- 苏州马小云
-
pwm的频率和占空比之间的关系:
1、比如说,单片机频率10M,如果PWM频率是5M,那么一个PWM周期内就只有两个机器周期,那么占空比的值就只有 0、50%、100%这三种。如果PWM频率是5k,那么一个PWM周期有2000个机器周期,占空比最小就可以去到1 / 2000 = 0.05%。
2、对于需要进行直流滤波的场合,频率越高,滤波的效果就越好。但是也不是说频率高一定好,太高的频率电机可能反应不过来。
3、而且,如果PWM是由单片机产生的,那么他的频率和位数是成反比的(一些低端的单片机频率基本是确定的,位数也是确定的,不存在这个问题),
占空比才是真正PWM应用的,其实就是开关的打开和关断的时间比值,这个比值在宏观上可以欺骗人眼,于是形成和电位器一样的作用。
比如对一个电灯来说,你在1秒内,打开开关0.5秒,再关闭0.5秒,如此反复,那么电灯就会闪烁,但是如果是1毫秒内,0.5毫秒打开,0.5毫秒关闭,由于视觉暂留作用,也可能由于灯光的亮灭速度赶不上开关速度(还没全亮就又没电了),于是人眼不感觉电灯在闪烁,而是感觉灯的亮度少了一半。同理,如果是0.1毫秒开,0.9毫秒灭,感觉灯的亮度就只有1/10了。
对于电机的原理也差不多,开关开时电机加速,关闭时电机减速,根据是加速时间多还是减速时间多,我们感觉总体的转速就是快了或慢了。当然,具体分析时还需考虑电机的电感作用,电感有滤波效果,但是用这个方式去理解也是成立的。
扩展资料:
随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。
脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。
参考资料:脉冲宽度调制(PWM) 百度百科
- 余辉
-
PWM是间接的,并且是要进过低电平并回到高电平的;而占空比则是持续的,是单次,不用回去的。占空比也可以是PWM造成,这样占空比就不会脱离PWM太多。
pwm的频率是指每秒钟信号从高电平到低电平再回到高电平的次数;
占空比是高电平持续时间和低电平持续时间之间的比例。
pwm的调节作用来源于对“占周期”的宽度控制,“占周期”变宽,输出的能量就会提高,通过阻容变换电路所得到的平均电压也会上升,“占周期”变窄,输出的能量就会降低,通过阻容变换电路所得到的平均电压也会下降。pwm就是通过这种原理实现D/A转换的。
拓展资料:
脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。
在PWM波形中,各脉冲的幅值是相等的,要改变等效输出正弦波的幅值时,只要按同一比例系数改变各脉冲的宽度即可,因此在交-直-交变频器中,PWM逆变电路输出的脉冲电压就是直流侧电压的幅值。
在有些技术资料中,占空比控制也被称为电控脉宽调制技术。
它是通过电子控制单元对加在工作执行元件上一定频率的电压信号进行脉冲宽度的调制,即占空比控制,以实现对元件工作状况的精准、连续控制。
经典电工理论欧姆定律告诉我们,电压=电流x电阻。电控执行元件多数为带有一定恒定电阻值的线圈或导体,在很多情况下,电源的电动势也是基本恒定不变化的,所以简单的控制线路只能实现接通工作元件电路或切断工作元件线路这两种工况,也就是开或关,无论如何是不能够实现一定范围的从渐开到渐闭的无极线性调控。
而占空比控制技术却另辟蹊径,通过对以一定频率加在工作元件上的电压信号进行占空比控制,利用控制简单开关电路的接通和关闭的比率大小,实现了对工作元件上的电压信号的电压平