 加热至琼脂糖全部溶解然后冷却至60℃以下加入EB混匀倒板。其中琼脂糖含量为1g/100ml,EB含量为0.1ul/ml) 注:琼脂糖凝胶电泳检测如果有杂带侧需要割胶回收目的片段。3.PCR产物纯化:根据PCR产物回收试剂盒上流程回收PCR产物,最后用45ddH2O洗脱-20℃保存或下一步实验.4.PCR产物酶切(50ul) PCR纯化产物 43ul 10xBuffer Tango 5ul E1 1ul E2 1ul 酶切反应条件:37℃反应过夜或者37℃反应3-4h。. PCR产物酶切纯化:根据PCR产物回收试剂盒上流程回收PCR产物,最后用25-30ddH2O洗脱-20℃保存或下一步实验.琼脂糖凝胶电泳检测:取2-5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,保存电泳图片。以确保回收到目的片段。二.载体的制备 1.质粒DNA的制备:用柱式质粒DNA小量试剂盒抽提我们所要的载体质粒。 2.载体酶切(100ul) 质粒DNA 2ug 10xBuffer Tango 10ul E1 2ul E2 2ul ddH2O 补足至100ul 反应条件:一般pGEX-4T 37℃水浴3-4h,pET系列37℃水浴过夜。 3. 琼脂糖凝胶电泳检测:取5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,同时取200ng左右没有酶切的质粒做对照,保存电泳图片。(琼脂糖凝胶的配制:1xTAE缓冲液+琼脂糖 加热至琼脂糖全部溶解然后冷却至60℃以下加入EB混匀倒板。其中琼脂糖含量为1g/100ml,EB含量为0.1ul/ml) 4.酶切产物纯化:根据PCR产物回收试剂盒上流程回收酶切产物,最后用20-30ul ddH2O洗脱-20℃保存或下一步实验.第二天三.外源DNA片段在质粒载体中的克隆 1.外源DNA片段与质粒载体的连接(10ul) DNA片段 6ul 载体 2ul T4 DNA Ligase 1ul Buf T4 DNA Ligase 1ul 反应条件:22℃水浴3-4h或者16℃或4℃水浴过夜。 一般目的片段:载体摩尔比约为3:1,但是在这里我们通常是按体积比。 2.连接产物转化 取全部连接产物加入到不少于5-7倍体积感受态细胞溶液中,冰浴20min,42℃热激90s后静置与冰浴中3-5min加入500-800ul(一般800)LB或SOB培养基,37℃ 200rmp恒温培养0.5-1h。4000rmp离心1min弃上清同时保留100-200ul混匀菌体沉淀后均匀涂布抗性平板上。37℃恒温箱培养过夜。 质粒转化取质粒1ul或50-100ng加入50-70ul所需的感受态细胞溶液中,冰浴20min,42℃热激90s后静置与冰浴中3-5min加入500-800ul(一般800)LB或SOB培养基,37℃ 200rmp恒温培养0.5-1h。取100-200ul菌体均匀涂布抗性平板上。37℃恒温箱培养过夜。 注:1一定要区分质粒和连接产物转化的不同,不要理所当然。 2根据实验要求选择所需要的感受态。 3在选择抗性平板的时候要根据所选载体和感受态两个方面确定。第三天 收集涂布的抗性平板检查菌落生长情况4℃保存待下一步实验;筛选鉴定或酶切鉴定 筛选鉴定 菌落 PCR(25ul) ddH2O 19.2ul10x buffer 2.5ulMgCl2(25mmol) 1.5uldNTP (10mmol) 0.5ulprimer 1(10mmol) 0.5ulprimer 2(10mmol) 0.5ulTaq 0.3ul模板为单菌落PCR反应条件:94℃ 5min(94℃ 30s . 55℃ 30s . 72℃ 45s)x30 72℃ 5min.4℃保温 或者94℃ 5min (94℃ 30s . 64℃ 30s . 72℃ 45s)x10 (94℃ 30s . 66℃ 30s . 72℃ 45s)x10(94℃ 30s . 68℃ 30s . 72℃ 45s)x10 72℃ 5min.4℃保温注:1一般一个项目要挑选5个单菌落做菌落PCR 2在以菌落为模板时要事先准备相应抗性平板,用枪头挑选菌落时要先在事先准备的相应平板上划线标记好顺序再将枪头放入上述反应体系中搅匀一下。3该PCR 的primer 为通用primer 所以在原来目的片段的大小上加上100-200bp。琼脂糖凝胶电泳检测:取5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,保存电泳图片。根据大小判断该菌落是否正确。下班前挑取(在划线的板子上)筛选正确的菌体接种到5ml 含相应抗性的LB培养基37℃ 200rmp培养过夜。
2023-06-29 00:33:472

分子克隆实验指南的目录

中译本序译者的话第三版前言上册第1章 质粒及其在分子克隆中的应用第2章 λ噬菌体及其载体第3章 M13噬菌体载体第4章 高容量载体的应用第5章 DNA凝胶电泳和脉冲场琼脂糖凝胶电泳第6章 真核基因组DNA的制备和分析第7章 真核mRNA的提取、纯化和分析第8章 聚合酶链式反应体外扩增DNA第9章 放射性标记DNA探针与RNA探针的制备第10章 合成寡核苷酸探针第11章 cDNA文库制备及其基因鉴定下册第12章 DNA测序第13章 诱变第14章 表达文库的筛选第15章 在大肠杆菌中表达克隆化基因第16章 哺乳动物培养细胞中导入克隆化基因第17章 哺乳动物培养细胞的基因表达分析第18章 蛋白质相互作用研究技术附录1 分子克隆中使用的缓冲液和试剂的配制附录2 培养基附录3 载体和细菌菌株附录4 分子克隆所用的酶附录5 酶的抑制物附录6 核酸附录7 密码子和氨基酸附录8 分子克隆中的常用技术附录9 检测系统附录10 DNA陈列技术附录11 生物信息学附录12 告戒附录13 供应商附录14 商标索引
2023-06-29 00:34:101

什么是克隆?

克隆”是从英文“clone”音译而来,在生物学领域有3个不同层次的含义。 1.在分子水平,克隆一般指DNA克隆(也叫分子克隆)。含义是将某一特定DNA片断通过重组DNA技术插入到一个载体(如质粒和病毒等)中,然后在宿主细胞中进行自我复制所得到的大量完全相同的该DNA片断的“群体”。 2.在细胞水平,克隆实质由一个单一的共同祖先细胞分裂所形成的一个细胞群体。其中每个细胞的基因都相同。比如,使一个细胞在体外的培养液中分裂若干代所形成的一个遗传背景完全相同的细胞集体即为一个细胞克隆。又如,在脊椎动物体内,当有外源物(如细菌或病毒)侵入时,会通过免疫反应产生特异的识别抗体。产生某一特定抗体的所有浆细胞都是由一个B细胞分裂而成,这样的一个浆细胞群体也是一个细胞克隆。细胞克隆是一种低级的生殖方式-无性繁殖,即不经过两性结合,子代和亲代具有相同的遗传性。生物进化的层次越低,越有可能采取这种繁殖方式。 3.在个体水平,克隆是指基因型完全相同的两个或更多的个体组成的一个群体。比如,两个同卵双胞胎即为一个克隆!因为他(她)们来自同一个卵细胞,所以遗传背景完全一样。按此定义,“多利”并不能说成是一个克隆!因为“多利”只是孤单的一个。只有当那些英国胚胎学家能将两个以上完全相同的细胞核移植到两个以上完全相同的去核卵细胞中,得到两个以上遗传背景完全相同的“多利”时才能用克隆这个词来描述。所以在那篇发表于1997年2月出版在《Nature》杂志上的轰动性论文中,作者并没有把“多利”说成是一个克隆。 另外,克隆也可以做动词用,意思是指获得以上所言DNA、细胞或个体群体的过程。 二、克隆技术 1.DNA克隆 现在进行DNA克隆的方法多种多样,其基本过程如下图所示(未按比例) 可见,这样得到的DNA可以应用于生物学研究的很多方面,包括对特异DNA的碱基顺序的分析和处理,以及生物技术工业中有价值蛋白质的大量生产等等。 2.生物个体的克隆 (1)植物个体的克隆 在20世纪50年代,植物学家用胡萝卜为模型材料,研究了分化的植物细胞中遗传物质是否丢失问题,他们惊奇地发现,从一个单一已经高度分化的胡萝卜细胞 可以发育形成一棵完整的植株!由此,他们认为植物细胞具有全能性。从一棵胡萝卜中的两个以上的体细胞发育而成的胡萝卜群体的遗传背景完全一样,故为一个克隆。如此的植物的克隆过程是一个完全的无性繁殖过程! (2)动物个体的克隆 ① “多利”的诞生 1997年2月27日英国爱丁堡罗斯林(Roslin)研究所的伊恩·维尔莫特科学研究小组向世界宣布,世界上第一头克隆绵羊“多利”(Dolly)诞生,这一消息立刻轰动了全世界。 “多莉”的产生与三只母羊有关。一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境——子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下: 从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;给一头苏格兰黑面母绵羊注射促性腺素,促使它排卵,取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。 一年以后,另一组科学家报道了将小鼠卵丘细胞(围绕在卵母细胞外周的高度分化细胞)的细胞核移植到去除了细胞核的卵母细胞中得到20多只发育完全的小鼠。如呆“多利”因为只有一只,还不够叫做克隆羊的话,这些小鼠 就是名副其实的克隆鼠了。 ② 通过细胞核移植克隆小鼠的基本过程 在本实验中,卵丘细胞是经如下过程得到的:通过连续几次注射绒毛膜促性腺激素,使雌鼠诱导成高产卵量状态。然后从雌鼠输卵管中收集卵丘细胞与卵母细胞的复合体。经透明质酸处理使卵丘细胞散开。选择直径为10-12微米的卵丘细胞用作细胞核供体(前期实验表明,若用直径更小或更大的卵丘细胞的细胞核,经过细胞核移植的卵母细胞很少发育到8细胞期)。所选择的卵丘细胞保持在一定的溶液环境中,在3小时内进行细胞核移植(与此不同的是,在获得“多利”时用作细胞核供体的乳腺细胞先在培养液中传代了3-6次) 卵母细胞(一般处于减数分裂中期 II )通过与上面描述类似的方法,从不同种的雌鼠中收集。在显微镜下小心地用直径大约7微米的细管取出卵母细胞的细胞核,尽量不取出细胞质。同样小心取出卵丘细胞的细胞核,也尽量去除所带的细胞质(通过使取出的细胞核在玻璃管中往复运动数次,以去除所带的少量的细胞质)。在细胞核被取出后5分钟之内,直接注射到已经去除了细胞核的卵母细胞中。进行了细胞核移植的卵母细胞先放在一种特制的溶液中1-6小时,然后加入二价的锶离子(Sr2+)和细胞分裂抑素B。前者使卵母细胞激活,后者抑制极体的形成和染色体的排除。再取出处理过的卵母细胞,放在没有锶和细胞分裂抑素B的特制的溶液中使细胞分裂形成胚胎。 不同阶段的胚胎(从2细胞期到胚泡期)被分别植入几天前与已经结扎雄鼠交配过的假孕母鼠的输卵管或子宫中发育。发育完全的胎儿鼠在大约19天后通过手术取出。 目前胚胎细胞核移植克隆的动物有小鼠、兔、山羊、绵羊、猪、牛和猴子等。在中国,除猴子以外,其他克隆动物都有,也能连续核移植克隆山羊,该技术比胚胎分割技术更进一步,将克隆出更多的动物。因胚胎分割次数越多,每份细胞越少,发育成的个体的能力越差。体细胞核移植克隆的动物只有一个,就是“多利”羊。 三、克隆技术的福音 1. 克隆技术与遗传育种 在农业方面,人们利用“克隆”技术培育出大量具有抗旱、抗倒伏、抗病虫害的优质高产品种,大大提高了粮食产量。在这方面我国已迈入世界最先进的前列。 2. 克隆技术与濒危生物保护 克隆技术对保护物种特别是珍稀、濒危物种来讲是一个福音,具有很大的应用前景。从生物学的角度看,这也是克隆技术最有价值的地方之一。 3. 克隆技术与医学 在当代,医生几乎能在所有人类器官和组织上施行移植手术。但就科学技术而言,器官移植中的排斥反应仍是最为头痛的事。排斥反应的原因是组织不配型导致相容性差。如果把“克隆人”的器官提供给“原版人”,作器官移植之用,则绝对没有排斥反应之虑,因为二者基因相配,组织也相配。问题是,利用“克隆人”作为器官供体合不合乎人道?是否合法?经济是否合算? 克隆技术还可用来大量繁殖有价值的基因,例如,在医学方面,人们正是通过“克隆”技术生产出治疗糖尿病的胰岛素、使侏儒症患者重新长高的生长激素和能抗多种病毒感染的干挠素,等等。 克隆技术即无性繁殖技术。通常的有性生殖是由雌雄交配,精子和卵子结合发育成胚胎,经妊娠后产出新的个体。克隆技术不需要雌雄交配,不需要精子和卵子的结合,只需从动物身上提取一个单细胞,用人工的方法将其培养成胚胎,再将胚胎植入雌性动物体内,就可孕育出新的个体。这种以单细胞培养出来的克隆动物,具有与单细胞供体完全相同的特征,是单细胞供体的“复制品”。英国英格兰科学家和美国俄勒冈科学家先后培养出了“克隆羊”和“克隆猴”。克隆技术的成功,被人们称为“历史性的事件,科学的创举”。有人甚至认为,克隆技术可以同当年原子弹的问世相提并论。 克隆技术可以用来生产“克隆人”,可以用来“复制”人,因而引起了全世界的广泛关注。对人类来说,克隆技术是悲是喜,是祸是福?唯物辩证法认为,世界上的任何事物都是矛盾的统一体,都是一分为二的。克隆技术也是这样。如果克隆技术被用于“复制”像希特勒之类的战争狂人,那会给人类社会带来什么呢?即使是用于“复制”普通的人,也会带来一系列的伦理道德问题。如果把克隆技术应用于畜牧业生产,将会使优良牲畜品种的培育与繁殖发生根本性的变革。若将克隆技术用于基因治疗的研究,就极有可能攻克那些危及人类生命健康的癌症、艾滋病等顽疾。克隆技术犹如原子能技术,是一把双刃剑,剑柄掌握在人类手中。人类应该采取联合行动,避免“克隆人”的出现,使克隆技术造福于人类社会。 克隆(clone)是指通过无性生殖而产生的遗传上均一的生物群,即具有完全相同的遗传组成的一群细胞或者生物的个体。克隆在希腊语中是“小树枝叶”的意思,用以指无性增殖物。现在则指个体、细胞、基因等不同水平上的无性增殖物。(1)个体水平:在植物的无性增殖中,植物的发芽、插条等由同一个体通过无性生殖而增长的个体群均被视为克隆。采用组织培养方法可使植物细胞培养发育成完全的个体(愈伤组织),采用这种方法得到的具有相同基因型的个体群,也被称为克隆;在动物的无性增殖中,典型的例子是采用核移植实验方法,把分化细胞的核移植到一个事先去核的蛙卵中,让其发育并得到克隆蛙。克隆动物具有均一遗传性质,在研究环境条件对发育、分化的影响以及药物的检测方面都是重要的实验材料。在哺乳动物中,由于细胞分化,核异质化的程度加剧,因此核移植尚无成功的例子。(2)细胞水平:由一个细胞经过有丝分裂生成的细胞群叫克隆。但如果培养细胞发生转化,则很容易引起染色体变异。(3)基因水平:利用基因重组操作技术,使特定的基因与载体结合,在细菌等宿主中进行增殖,有可能得到均匀的基因群。克隆基因在基因功能与精细结构的关系等基础研究及在有用物质的生产方面,均已得到应用。 在上述3种水平上,增殖并分离获得单一的克隆群称为克隆化。此时,克隆一词也可作为动词理解。克隆是重组DNA技术的核心部分。事实上,克隆技术现已被人们用来通过营养方式繁殖病毒等微生物和植物的纯种,从而保证了这些生物基因组的准确连续性。现在,克隆这个词还包括单个自主遗传因子的分离与保存。细胞生物的克隆只需要营养培养基,而基因的克隆则需要某种载体复制子、特定的寄主细胞和营养培养基。各种类型生物的克隆技术在生物工程中均有其重要作用。 克隆”是从英文“clone”音译而来,在生物学领域有3个不同层次的含义。 1.在分子水平,克隆一般指DNA克隆(也叫分子克隆)。含义是将某一特定DNA片断通过重组DNA技术插入到一个载体(如质粒和病毒等)中,然后在宿主细胞中进行自我复制所得到的大量完全相同的该DNA片断的“群体”。 2.在细胞水平,克隆实质由一个单一的共同祖先细胞分裂所形成的一个细胞群体。其中每个细胞的基因都相同。比如,使一个细胞在体外的培养液中分裂若干代所形成的一个遗传背景完全相同的细胞集体即为一个细胞克隆。又如,在脊椎动物体内,当有外源物(如细菌或病毒)侵入时,会通过免疫反应产生特异的识别抗体。产生某一特定抗体的所有浆细胞都是由一个B细胞分裂而成,这样的一个浆细胞群体也是一个细胞克隆。细胞克隆是一种低级的生殖方式-无性繁殖,即不经过两性结合,子代和亲代具有相同的遗传性。生物进化的层次越低,越有可能采取这种繁殖方式。 3.在个体水平,克隆是指基因型完全相同的两个或更多的个体组成的一个群体。比如,两个同卵双胞胎即为一个克隆!因为他(她)们来自同一个卵细胞,所以遗传背景完全一样。按此定义,“多利”并不能说成是一个克隆!因为“多利”只是孤单的一个。只有当那些英国胚胎学家能将两个以上完全相同的细胞核移植到两个以上完全相同的去核卵细胞中,得到两个以上遗传背景完全相同的“多利”时才能用克隆这个词来描述。所以在那篇发表于1997年2月出版在《Nature》杂志上的轰动性论文中,作者并没有把“多利”说成是一个克隆。 另外,克隆也可以做动词用,意思是指获得以上所言DNA、细胞或个体群体的过程。 二、克隆技术 1.DNA克隆 现在进行DNA克隆的方法多种多样,其基本过程如下图所示(未按比例) 可见,这样得到的DNA可以应用于生物学研究的很多方面,包括对特异DNA的碱基顺序的分析和处理,以及生物技术工业中有价值蛋白质的大量生产等等。 2.生物个体的克隆 (1)植物个体的克隆 在20世纪50年代,植物学家用胡萝卜为模型材料,研究了分化的植物细胞中遗传物质是否丢失问题,他们惊奇地发现,从一个单一已经高度分化的胡萝卜细胞 可以发育形成一棵完整的植株!由此,他们认为植物细胞具有全能性。从一棵胡萝卜中的两个以上的体细胞发育而成的胡萝卜群体的遗传背景完全一样,故为一个克隆。如此的植物的克隆过程是一个完全的无性繁殖过程! (2)动物个体的克隆 ① “多利”的诞生 1997年2月27日英国爱丁堡罗斯林(Roslin)研究所的伊恩·维尔莫特科学研究小组向世界宣布,世界上第一头克隆绵羊“多利”(Dolly)诞生,这一消息立刻轰动了全世界。 “多莉”的产生与三只母羊有关。一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境——子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下: 从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;给一头苏格兰黑面母绵羊注射促性腺素,促使它排卵,取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。 一年以后,另一组科学家报道了将小鼠卵丘细胞(围绕在卵母细胞外周的高度分化细胞)的细胞核移植到去除了细胞核的卵母细胞中得到20多只发育完全的小鼠。如呆“多利”因为只有一只,还不够叫做克隆羊的话,这些小鼠 就是名副其实的克隆鼠了。 ② 通过细胞核移植克隆小鼠的基本过程 在本实验中,卵丘细胞是经如下过程得到的:通过连续几次注射绒毛膜促性腺激素,使雌鼠诱导成高产卵量状态。然后从雌鼠输卵管中收集卵丘细胞与卵母细胞的复合体。经透明质酸处理使卵丘细胞散开。选择直径为10-12微米的卵丘细胞用作细胞核供体(前期实验表明,若用直径更小或更大的卵丘细胞的细胞核,经过细胞核移植的卵母细胞很少发育到8细胞期)。所选择的卵丘细胞保持在一定的溶液环境中,在3小时内进行细胞核移植(与此不同的是,在获得“多利”时用作细胞核供体的乳腺细胞先在培养液中传代了3-6次) 卵母细胞(一般处于减数分裂中期 II )通过与上面描述类似的方法,从不同种的雌鼠中收集。在显微镜下小心地用直径大约7微米的细管取出卵母细胞的细胞核,尽量不取出细胞质。同样小心取出卵丘细胞的细胞核,也尽量去除所带的细胞质(通过使取出的细胞核在玻璃管中往复运动数次,以去除所带的少量的细胞质)。在细胞核被取出后5分钟之内,直接注射到已经去除了细胞核的卵母细胞中。进行了细胞核移植的卵母细胞先放在一种特制的溶液中1-6小时,然后加入二价的锶离子(Sr2+)和细胞分裂抑素B。前者使卵母细胞激活,后者抑制极体的形成和染色体的排除。再取出处理过的卵母细胞,放在没有锶和细胞分裂抑素B的特制的溶液中使细胞分裂形成胚胎。 不同阶段的胚胎(从2细胞期到胚泡期)被分别植入几天前与已经结扎雄鼠交配过的假孕母鼠的输卵管或子宫中发育。发育完全的胎儿鼠在大约19天后通过手术取出。 目前胚胎细胞核移植克隆的动物有小鼠、兔、山羊、绵羊、猪、牛和猴子等。在中国,除猴子以外,其他克隆动物都有,也能连续核移植克隆山羊,该技术比胚胎分割技术更进一步,将克隆出更多的动物。因胚胎分割次数越多,每份细胞越少,发育成的个体的能力越差。体细胞核移植克隆的动物只有一个,就是“多利”羊。 三、克隆技术的福音 1. 克隆技术与遗传育种 在农业方面,人们利用“克隆”技术培育出大量具有抗旱、抗倒伏、抗病虫害的优质高产品种,大大提高了粮食产量。在这方面我国已迈入世界最先进的前列。 2. 克隆技术与濒危生物保护 克隆技术对保护物种特别是珍稀、濒危物种来讲是一个福音,具有很大的应用前景。从生物学的角度看,这也是克隆技术最有价值的地方之一。 3. 克隆技术与医学 在当代,医生几乎能在所有人类器官和组织上施行移植手术。但就科学技术而言,器官移植中的排斥反应仍是最为头痛的事。排斥反应的原因是组织不配型导致相容性差。如果把“克隆人”的器官提供给“原版人”,作器官移植之用,则绝对没有排斥反应之虑,因为二者基因相配,组织也相配。问题是,利用“克隆人”作为器官供体合不合乎人道?是否合法?经济是否合算? 克隆技术还可用来大量繁殖有价值的基因,例如,在医学方面,人们正是通过“克隆”技术生产出治疗糖尿病的胰岛素、使侏儒症患者重新长高的生长激素和能抗多种病毒感染的干挠素,等等。 -------------------------------------------------------------------------------- 克隆”是从英文“clone”音译而来,在生物学领域有3个不同层次的含义。 1.在分子水平,克隆一般指DNA克隆(也叫分子克隆)。含义是将某一特定DNA片断通过重组DNA技术插入到一个载体(如质粒和病毒等)中,然后在宿主细胞中进行自我复制所得到的大量完全相同的该DNA片断的“群体”。 2.在细胞水平,克隆实质由一个单一的共同祖先细胞分裂所形成的一个细胞群体。其中每个细胞的基因都相同。比如,使一个细胞在体外的培养液中分裂若干代所形成的一个遗传背景完全相同的细胞集体即为一个细胞克隆。又如,在脊椎动物体内,当有外源物(如细菌或病毒)侵入时,会通过免疫反应产生特异的识别抗体。产生某一特定抗体的所有浆细胞都是由一个B细胞分裂而成,这样的一个浆细胞群体也是一个细胞克隆。细胞克隆是一种低级的生殖方式-无性繁殖,即不经过两性结合,子代和亲代具有相同的遗传性。生物进化的层次越低,越有可能采取这种繁殖方式。 3.在个体水平,克隆是指基因型完全相同的两个或更多的个体组成的一个群体。比如,两个同卵双胞胎即为一个克隆!因为他(她)们来自同一个卵细胞,所以遗传背景完全一样。按此定义,“多利”并不能说成是一个克隆!因为“多利”只是孤单的一个。只有当那些英国胚胎学家能将两个以上完全相同的细胞核移植到两个以上完全相同的去核卵细胞中,得到两个以上遗传背景完全相同的“多利”时才能用克隆这个词来描述。所以在那篇发表于1997年2月出版在《Nature》杂志上的轰动性论文中,作者并没有把“多利”说成是一个克隆。 另外,克隆也可以做动词用,意思是指获得以上所言DNA、细胞或个体群体的过程。 二、克隆技术 1.DNA克隆 现在进行DNA克隆的方法多种多样,其基本过程如下图所示(未按比例) 可见,这样得到的DNA可以应用于生物学研究的很多方面,包括对特异DNA的碱基顺序的分析和处理,以及生物技术工业中有价值蛋白质的大量生产等等。 2.生物个体的克隆 (1)植物个体的克隆 在20世纪50年代,植物学家用胡萝卜为模型材料,研究了分化的植物细胞中遗传物质是否丢失问题,他们惊奇地发现,从一个单一已经高度分化的胡萝卜细胞 可以发育形成一棵完整的植株!由此,他们认为植物细胞具有全能性。从一棵胡萝卜中的两个以上的体细胞发育而成的胡萝卜群体的遗传背景完全一样,故为一个克隆。如此的植物的克隆过程是一个完全的无性繁殖过程! (2)动物个体的克隆 ① “多利”的诞生 1997年2月27日英国爱丁堡罗斯林(Roslin)研究所的伊恩·维尔莫特科学研究小组向世界宣布,世界上第一头克隆绵羊“多利”(Dolly)诞生,这一消息立刻轰动了全世界。 “多莉”的产生与三只母羊有关。一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境——子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下: 从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;给一头苏格兰黑面母绵羊注射促性腺素,促使它排卵,取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。 一年以后,另一组科学家报道了将小鼠卵丘细胞(围绕在卵母细胞外周的高度分化细胞)的细胞核移植到去除了细胞核的卵母细胞中得到20多只发育完全的小鼠。如呆“多利”因为只有一只,还不够叫做克隆羊的话,这些小鼠 就是名副其实的克隆鼠了。 ② 通过细胞核移植克隆小鼠的基本过程 在本实验中,卵丘细胞是经如下过程得到的:通过连续几次注射绒毛膜促性腺激素,使雌鼠诱导成高产卵量状态。然后从雌鼠输卵管中收集卵丘细胞与卵母细胞的复合体。经透明质酸处理使卵丘细胞散开。选择直径为10-12微米的卵丘细胞用作细胞核供体(前期实验表明,若用直径更小或更大的卵丘细胞的细胞核,经过细胞核移植的卵母细胞很少发育到8细胞期)。所选择的卵丘细胞保持在一定的溶液环境中,在3小时内进行细胞核移植(与此不同的是,在获得“多利”时用作细胞核供体的乳腺细胞先在培养液中传代了3-6次) 卵母细胞(一般处于减数分裂中期 II )通过与上面描述类似的方法,从不同种的雌鼠中收集。在显微镜下小心地用直径大约7微米的细管取出卵母细胞的细胞核,尽量不取出细胞质。同样小心取出卵丘细胞的细胞核,也尽量去除所带的细胞质(通过使取出的细胞核在玻璃管中往复运动数次,以去除所带的少量的细胞质)。在细胞核被取出后5分钟之内,直接注射到已经去除了细胞核的卵母细胞中。进行了细胞核移植的卵母细胞先放在一种特制的溶液中1-6小时,然后加入二价的锶离子(Sr2+)和细胞分裂抑素B。前者使卵母细胞激活,后者抑制极体的形成和染色体的排除。再取出处理过的卵母细胞,放在没有锶和细胞分裂抑素B的特制的溶液中使细胞分裂形成胚胎。 不同阶段的胚胎(从2细胞期到胚泡期)被分别植入几天前与已经结扎雄鼠交配过的假孕母鼠的输卵管或子宫中发育。发育完全的胎儿鼠在大约19天后通过手术取出。 目前胚胎细胞核移植克隆的动物有小鼠、兔、山羊、绵羊、猪、牛和猴子等。在中国,除猴子以外,其他克隆动物都有,也能连续核移植克隆山羊,该技术比胚胎分割技术更进一步,将克隆出更多的动物。因胚胎分割次数越多,每份细胞越少,发育成的个体的能力越差。体细胞核移植克隆的动物只有一个,就是“多利”羊。 三、克隆技术的福音 1. 克隆技术与遗传育种 在农业方面,人们利用“克隆”技术培育出大量具有抗旱、抗倒伏、抗病虫害的优质高产品种,大大提高了粮食产量。在这方面我国已迈入世界最先进的前列。 2. 克隆技术与濒危生物保护 克隆技术对保护物种特别是珍稀、濒危物种来讲是一个福音,具有很大的应用前景。从生物学的角度看,这也是克隆技术最有价值的地方之一。 3. 克隆技术与医学 在当代,医生几乎能在所有人类器官和组织上施行移植手术。但就科学技术而言,器官移植中的排斥反应仍是最为头痛的事。排斥反应的原因是组织不配型导致相容性差。如果把“克隆人”的器官提供给“原版人”,作器官移植之用,则绝对没有排斥反应之虑,因为二者基因相配,组织也相配。问题是,利用“克隆人”作为器官供体合不合乎人道?是否合法?经济是否合算? 克隆技术还可用来大量繁殖有价值的基因,例如,在医学方面,人们正是通过“克隆”技术生产出治疗糖尿病的胰岛素、使侏儒症患者重新长高的生长激素和能抗多种病毒感染的干挠素,等等。
2023-06-29 00:34:2610

什么是克隆?

  把人工遗传操作动物繁殖的过程叫“克隆”,这门生物技术叫“克隆技术”,含义是无性繁殖,即由同一个祖先细胞分裂繁殖而形成的纯细胞系,该细胞系中每个细胞的基因彼此相同。  简介:  克隆的过程:  先将含有遗传物质的供体细胞的核移植到去除了细胞核的卵细胞中,利用微电流刺激等使两者融合为一体,然后促使这一新细胞分裂繁殖发育成胚胎,当胚胎发育到一定程度后,再被植入动物子宫中使动物怀孕,便可产下与提供细胞核者基因相同的动物。这一过程中如果对供体细胞进行基因改造,那么无性繁殖的动物后代基因就会发生相同的变化。  克隆技术不需要雌雄交配,不需要精子和卵子的结合,只需从动物身上提取一个单细胞,用人工的方法将其培养成胚胎,再将胚胎植入雌性动物体内,就可孕育出新的个体。这种以单细胞培养出来的克隆动物,具有与单细胞供体完全相同的特征,是单细胞供体的“复制品”。
2023-06-29 00:34:516

做分子克隆时,4度连接如何验证?

连接T-vector之前进行PCR得到带A的PCR产物,然后进行转化,对expression vector和质粒进行相同酶切,连接,转化。在整个clone中有时会用PCR来鉴定,如目的基因是否转入进感受态细胞。
2023-06-29 00:35:211

克隆的含义是什么?

克隆是指生物体通过体细胞进行的无性繁殖,以及由无性繁殖形成的基因型完全相同的后代个体。通常是利用生物技术由无性生殖产生与原个体有完全相同基因的个体或种群。
2023-06-29 00:35:402

克隆资料

个细菌经过20分钟左右就可一分为二;一根葡萄枝切成十段就可能变成十株葡萄;仙人掌切成几块,每块落地就生根;一株草莓依靠它沿地“爬走”的匍匐茎,一年内就能长出数百株草莓苗……凡此种种,都是生物靠自身的一分为二或自身的一小部分的扩大来繁衍后代,这就是无性繁殖,无性繁殖的英文名称叫“Clone”,译音为“克隆”,实际上,英文的“Clone”起源于希腊文“Klone”,原意是用“嫩枝”或“插条”繁殖。时至今日,“克隆”的含义已不仅仅是“无性繁殖”,凡来自一个祖先,经过无性繁殖出的一群个体,也叫“克隆”。这种来自一个祖先的无性繁殖的后代群体也叫“无性繁殖系”,简称无性系。 自然界的许多动物,在正常情况下都是依靠父方产生的雄性细胞(精子)与母方产生的雌性细胞(卵子)融合(受精)成受精卵(合子),再由受精卵经过一系列细胞分裂长成胚胎,最终形成新的个体,这种依靠父母双方提供性细胞、并经两性细胞融合产生后代的繁殖方法就叫有性繁殖,但是,如果我们用外科手术将一个胚胎分割成两块,四块、八块……最后通过特殊的方法使一个胚胎长成两个、四个,八个……生物体,这些生物体就是克隆个体,而这两个、四个、八个……个体就叫做无性繁殖系(也叫克隆)。 可以这样说,关于克隆的设想,我国明代的大作家吴承恩已有精彩的描述——孙悟空经常在紧要关头拔一把猴毛变出一大群猴子,猴毛变猴就是克隆猴。 1979年春,中国科学院武汉水生生物研究所的科学家用鲫鱼囊胚期的细胞进行人工培养,经过385天59代连续传代培养后,用直径10微米左右的玻璃管在显微镜下从培养细胞中吸出细胞核,在此同时,除去鲫鱼卵细胞的核,让卵细胞留出空间作好接纳囊胚细胞核的准备,一切准备就绪后,把玻璃管吸出的核移放到空出位置的鲫鱼卵细胞内,得到了囊胚细胞核的卵细胞在人工培养下大部分夭亡了,在189个这种换核卵细胞中,只有两个孵化出了鱼苗,而最终只有一条幼鱼度过难关,经过80多天培养后长成8厘米长的鲫鱼。这种鲫鱼并没有经过雌、雄细胞的结合,仅仅是给卵细胞换了个囊胚细胞的核,实际上是由换核卵产生的,因此也是克隆鱼。 在克隆鲫鱼出现之前,英国牛津大学的科学家已经在1960年和1962年,先后用非洲一种有爪的蟾蜍(非洲爪蟾)进行过克隆试验。试验方式是先用紫外线照射爪蟾卵细胞,破坏其中的核,然后依靠高超的外科手术从爪蟾蝌蚪的肠上皮细胞、肝细胞、肾细胞中取出核,并把这些细胞的核精确地放进已被紫外线破坏了细胞核的卵细胞内,经过精心照料,这些换核卵中终于有一部分长出了活蹦乱跳的爪蟾,这种爪蟾也不是经过精细胞和卵细胞州结合产生的,所以也是克隆爪蟾。 我国著名生物学家童第周先生在1978年成功地进行了黑斑蛙的克隆试验,他将黑斑蛙的红细胞的核移人事先除去了核的黑斑蛙卵中,这种换核卵最后长成能在水中自由游泳的蝌蚪。 鱼类换核技术的成熟和两栖类换核的成功,使一批从事良种培育工作的科学家激动不己,既然鲫鱼的囊胚细胞核取代鲫鱼卵细胞核后能得到克隆鱼,那么异种鱼换核能否得到新的杂种鱼呢?我国科学家首先提出了这个问题,也首先解决了这个问题,就是培养克隆鲫鱼成功的那个研究所,设法把鲤鱼胚胎细胞的核取代了鲫鱼卵细胞的核。鲤鱼细胞核和鲫鱼卵细胞质居然能相安无事,并开始了类似受精卵分裂发育的过程,最后长出有“胡须”的“鲤鲫鱼”,这种鱼有“胡须”,生长快,完全像鲤鱼,但它的侧线鳞片数和脊椎骨的数目与鲫鱼相同,而且鱼味鲜美不亚于鲫鱼。这种人工克隆新鱼种的出现为鱼类育种开辟了新途径。 对科学的追求是永无止境的,鱼类,两栖类克隆的成功自然而然地使科学家把目光投向了哺乳类。美国和瑞士的科学家率先从灰色小鼠的胚胎细胞中取出细胞核,用这个核取代黑色小鼠受精卵细胞核。实际上,这个黑色小鼠的受精卵在精细胞核刚进入卵细胞后,就把精细胞核连同卵细胞的核一起除去。灰鼠胚胎细胞的核移人黑色小鼠的去核受精卵后,在试管里人工培养了四天,然后再把它植人白色小鼠的子宫内、经几百次灰、黑、白这样的操作以后,白色小鼠终于生下了三只小灰鼠。 去年2月27日出版的英国“自然”杂志公布了爱丁堡罗斯林研究所威尔莫特等人的研究成果:经过247次失败之后,他们在前年7月得到了一只名为“多利”的克隆雌性绵羊。 “多利”绵羊是如何“创造”出来的呢?威尔莫特等学者先给“苏格兰黑面羊”注射促性腺素,促使它排卵,得到卵之后,立即用极细的吸管从卵细胞中取出核,与此同时,从怀孕三个月的“芬多席特”六龄母羊的乳腺细胞中取出核,立即送人取走核的“苏格兰黑面羊”的卵细胞中,手术完成之后,用相同频率的电脉冲刺激换核卵,让“苏格兰黑面羊”的卵细胞质与“芬多席特”母羊乳腺细胞的核相互协调,使这个“组装”细胞在试管里经历受精卵那样的分裂、发育而形成胚胎的过程,然后,将胚胎巧妙地植人另一只母羊的子宫里。到去年7月,这只“护理”体外形成胚胎的母羊终于产下了小绵羊“多利”。“多利”不是由母羊的卵细胞和公羊的精细胞受精的产物,而是“换核卵”一步一步发展的结果,因此是“克隆羊”。 “克隆羊”的诞生,在世界各国引起了震惊,它难能可贵之处在于换进去的是体细胞的核,而不是胚胎细胞核。这个结果证明:动物体中执行特殊功能、具有特定形态的所谓高度分化的细胞与受精卵一样具有发育成完整个体的潜在能力。也就是说,动物细胞与植物细胞一样,也具有全能性。 克隆技术会给人类带来极大的好处,例如,英国PPL公司已培育出羊奶中含有治疗肺气肿的a-1抗胰蛋白酶的母羊。这种羊奶的售价是6千美元一升。一只母羊就好比一座制药厂,用什么办法能最有效、最方便地使这种羊扩大繁殖呢?最好的办法就是“克隆”。同样,荷兰PHP公司培育出能分泌人乳铁蛋白的牛,以色列LAS公司育成了能生产血清白蛋白的羊,这些高附加值的牲畜如何有效地繁殖?答案当然还是“克隆”。 母马配公驴可以得到杂种优势特别强的动物——骡,骡不能繁殖后代,那么,优良的骡如何扩大繁殖?最好的办法也是“克隆”,我国的大熊猫是国宝,但自然交配成功率低,因此已濒临绝种。如何挽救这类珍稀动物?“克隆”为人类提供了切实可行的途径。 克隆动物还对于研究癌生物学、研究免疫学、研究人的寿命等都有不可低估的作用。 不可否认,“克隆绵羊”的问世也引起了许多人对“克隆人”的兴趣,例如,有人在考虑,是否可用自己的细胞克隆成一个胚胎,在其成形前就冰冻起来。在将来的某一天,自身的某个器官出了问题时,就可从胚胎中取出这个器官进行培养,然后替换自己病变的器官,这也就是用克隆法为人类自身提供“配件”。 有关“克隆人”的讨论提醒人们,科技进步是一首悲喜交集的进行曲。科技越发展,对社会的渗透越广泛深入,就越有可能引起许多有关的伦理、道德和法律等问题。我想用诺贝尔奖获得者,著名分子生物学家J.D.沃森的话来结束本文:“可以期待,许多生物学家,特别是那些从事无性繁殖研究的科学家,将会严肃地考虑它的含意,并展开科学讨论,用以教育世界人民。” 回答者:yyfreeliang - 魔神 十六级 3-11 08:36--------------------------------------------------------------------------------“克隆”是从英文“clone”音译而来,在生物学领域有3个不同层次的含义。 1.在分子水平,克隆一般指DNA克隆(也叫分子克隆)。含义是将某一特定DNA片断通过重组DNA技术插入到一个载体(如质粒和病毒等)中,然后在宿主细胞中进行自我复制所得到的大量完全相同的该DNA片断的“群体”。 2.在细胞水平,克隆实质由一个单一的共同祖先细胞分裂所形成的一个细胞群体。其中每个细胞的基因都相同。比如,使一个细胞在体外的培养液中分裂若干代所形成的一个遗传背景完全相同的细胞集体即为一个细胞克隆。又如,在脊椎动物体内,当有外源物(如细菌或病毒)侵入时,会通过免疫反应产生特异的识别抗体。产生某一特定抗体的所有浆细胞都是由一个B细胞分裂而成,这样的一个浆细胞群体也是一个细胞克隆。细胞克隆是一种低级的生殖方式-无性繁殖,即不经过两性结合,子代和亲代具有相同的遗传性。生物进化的层次越低,越有可能采取这种繁殖方式。 3.在个体水平,克隆是指基因型完全相同的两个或更多的个体组成的一个群体。比如,两个同卵双胞胎即为一个克隆!因为他(她)们来自同一个卵细胞,所以遗传背景完全一样。按此定义,“多利”并不能说成是一个克隆!因为“多利”只是孤单的一个。只有当那些英国胚胎学家能将两个以上完全相同的细胞核移植到两个以上完全相同的去核卵细胞中,得到两个以上遗传背景完全相同的“多利”时才能用克隆这个词来描述。所以在那篇发表于1997年2月出版在《Nature》杂志上的轰动性论文中,作者并没有把“多利”说成是一个克隆。 另外,克隆也可以做动词用,意思是指获得以上所言DNA、细胞或个体群体的过程。 二、克隆技术 1.DNA克隆 现在进行DNA克隆的方法多种多样,其基本过程如下图所示(未按比例) 可见,这样得到的DNA可以应用于生物学研究的很多方面,包括对特异DNA的碱基顺序的分析和处理,以及生物技术工业中有价值蛋白质的大量生产等等。 2.生物个体的克隆 (1)植物个体的克隆 在20世纪50年代,植物学家用胡萝卜为模型材料,研究了分化的植物细胞中遗传物质是否丢失问题,他们惊奇地发现,从一个单一已经高度分化的胡萝卜细胞 可以发育形成一棵完整的植株!由此,他们认为植物细胞具有全能性。从一棵胡萝卜中的两个以上的体细胞发育而成的胡萝卜群体的遗传背景完全一样,故为一个克隆。如此的植物的克隆过程是一个完全的无性繁殖过程! (2)动物个体的克隆 ① “多利”的诞生 1997年2月27日英国爱丁堡罗斯林(Roslin)研究所的伊恩·维尔莫特科学研究小组向世界宣布,世界上第一头克隆绵羊“多利”(Dolly)诞生,这一消息立刻轰动了全世界。 “多莉”的产生与三只母羊有关。一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境——子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下: 从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;给一头苏格兰黑面母绵羊注射促性腺素,促使它排卵,取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。 一年以后,另一组科学家报道了将小鼠卵丘细胞(围绕在卵母细胞外周的高度分化细胞)的细胞核移植到去除了细胞核的卵母细胞中得到20多只发育完全的小鼠。如呆“多利”因为只有一只,还不够叫做克隆羊的话,这些小鼠 就是名副其实的克隆鼠了。 ② 通过细胞核移植克隆小鼠的基本过程 在本实验中,卵丘细胞是经如下过程得到的:通过连续几次注射绒毛膜促性腺激素,使雌鼠诱导成高产卵量状态。然后从雌鼠输卵管中收集卵丘细胞与卵母细胞的复合体。经透明质酸处理使卵丘细胞散开。选择直径为10-12微米的卵丘细胞用作细胞核供体(前期实验表明,若用直径更小或更大的卵丘细胞的细胞核,经过细胞核移植的卵母细胞很少发育到8细胞期)。所选择的卵丘细胞保持在一定的溶液环境中,在3小时内进行细胞核移植(与此不同的是,在获得“多利”时用作细胞核供体的乳腺细胞先在培养液中传代了3-6次) 卵母细胞(一般处于减数分裂中期 II )通过与上面描述类似的方法,从不同种的雌鼠中收集。在显微镜下小心地用直径大约7微米的细管取出卵母细胞的细胞核,尽量不取出细胞质。同样小心取出卵丘细胞的细胞核,也尽量去除所带的细胞质(通过使取出的细胞核在玻璃管中往复运动数次,以去除所带的少量的细胞质)。在细胞核被取出后5分钟之内,直接注射到已经去除了细胞核的卵母细胞中。进行了细胞核移植的卵母细胞先放在一种特制的溶液中1-6小时,然后加入二价的锶离子(Sr2+)和细胞分裂抑素B。前者使卵母细胞激活,后者抑制极体的形成和染色体的排除。再取出处理过的卵母细胞,放在没有锶和细胞分裂抑素B的特制的溶液中使细胞分裂形成胚胎。 不同阶段的胚胎(从2细胞期到胚泡期)被分别植入几天前与已经结扎雄鼠交配过的假孕母鼠的输卵管或子宫中发育。发育完全的胎儿鼠在大约19天后通过手术取出。 目前胚胎细胞核移植克隆的动物有小鼠、兔、山羊、绵羊、猪、牛和猴子等。在中国,除猴子以外,其他克隆动物都有,也能连续核移植克隆山羊,该技术比胚胎分割技术更进一步,将克隆出更多的动物。因胚胎分割次数越多,每份细胞越少,发育成的个体的能力越差。体细胞核移植克隆的动物只有一个,就是“多利”羊。 三、克隆技术的福音 1. 克隆技术与遗传育种 在农业方面,人们利用“克隆”技术培育出大量具有抗旱、抗倒伏、抗病虫害的优质高产品种,大大提高了粮食产量。在这方面我国已迈入世界最先进的前列。 2. 克隆技术与濒危生物保护 克隆技术对保护物种特别是珍稀、濒危物种来讲是一个福音,具有很大的应用前景。从生物学的角度看,这也是克隆技术最有价值的地方之一。 3. 克隆技术与医学 在当代,医生几乎能在所有人类器官和组织上施行移植手术。但就科学技术而言,器官移植中的排斥反应仍是最为头痛的事。排斥反应的原因是组织不配型导致相容性差。如果把“克隆人”的器官提供给“原版人”,作器官移植之用,则绝对没有排斥反应之虑,因为二者基因相配,组织也相配。问题是,利用“克隆人”作为器官供体合不合乎人道?是否合法?经济是否合算? 克隆技术还可用来大量繁殖有价值的基因,例如,在医学方面,人们正是通过“克隆”技术生产出治疗糖尿病的胰岛素、使侏儒症患者重新长高的生长激素和能抗多种病毒感染的干挠素,等等。 回答者:dahuzi1954 - 进士出身 八级 3-11 08:41--------------------------------------------------------------------------------“克隆”是从英文“clone”音译而来,在生物学领域有3个不同层次的含义。 1.在分子水平,克隆一般指DNA克隆(也叫分子克隆)。含义是将某一特定DNA片断通过重组DNA技术插入到一个载体(如质粒和病毒等)中,然后在宿主细胞中进行自我复制所得到的大量完全相同的该DNA片断的“群体”。 2.在细胞水平,克隆实质由一个单一的共同祖先细胞分裂所形成的一个细胞群体。其中每个细胞的基因都相同。比如,使一个细胞在体外的培养液中分裂若干代所形成的一个遗传背景完全相同的细胞集体即为一个细胞克隆。又如,在脊椎动物体内,当有外源物(如细菌或病毒)侵入时,会通过免疫反应产生特异的识别抗体。产生某一特定抗体的所有浆细胞都是由一个B细胞分裂而成,这样的一个浆细胞群体也是一个细胞克隆。细胞克隆是一种低级的生殖方式-无性繁殖,即不经过两性结合,子代和亲代具有相同的遗传性。生物进化的层次越低,越有可能采取这种繁殖方式。 3.在个体水平,克隆是指基因型完全相同的两个或更多的个体组成的一个群体。比如,两个同卵双胞胎即为一个克隆!因为他(她)们来自同一个卵细胞,所以遗传背景完全一样。按此定义,“多利”并不能说成是一个克隆!因为“多利”只是孤单的一个。只有当那些英国胚胎学家能将两个以上完全相同的细胞核移植到两个以上完全相同的去核卵细胞中,得到两个以上遗传背景完全相同的“多利”时才能用克隆这个词来描述。所以在那篇发表于1997年2月出版在《Nature》杂志上的轰动性论文中,作者并没有把“多利”说成是一个克隆。 另外,克隆也可以做动词用,意思是指获得以上所言DNA、细胞或个体群体的过程。 二、克隆技术 1.DNA克隆 现在进行DNA克隆的方法多种多样,其基本过程如下图所示(未按比例) 可见,这样得到的DNA可以应用于生物学研究的很多方面,包括对特异DNA的碱基顺序的分析和处理,以及生物技术工业中有价值蛋白质的大量生产等等。 2.生物个体的克隆 (1)植物个体的克隆 在20世纪50年代,植物学家用胡萝卜为模型材料,研究了分化的植物细胞中遗传物质是否丢失问题,他们惊奇地发现,从一个单一已经高度分化的胡萝卜细胞 可以发育形成一棵完整的植株!由此,他们认为植物细胞具有全能性。从一棵胡萝卜中的两个以上的体细胞发育而成的胡萝卜群体的遗传背景完全一样,故为一个克隆。如此的植物的克隆过程是一个完全的无性繁殖过程! (2)动物个体的克隆 ① “多利”的诞生 1997年2月27日英国爱丁堡罗斯林(Roslin)研究所的伊恩·维尔莫特科学研究小组向世界宣布,世界上第一头克隆绵羊“多利”(Dolly)诞生,这一消息立刻轰动了全世界。 “多莉”的产生与三只母羊有关。一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境——子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下: 从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;给一头苏格兰黑面母绵羊注射促性腺素,促使它排卵,取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。 一年以后,另一组科学家报道了将小鼠卵丘细胞(围绕在卵母细胞外周的高度分化细胞)的细胞核移植到去除了细胞核的卵母细胞中得到20多只发育完全的小鼠。如呆“多利”因为只有一只,还不够叫做克隆羊的话,这些小鼠 就是名副其实的克隆鼠了。 ② 通过细胞核移植克隆小鼠的基本过程 在本实验中,卵丘细胞是经如下过程得到的:通过连续几次注射绒毛膜促性腺激素,使雌鼠诱导成高产卵量状态。然后从雌鼠输卵管中收集卵丘细胞与卵母细胞的复合体。经透明质酸处理使卵丘细胞散开。选择直径为10-12微米的卵丘细胞用作细胞核供体(前期实验表明,若用直径更小或更大的卵丘细胞的细胞核,经过细胞核移植的卵母细胞很少发育到8细胞期)。所选择的卵丘细胞保持在一定的溶液环境中,在3小时内进行细胞核移植(与此不同的是,在获得“多利”时用作细胞核供体的乳腺细胞先在培养液中传代了3-6次) 卵母细胞(一般处于减数分裂中期 II )通过与上面描述类似的方法,从不同种的雌鼠中收集。在显微镜下小心地用直径大约7微米的细管取出卵母细胞的细胞核,尽量不取出细胞质。同样小心取出卵丘细胞的细胞核,也尽量去除所带的细胞质(通过使取出的细胞核在玻璃管中往复运动数次,以去除所带的少量的细胞质)。在细胞核被取出后5分钟之内,直接注射到已经去除了细胞核的卵母细胞中。进行了细胞核移植的卵母细胞先放在一种特制的溶液中1-6小时,然后加入二价的锶离子(Sr2+)和细胞分裂抑素B。前者使卵母细胞激活,后者抑制极体的形成和染色体的排除。再取出处理过的卵母细胞,放在没有锶和细胞分裂抑素B的特制的溶液中使细胞分裂形成胚胎。 不同阶段的胚胎(从2细胞期到胚泡期)被分别植入几天前与已经结扎雄鼠交配过的假孕母鼠的输卵管或子宫中发育。发育完全的胎儿鼠在大约19天后通过手术取出。 目前胚胎细胞核移植克隆的动物有小鼠、兔、山羊、绵羊、猪、牛和猴子等。在中国,除猴子以外,其他克隆动物都有,也能连续核移植克隆山羊,该技术比胚胎分割技术更进一步,将克隆出更多的动物。因胚胎分割次数越多,每份细胞越少,发育成的个体的能力越差。体细胞核移植克隆的动物只有一个,就是“多利”羊。 三、克隆技术的福音 1. 克隆技术与遗传育种 在农业方面,人们利用“克隆”技术培育出大量具有抗旱、抗倒伏、抗病虫害的优质高产品种,大大提高了粮食产量。在这方面我国已迈入世界最先进的前列。 2. 克隆技术与濒危生物保护 克隆技术对保护物种特别是珍稀、濒危物种来讲是一个福音,具有很大的应用前景。从生物学的角度看,这也是克隆技术最有价值的地方之一。 3. 克隆技术与医学 在当代,医生几乎能在所有人类器官和组织上施行移植手术。但就科学技术而言,器官移植中的排斥反应仍是最为头痛的事。排斥反应的原因是组织不配型导致相容性差。如果把“克隆人”的器官提供给“原版人”,作器官移植之用,则绝对没有排斥反应之虑,因为二者基因相配,组织也相配。问题是,利用“克隆人”作为器官供体合不合乎人道?是否合法?经济是否合算? 克隆技术还可用来大量繁殖有价值的基因,例如,在医学方面,人们正是通过“克隆”技术生产出治疗糖尿病的胰岛素、使侏儒症患者重新长高的生长激素和能抗多种病毒感染的干挠素,等等。
2023-06-29 00:35:516

分子克隆名词解释

克分子的解释[gram molecule] 以克计的化合物或元素的重量,其量在数值上等于该化合物或元素的 分子量 词语分解 克的解释 克 (④克) è 能够:克勤克俭。 战胜,攻下:攻克。克复(战胜 敌人 并收回失地)。 制伏:克服。 克制 。克己奉公。以柔克刚。 严格限定: 克日 。克期。克扣。 消化 :克食。 公制重量单位或质量单位:一克等于 分子的解释 构成某一整体的各个体;归属某 社会 群体的人劳改分子积极分子详细解释.支庶之子孙。《谷梁传·庄公三十年》:“北伐 山戎 ,危之也。则非之乎?善之也。何善乎尔? 燕 , 周 之分子也。” 范宁 注:“分子
2023-06-29 00:36:331

到底克隆的过程是怎样的呢?克隆是复制吗?

克隆技术 克隆技术即无性繁殖技术。通常的有性生殖是由雌雄交配,精子和卵子结合发育成胚胎,经妊娠后产出新的个体。克隆技术不需要雌雄交配,不需要精子和卵子的结合,只需从动物身上提取一个单细胞,用人工的方法将其培养成胚胎,再将胚胎植入雌性动物体内,就可孕育出新的个体。这种以单细胞培养出来的克隆动物,具有与单细胞供体完全相同的特征,是单细胞供体的“复制品”。英国英格兰科学家和美国俄勒冈科学家先后培养出了“克隆羊”和“克隆猴”。克隆技术的成功,被人们称为“历史性的事件,科学的创举”。有人甚至认为,克隆技术可以同当年原子弹的问世相提并论。 克隆技术可以用来生产“克隆人”,可以用来“复制”人,因而引起了全世界的广泛关注。对人类来说,克隆技术是悲是喜,是祸是福?唯物辩证法认为,世界上的任何事物都是矛盾的统一体,都是一分为二的。克隆技术也是这样。如果克隆技术被用于“复制”像希特勒之类的战争狂人,那会给人类社会带来什么呢?即使是用于“复制”普通的人,也会带来一系列的伦理道德问题。如果把克隆技术应用于畜牧业生产,将会使优良牲畜品种的培育与繁殖发生根本性的变革。若将克隆技术用于基因治疗的研究,就极有可能攻克那些危及人类生命健康的癌症、艾滋病等顽疾。克隆技术犹如原子能技术,是一把双刃剑,剑柄掌握在人类手中。人类应该采取联合行动,避免“克隆人”的出现,使克隆技术造福于人类社会。 ——《素质教育新学案》 克隆技术的危害? ...尽管如此,克隆技术的巨大理论意义和实用价值促使科学家们加快了研究的步伐,从而使动物克隆技术的研究与开发进入一个高潮。 ... ...这些成果说明克隆技术有可能成为保护和拯救濒危动物的一条新途径。 四、克隆技术的应用前景 克隆技术已展示出广阔的应... 寒冰163 - 2005-12-7 19:38 - 最佳回答者: 十字军刀客 - 教育/科学 > 自然科学 克隆技术是怎么回事? 克隆技术 克隆技术即无性繁殖技术。通常的有性生殖是由雌雄交配,精子和卵子结合发育成胚胎,经妊娠后产出新的个体。克隆技术不需要雌雄交配,不需要精子和卵子的结合,只需从动物身上提取一个单细胞,用人工的方法将其培养成胚胎,再将胚胎植入雌性动... sfn123 - 2005-12-19 17:52 - 最佳回答者: 272928861ml - 教育/科学 克隆技术有关资料 ...科学家把人工遗传操作动、植物的繁殖过程叫克隆,这门生物技术叫克隆技术。 克隆技术的设想是由德国胚胎学家于1938年首次提 出的,1952年,科学家首先用青蛙开展克隆实验,之后不断有人利用各种动物进行克隆技术研究。由于该项技术几乎没有取得进展,研究... jywjyw333 - 2006-3-5 13:42 - 最佳回答者: leijunyu - 教育/科学 > 学习帮助 我国的克隆技术是世界前列吗? ... 动物克隆技术被生物科学家誉为“生物原子弹”,各国都在竞相发展。动物克隆技术分胚胎克隆和体细胞克隆。相比而言,体细胞克隆... ... 西北农林科技大学动物克隆技术科研群体,在1990年就掌握了胚胎克隆技术,繁育出世界首批克隆山羊。1995年又利用胚胎克隆技术,... 仙人指3 - 2005-9-21 13:01 - 最佳回答者: 我字不帅 - 教育/科学 > 自然科学 以现在的克隆技术能把一个死去的人克隆出来吗???? 只有有这个人的活细胞。提取这个细胞的DNA,然后通过RNA复制出千千万万个细胞。以现在的克隆技术是可以做到的。以前这个人某处... ...目前的克隆技术,只能克隆生命的肉体而已,并不能克隆生命的“灵魂”。也就是说,克隆出来的人无感情,以前学过的东西、遇过的... shundechaoren - 2006-2-20 18:10 - 最佳回答者: kingkongs - 教育/科学 > 自然科学 克隆技术和第一只克隆羊的情况 ...它的诞生被视为20世纪末最重要的科学成就之一,它引发了全世界科学家研究克隆技术的热潮,也导致了大量技术和伦理方面的争论。 ... ...当时,曾领导克隆多利的研究的伊恩·威尔穆特教授曾表示,多利患有关节炎可能意味着克隆技术“效率低”,需要进一步研究。(完) ... 5072159 - 2005-10-9 20:36 - 最佳回答者: 晋山河 - 社会/文化 克隆技术是什么东西 克隆技术其实就是从动物A上拿一个细胞,取出细胞核!再到同种动物B的身上拿一个细胞,去掉细胞核!把取出来的细胞核放到另一个去掉细胞核的细胞中!再把它放到同种动物母体C的子宫中!这样将C将会生出一个和A一模一样的动物来!还有就是直接拿一种动物的细胞... wasong - 2005-10-7 16:18 - 最佳回答者: 紫色残云 - 教育/科学 > 入学信息 能不能用克隆技术增加大熊猫的数量?为什么? ...而克隆技术则不能增加大熊猫的进化过程。 自上世纪90年代以来,北京动物园、四川大熊猫繁育中心、卧龙自然保护区的大熊猫繁育中心等几个地方都比较成功地繁殖了大熊猫;而在秦岭650平方公里的地方,大约150只大熊猫在13年的时间内始终处于相对稳定的状... 小小花生 - 2005-12-28 21:42 - 最佳回答者: 我是张楚 - 教育/科学 > 自然科学 克隆技术会在生活中应用吗?为什么? 看运用在什么地方因为现在的克隆技术还不是很发达,掌握得也不是很到位,所以容易出些差错。如果运用得好的话,可以运用到人体重要器官的移植以及对稀有动物的繁衍但对人的克隆还在争论中,因为这样不利于人的辨认与管理。容易出现政治问题 409257127 - 2005-11-4 20:39 - 最佳回答者:匿名 - 教育/科学 > 自然科学 法律更有利于控制克隆技术的恶性发展 不是法律有利于干吗,而是制定相应规制的法律更有利于控制克隆技术恶性发展。 克隆”是从英文“clone”音译而来,在生物学领域有3个不同层次的含义。 1.在分子水平,克隆一般指DNA克隆(也叫分子克隆)。含义是将某一特定DNA片断通过重组DNA技术插入到一个载体(如质粒和病毒等)中,然后在宿主细胞中进行自我复制所得到的大量完全相同的该DNA片断的“群体”。 2.在细胞水平,克隆实质由一个单一的共同祖先细胞分裂所形成的一个细胞群体。其中每个细胞的基因都相同。比如,使一个细胞在体外的培养液中分裂若干代所形成的一个遗传背景完全相同的细胞集体即为一个细胞克隆。又如,在脊椎动物体内,当有外源物(如细菌或病毒)侵入时,会通过免疫反应产生特异的识别抗体。产生某一特定抗体的所有浆细胞都是由一个B细胞分裂而成,这样的一个浆细胞群体也是一个细胞克隆。细胞克隆是一种低级的生殖方式-无性繁殖,即不经过两性结合,子代和亲代具有相同的遗传性。生物进化的层次越低,越有可能采取这种繁殖方式。 3.在个体水平,克隆是指基因型完全相同的两个或更多的个体组成的一个群体。比如,两个同卵双胞胎即为一个克隆!因为他(她)们来自同一个卵细胞,所以遗传背景完全一样。按此定义,“多利”并不能说成是一个克隆!因为“多利”只是孤单的一个。只有当那些英国胚胎学家能将两个以上完全相同的细胞核移植到两个以上完全相同的去核卵细胞中,得到两个以上遗传背景完全相同的“多利”时才能用克隆这个词来描述。所以在那篇发表于1997年2月出版在《Nature》杂志上的轰动性论文中,作者并没有把“多利”说成是一个克隆。 另外,克隆也可以做动词用,意思是指获得以上所言DNA、细胞或个体群体的过程。 二、克隆技术 1.DNA克隆 现在进行DNA克隆的方法多种多样,其基本过程如下图所示(未按比例) 可见,这样得到的DNA可以应用于生物学研究的很多方面,包括对特异DNA的碱基顺序的分析和处理,以及生物技术工业中有价值蛋白质的大量生产等等。 2.生物个体的克隆 (1)植物个体的克隆 在20世纪50年代,植物学家用胡萝卜为模型材料,研究了分化的植物细胞中遗传物质是否丢失问题,他们惊奇地发现,从一个单一已经高度分化的胡萝卜细胞 可以发育形成一棵完整的植株!由此,他们认为植物细胞具有全能性。从一棵胡萝卜中的两个以上的体细胞发育而成的胡萝卜群体的遗传背景完全一样,故为一个克隆。如此的植物的克隆过程是一个完全的无性繁殖过程! (2)动物个体的克隆 ① “多利”的诞生 1997年2月27日英国爱丁堡罗斯林(Roslin)研究所的伊恩·维尔莫特科学研究小组向世界宣布,世界上第一头克隆绵羊“多利”(Dolly)诞生,这一消息立刻轰动了全世界。 “多莉”的产生与三只母羊有关。一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境——子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下: 从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;给一头苏格兰黑面母绵羊注射促性腺素,促使它排卵,取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。 一年以后,另一组科学家报道了将小鼠卵丘细胞(围绕在卵母细胞外周的高度分化细胞)的细胞核移植到去除了细胞核的卵母细胞中得到20多只发育完全的小鼠。如呆“多利”因为只有一只,还不够叫做克隆羊的话,这些小鼠 就是名副其实的克隆鼠了。 ② 通过细胞核移植克隆小鼠的基本过程 在本实验中,卵丘细胞是经如下过程得到的:通过连续几次注射绒毛膜促性腺激素,使雌鼠诱导成高产卵量状态。然后从雌鼠输卵管中收集卵丘细胞与卵母细胞的复合体。经透明质酸处理使卵丘细胞散开。选择直径为10-12微米的卵丘细胞用作细胞核供体(前期实验表明,若用直径更小或更大的卵丘细胞的细胞核,经过细胞核移植的卵母细胞很少发育到8细胞期)。所选择的卵丘细胞保持在一定的溶液环境中,在3小时内进行细胞核移植(与此不同的是,在获得“多利”时用作细胞核供体的乳腺细胞先在培养液中传代了3-6次) 卵母细胞(一般处于减数分裂中期 II )通过与上面描述类似的方法,从不同种的雌鼠中收集。在显微镜下小心地用直径大约7微米的细管取出卵母细胞的细胞核,尽量不取出细胞质。同样小心取出卵丘细胞的细胞核,也尽量去除所带的细胞质(通过使取出的细胞核在玻璃管中往复运动数次,以去除所带的少量的细胞质)。在细胞核被取出后5分钟之内,直接注射到已经去除了细胞核的卵母细胞中。进行了细胞核移植的卵母细胞先放在一种特制的溶液中1-6小时,然后加入二价的锶离子(Sr2+)和细胞分裂抑素B。前者使卵母细胞激活,后者抑制极体的形成和染色体的排除。再取出处理过的卵母细胞,放在没有锶和细胞分裂抑素B的特制的溶液中使细胞分裂形成胚胎。 不同阶段的胚胎(从2细胞期到胚泡期)被分别植入几天前与已经结扎雄鼠交配过的假孕母鼠的输卵管或子宫中发育。发育完全的胎儿鼠在大约19天后通过手术取出。 目前胚胎细胞核移植克隆的动物有小鼠、兔、山羊、绵羊、猪、牛和猴子等。在中国,除猴子以外,其他克隆动物都有,也能连续核移植克隆山羊,该技术比胚胎分割技术更进一步,将克隆出更多的动物。因胚胎分割次数越多,每份细胞越少,发育成的个体的能力越差。体细胞核移植克隆的动物只有一个,就是“多利”羊。 三、克隆技术的福音 1. 克隆技术与遗传育种 在农业方面,人们利用“克隆”技术培育出大量具有抗旱、抗倒伏、抗病虫害的优质高产品种,大大提高了粮食产量。在这方面我国已迈入世界最先进的前列。 2. 克隆技术与濒危生物保护 克隆技术对保护物种特别是珍稀、濒危物种来讲是一个福音,具有很大的应用前景。从生物学的角度看,这也是克隆技术最有价值的地方之一。 3. 克隆技术与医学 在当代,医生几乎能在所有人类器官和组织上施行移植手术。但就科学技术而言,器官移植中的排斥反应仍是最为头痛的事。排斥反应的原因是组织不配型导致相容性差。如果把“克隆人”的器官提供给“原版人”,作器官移植之用,则绝对没有排斥反应之虑,因为二者基因相配,组织也相配。问题是,利用“克隆人”作为器官供体合不合乎人道?是否合法?经济是否合算? 克隆技术还可用来大量繁殖有价值的基因,例如,在医学方面,人们正是通过“克隆”技术生产出治疗糖尿病的胰岛素、使侏儒症患者重新长高的生长激素和能抗多种病毒感染的干挠素,等等。 克隆技术即无性繁殖技术。通常的有性生殖是由雌雄交配,精子和卵子结合发育成胚胎,经妊娠后产出新的个体。克隆技术不需要雌雄交配,不需要精子和卵子的结合,只需从动物身上提取一个单细胞,用人工的方法将其培养成胚胎,再将胚胎植入雌性动物体内,就可孕育出新的个体。这种以单细胞培养出来的克隆动物,具有与单细胞供体完全相同的特征,是单细胞供体的“复制品”。英国英格兰科学家和美国俄勒冈科学家先后培养出了“克隆羊”和“克隆猴”。克隆技术的成功,被人们称为“历史性的事件,科学的创举”。有人甚至认为,克隆技术可以同当年原子弹的问世相提并论。 克隆技术可以用来生产“克隆人”,可以用来“复制”人,因而引起了全世界的广泛关注。对人类来说,克隆技术是悲是喜,是祸是福?唯物辩证法认为,世界上的任何事物都是矛盾的统一体,都是一分为二的。克隆技术也是这样。如果克隆技术被用于“复制”像希特勒之类的战争狂人,那会给人类社会带来什么呢?即使是用于“复制”普通的人,也会带来一系列的伦理道德问题。如果把克隆技术应用于畜牧业生产,将会使优良牲畜品种的培育与繁殖发生根本性的变革。若将克隆技术用于基因治疗的研究,就极有可能攻克那些危及人类生命健康的癌症、艾滋病等顽疾。克隆技术犹如原子能技术,是一把双刃剑,剑柄掌握在人类手中。人类应该采取联合行动,避免“克隆人”的出现,使克隆技术造福于人类社会。 克隆(clone)是指通过无性生殖而产生的遗传上均一的生物群,即具有完全相同的遗传组成的一群细胞或者生物的个体。克隆在希腊语中是“小树枝叶”的意思,用以指无性增殖物。现在则指个体、细胞、基因等不同水平上的无性增殖物。(1)个体水平:在植物的无性增殖中,植物的发芽、插条等由同一个体通过无性生殖而增长的个体群均被视为克隆。采用组织培养方法可使植物细胞培养发育成完全的个体(愈伤组织),采用这种方法得到的具有相同基因型的个体群,也被称为克隆;在动物的无性增殖中,典型的例子是采用核移植实验方法,把分化细胞的核移植到一个事先去核的蛙卵中,让其发育并得到克隆蛙。克隆动物具有均一遗传性质,在研究环境条件对发育、分化的影响以及药物的检测方面都是重要的实验材料。在哺乳动物中,由于细胞分化,核异质化的程度加剧,因此核移植尚无成功的例子。(2)细胞水平:由一个细胞经过有丝分裂生成的细胞群叫克隆。但如果培养细胞发生转化,则很容易引起染色体变异。(3)基因水平:利用基因重组操作技术,使特定的基因与载体结合,在细菌等宿主中进行增殖,有可能得到均匀的基因群。克隆基因在基因功能与精细结构的关系等基础研究及在有用物质的生产方面,均已得到应用。 在上述3种水平上,增殖并分离获得单一的克隆群称为克隆化。此时,克隆一词也可作为动词理解。克隆是重组DNA技术的核心部分。事实上,克隆技术现已被人们用来通过营养方式繁殖病毒等微生物和植物的纯种,从而保证了这些生物基因组的准确连续性。现在,克隆这个词还包括单个自主遗传因子的分离与保存。细胞生物的克隆只需要营养培养基,而基因的克隆则需要某种载体复制子、特定的寄主细胞和营养培养基。各种类型生物的克隆技术在生物工程中均有其重要作用。
2023-06-29 00:36:414

简述DNA重组与分子克隆化基本原理与过程。

从真核生物的组织或细胞中提取mRNA,通过酶促反应逆转录合成cDNA的第一链和第二链,将双链cDNA和载体连接,然后转化扩增, 即可获得cDNA文库,构建的cDNA文库可用于真核生物基因的结构、表达和调控的分析;比较cDNA和相应基因组DNA序列差异可确定内含子存在和了解转录后加工等一系列问题。总之cDNA的合成和克隆已成为当今真核分子生物学的基本手段。自70年代中叶首例cDNA克隆问世以来,已发展了许多种提高cDNA合成效率的方法,并大大改进了载体系统,目前cDNA合成试剂已商品化。cDNA合成及克隆的基本步骤包括用反转录酶合成cDNA第一链,聚合酶合成cDNA第二链,加入合成接头以及将双链DNA克隆到于适当载体(噬菌体或质粒)。   一、RNA制备  模板mRNA的质量直接影响到cDNA合成的效率。由于mRNA分子的结构特点,容易受RNA酶的攻击反应而降解,加上RNA酶极为稳定且广泛存在,因而在提取过程中要严格防止RNA酶的污染,并设法抑制其活性,这是本实验成败的关键。所有的组织中均存在RNA酶,人的皮肤、手指、试剂、容器等均可能被污染,因此全部实验过程中均需戴手套操作并经常更换(使用一次性手套)。所用的玻璃器皿需置于干燥烘箱中200℃烘烤2小时以上。凡是不能用高温烘烤的材料如塑料容器等皆可用0.1%的焦碳酸二乙酯(DEPC)水溶液处理,再用蒸馏水冲净。DEPC是RNA酶的化学修饰剂,它和RNA酶的活性基团组氨酸的咪唑环反应而抑制酶活性。DEPC与氨水溶液混合会产生致癌物,因而使用时需小心。试验所用试剂也可用DEPC处理,加入DEPC至0.1%浓度,然后剧烈振荡10分钟,再煮沸15分钟或高压灭菌以消除残存的DEPC,否则DEPC也能和腺嘌呤作用而破坏mRNA活性。但DEPC能与胺和巯基反应,因而含Tris和DTT的试剂不能用DEPC处理。Tris溶液可用DEPC处理的水配制然后高压灭菌。配制的溶液如不能高压灭菌,可用DEPC处理水配制,并尽可能用未曾开封的试剂。除DEPC外,也可用异硫氰酸胍、钒氧核苷酸复合物、RNA酶抑制蛋白等。此外,为了避免mRNA或cDNA吸附在玻璃或塑料器皿管壁上,所有器皿一律需经硅烷化处理。  细胞内总RNA制备方法很多,如异硫氰酸胍热苯酚法等。许多公司有现成的总RNA提取试剂盒,可快速有效地提取到高质量的总RNA。分离的总RNA可利用mRNA 3"末端含有多聚(A)+ 的特点,当RNA流经oligo (dT)纤维素柱时,在高盐缓冲液作用下,mRNA被特异的吸附在oligo(dT)纤维素上,然后逐渐降低盐浓度洗脱,在低盐溶液或蒸馏水中,mRNA被洗下。经过两次oligo(dT)纤维素柱,可得到较纯的mRNA。纯化的mRNA在70%乙醇中-70℃可保存一年以上。   二、cDNA第一链的合成  所有合成cDNA第一链的方法都要用依赖于RNA的DNA聚合酶(反转录酶)来催化反应。目前商品化反转录酶有从禽类成髓细胞瘤病毒纯化到的禽类成髓细胞病毒(AMV)逆转录酶和从表达克隆化的Moloney鼠白血病病毒反转录酶基因的大肠杆菌中分离到的鼠白血病病毒(MLV)反转录酶。AMV反转录酶包括两个具有若干种酶活性的多肽亚基,这些活性包括依赖于RNA的DNA合成,依赖于DNA的 DNA合成以及对DNA:RNA杂交体的RNA部分进行内切降解(RNA酶H活性)。MLV反转录酶只有单个多肽亚基,兼备依赖于RNA和依赖于DNA的DNA合成活性,但降解RNANA杂交体中的RNA的能力较弱,且对热的稳定性较AMV反转录酶差。MLV反转录酶能合成较长的cDNA(如大于2-3kb)。AMV反转录酶和MLV反转录酶利用RNA模板合成cDNA时的最适pH值,最适盐浓度和最适温室各不相同,所以合成第一链时相应调整条件是非常重要。   AMV反转录酶和MLV反转录酶都必须有引物来起始DNA的合成。cDNA合成最常用的引物是与真核细胞mRNA分子3"端poly(A)结合的12-18核苷酸长的oligo(dT)。  三、cDNA第二链的合成  cDNA第二链的合成方法有以下几种:   (1) 自身引导法 合成的单链cDNA 3"端能够形成一短的发夹结构,这就为第二链的合成提供了现成的引物,当第一链合成反应产物的DNA:RNA杂交链变性后利用大肠杆菌DNA聚合酶Ⅰ Klenow片段或反转录酶合成cDNA第二链,最后用对单链特异性的S1核酸酶消化该环,即可进一步克隆。但自身引导合成法较难控制反应,而且用S1核酸酶切割发夹结构时无一例外地将导致对应于mRNA 5"端序列出现缺失和重排,因而该方法目前很少使用。   (2) 置换合成法 该方法利用第一链在反转录酶作用下产生的cDNA:mRNA杂交链不用碱变性,而是在dNTP存在下,利用RNA酶H在杂交链的mRNA链上造成切口和缺口。从而产生一系列RNA引物,使之成为合成第二链的引物,在大肠杆菌DNA聚合酶Ⅰ的作用下合成第二链。该反应有3个主要优点: (1) 非常有效; (2) 直接利用第一链反应产物,无须进一步处理和纯化; (3) 不必使用S1核酸酶来切割双链cDNA中的单链发夹环。目前合成cDNA常采用该方法。  四、cDNA的分子克隆   已经制备好的双链cDNA和一般DNA一样,可以插入到质粒或噬菌体中,为此,首先必需连接上接头(Linker),接头可以是限制性内切酶识别位点片段,也可以利用末端转移酶在载体和双链cDNA的末端接上一段寡聚dG和dC或dT和dA尾巴,退火后形成重组质粒,并转化到宿主菌中进行扩增。合成的cDNA也可以经PCR扩增后再克隆入适当载体。
2023-06-29 00:36:491

用于植物基因克隆的工具酶有哪些

分子克隆中常用的工具酶连接酶、T4 多核苷酸激酶、碱性磷酸酶、核酸酶、琼脂糖酶、蛋白酶、溶菌酶以及一些DNA 结合蛋白。分子克隆在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增。工具酶:基因工程涉及众多的工具酶可粗略的分为限制酶,连接酶,聚合酶,核酸酶和修饰酶五大类。其中,以限制性核酸内切酶和DNA连接酶在分子克隆中的作用最为突出。
2023-06-29 00:36:561

何谓载体?分子克隆中良好的载体应具备哪些条件

载体是指能传递能量或运载其他物质的物体。条件:1.能在受主细胞内稳定存在,不会对宿主细胞造成危害,能自我复制。2.具有标记基因。3.含有1至多个限制酶的识别序列及切点。4.含有启动子,终止子。
2023-06-29 00:37:031

分子克隆名词解释

克分子的解释 [gram molecule] 以克计的化合物或元素的重量,其量在数值上等于该化合物或元素的 分子量 词语分解 克的解释 克 (④克) è 能够:克勤克俭。 战胜,攻下:攻克。克复(战胜 敌人 并收回失地)。 制伏:克服。 克制 。克己奉公。以柔克刚。 严格限定: 克日 。克期。克扣。 消化 :克食。 公制重量单位或质量单位:一克等于 分子的解释 构成某一整体的各个体;归属某 社会 群体的人劳改分子积极分子详细解释.支庶之子孙。《谷梁传·庄公三十年》:“北伐 山戎 ,危之也。则非之乎?善之也。何善乎尔? 燕 , 周 之分子也。” 范宁 注:“分子
2023-06-29 00:37:101

关于克隆的知识

“克隆”是什么?克隆的概念在生物学中早已存在,但人们对其一直知之甚少。只有当克隆羊“多莉”诞生时,才引起了最广泛的关注。 克隆是英文“CLONE”的音译,源于希腊文,原意是指植物幼苗或嫩枝以“无性繁殖”或“营养繁殖”的方式培育,也就是说用除种子之外的植物体的任何一部分进行无性繁殖。现在它的范围扩大了,凡是没有精卵结合过程,而由同一个祖先细胞获得的两个以上的细胞、细胞群或生物体,或由同一个亲本遗传密码等,得到的后代就是克隆,其分化发育得到的生物体与母体的基因是完全相同的。通俗地讲,通过这种方式得到的生物体与它们的“母体”在生物学上是同等的,它们没有父亲与母亲,只是母体的“翻版”后代,相当于计算机中的文件拷贝一样,所有拷贝中的信息应该完全相同。但克隆毕竟是比拷贝文件复杂得多的生命过程,在实际操作中,难免受到外部环境及内部条件的影响,并不容易做到完全相同,在动物克隆中尤其如此。在植物界和低等生物中,克隆并不神秘。如从某些花枝上剪下枝条,插在花盆里就可以长成许多完全相同的植株;蚯蚓被切成两段后,每段都能再生为完整的个体。但壁虎断了尾巴会长出新的,螃蟹掉了钳子会长出比原来小些的新蟹钳,章鱼的腕足被割掉后能再长等现象,却只是断肢、器官等的再生,不能算是完全的“克隆”。除非壁虎的尾巴长成小壁虎,或是蟹钳子长成小螃蟹,才是“克隆”的范畴。而高等动物一般都是通过有性生殖的方式繁殖后代的,因此,高等动物的“复制”成功,确实让人类大吃一惊。从理论上讲,就是人类的任何细胞都可以用来制造出同一基因的克隆人。这引发了一场世界范围的关于科学与伦理、科学与生命、科学与人类未来命运的大讨论,反对克隆人的呼声占了上风。
2023-06-29 00:37:313

分子克隆实验指南的介绍

《分子克隆实验指南》的前两版以其无可匹敌的声誉,在近20年的时间里一直被作为分子生物学实验的经典参考书。在第三版中,作者对图书内容进行了完全的升级,修订了实验的每条方案,增加了大量新的材料,拓宽了它涉及的领域,内容丰富而详细,使其具有用于学习遗传学、分子细胞生物学、发育生物学、微生物学、神经科学和免疫学等科学的重要指导和参考价值。《分子克隆实验指南 第三版(上、下册)》具有先进性、实用性、权威性的特点,是生命科学实验室内当之无愧的“圣经”。
2023-06-29 00:37:391

如何利用分子克隆技术获得dna复制起始区

  如何利用分子克隆技术获得dna复制起始区  由于DNA分子是一个独特的双螺旋结构,是由两条平行的脱氧核苷酸长链盘旋而成,在复制时,以亲代DNA分子的两条链分别为模板合成子代DNA分子,所以DNA分子的复制是半保留复制.  1. 复制的起始点与方向  DNA分子复制时,在亲代分子一个特定区域内双链打开,随之以两股单链为模板复制生成两个子代DNA双链分子。开始时,复制起始点呈现一叉形(或Y形),称之为复制叉(replication fork)。复制进行中,复制叉乃向前移动。  (1)复制的起始点  DNA复制要从DNA分子的特定部位开始,此特定部位称为复制起始点(origin of replication),可以ori表示。在原核生物中复制起始点常位于染色体的一个特定部位,即只有一个起始点。真核生物的染色体中是在几个特定部位上进行DNA复制的,是有几个复制起始点。  (2)复制的方向  复制的方向可以有三种不同的机制,其一是从两个起始点开始,各以相反的单一方向生长出一条新链,形成两个复制叉【图示1】,例如腺病毒DNA的复制。其二是从一个起始点开始,以同一方向生长出两条链,形成一个复制叉【图示2】,例如质粒ColEI。其三是从一个起始点开始,沿两个相反的方向各生长出两条链,形成两个复制叉【图示3】。这种方式最为常见,因此也是最重要的双向复制(bidirectional replicatim)。故答案为:半保留复制
2023-06-29 00:37:531

分子克隆为什么设计2轮引物

分子克隆一般需要在引物上加酶切碱基序列(6-8个碱基+2-6个保护碱基),在引物的5`端加这些碱基,对PCR扩增还是有影响的,有时候就扩增不出来所以就先用不加酶切序列的引物扩增一轮,连TA载体,测序,然后用加酶切位点序列引物,进行第二轮扩增,更容易扩增。如果需要设计定量PCR引物,可以在微信小程序搜索“引物库”,提供30多个植物、动物的定量PCR引物,并且列出了每一对引物所在的外显子,并进行了非特异性扩增的检测(ePCR)网页链接
2023-06-29 00:38:011

分子克隆涂板后多久可以长出菌

8小时左右。分子克隆涂板后需要8小时左右长出菌落,需要进行先预热有抗平板再涂转化菌。分子克隆涂板时要注意反应建议使用PCR仪进行。水浴锅等常规仪器对温度控制不精确,影响重组效率。
2023-06-29 00:38:081

下载app授权信任会让其他不法分子克隆手机里软件么

首先要明确下载的app是否为安全的正版app。如果是,就不会有问题,如果是盗版的,非安全的app,就要当心了。教你如何识别垃圾App教你如何识别垃圾App1.从正规渠道下载“从正规渠道下载”真是老生常谈了,但偏偏就是有人不听劝,直接通过搜索引擎搜到的结果并不一定代表着那就是正规应用,反而有很多恶意应用通过优化关键字或其它方式,达到在搜索结果中排名靠上的目的。用户可以从该应用的官网直接下载,或者通过大型应用市场下载。2.看认证标识或者下载量但应用市场中也是鱼龙混杂,一些恶意应用绕过了审核,堂而皇之的等着用户来下载,若是遇上了“高仿版本”则更难分辨,一模一样的图标,相似度极高的应用名称,甚至登上了推荐榜,一不留神就会失误下载。破解的方式只有一个:看认证标识!正规渠道的应用都会带有认证标记,比如“官方”或“已认证”等字样,看准这些再下载安全性会大大提升。3.看评论没有认证标记怎么办?看评论。如果这是一款来源可靠的好软件,可能很少有人愿意在评论中夸它几句,但如果这是一款功能差劲体验不佳的应用,肯定会有大批用户自愿到评论区中为它“美言”几句。如果大家无法判断一款应用的优劣,不妨看看其它用户是怎么说的。当然不排除水军的存在,但这类评论通常很“软”,容易识别,要是评论中清一色的点赞,那么可要留点心眼了。4.看流量是否有偷跑已经下载了好多应用该怎么办呢?难不成要一个一个重新下载吗?当然不用这么麻烦!安卓手机可以在设置菜单中查看到应用的流量使用情况,若是某些应用的流量使用高的不正常,必然常常在后台偷跑,要么限制它联网,要么直接删除永绝后患。5.有多个版本时怎么办为了适配不同的屏幕尺寸/分辨率,很多应用都推出了不同版本,比如HD版、XX系统专用版等等,若同为官方发布的应用,这些App也会带有官方认证的标识,若没有也不要紧,上述的几种方法都能帮助你辨别这款应用的真伪。6.破解版、绿色版一看到破解版、绿色版几个字,相信很多用户都会亮眼放光,其实这些应用都经过了再加工,让用户绕过授权码或者加密措施直接使用,看上去这种方式方便了用户,但实际上它们不仅侵犯了正版厂商的利益,还有可能在应用中植入一些乱七八糟的代码,用户可千万不要贪小便宜吃大亏,对于此类应用还是保持警惕为好。7.看权限在应用安装时,请求的权限会暴露出它所有的目的,拍照应用为何要通讯录权限?手电筒应用为何要录音权限?大家安装软件可能只是点击一下“安装”就完事了,但在那之前应该好好阅读一下权限列表,不让恶意应用有可乘之机。8.要账号密码?门都没有!好了,若是以上几项都很正常,是不是就是一款好应用呢?也不完全是!若是通讯应用突然让你填写银行账号和密码,那可就要小心了,密码是保障账户安全最重要的一道关卡,怎么能轻易告诉别人呢?此类应用必定存在不良目的,不要犹豫直接卸载。其实不仅是安卓,iPhone中也存在不少恶意应用,只是它们的伪装术更高明,更不易察觉,不过由于iOS系统的封闭性,已经帮助用户挡住了很多恶意应用的侵袭,但大家也不要放松警惕,时刻提防新骗术才是正经事。
2023-06-29 00:38:151

PCR与DNA分子克隆

这个有多方面的原理:一个:PCR有错误,虽然这个错误率很低,普通的酶大概在千分之一,而高保真的在百万分之一,但毕竟有。二个:基因保存的问题:PCR产物当然也可以保存,但保存时间长了会不会出问题?能保存几年?克隆进质粒就不一样了,这个基本可以保存很久,哪一天想要这个基因,拿出来摇一小瓶就可以了。三个:单克隆性,PCR片断可能有长有短(还有突变),而质粒就不一样了,可以挑单克隆,测序正确后就认为这是我们想要的基因。四个:做基因表达时连接方便。如果PCR产品上没有酶切位点,克隆载体上有,切下来可以连到表达载体上。象有些人做基因库时,都是克隆到载体上,肯定是这样有很多优点的。
2023-06-29 00:38:372

在PCR技术发明以前,人们是怎么做分子克隆的?

加减法是测序的~科恩伯格最引人注目的研究工作,是在20世纪50年代中期用实验证明DNA的复制并分离了复制所需的酶,这集中反映在他于1956年发表的著名论文《脱氧核糖核酸的酶促合成》一文中,他因此于1959年获得诺贝尔生理学和医学奖。 在1953年以前,基因的物质本性一直是困扰着全世界生物学家的问题。1953年4月25日《自然》杂志发表了沃森(J. Watson)和克里克(F. Crick)的DNA双螺旋结构模型,既反映了DNA分子可能具有的无穷多样性,又能立刻提出DNA分子自我复制的可能机制,使生物学家一下子接受基因的物质本性就是DNA。但是,DNA双螺旋结构模型虽然是以众多的实验结果为依据,但它本身却尚有待于实验证明。尤其是,DNA果真是一种能自我复制的分子吗?在DNA双螺旋结构模型发表之后,科恩伯格就以这一模型作为设想基础,用实验方法研究DNA的复制,很快得到成功,于1956年发表了初步结果。他成功的原因之一在于他有一个正确的分析:他觉得构成DNA分子的单体虽然是4种脱氧核苷一磷酸,但是,DNA合成的原料却不是4种脱氧核苷一磷酸,而是4种脱氧核苷三磷酸。4种脱氧核苷三磷酸缺1种都不行,用4种脱氧核苷二磷酸或4种脱氧核苷一磷酸也都不行。他还设想,细胞内必有合成DNA所需的酶。于是他把大肠杆菌磨碎,用其提取液加上4种脱氧核苷三磷酸(其中至少有1种进行放射性同位素标记,以便于检查实验结果),再加一点点微量DNA作为“模板”(如小牛胸腺DNA、大肠杆菌DNA以及大肠杆菌T2噬菌体DNA)。把上述混合液在有镁离子存在的条件下于37℃静置30min,发现放射性标记已进入DNA部分,说明有新合成的DNA分子。新合成的DNA分子即实验产物可以用过氯沉淀法同作为原料的脱氧核苷三磷酸单体分开。科恩伯格测定了产物DNA的碱基组成,发现它们同各自的模板DNA组成惊人地相似, 这就充分证明新合成的DNA的特异性是由所加入的那一点点微量的模板DNA决定的,只不过数量大大增加了而已。DNA果然是一种能自我复制的分子! 这里插叙一下,人们后来知道DNA合成还需要“引物”以提供3′端羟基,使DNA聚合酶得以从该处将一个个脱氧核苷酸聚合而成DNA。科恩伯格当年在制备模板DNA时进行了化学处理,造成了一些断裂,从而形成了一些现成的3′端羟基。这一点在当时是不知道的。 科恩伯格在获得诺贝尔奖后没有止步不前。他清楚地知道,他在体外合成的DNA是没有活性的。那么,能不能在体外合成有活性的DNA分子呢?1967年,他以大肠杆菌φⅩ174噬菌体DNA为材料进行体外复制实验。φⅩ174的基因组是单链环状DNA,共5 386个核苷酸。细胞内的情况是:当φⅩ174感染大肠杆菌时,单链环状DNA进入细菌,很快就按碱基配对原则合成其互补链,构成双链环状的“复制形式DNA”。一般把噬菌体颗粒中的单链称为“+链”,进入细菌后合成的互补链称为“-链”。在细菌内复制时,是以-链为模板,按“滚环” 方式合成许多个+链。这些+链与蛋白外壳构建成新的φⅩ174从细菌内释放出来。科恩伯格基本上仍用1956年所用的方法(但增加了连接酶,使新合成链的最后一个核苷酸的3′ 端羟基和最初第一个核苷酸的5′ 端磷酸基连接起来形成环状),以φⅩ174+链DNA为模板,在体外合成-链,又以-链为模板,在体外合成+链。体外合成的φⅩ174+链DNA能感染大肠杆菌,在细菌内能复制,最后从细菌内释放出许多φⅩ174噬菌体颗粒,具有原来φⅩ174噬菌体的全部特性。由此,人类首次在试管内合成了具有生物学活性的DNA分子。 科恩伯格在DNA体外合成方面所取得的成就,其影响极为深远。首先是关于DNA复制所需的酶。 科恩伯格开始实验时所设想的大肠杆菌提取液中含有的DNA聚合酶,在1957年就被他分离纯化,那就是至今仍在全世界各个分子遗传学实验室里经常使用的“大肠杆菌DNA聚合酶Ⅰ”,又称“科恩伯格酶”。它既具有聚合酶的活性,又具有5′→3′ 外切酶和3′→5′外切酶的活性。今天我们用DNA分子杂交技术进行基因分离、基因结构分析、基因诊断等研究时要用放射性同位素标记的基因探针;标记基因探针常用的“缺刻前移法”(nick translation)就是利用大肠杆菌DNA聚合酶Ⅰ兼有聚合酶活性和5′→3′ 外切酶活性这一特点,而其反应过程也就是科恩伯格当年进行的DNA体外合成的过程。所以,尽管后来证明在大肠杆菌细胞内复制时起主要聚合作用的是大肠杆菌DNA聚合酶Ⅲ,不是DNA聚合酶Ⅰ,但在分子遗传学实验室里,大肠杆菌DNA聚合酶Ⅰ的重要性却处于实验室常用酶的最前列。 1970年,丹麦生物化学家克莱诺夫(H.Klenow)用枯草杆菌蛋白酶切割大肠杆菌DNA聚合酶Ⅰ,电泳后获得大小两个片段。大片段保留了聚合酶和3′→5′外切酶活性,但丧失了5′→3′ 外切酶活性,被称为“克莱诺夫片段”,又称“克莱诺夫酶”。标记基因探针常用的另一种“随机引物法”(random priming)就必须用克莱诺夫酶而不能用科恩伯格酶。其次,科恩伯格的成就还直接导致了一些诺贝尔奖的获奖项目。 到目前为止,包括2003年4月完成的“人基因组计划” 在内,已有超过1000种的噬菌体、病毒、类病毒、细菌、原始细菌、真菌、植物、动物以及细胞器和质粒的基因组DNA全核苷酸序列被测定。DNA测序起始于英国生物化学家桑格(F. Sanger)在1975年建立的“加减法”以及他用该法在1977年首次测定了φⅩ174基因组DNA的全核苷酸序列。近30年来,DNA测序由半自动化发展到全部由仪器自动测序,但其基本原理仍然没有跳出桑格“加减法” 的范畴,而“加减法” 的“源头” 则是科恩伯格的DNA体外合成实验。它是设法控制DNA酶促合成反应,使之产生不同长度的互补链,从而测定一个一个核苷酸的排列顺序。其中, 所用的DNA聚合酶正是克莱诺夫酶。桑格因建立DNA测序方法而获得1980年诺贝尔化学奖。
2023-06-29 00:38:463

生物克隆技术 综述

克隆一词是由clone音译而来,在音译名出现以前曾有一个意译名--无性繁殖系,指由单一细胞或共同祖先经有丝分裂得到的细胞群体或有机群体。我们通过细胞培养可以得到一个细胞克隆。 克隆技术简史(小资料) 1938年,第一位现代胚胎学家、德国的汉斯u2022斯皮曼博士建议用成熟的细胞核植入卵子的办法进行哺乳动物克隆。 1952年,运用斯皮曼的构想,出现世界上第一只克隆青蛙。 1962年,约翰u2022格登宣布他用一个成熟细胞克隆出一只蝌蚪,从而引发了关于克隆的第一轮辩论。 1984年,斯蒂恩u2022威拉德森用胚胎细胞克隆出一只羊。这是第一例得到证实的克隆哺乳动物。 1995年10月,美国麻省麻醉学家维坎蒂博士利用改良组织工程,令老鼠背上长出人耳,从而使人类能在实验室培育出可向人类移植的皮肤和软骨。 1996年7月,英国苏格兰罗斯林研究所成功地用羊乳腺细胞克隆出小绵羊"多利"。 1997年10月,英国专家研制出一个无头的青蛙胚胎,令其有关技术可以制造人类器官以便作为医学移植用途。 1999年7月,日本科学家克隆出多头牛,并将其肉类推向市场出售。 2000年4月,美国先进细胞工程公司克隆出6头比它们本身实际年龄年轻的小牛。 2000年,美国科学家用无性繁殖技术成功克隆出一只猴子"泰特拉",这意味着克隆人本身已没有技术障碍。 2001年11月25日,美国马萨诸塞州的生物技术公司成功克隆出人类胚胎,在克隆技术上迈出了重要一步。不过该公司表示其目的不是为了克隆人,而是为了获得能够用于治疗帕金森综合征和青少年糖尿病等各种疾病的干细胞。 克隆是什么? 克隆一词是由clone音译而来,在音译名出现以前曾有一个意译名--无性繁殖系,指由单一细胞或共同祖先经有丝分裂得到的细胞群体或有机群体。我们通过细胞培养可以得到一个细胞克隆。在微生物实验时,通过倒平皿,我们可以得到一个个的菌落,这些菌落其实就是细菌的克隆。可见克隆原来是个名词,指一群细胞或一群个体。随着分子生物学的发展,出现了核移植与基因工程之类的操作。核移植操作可以得到重建细胞,重建细胞可以繁殖成一个无性系;基因工程操作可以将某一被选定的基因拼接到质粒的复制子上,随着复制子的复制也能得到DNA分子的无性系。于是,有人就把这类操作称作克隆,即将clone一词由名词转化成动词,并将核移植称为 nuclear cloning(核克隆),通过基因工程得到DNA分子的无性系称为molecular cloning(分子克隆)。在这里克隆是一种实现无性繁殖(asexual reproduction)的操作,是一种显微操作或分子生物学操作,而不是一般意义上的无性繁殖(或无性繁殖操作)。这也许正是克隆一词能够存在而不被无性繁殖替代的原因。 克隆羊 多利羊又称克隆羊,其实是用核克隆技术产生的羊。有人说,只有多利羊才是真正的克隆羊,其他报导,如克隆猪、克隆牛等,由于它们是由胚胎细胞发育而成的,而胚胎细胞是有性繁殖产生的,所以,不是真正意义上的克隆。这是一种误解,是由于对有性过程在时间上把握不准所造成的。有性过程到受精卵、即合子形成时即告结束,合子分裂一旦开始即与有性过程无关了。如果说分裂后的胚胎细胞是有性繁殖产生的,那么,体细胞追究下去也是有性繁殖产生的。但事实上它们都是由合子经有丝分裂逐渐产生的。这就是说,有性繁殖实际上是经过一次有性过程和许多次无性过程,最后产生一个成活的后代而实现的。从胚胎中取出一个细胞使之发育成一个个体,这显然应属于无性繁殖。所以,从这个意义上讲,杜里舒是克隆技术(细胞克隆技术)的创始人,他的将两分裂球时期的细胞分开,使之发育成两个海胆的实验,是最早的克隆实验。而人类的同卵双生双胞胎,就是经天然细胞克隆化产生的。而克隆猪、克隆牛,如果是经核移植育成的,则不管供核细胞是来自早期胚胎细胞,还是已分化细胞,均属于真正意义上的克隆技术,而且是比杜里舒的水平高得多的克隆技术。 走近"基因药物 人们为了实现某种目的,将克隆的外源目的基因(一般是人的DNA ),整合到动物受精卵的染色体内,使之在动物体内得到表达并能稳定地遗传给后代,这种含有外源基因的动物就叫做转基因动物。从事这项研究的科学家们说,一头转基因动物就是一座天然基因药物制造厂,不仅可以大大降低成本,而且还能够扩大生产,获得更多的基因药物。 利用转基因动物来生产基因药物是一种全新的生产模式,与传统的制药技术相比具有无可比拟的优越性。以美国为例,凝血因子Ⅷ的年需要量约为120 克。过去,这120克凝血因子Ⅷ需要120万升血浆提取,以每人献血200 毫升计,需600 名献血员提供血浆才能满足。而用转基因牛来生产,一头牛每年的奶产量是1万公斤,如每公斤乳汁中可制造10毫克凝血因子Ⅷ的话,那就只需1.2头这种牛即可满足需要。再以白蛋白为例,美国的年需要量为10万克,过去需从200 万升血浆中提取,而用转基因牛来生产,以每公斤乳汁制造2 克的蛋白计算,就只需5000头牛即可解决。此外,从人血中提取血清蛋白质可能产生的肝炎、艾滋病等传染性疾病,也可因此而得以避免。 生物技术是当今最为活跃的一门技术。1971年,诺贝尔奖获得者保罗u2022伯格首次成功地把两种不同的基因拼接在一起,使生物技术发展到基因重组与移植的新阶段。 此后,基因重组技术取得了一个个丰硕成果。1978年合成了人工胰岛素,1979年实现了生长激素基因在大肠杆菌中的表达,1982年研制成功了人工干扰素,基因制药从此走上了产业化道路。但是,目前的基因药物是通过基因重组技术培育大肠杆菌和动物细胞来制造的,而大肠杆菌这类低等生物是不可能生产出结构复杂的药物,动物细胞培养的成本又太高。所以,利用基因重组与移植技术来培育转基因动物生产药物便应运而生了在利用转基因动物提取药物方面,英国科学家首开先河。1997年年底,英国PPL治疗学公司率先利用克隆"多利"所采用的"细胞核转变"法,培育出200头携带人体基因的绵羊,并成功地从奶汁中提取了α-1抗胰蛋白酶。这是科学家首次从遗传工程培育的绵羊的奶中,提取可用于治疗人类疾病的药物成分,为建立"动物药厂" 打下了基础。随后,芬兰科学家将人体的促红细胞生长素基因,植入乳牛的受精卵中,创造了一种能生产出促红细胞生长素的乳牛。从理论上说,这种乳牛一年可提取60-80千克促红生长素,比目前全世界的使用量还多。 假如你是足球迷,你肯定希望世上再多一个罗纳尔多;假如你是音乐爱好者,你当然愿意再拥有一个贝多芬;再有一个爱迪生、爱因斯坦也是许多人所梦想的。古希腊有位哲学家曾经说过"世上不可能有两片完全相同的叶子",换句话,以上的梦想都只能是空想,没有实现的可能。但是,现在情况却有了变化,有一种新兴生物技术"克隆",或许可以做到这一点。那么克隆是什么呢?它奇妙在哪里呢?今天,就让我们一起走近——"奇妙的克隆"。 我们身边哪些动、植物先天具有克隆的本领?具有克隆能力的动植物有:土豆、蚯蚓、桑树,丝瓜藤,吊兰.水母,海参、仙人掌。水母在遭到伤害后,伤口会自动补好。章鱼的触手可以再生。龙虾的大钳子掉了 ,还会再长出来。还有秋海棠、富贵竹,它们插枝即活。壁虎。它遇到危险时,就将自己的尾巴断掉,然后再长出来。 能不能找出这些天生具有克隆本领的动植物的共同点,用自己的话说说克隆是什么?不由生殖细胞结合产生的后代。 克隆技术可以造福于人类:能使不具备繁殖能力的动物诸如骡扩大繁殖,还能挽救濒危动物。 假如你也掌握了克隆技术,你想克隆什么呢?为什么要克隆它?要求:1、想法要奇妙;2、想法要有益于人类;3、表达要有条理,语气、语调适当。 如果让我克隆,我会克隆无数对明澈的眼睛。许多人认为有一双好眼睛是理所当然的事,而我并不这么认为。当你看到那毫无光芒的双眼,听到期盼光明的心灵的呼唤,难道你的心灵没有震动吗?上天对他们不公,就让科学来为他们创造光明,就让社会让他们体会真爱。我坚信"科技以人为本"并不是空话。所以我要克隆眼睛,让更多的人重见光明. 我想克隆恐龙。因为我喜欢恐龙,想再现恐龙时代的盛景。而且具备克隆恐龙的条件,因为恐龙时代的南极有可能处在温带地区,当恐龙死后尸体藏在南极中,而此时的南极很可能已在冰天雪地中,由于寒冷可防止身体的腐化,所以可以提取恐龙的DNA,从而克隆恐龙,这样也可以使后代开阔眼界。 我不主张象他那样去克隆一些史前生物,如恐龙、猛蚂等。因为任何生物的生存与灭绝都不是人类所能控制的,人类应该严格遵守"自然法则",让生物的发展顺其自然。如果再回到从前,就可能破坏生态平衡。 我想克隆水,目前世界上的淡水资源严重缺乏,已无法维持人类生存,而人类仍在无限制地浪费水,所以我想克隆水。 我要克隆粮食,拯救非洲正在挨苦受饿的人们,使他们过上温饱的日子。 我们都知道,热带雨林是地球之肺。而亚马逊平原是世界上最大的热带雨林,占地球上热带雨林总面积的50%,达650万平方公里。这里自然资源丰富,物种繁多,被称为"生物学家的天堂"。然而,亚马逊却没有因为它的富有得到人们的厚爱。70年代以来,人们的滥砍滥伐使其三分之一的面容消失在我们眼前,这将意味着维持人类生存的氧气将减少五分之一。所以,我想克隆亚马逊热带雨林,将其安放在撒哈拉沙漠上,使之净化环境。 我反对刚才三位同学的说法。他们的想法很好,表达了他们忧国忧民之心,表达了他们的美好愿望。可是水、热带雨林、粮食没有细胞,如何克隆?(众笑)(有人小声插话):水可以的,有水分子。 如果我有克隆的技术,我会克隆孙悟空,因为他无所不能,可以实现我们很多改变社会的理想。(众大笑) 师:感谢这些同学给大家带来的大胆的、新奇的"克隆理想",不管它们符不符和科学原理,但都表现了大家的美好愿望,希望科技能来社会的进步,使人类的生活更幸福!围绕"克隆技术造福人类?!"的辩题展开讨论。) 师:辩论要求:(1)语言清晰、流畅,声音洪亮;(2)观点鲜明,论据充足;(3)驳斥对方观点时既要有"理",又要有"礼"。 (以"克隆技术能造福人类"为正方,"克隆技术不能造福人类"为反方展开辩论) 正方:我认为"克隆技术能造福人类",课文的第四章节不是非常详细地介绍了克隆对人类的作用吗?如能使不具备繁殖能力的动物扩大繁殖,据有关报道,公驴和母马所生出来的杂种动物——骡,如何繁殖这些优良品种呢?只能用克隆。还能挽救如熊猫这类繁殖能力低的濒危动物。 反方:我觉得克隆无益于人类。你别不相信,请听我慢慢道来。(停顿,由于太激动,又重复了一遍,众笑)首先克隆正如正方辩友所说,的确可以挽救濒危动物,但你可曾想到,这样的克隆会破坏动物种群的正常发展,使动物走向衰弱,就算可以救一时,难道可以救一世吗?我想不可能。有人说克隆可以使动植物再生,有没有想过,只要人类不刻意破坏,这样的生态平衡已维持了千万年,你这样无限制的克隆,是否破坏了它的食物链,又是另一种生态平衡的破坏呢? 正方:我听说在亚马逊的热带雨林中每天都要消失近百种植物,所以克隆能挽救一部分植物,虽然不是全部,但仍能部分保存。现在的克隆技术虽然不是十分发达,但我相信今后克隆水平会更好,这时克隆就有它的用武之地了,总不能等到地球全部荒芜才研究克隆吧? 反方(冷笑):对方辩友真是对未来充满希望啊!可是这也证明了这只是你的美好想象,寄希望于克隆技术的提高,而事实上呢,经过了247次失败后,才得到了"多利"克隆小绵羊。在这个过程中需要伤害多少动物啊,这与我们克隆的初衷不是背道而驰吗? 正方:失败乃成功之母嘛!(众笑)现在的克隆技术或许不发达,但在今后我相信人类的克隆水平会越来越好,克隆出来的动植物会越来越优异,象失败247次这样的事将不再发生,它最终会造福于人类。而且克隆对于研究有些疾病和研究人的寿命有不可低估的作用。当某一天我们自身的某个器官出了问题,就可以从先前克隆的胚胎中取出这个器官进行培养,然后替换自己病变的器官。我们就再也不必害怕疾病了。所以克隆对人类还是有益的。 反方:你还嫌世界上的人口不多吗?如果一有严重的疾病就换器官,人不是都可以长生不老?如果这样,地球人口增长率岂不达到极点,地球不就要出现危机了吗? 正方:或许那时人们可以到其他星球中生活了!(众笑) 反方:我想说说克隆人有哪些危害。(反方同学鼓掌)比如,如果克隆的供体细胞发生变异,或者培养胚胎的培养基因与科学家开了小小的玩笑,克隆出一个废品,我们能象对待阿狗阿猫那样处置他们吗?器官移植,供体匮乏,能不能未雨绸缪,为自己克隆一个器官仓库,以供将来不测之需?如果能,人们能够坦然从与我们一样五官齐全,表情丰富的克隆人身上摘下一只肾,挖走有一只眼吗?人类早就期望借助机器人,从繁重或危险的劳动中解脱,但再灵巧的机器人也是笨拙难如人意。能不能克隆一个"我"的替代品,赋予他灵巧的四肢和绝对服从的意志?如果那样,是不是有一天觉醒的克隆人会向我们呐喊:"王侯将相,宁有种乎?"(反方同学热烈鼓掌,并大声叫好) 依样画葫芦克隆出的一个新生命,他们是儿子,还是弟弟?如果面对一群面貌、体态、风姿一样的克隆人,我们如何确认他们的身份?如果他们犯罪,我们又有什么手段缉拿真凶?再说,人类居住的地球早已因为人口爆炸难堪重荷,我们还有什么理由用另一种方法生产自身?(再次响起掌声) 正方(激动地):事物总有它的两面性,你不能十分果断地判断它是好是坏。我认为一个技术存在就一定有它存在的理由。你不能否认它有对人类造福的一面,不能将它一棍子打死。克隆技术能否为人类造福是要看它克隆的对象是什么,在什么领域,它固然有坏处,是因为任何事都有它的双面性,不能是纯粹的好与坏,所以不能说克隆技术是绝无益处的。 师(做暂停的动作,学生依然激动万分):同学们各抒己见,对此提出了不少看法,或许不够深刻,却是朴素而真实的。坦白地说,我在这方面的知识未必比你们高深,你们的发言给了我启发。克隆技术取得突破性进展,世界为之轰动,它对我们人类究竟是利大于弊,还是弊大于利呢?现在下结论还为时过早,这篇课文里引用了诺贝尔奖获得者、著名分子生物学家J.D.沃森的话作结束语: "许多生物学家,特别是那些从事无性繁殖研究的科学家,将会严肃地考虑它的含义,并展开科学讨论,用以教育世界人民。",这也正是我们所期待的,我们希望"克隆技术造福人类"。
2023-06-29 00:38:571

分子克隆在医学上的应用?

分子克隆在医学上的应用是:在医学方面,利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松弛素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产。还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量。并且通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞。扩展资料:分子克隆技术是70年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门。它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。在工业生产方面以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用。参考资料来源:百度百科—分子克隆
2023-06-29 00:39:161

分子克隆的意思可以从原理和意义方面来说一下吗

在分子水平上提供一种纯化和扩增特定DNA片段的方法.常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增.克隆(clone,clon)一词源于希腊文Klon,原意为树木的枝条.在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖(细胞)系;其动词(clone,cloned,cloning)含义指在生物体外用重组技术将特定基因插入载体分子中,即分子克隆技术.将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类.cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入寄主细胞.每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布.特点是:①有些生物,如RNA病毒没有DNA,只能用cDNA克隆;②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息;③cDNA能在细菌中表达.cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息.1.方法:(1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA.(2)载体DNA的选择:①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb).在细胞中以游离超螺旋状存在,很容易制备.质粒DNA可通过转化引入寄主菌.在细胞中有两种状态,一是“紧密型”;二是“松驰型”.此外还应具有分子量小,易转化,有一至多个选择标记的特点.质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆.②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端.中间是非必需区,进行改造后组建一系列具有不同特点的载体分子.λ载体系统最适用于构建真核生物基因文库和cDNA库.M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌.M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒.寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交.③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子.是噬菌体-质粒混合物.此类载体分子容量大,可携带45kb的外源DNA片段.也能象一般质粒一样携带小片段DNA,直接转化寄主菌.这类载体常被用来构建高等生物基因文库.(3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端.在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端.②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端.平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接.④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端.连接反应需注意载体DNA与DNA片段的比率.以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳.以质粒为载体时,形成环状分子,比率常为1∶1.(4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难.②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高.(5)克隆的选择:①直接筛选:有些载体带有可辨认的遗传标记,能有效地将重组分子与本底区分.例如:有些λ噬菌体携带外源基因后形成的噬菌斑就会从原来的混浊变为清亮;还有些载体分子携带外源基因后,形成的菌落或噬菌斑的颜色有明显变化,如蓝色变为无色;有些λ噬菌体能侵染甲菌而不能侵染乙菌,携带外源DNA片段后便能侵染乙菌,因此乙菌释放的噬菌体均为重组分子.②间接筛选:有引起载体分子带有一个或多个抗药性标记基因,当外源DNA插入到抗药基因区后,基因失活,抗性消失.如一质粒有A和B两个抗药性基因,当外源基因插入到B基因区后,便只抗A药而不抗B药.因此能在A药培养基上正常生长而不能在B药培养上生长的便是重组分子.③核酸杂交:广泛用于筛选含有特异DNA顺序的克隆.方法是将菌落或噬菌斑“印迹”到硝酸纤维膜等支持物上,变性后固定在原位,然后与标记的核酸探针进行杂交.阳性点的位置就是所需要的克隆.④免疫学方法:如果重组克隆能在宿主菌中表达,就可以用特异的蛋白质抗体为探针,进行原位杂交,选择特异的克隆.2.重要意义与应用:分子克隆技术是70年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门.它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路.在医学方面,利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松驰素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产.还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量.在基因治疗方面.通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞.为治疗半乳糖血症,用带有大肠杆菌乳糖操纵子的λ噬菌体去感染半乳糖血症患者的离体培养细胞,发现这种细胞的半乳糖苷酶达到了正常水平,并确实能代谢半乳糖.在工业生产方面,以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用.许多化学试剂如丙烯酸、己二酸、乙二醇、甲醇、环氧乙烷、乌头酸和水杨酸等都可能利用分子克隆技术得到产品.在环境保护方面,人们根据需要进行基因操作,将某种微生物的基因转入另一微生物,创造一些对有害物质降解能力更强的新菌种,以分解工业污水中的有毒物质.在食品工业方面,细菌可为人类生产有价值的蛋白质、氨基酸和糖等.在农业生产方面,植物遗传工程对提高农作物的产量、培育新的农作物品种提供了可能.有许多外源基因导入植物获得成功.
2023-06-29 00:39:261

分子克隆技术对现代遗传学发展的作用及展望?

分子克隆技术对现代遗传学发展的作用及展望:1、在医学方面利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松弛素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产。还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量。2、在基因治疗方面通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞。为治疗半乳糖血症,用带有大肠杆菌乳糖操纵子的λ噬菌体去感染半乳糖血症患者的离体培养细胞,发现这种细胞的半乳糖苷酶达到了正常水平,并确实能代谢半乳糖。3、在工业生产方面以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用。许多化学试剂如丙烯酸、己二酸、乙二醇、甲醇、环氧乙烷、乌头酸和水杨酸等都可能利用分子克隆技术得到产品。在环境保护方面,人们根据需要进行基因操作,将某种微生物的基因转入另一微生物,创造一些对有害物质降解能力更强的新菌种,以分解工业污水中的有毒物质。在食品工业方面,细菌可为人类生产有价值的蛋白质、氨基酸和糖等。4、在农业生产方面植物遗传工程对提高农作物的产量、培育新的农作物品种提供了可能。有许多外源基因导入植物获得成功。分子克隆技术是70年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门。它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。扩展资料:分子克隆在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增。分子克隆是指分离一个已知DNA序列,并以in vivo(活体内)方式获得许多复制品的过程。这一复制过程经常被用于增加并获取DNA片段中的基因,但也可用来增加某些任意的DNA序列,如启动子、非编码序列、化学合成的寡核苷酸或是随机的DNA片断。参考资料:百度百科-分子克隆
2023-06-29 00:39:321

分子克隆在医学上的应用?

分子克隆在医学上的应用是:在医学方面,利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松弛素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产。还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量。并且通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞。扩展资料:分子克隆技术是70年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门。它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。在工业生产方面以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用。参考资料来源:百度百科—分子克隆
2023-06-29 00:39:492

分子克隆步骤

直接用DNA的分子扩增技术就可以了,就是PCR技术:使DNA分子先解螺旋,然后以得到的单恋为模版进行复制。步骤:  1.DNA变性(90℃-96℃):双链DNA模板在热作用下, 氢键断裂,形成单链DNA  2.退火(25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。  3.延伸(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的5′端→3′端延伸,合成与模板互补的DNA链。  每一循环经过变性、退火和延伸,DNA含量即增加一倍。
2023-06-29 00:40:091

分子克隆中常用的工具酶有哪几种

工具酶:基因工程涉及众多的工具酶可粗略的分为限制酶,连接酶,聚合酶,核酸酶和修饰酶五大类。其中,以限制性核酸内切酶和DNA连接酶在分子克隆中的作用最为突出。1、DNA限制性内切酶生物体内能识别并切割特异的双链DNA序列的一种内切核酸酶。它是可以将外来的DNA切断的酶,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息;2、连接酶它是一种封闭DNA链上缺口酶,借助ATP或NAD水解提供的能量催化DNA链的5"-PO4与另一DNA链的3"-OH生成磷酸二酯键;3、聚合酶系专司生物催化合成脱氧核糖核酸和核糖核酸的一类酶的统称;4、核酸酶核酸酶有DNase、RNase、核酸酶S1等,可水解相应的DNA和RNA,核酸酶S1可降解单链DNA和RNA,用量增大也可降解双链核酸,它可用于切去ds-cDNA合成中产生的发夹环;5、修饰酶体内有些酶可在其他酶的作用下,将酶的结构进行共价修饰,使该酶活性发生改变,这种调节称为共价修饰调节。
2023-06-29 00:40:243

求分子克隆具体实验步骤一份~~多谢各位大侠啦~

分子克隆实验流程第一天一:目的片段的扩增(PCR)PCR反应的基本成分包括:模板DNA(待扩增DNA)、引物、4种脱氧核苷酸(dNTPs)、DNA聚合酶和适宜的缓冲液。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的高温变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的低温退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的适温延伸:DNA模板--引物结合物在。1.PCR(50ul) ddH2O 37.5ul10x buffer 5ulMgCl2(25mmol) 3uldNTP (10mmol) 1ulprimer 1(10mmol) 1ulprimer 2(10mmol) 1ulcDNA 1ulTaq 0.5ulPCR反应条件:94℃ 5min(94℃ 30s . 55℃ 30s . 72℃ 45s)x30 72℃ 5min.4℃保温 或者94℃ 5min (94℃ 30s . 64℃ 30s . 72℃ 45s)x10 (94℃ 30s . 66℃ 30s . 72℃ 45s)x10(94℃ 30s . 68℃ 30s . 72℃ 45s)x10 72℃ 5min.4℃保温注意:当所要扩增的目的片段较大时需要适当的增加延伸时间(一般产物越长,需要的时间越长: 1分钟/1kb)2.琼脂糖凝胶电泳检测:取5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,保存电泳图片。(琼脂糖凝胶的配制:1xTAE缓冲液+琼脂糖 加热至琼脂糖全部溶解然后冷却至60℃以下加入EB混匀倒板。其中琼脂糖含量为1g/100ml,EB含量为0.1ul/ml) 注:琼脂糖凝胶电泳检测如果有杂带侧需要割胶回收目的片段。3.PCR产物纯化:根据PCR产物回收试剂盒上流程回收PCR产物,最后用45ddH2O洗脱-20℃保存或下一步实验.4.PCR产物酶切(50ul) PCR纯化产物 43ul 10xBuffer Tango 5ul E1 1ul E2 1ul 酶切反应条件:37℃反应过夜或者37℃反应3-4h。. PCR产物酶切纯化:根据PCR产物回收试剂盒上流程回收PCR产物,最后用25-30ddH2O洗脱-20℃保存或下一步实验.琼脂糖凝胶电泳检测:取2-5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,保存电泳图片。以确保回收到目的片段。二.载体的制备 1.质粒DNA的制备:用柱式质粒DNA小量试剂盒抽提我们所要的载体质粒。 2.载体酶切(100ul) 质粒DNA 2ug 10xBuffer Tango 10ul E1 2ul E2 2ul ddH2O 补足至100ul 反应条件:一般pGEX-4T 37℃水浴3-4h,pET系列37℃水浴过夜。 3. 琼脂糖凝胶电泳检测:取5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,同时取200ng左右没有酶切的质粒做对照,保存电泳图片。(琼脂糖凝胶的配制:1xTAE缓冲液+琼脂糖 加热至琼脂糖全部溶解然后冷却至60℃以下加入EB混匀倒板。其中琼脂糖含量为1g/100ml,EB含量为0.1ul/ml) 4.酶切产物纯化:根据PCR产物回收试剂盒上流程回收酶切产物,最后用20-30ul ddH2O洗脱-20℃保存或下一步实验.第二天三.外源DNA片段在质粒载体中的克隆 1.外源DNA片段与质粒载体的连接(10ul) DNA片段 6ul 载体 2ul T4 DNA Ligase 1ul Buf T4 DNA Ligase 1ul 反应条件:22℃水浴3-4h或者16℃或4℃水浴过夜。 一般目的片段:载体摩尔比约为3:1,但是在这里我们通常是按体积比。 2.连接产物转化 取全部连接产物加入到不少于5-7倍体积感受态细胞溶液中,冰浴20min,42℃热激90s后静置与冰浴中3-5min加入500-800ul(一般800)LB或SOB培养基,37℃ 200rmp恒温培养0.5-1h。4000rmp离心1min弃上清同时保留100-200ul混匀菌体沉淀后均匀涂布抗性平板上。37℃恒温箱培养过夜。 质粒转化取质粒1ul或50-100ng加入50-70ul所需的感受态细胞溶液中,冰浴20min,42℃热激90s后静置与冰浴中3-5min加入500-800ul(一般800)LB或SOB培养基,37℃ 200rmp恒温培养0.5-1h。取100-200ul菌体均匀涂布抗性平板上。37℃恒温箱培养过夜。 注:1一定要区分质粒和连接产物转化的不同,不要理所当然。 2根据实验要求选择所需要的感受态。 3在选择抗性平板的时候要根据所选载体和感受态两个方面确定。第三天 收集涂布的抗性平板检查菌落生长情况4℃保存待下一步实验;筛选鉴定或酶切鉴定 筛选鉴定 菌落 PCR(25ul) ddH2O 19.2ul10x buffer 2.5ulMgCl2(25mmol) 1.5uldNTP (10mmol) 0.5ulprimer 1(10mmol) 0.5ulprimer 2(10mmol) 0.5ulTaq 0.3ul模板为单菌落PCR反应条件:94℃ 5min(94℃ 30s . 55℃ 30s . 72℃ 45s)x30 72℃ 5min.4℃保温 或者94℃ 5min (94℃ 30s . 64℃ 30s . 72℃ 45s)x10 (94℃ 30s . 66℃ 30s . 72℃ 45s)x10(94℃ 30s . 68℃ 30s . 72℃ 45s)x10 72℃ 5min.4℃保温注:1一般一个项目要挑选5个单菌落做菌落PCR 2在以菌落为模板时要事先准备相应抗性平板,用枪头挑选菌落时要先在事先准备的相应平板上划线标记好顺序再将枪头放入上述反应体系中搅匀一下。3该PCR 的primer 为通用primer 所以在原来目的片段的大小上加上100-200bp。琼脂糖凝胶电泳检测:取5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,保存电泳图片。根据大小判断该菌落是否正确。下班前挑取(在划线的板子上)筛选正确的菌体接种到5ml 含相应抗性的LB培养基37℃ 200rmp培养过夜。
2023-06-29 00:40:452

分子克隆使用最多的DNA连接酶是哪种?需要什么提供能量

分子克隆使用最多的DNA连接酶和需要供的能量如下:1、DNA限制性内切酶,是生物体内能识别并切割特异的双链DNA序列的一种内切核酸酶。它是可以将外来的DNA切断的酶,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息;2、连接酶,它是一种封闭DNA链上缺口酶,借助ATP或NAD水解提供的能量催化DNA链的5"-PO4与另一DNA链的3"-OH生成磷酸二酯键;3、聚合酶,系专司生物催化合成脱氧核糖核酸和核糖核酸的一类酶的统称。
2023-06-29 00:40:531

简述DNA重组与分子克隆化基本原理与过程

(一)外源DNA和质粒载体的连接反应  外源DNA片段和线状质粒载体的连接,也就是在双链DNA5"磷酸和相邻的3"羟基之间形成的新的共价链。如质粒载体的两条链都带5"磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口(图1.8),当杂本导入感受态细胞后可被修复。相邻的5"磷酸和3"羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下述反应条件下,它就能有效地将平端DNA片段连接起来。  DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化载体DNA。在加作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这样,在DNA浓度低时,质粒DNA重新环化将卓有成效。如果连接反应中DNA浓度有所增高,则在分子内连接反应发生以前,某一个DNA分子的末端碰到另一DNA分子末端的可能性也有所增大。因此在DNA浓度高时,连接反的初产物将是质粒二聚体和更大一些的寡聚体。Dugaiczyk等(1975;同时参见Bethesda Res,Lab.出版的Focus第2卷,第2、3期合刊)从理论上探讨了DNA浓度对连接产物性质的影响。简而言之,环化的连接产物与多联体连接产物的比取决于两个参数:j和i。j是DNA分子的一个末端在同一分子的另一末端附近的有效浓度,j的数值是根据如下一种假设作出的:沉吟液中的DNA呈随机卷曲。这样,j与DNA分子的长度成反比(因为DNA越长,某一给定分子的两末端的越不可能相互作用),因此j对给定长度的DNA分子来说是一个常数,与DNA深度无关。j=[3/(3πlb0)]3/2其中l是DNA长度,以cm计,b是随机卷曲的DNA区段的长度。b的值以缓冲液的离子强度为转移,而后者可影响DNA的刚度。  i是溶液中所有互补末端的深度的测量值,对于具有自身互补粘端的双链dna而言,i=2NoMx10-3末端/ml这里No是阿佛伽德罗常数,M是DNA的摩尔浓度(单位:mol/L)。理论上,当j=i时,给定DNA分子的一个末端与同一分子的另一末端,以及与不同分子的末端相接触的可能性相等。因而在这样的条件下,在反应的初始阶段中,环状分子与多联体分子的生成速率相等。而当j>i时,有利于重新环化;当i>j,则有利于产生多联体。图1.9显示了DNA区段的大小与连接反应混合物中j:i之比分别为0.5、1、2和5时所需DNA浓度之间关系(Dugaiczyk等,1985)。现在考虑如下的连接反应混合物:其中除线状质粒之外,还含有带匹配末端的外源DNA片段。对于一个给定的连接混合物而言,产生单体环状重组基因组的效率不仅受反应中末端的绝对浓度影响,而且还受质粒和外源DNA末端的相对浓度的影响。当i是j的2-3倍(即末端的绝对浓度足以满足分子间连接的要求,而又不致引起大量寡聚体分子的形成时)外源DNA末端浓度的2倍时,有效重组体的产量可达到最大。这些条什下,连接反应终产物的大约40%都是由单体质粒与外源DNA所形成的嵌合体。当连接混合物中线性质粒的量恒定(j:i=3)而带匹配末端的外源DNA的量递增时,这种嵌合体在连接反应之末的理论产量。  涉及带粘端的线状磷酸化质粒DNA的连接反应应包含:  1)足量的载体DNA,以满足j:i>1和j:i<3。对一个职pUC18一般大小的质粒,这意味着连接反应中应含有载体DNA为20-60μg/ml。  2)末端浓度等于或稍高于载体DNA的外源DNA,如外源DNA浓度比载体低得多,在效连接产物的数量会很低,这样就很难别小部分带重组抽粒的转化菌落。这种情况下,可考虑采用一些步骤来减少带非重组质粒的背景菌落。如用磷酸酶处理线状质粒DNA或发迹克隆策略以便通过定向克隆的方法构建重组质粒。   (二)粘端连接   1)用适当的限制酶消化质粒和外源DNA。如有必要,可用凝胶电泳分离片段并(或)用碱性磷酸酶处理质粒DNA。通过酚:氯仿抽提和乙沉淀来纯化DNA,然后用TE(pH7.6)溶液使其浓度为100/ml。  2)按如下所述设立连接反应混合物:  a.将0.1μl载体DNA转移到无菌微量离心管中,加等摩尔量的外源DNA。  b.加水至7.5μl,于45℃加温5分钟以使重新退炎的粘端解链,将混合物冷却到0℃。  c.加入:10xT4噬菌体DNA连接酶缓冲液 1μl  T4噬菌体NDA连接酶 0.1Weiss单位  5mmol/L ATP 1μl  于16℃温育1-4小时  10xT4噬菌体DNA连接酶缓冲液  200mmol/L同Tris.Cl(pH7.6)  50mmol/K MgCl2  50mmol/L二硫苏糖醇  500μg/ml牛血清白蛋白(组分V.Sigma产品)(可用可不用)  该缓训液应分装成小份,贮存于-20℃。  另外,再设立两个对照反应,其中含有(1)只有质粒载体;(2)只有外源DNA片段。如果外源DNA量不足,每个连接反应可用50-100ng质粒DNA,并尽可能多加外源DNA,同时保持连接反应体积不超过10μl。可用至少3种不同方法来测定T4噬菌体DNA连接酶的活性。大多数制造厂商(除New England Biolabs公司外)现在都用Weiss等,11968)对该酶进行标化。1个Weiss单位是指在37℃下20分钏内催化1mmol32P从焦磷酸根置换到[γ,β-32P]ATP所需酶时,1个Weiss单位相当于0.2个用外切核酸酶耐受试验来定义的单位(Modrich和Lehman,1970)或者60个粘端单位(如New England Biolabs公司所定义)。因此,0.015Weiss单位的T4噬菌体DNA连接酶在16℃下30分钟内可使50%的λ噬菌体HindⅢ片段(5μg)得以连接。在本书中,T4噬菌体DNA连接酶一律用Weiss单位表示。par 目前提供的T4噬菌体DNA连接酶均为浓溶液(1-5单位/μl),可用20mmol/L Tris.Cl(pH7.6)、60mmol/L KCl、5mmol/L二硫苏糖醇、500μg/ml牛血清白蛋白、50%甘稀释成100单位/ml的浓度置存。处于这种浓度并在这种缓冲液中的T4噬体DNA连接酶于-20℃保存3个月可保持稳定。  3)每个样品各取1-2μl转化大肠杆菌感受态细胞。   (三)平端DNA连接  T4噬菌体DNA连接酶不同于大肠杆菌DNA连接酶,它可以催化平端DNA片段的连接(Sgaramella和Khorana,1972;Sgaramella和Ehrlich,1978),由于DNA很容易成为平端,所以这是一个极为有用的酶学物性。有了这样的物性,才能使任何DNA分子彼此相连。然而,相对而言,平端连接是低效反应,它要求以下4个条件:  1)低浓度(0.5mmol/L)的ATP(Ferretti和Sgaranekka,1981)。  2)不存在亚精胺一类的多胺。  3)极高浓度的连接酶(50Weiss单位.ml)。  4)高浓度的平端。  1.凝聚剂  在反应混合物中加入一些可促进大分子群聚作用并可导致DNA分子凝聚成集体的物质,如聚乙二醇(Pheiffer和Zimmerman,1983;Zimmerman和Pheiffer,1983;ZimmermanT Harrison,1985)或氯化六氨全高钴(Rusche和Howard-Flanders,1985),可以使如何取得适当浓度的平端DNA的总是迎刃而解。在连接反应中,这些物质具有两作用:  1)它们可使平端DNA的连接速率加大1-3个数量级,因此可使连接反应在酶DNA浓度不高的条件下进行。  2)它们可以改变连接产物的分布,分子内连接受到抑制,所形成的连接产物一律是分子间连接的产物。这样,即使在有利于自身环化(j:i=10)的DNA浓度下,所有的DNA产物也将是线状多聚体。par 在设立含凝聚剂的连接反应时,下列资料可供参考。  (1)聚乙二醇(PEG8000)  1)用去离子水配制的PEG8000贮存液(40%)分装成小份,冰冻保存,但加入连接反应混合物之前应将其融化并使其达到室温。在含15%PEG 8000的连接反应混合物中,对连接反刺激效应最为显著。除PEG 800和T4噬菌体DNA连接酶以外,其他所有连接混合物的组分应于0℃混合,然后加适当体积的PEG 8000(处于室温),混匀,加酶后于20℃进行温育。  2)连接混合物中含0.5mmol/L ATP和5mmol/L MgCl2时对连接反应的刺激效应最为显著,甚至ATP浓度略有增加或MgCl2浓度略有降低,都会严重降低刺激的强度(Pheiffer和Zimmerman,1983)。  3)浓度为15%的PEG 8000可刺激带粘端的DNA分子的连接效率提高至原来的10-100倍,反应的主产物是串联的多联体。  4)PEG 8000可刺激短至8个核苷酸的合成寡聚物的平端连接,在这一方面,它与氯化六氨合高钴有所不同。  (2)氯化六氨合高钴  1)氯化六氨合高钴可用水配成10mmol/L贮存液贮存于-20℃,它对连接反应的刺激具有高度的浓度信赖性。当连接反应混合物中盐深度为1.0-1.5μmol/L时,其刺激作用最大。氯化六氨合高钴可使平端连接的效率大约提高到原来的50W部,但只能使端连接的效率提高到原来的5倍(Rusche和Howard-Flanders,1985)。  2)在单价阳离子(30mmol/L KCl)存在下,它对平端连接仍有一定的刺激作用,但此时连接产物的分布有所改变。连接产物不再是清一色的分子间连接产物,相反,环状DNA将点尽优势。  3)与PEG 8000不同,氯化六氨合高钴不能显著提高合成寡核苷酸的连接速率。  (四)质粒载体中的快速克隆  质粒克隆中最慢的步骤是所需的外源DNA片段和相应质粒DNA区段的电泳纯化,下面的操作方案[由S.Michaelis(个人通讯)根据Struhl(1985)的方法修订而成]是从纯化的凝胶中回收琼脂糖块,熔化后直接进行质粒和外源DNA的连接。这一方法寻平端连接和粘端连接都同样奏效,但需大量的连接酶,而且效率要比标准操作方案约低一个数量级。  1)用适当的限制酶消化外源DNA,其量应足以产生约0.2μg的靶片段。反应体积应为20μl或更小。在另一管中,用相应的限制酶消化约0.5μg载体DNA,总反应体积为20μl或更小。如载体DNA带相同的端,应用磷酸处理如下:用限制酶消化完全后,加2.5μl 100mmol/L Tris.Cl(pH8.3)、10mmol/L ZnCl2,加0.25单位牛小肠碱性磷酸酶,于37℃温育30分钟。  2)通过琼脂糖凝胶电泳分离目标片段。务必用低熔点琼脂糖灌制凝胶,务必用含溴化乙锭(0.5μg/ml)的1xTAE作为电泳缓冲液而不是常规的0.5xTBE来配制凝胶并进行电泳。  3)在长波长紫外照射下检查凝胶,根据目标条带的相对荧光强度估计所含DNA的量(见附录E)。用刀片切出目标条带,尽可能少琼脂糖的体积(通常40-50μl)。将切下凝胶片分别放入作好标记的各个微量离心管中。  4)于70℃加热10-15分钏,使琼脂糖熔化。  5)合并熔化的小份凝胶并放到加温至37℃的中一管中,共终体积应不超过10μl,外源DNA与质粒载体的摩尔比应接近2:1。  用另外两个管设立两个对照连反应,一个只含质粒载体,另一个只含外源DNA片段。  6)将3个管于37℃温育5-10分钟,然后每管加10μl用冰预次的2xT4噬体DNA连接酶混合物,在琼脂糖凝固前,充他混匀各管内容物,于16℃温育12-16小时。  2xT4噬菌体DNA连接酶混合物可制备如下:  1mol/L Tris.Cl(pH7.6) 1.0μl  100mmol/L氯化镁 1.0μl  200mmol/L三硫苏糖醇 1.0μl  10mmol/L ATP 1.0μl  水 5.5μl  T4噬菌体DNA连接酶 1Weiss单位  混匀后放置于冰浴上。  7)连接反应行将结束时,取出贮存于-70的3管各200μl的冻存大肠杆菌感受态细胞  8)于70℃中热10-15分钟重新溶化连接混合物中的琼脂糖。  9)立即从每管连接混全物中取出5μl加到200μl大肠杆菌感受态细胞中,小心摇晃,快速地混匀内容物。从剩下每管连接混合物中分别再取5μl重复以上步骤,将转化混合物在冰浴上放置30分钟。  10)完成转化方案的其余各步 分子克隆化是在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增。克隆(clone,clon)一词源于希腊文Klon,原意为树木的枝条。在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖(细胞)系;其动词(clone,cloned,cloning)含义指在生物体外用重组技术将特定基因插入载体分子中,即分子克隆技术。将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类。cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入寄主细胞。每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布。特点是:①有些生物,如RNA病毒没有DNA,只能用cDNA克隆;②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息;③cDNA能在细菌中表达。cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。分子克隆化-方法 (1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA。(2)载体DNA的选择:①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松驰型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆。②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA库。M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交。③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb的外源DNA片段。也能象一般质粒一样携带小片段DNA,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。(3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端。平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。连接反应需注意载体DNA与DNA片段的比率。以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。(4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难。②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高。(5)克隆的选择:①直接筛选:有些载体带有可辨认的遗传标记,能有效地将重组分子与本底区分。例如:有些λ噬菌体携带外源基因后形成的噬菌斑就会从原来的混浊变为清亮;还有些载体分子携带外源基因后,形成的菌落或噬菌斑的颜色有明显变化,如蓝色变为无色;有些λ噬菌体能侵染甲菌而不能侵染乙菌,携带外源DNA片段后便能侵染乙菌,因此乙菌释放的噬菌体均为重组分子。②间接筛选:有引起载体分子带有一个或多个抗药性标记基因,当外源DNA插入到抗药基因区后,基因失活,抗性消失。如一质粒有A和B两个抗药性基因,当外源基因插入到B基因区后,便只抗A药而不抗B药。因此能在A药培养基上正常生长而不能在B药培养上生长的便是重组分子。③核酸杂交:广泛用于筛选含有特异DNA顺序的克隆。方法是将菌落或噬菌斑“印迹”到硝酸纤维膜等支持物上,变性后固定在原位,然后与标记的核酸探针进行杂交。阳性点的位置就是所需要的克隆。④免疫学方法:如果重组克隆能在宿主菌中表达,就可以用特异的蛋白质抗体为探针,进行原位杂交,选择特异的克隆。分子克隆化-重要意义 分子克隆技术是70年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门。它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。在医学方面,利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松驰素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产。还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量。在基因治疗方面。通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞。为治疗半乳糖血症,用带有大肠杆菌乳糖操纵子的λ噬菌体去感染半乳糖血症患者的离体培养细胞,发现这种细胞的半乳糖苷酶达到了正常水平,并确实能代谢半乳糖。在工业生产方面,以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用。许多化学试剂如丙烯酸、己二酸、乙二醇、甲醇、环氧乙烷、乌头酸和水杨酸等都可能利用分子克隆技术得到产品。在环境保护方面,人们根据需要进行基因操作,将某种微生物的基因转入另一微生物,创造一些对有害物质降解能力更强的新菌种,以分解工业污水中的有毒物质。在食品工业方面,细菌可为人类生产有价值的蛋白质、氨基酸和糖等。在农业生产方面,植物遗传工程对提高农作物的产量、培育新的农作物品种提供了可能。有许多外源基因导入植物获得成功。
2023-06-29 00:41:011

分子克隆的载体应具备哪些条件

必备: 1.复制起始位点:可在工具细胞内进行复制 2.多克隆位点:可插入外源基因 可选: 3.筛选基因:如抗性或显色基因,可用于转化菌种的筛选 《基因工程》上的说法是: 1.自主复制性 2.可扩增性 3.可转移性 4.不相容性
2023-06-29 00:41:091

什么是克隆

什么叫克隆? 克隆(clone)是指通过无性生殖而产生的遗传上均一的生物群,即具有完全相同的遗传组成的一群细胞或者生物的个体。克隆在希腊语中是“小树枝叶”的意思,用以指无性增殖物。现在则指个体、细胞、基因等不同水平上的无性增殖物。(1)个体水平:在植物的无性增殖中,植物的发芽、插条等由同一个体通过无性生殖而增长的个体群均被视为克隆。采用组织培养方法可使植物细胞培养发育成完全的个体(愈伤组织),采用这种方法得到的具有相同基因型的个体群,也被称为克隆;在动物的无性增殖中,典型的例子是采用核移植实验方法,把分化细胞的核移植到一个事先去核的蛙卵中,让其发育并得到克隆蛙。克隆动物具有均一遗传性质,在研究环境条件对发育、分化的影响以及药物的检测方面都是重要的实验材料。在哺乳动物中,由于细胞分化,核异质化的程度加剧,因此核移植尚无成功的例子。(2)细胞水平:由一个细胞经过有丝分裂生成的细胞群叫克隆。但如果培养细胞发生转化,则很容易引起染色体变异。(3)基因水平:利用基因重组操作技术,使特定的基因与载体结合,在细菌等宿主中进行增殖,有可能得到均匀的基因群。克隆基因在基因功能与精细结构的关系等基础研究及在有用物质的生产方面,均已得到应用。 在上述3种水平上,增殖并分离获得单一的克隆群称为克隆化。此时,克隆一词也可作为动词理解。克隆是重组DNA技术的核心部分。事实上,克隆技术现已被人们用来通过营养方式繁殖病毒等微生物和植物的纯种,从而保证了这些生物基因组的准确连续性。现在,克隆这个词还包括单个自主遗传因子的分离与保存。细胞生物的克隆只需要营养培养基,而基因的克隆则需要某种载体复制子、特定的寄主细胞和营养培养基。各种类型生物的克隆技术在生物工程中均有其重要作用。 “克隆”是从英文“clone”音译而来,在生物学领域有3个不同层次的含义。 1.在分子水平,克隆一般指DNA克隆(也叫分子克隆)。含义是将某一特定DNA片断通过重组DNA技术插入到一个载体(如质粒和病毒等)中,然后在宿主细胞中进行自我复制所得到的大量完全相同的该DNA片断的“群体”。 2.在细胞水平,克隆实质由一个单一的共同祖先细胞分裂所形成的一个细胞群体。其中每个细胞的基因都相同。比如,使一个细胞在体外的培养液中分裂若干代所形成的一个遗传背景完全相同的细胞集体即为一个细胞克隆。又如,在脊椎动物体内,当有外源物(如细菌或病毒)侵入时,会通过免疫反应产生特异的识别抗体。产生某一特定抗体的所有浆细胞都是由一个B细胞分裂而成,这样的一个浆细胞群体也是一个细胞克隆。细胞克隆是一种低级的生殖方式-无性繁殖,即不经过两性结合,子代和亲代具有相同的遗传性。生物进化的层次越低,越有可能采取这种繁殖方式。 3.在个体水平,克隆是指基因型完全相同的两个或更多的个体组成的一个群体。比如,两个同卵双胞胎即为一个克隆!因为他(她)们来自同一个卵细胞,所以遗传背景完全一样。按此定义,“多利”并不能说成是一个克隆!因为“多利”只是孤单的一个。只有当那些英国胚胎学家能将两个以上完全相同的细胞核移植到两个以上完全相同的去核卵细胞中,得到两个以上遗传背景完全相同的“多利”时才能用克隆这个词来描述。所以在那篇发表于1997年2月出版在《Nature》杂志上的轰动性论文中,作者并没有把“多利”说成是一个克隆。 另外,克隆也可以做动词用,意思是指获得以上所言DNA、细胞或个体群体的过程。 二、克隆技术 1.DNA克隆 现在进行DNA克隆的方法多种多样,其基本过程如下图所示(未按比例) 可见,这样得到的DNA可以应用于生物学研究的很多方面,包括对特异DNA的碱基顺序的分析和处理,以及生物技术工业中有价值蛋白质的大量生产等等。 2.生物个体的克隆 (1)植物个体的克隆 在20世纪50年代,植物学家用胡萝卜为模型材料,研究了分化的植物细胞中遗传物质是否丢失问题,他们惊奇地发现,从一个单一已经高度分化的胡萝卜细胞 可以发育形成一棵完整的植株!由此,他们认为植物细胞具有全能性。从一棵胡萝卜中的两个以上的体细胞发育而成的胡萝卜群体的遗传背景完全一样,故为一个克隆。如此的植物的克隆过程是一个完全的无性繁殖过程! (2)动物个体的克隆 ① “多利”的诞生 1997年2月27日英国爱丁堡罗斯林(Roslin)研究所的伊恩·维尔莫特科学研究小组向世界宣布,世界上第一头克隆绵羊“多利”(Dolly)诞生,这一消息立刻轰动了全世界。 “多莉”的产生与三只母羊有关。一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境——子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下: 从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;给一头苏格兰黑面母绵羊注射促性腺素,促使它排卵,取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。 一年以后,另一组科学家报道了将小鼠卵丘细胞(围绕在卵母细胞外周的高度分化细胞)的细胞核移植到去除了细胞核的卵母细胞中得到20多只发育完全的小鼠。如呆“多利”因为只有一只,还不够叫做克隆羊的话,这些小鼠 就是名副其实的克隆鼠了。 ② 通过细胞核移植克隆小鼠的基本过程 在本实验中,卵丘细胞是经如下过程得到的:通过连续几次注射绒毛膜促性腺激素,使雌鼠诱导成高产卵量状态。然后从雌鼠输卵管中收集卵丘细胞与卵母细胞的复合体。经透明质酸处理使卵丘细胞散开。选择直径为10-12微米的卵丘细胞用作细胞核供体(前期实验表明,若用直径更小或更大的卵丘细胞的细胞核,经过细胞核移植的卵母细胞很少发育到8细胞期)。所选择的卵丘细胞保持在一定的溶液环境中,在3小时内进行细胞核移植(与此不同的是,在获得“多利”时用作细胞核供体的乳腺细胞先在培养液中传代了3-6次) 卵母细胞(一般处于减数分裂中期 II )通过与上面描述类似的方法,从不同种的雌鼠中收集。在显微镜下小心地用直径大约7微米的细管取出卵母细胞的细胞核,尽量不取出细胞质。同样小心取出卵丘细胞的细胞核,也尽量去除所带的细胞质(通过使取出的细胞核在玻璃管中往复运动数次,以去除所带的少量的细胞质)。在细胞核被取出后5分钟之内,直接注射到已经去除了细胞核的卵母细胞中。进行了细胞核移植的卵母细胞先放在一种特制的溶液中1-6小时,然后加入二价的锶离子(Sr2+)和细胞分裂抑素B。前者使卵母细胞激活,后者抑制极体的形成和染色体的排除。再取出处理过的卵母细胞,放在没有锶和细胞分裂抑素B的特制的溶液中使细胞分裂形成胚胎。 不同阶段的胚胎(从2细胞期到胚泡期)被分别植入几天前与已经结扎雄鼠交配过的假孕母鼠的输卵管或子宫中发育。发育完全的胎儿鼠在大约19天后通过手术取出。 目前胚胎细胞核移植克隆的动物有小鼠、兔、山羊、绵羊、猪、牛和猴子等。在中国,除猴子以外,其他克隆动物都有,也能连续核移植克隆山羊,该技术比胚胎分割技术更进一步,将克隆出更多的动物。因胚胎分割次数越多,每份细胞越少,发育成的个体的能力越差。体细胞核移植克隆的动物只有一个,就是“多利”羊。 三、克隆技术的福音 1. 克隆技术与遗传育种 在农业方面,人们利用“克隆”技术培育出大量具有抗旱、抗倒伏、抗病虫害的优质高产品种,大大提高了粮食产量。在这方面我国已迈入世界最先进的前列。 2. 克隆技术与濒危生物保护 克隆技术对保护物种特别是珍稀、濒危物种来讲是一个福音,具有很大的应用前景。从生物学的角度看,这也是克隆技术最有价值的地方之一。 3. 克隆技术与医学 在当代,医生几乎能在所有人类器官和组织上施行移植手术。但就科学技术而言,器官移植中的排斥反应仍是最为头痛的事。排斥反应的原因是组织不配型导致相容性差。如果把“克隆人”的器官提供给“原版人”,作器官移植之用,则绝对没有排斥反应之虑,因为二者基因相配,组织也相配。问题是,利用“克隆人”作为器官供体合不合乎人道?是否合法?经济是否合算? 克隆技术还可用来大量繁殖有价值的基因,例如,在医学方面,人们正是通过“克隆”技术生产出治疗糖尿病的胰岛素、使侏儒症患者重新长高的生长激素和能抗多种病毒感染的干挠素,等等。 参考资料:zhidao
2023-06-29 00:41:291

分子克隆的原始菌液在哪里保存?

(1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA。(2)载体DNA的选择:①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松弛型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆。②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA库。M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交。③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb的外源DNA片段。也能象一般质粒一样携带小片段DNA,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。(3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端。平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。连接反应需注意载体DNA与DNA片段的比率。以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。(4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难。②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高。(5)克隆的选择:①直接筛选:有些载体带有可辨认的遗传标记,能有效地将重组分子与本底区分。例如:有些λ噬菌体携带外源基因后形成的噬菌斑就会从原来的混浊变为清亮;还有些载体分子携带外源基因后,形成的菌落或噬菌斑的颜色有明显变化,如蓝色变为无色;有些λ噬菌体能侵染甲菌而不能侵染乙菌,携带外源DNA片段后便能侵染乙菌,因此乙菌释放的噬菌体均为重组分子。②间接筛选:有引起载体分子带有一个或多个抗药性标记基因,当外源DNA插入到抗药基因区后,基因失活,抗性消失。如一质粒有A和B两个抗药性基因,当外源基因插入到B基因区后,便只抗A药而不抗B药。因此能在A药培养基上正常生长而不能在B药培养上生长的便是重组分子。③核酸杂交:广泛用于筛选含有特异DNA顺序的克隆。方法是将菌落或噬菌斑“印迹”到硝酸纤维膜等支持物上,变性后固定在原位,然后与标记的核酸探针进行杂交。阳性点的位置就是所需要的克隆。④免疫学方法:如果重组克隆能在宿主菌中表达,就可以用特异的蛋白质抗体为探针,进行原位杂交,选择特异的克隆。
2023-06-29 00:41:361

什么是基因。什么是克隆

什么是基因? 含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。除某些病毒的基因由核糖核酸(RNA)构成以外,多数生物的基因由脱氧核糖核酸(DNA)构成,并在染色体上作线状排列。基因一词通常指染色体基因。在真核生物中,由于染色体都在细胞核内,所以又称为核基因。位于线粒体和叶绿体等细胞器中的基因则称为染色体外基因、核外基因或细胞质基因,也可以分别称为线粒体基因、质粒和叶绿体基因。 在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。原核生物的基因组是一个单纯的DNA或RNA分子,因此又称为基因带,通常也称为它的染色体。 基因在染色体上的位置称为座位,每个基因都有自己特定的座位。凡是在同源染色体上占据相同座位的基因都称为等位基因。在自然群体中往往有一种占多数的(因此常被视为正常的)等位基因,称为野生型基因;同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,称它们为突变型基因。在二倍体的细胞或个体内有两个同源染色体,所以每一个座位上有两个等位基因。如果这两个等位基因是相同的,那么就这个基因座位来讲,这种细胞或个体称为纯合体;如果这两个等位基因是不同的,就称为杂合体。在杂合体中,两个不同的等位基因往往只表现一个基因的性状,这个基因称为显性基因,另一个基因则称为隐性基因。在二倍体的生物群体中等位基因往往不止两个,两个以上的等位基因称为复等位基因。不过有一部分早期认为是属于复等位基因的基因,实际上并不是真正的等位,而是在功能上密切相关、在位置上又邻接的几个基因,所以把它们另称为拟等位基因。某些表型效应差异极少的复等位基因的存在很容易被忽视,通过特殊的遗传学分析可以分辨出存在于野生群体中的几个等位基因。这种从性状上难以区分的复等位基因称为同等位基因。许多编码同工酶的基因也是同等位基因。 属于同一染色体的基因构成一个连锁群(见连锁和交换)。基因在染色体上的位置一般并不反映它们在生理功能上的性质和关系,但它们的位置和排列也不完全是随机的。在细菌中编码同一生物合成途径中有关酶的一系列基因常排列在一起,构成一个操纵子(见基因调控);在人、果蝇和小鼠等不同的生物中,也常发现在作用上有关的几个基因排列在一起,构成一个基因复合体或基因簇或者称为一个拟等位基因系列或复合基因。 功能、类别和数目 到目前为止在果蝇中已经发现的基因不下于1000个, 在大肠杆菌中已经定位的基因大约也有1000个,由基因决定的性状虽然千差万别,但是许多基因的原初功能却基本相同。 功能 1945年G.W.比德尔通过对脉孢菌的研究,提出了一个基因一种酶假设,认为基因的原初功能都是决定蛋白质的一级结构(即编码组成肽链的氨基酸序列)。这一假设在50年代得到充分的验证。 类别 60年代初F.雅各布和J.莫诺发现了调节基因。把基因区分为结构基因和调节基因是着眼于这些基因所编码的蛋白质的作用:凡是编码酶蛋白、血红蛋白、胶原蛋白或晶体蛋白等蛋白质的基因都称为结构基因;凡是编码阻遏或激活结构基因转录的蛋白质的基因都称为调节基因。但是从基因的原初功能这一角度来看,它们都是编码蛋白质。根据原初功能(即基因的产物)基因可分为:①编码蛋白质的基因。包括编码酶和结构蛋白的结构基因以及编码作用于结构基因的阻遏蛋白或激活蛋白的调节基因。②没有翻译产物的基因。转录成为RNA以后不再翻译成为蛋白质的转移核糖核酸(tRNA)基因和核糖体核酸(rRNA)基因:③不转录的DNA区段。如启动区、操纵基因等等。前者是转录时RNA多聚酶开始和DNA结合的部位;后者是阻遏蛋白或激活蛋白和DNA结合的部位。已经发现在果蝇中有影响发育过程的各种时空关系的突变型,控制时空关系的基因有时序基因 、格局基因 、选择基因等(见发生遗传学)。 一个生物体内的各个基因的作用时间常不相同,有一部分基因在复制前转录,称为早期基因;有一部分基因在复制后转录,称为晚期基因。一个基因发生突变而使几种看来没有关系的性状同时改变,这个基因就称为多效基因。 数目 不同生物的基因数目有很大差异,已经确知RNA噬菌体MS2只有3个基因,而哺乳动物的每一细胞中至少有100万个基因。但其中极大部分为重复序列,而非重复的序列中,编码肽链的基因估计不超过10万个。除了单纯的重复基因外,还有一些结构和功能都相似的为数众多的基因,它们往往紧密连锁,构成所谓基因复合体或叫做基因家族。 克隆”是从英文“clone”音译而来,在生物学领域有3个不同层次的含义。 1.在分子水平,克隆一般指DNA克隆(也叫分子克隆)。含义是将某一特定DNA片断通过重组DNA技术插入到一个载体(如质粒和病毒等)中,然后在宿主细胞中进行自我复制所得到的大量完全相同的该DNA片断的“群体”。 2.在细胞水平,克隆实质由一个单一的共同祖先细胞分裂所形成的一个细胞群体。其中每个细胞的基因都相同。比如,使一个细胞在体外的培养液中分裂若干代所形成的一个遗传背景完全相同的细胞集体即为一个细胞克隆。又如,在脊椎动物体内,当有外源物(如细菌或病毒)侵入时,会通过免疫反应产生特异的识别抗体。产生某一特定抗体的所有浆细胞都是由一个B细胞分裂而成,这样的一个浆细胞群体也是一个细胞克隆。细胞克隆是一种低级的生殖方式-无性繁殖,即不经过两性结合,子代和亲代具有相同的遗传性。生物进化的层次越低,越有可能采取这种繁殖方式。 3.在个体水平,克隆是指基因型完全相同的两个或更多的个体组成的一个群体。比如,两个同卵双胞胎即为一个克隆!因为他(她)们来自同一个卵细胞,所以遗传背景完全一样。按此定义,“多利”并不能说成是一个克隆!因为“多利”只是孤单的一个。只有当那些英国胚胎学家能将两个以上完全相同的细胞核移植到两个以上完全相同的去核卵细胞中,得到两个以上遗传背景完全相同的“多利”时才能用克隆这个词来描述。所以在那篇发表于1997年2月出版在《Nature》杂志上的轰动性论文中,作者并没有把“多利”说成是一个克隆。 另外,克隆也可以做动词用,意思是指获得以上所言DNA、细胞或个体群体的过程。 二、克隆技术 1.DNA克隆 现在进行DNA克隆的方法多种多样,其基本过程如下图所示(未按比例) 可见,这样得到的DNA可以应用于生物学研究的很多方面,包括对特异DNA的碱基顺序的分析和处理,以及生物技术工业中有价值蛋白质的大量生产等等。 2.生物个体的克隆 (1)植物个体的克隆 在20世纪50年代,植物学家用胡萝卜为模型材料,研究了分化的植物细胞中遗传物质是否丢失问题,他们惊奇地发现,从一个单一已经高度分化的胡萝卜细胞 可以发育形成一棵完整的植株!由此,他们认为植物细胞具有全能性。从一棵胡萝卜中的两个以上的体细胞发育而成的胡萝卜群体的遗传背景完全一样,故为一个克隆。如此的植物的克隆过程是一个完全的无性繁殖过程! (2)动物个体的克隆 ① “多利”的诞生 1997年2月27日英国爱丁堡罗斯林(Roslin)研究所的伊恩·维尔莫特科学研究小组向世界宣布,世界上第一头克隆绵羊“多利”(Dolly)诞生,这一消息立刻轰动了全世界。 “多莉”的产生与三只母羊有关。一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境――子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下: 从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;给一头苏格兰黑面母绵羊注射促性腺素,促使它排卵,取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。 一年以后,另一组科学家报道了将小鼠卵丘细胞(围绕在卵母细胞外周的高度分化细胞)的细胞核移植到去除了细胞核的卵母细胞中得到20多只发育完全的小鼠。如呆“多利”因为只有一只,还不够叫做克隆羊的话,这些小鼠 就是名副其实的克隆鼠了。 ② 通过细胞核移植克隆小鼠的基本过程 在本实验中,卵丘细胞是经如下过程得到的:通过连续几次注射绒毛膜促性腺激素,使雌鼠诱导成高产卵量状态。然后从雌鼠输卵管中收集卵丘细胞与卵母细胞的复合体。经透明质酸处理使卵丘细胞散开。选择直径为10-12微米的卵丘细胞用作细胞核供体(前期实验表明,若用直径更小或更大的卵丘细胞的细胞核,经过细胞核移植的卵母细胞很少发育到8细胞期)。所选择的卵丘细胞保持在一定的溶液环境中,在3小时内进行细胞核移植(与此不同的是,在获得“多利”时用作细胞核供体的乳腺细胞先在培养液中传代了3-6次) 卵母细胞(一般处于减数分裂中期 II )通过与上面描述类似的方法,从不同种的雌鼠中收集。在显微镜下小心地用直径大约7微米的细管取出卵母细胞的细胞核,尽量不取出细胞质。同样小心取出卵丘细胞的细胞核,也尽量去除所带的细胞质(通过使取出的细胞核在玻璃管中往复运动数次,以去除所带的少量的细胞质)。在细胞核被取出后5分钟之内,直接注射到已经去除了细胞核的卵母细胞中。进行了细胞核移植的卵母细胞先放在一种特制的溶液中1-6小时,然后加入二价的锶离子(Sr2+)和细胞分裂抑素B。前者使卵母细胞激活,后者抑制极体的形成和染色体的排除。再取出处理过的卵母细胞,放在没有锶和细胞分裂抑素B的特制的溶液中使细胞分裂形成胚胎。 不同阶段的胚胎(从2细胞期到胚泡期)被分别植入几天前与已经结扎雄鼠交配过的假孕母鼠的输卵管或子宫中发育。发育完全的胎儿鼠在大约19天后通过手术取出。 目前胚胎细胞核移植克隆的动物有小鼠、兔、山羊、绵羊、猪、牛和猴子等。在中国,除猴子以外,其他克隆动物都有,也能连续核移植克隆山羊,该技术比胚胎分割技术更进一步,将克隆出更多的动物。因胚胎分割次数越多,每份细胞越少,发育成的个体的能力越差。体细胞核移植克隆的动物只有一个,就是“多利”羊。
2023-06-29 00:41:441

说明构建文库时和作基因表达时应如何选择分子克隆载体和宿主菌细胞

你问的这个问题比较难回答, 将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类. cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入寄主细胞.每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布.特点是: ①有些生物,如RNA病毒没有DNA,只能用cDNA克隆; ②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息; ③cDNA能在细菌中表达.cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息. 1.方法: (1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA. (2)载体DNA的选择: ①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb).在细胞中以游离超螺旋状存在,很容易制备.质粒DNA可通过转化引入寄主菌.在细胞中有两种状态,一是“紧密型”;二是“松驰型”.此外还应具有分子量小,易转化,有一至多个选择标记的特点.质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆. ②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端.中间是非必需区,进行改造后组建一系列具有不同特点的载体分子.λ载体系统最适用于构建真核生物基因文库和cDNA库. M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌.M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒.寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交. ③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子.是噬菌体-质粒混合物.此类载体分子容量大,可携带45kb的外源DNA片段.也能象一般质粒一样携带小片段DNA,直接转化寄主菌.这类载体常被用来构建高等生物基因文库. (3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端.在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端.②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端.平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接.④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端. 连接反应需注意载体DNA与DNA片段的比率.以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳.以质粒为载体时,形成环状分子,比率常为1∶1. (4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难.②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高.
2023-06-29 00:41:521

什么是体细胞克隆?其操作过程怎样

克隆是英语单词clone的音译,clone源于希腊文klon,原意是指幼苗或嫩枝,以无性繁殖或营养繁殖的方式培育植物,如杆插和嫁接。 如今,克隆是指生物体通过体细胞进行的无性繁殖,以及由无性繁殖形成的基因型完全相同的后代个体组成的种群。克隆也可以理解为复制、拷贝,就是从原型中产生出同样的复制品,它的外表及遗传基因与原型完全相同。 1997年 2月,绵羊“多利”诞生的消息披露,立即引起全世界的关注,这头由英国生物学家通过克隆技术培育的克隆绵羊,意味着人类可以利用动物身上的一个体细胞,产生出与这个动物完全相同的生命体,打破了千古不变的自然规律。 克隆一词是由clone音译而来,在音译名出现以前曾有一个意译名--无性繁殖系,指由单一细胞或共同祖先经有丝分裂得到的细胞群体或有机群体。 我们通过细胞培养可以得到一个细胞克隆。在微生物实验时,通过倒平皿,我们可以得到一个个的菌落,这些菌落其实就是细菌的克隆。可见克隆原来是个名词,指一群细胞或一群个体。随着分子生物学的发展,出现了核移植与基因工程之类的操作。核移植操作可以得到重建细胞,重建细胞可以繁殖成一个无性系;基因工程操作可以将某一被选定的基因拼接到质粒的复制子上,随着复制子的复制也能得到DNA分子的无性系。于是,有人就把这类操作称作克隆,即将clone一词由名词转化成动词,并将核移植称为 nuclear cloning(核克隆),通过基因工程得到DNA分子的无性系称为molecular cloning(分子克隆)。在这里克隆是一种实现无性繁殖(asexual reproduction)的操作,是一种显微操作或分子生物学操作,而不是一般意义上的无性繁殖(或无性繁殖操作)。这也许正是克隆一词能够存在而不被无性繁殖替代的原因。 多利羊又称克隆羊,其实是用核克隆技术产生的羊。有人说,只有多利羊才是真正的克隆羊,其他报导,如克隆猪、克隆牛等,由于它们是由胚胎细胞发育而成的,而胚胎细胞是有性繁殖产生的,所以,不是真正意义上的克隆。这是一种误解,是由于对有性过程在时间上把握不准所造成的。有性过程到受精卵、即合子形成时即告结束,合子分裂一旦开始即与有性过程无关了。如果说分裂后的胚胎细胞是有性繁殖产生的,那么,体细胞追究下去也是有性繁殖产生的。但事实上它们都是由合子经有丝分裂逐渐产生的。这就是说,有性繁殖实际上是经过一次有性过程和许多次无性过程,最后产生一个成活的后代而实现的。从胚胎中取出一个细胞使之发育成一个个体,这显然应属于无性繁殖。所以,从这个意义上讲,杜里舒是克隆技术(细胞克隆技术)的创始人,他的将两分裂球时期的细胞分开,使之发育成两个海胆的实验,是最早的克隆实验。而人类的同卵双生双胞胎,就是经天然细胞克隆化产生的。而克隆猪、克隆牛,如果是经核移植育成的,则不管供核细胞是来自早期胚胎细胞,还是已分化细胞,均属于真正意义上的克隆技术,而且是比杜里舒的水平高得多的克隆技术。 这里顺便提一下,因为中文词不能从词形上看出词性,所以,"细胞克隆"一词既可看成名词,又可看成动词。作为名词,细胞克隆指细胞的一个无性繁殖系。作为动词,它与核克隆、分子克隆对应,指用细胞去无性繁殖。为了与前者区别,作者建议该意思可用"细胞克隆化"或"细胞克隆技术"来表达。应用细胞克隆技术,可将细胞克隆成一个无性繁殖的细胞群体,如细胞培养中得到的克隆;也可使克隆后的细胞分化、发育成一个无性繁殖的个体,如杜里舒得到的海胆,某些研究者得到的克隆猪、克隆牛等。 多利羊与其它克隆动物的区别不在于是不是无性繁殖,而在于供核细胞的分化程度。早期胚胎细胞基本上是未分化细胞,即使是成形胚胎的已分化细胞,其细胞分化程度也远低于成年个体的已特化细胞。能将已特化细胞克隆成一个成活的个体,从理论上讲这是一次重大突破。这说明,已特化细胞的遗传结构即使发生了变化,这种变化也不是不可逆的,至少特化至乳腺上皮细胞时还是如此。至于神经细胞、脑细胞的特化是不是不可逆的,也可用核移植的方法检验。不过可以预料,克隆神经细胞,难度肯定要高于乳腺上皮细胞。 话说到这里你一定能理解,为什么说克隆不是复制的同义词了。提起复制,我们最熟悉的就是用复印机复印文件,通过复印得到的复制品与原件是完全一样的。DNA的复制结果就是如此,所以复制用于DNA的合成是一个非常确切的术语。而克隆则是一个过程,克隆产生的个体还需进行胚胎发育和胎后发育,克隆个体与原本之间有一段年龄差异。由于发育过程既受基因主宰又受环境调控,而克隆与其原本尽管基因相同,所处环境却绝不会相同,所以,克隆与其原本是不可能像复制品与原件那样完全一样的。再者,如果克隆个体是由核移植产生的,那么,由于重建细胞的细胞质并非来自原本,而我们知道细胞质中也有遗传物质,它们必然会对个体产生影响,所以,更不能把克隆个体看成是原本的复制品。 克隆个体可以看成是原本的再生,但不是原本的复活。因为:i.克隆个体和原本可以同时存在,ii.尽管从遗传结构上看克隆个体和原本是姐妹(兄弟)关系,但从年龄上看它们却是亲子关系。无性繁殖的生物仍然有"代"的概念,克隆个体也应有"代"的概念。而且,克隆个体的代间界限也是很容易划分的。由原本的体细胞产生的克隆个体是第1代,克隆个体成为成体后从其体细胞再克隆,即可得到第2代克隆个体。理论上讲,正如无性繁殖可以一代接一代地传下去一样,克隆个体的代数也是无止境的。只不过克隆不是自然进行的繁殖,而是人为操作,是否有必要一代代克隆下去值得怀疑。如果没有理论或实际上的意义,可能不会有人愿意做多代克隆的工作。
2023-06-29 00:42:012

PCR与DNA分子克隆我不是很明白,为什么有

这个有多方面的原理:一个:PCR有错误,虽然这个错误率很低,普通的酶大概在千分之一,而高保真的在百万分之一,但毕竟有.二个:基因保存的问题:PCR产物当然也可以保存,但保存时间长了会不会出问题?能保存几年?克隆进质粒就不一样了,这个基本可以保存很久,哪一天想要这个基因,拿出来摇一小瓶就可以了.三个:单克隆性,PCR片断可能有长有短(还有突变),而质粒就不一样了,可以挑单克隆,测序正确后就认为这是我们想要的基因.四个:做基因表达时连接方便.如果PCR产品上没有酶切位点,克隆载体上有,切下来可以连到表达载体上.象有些人做基因库时,都是克隆到载体上,肯定是这样有很多优点的.
2023-06-29 00:42:101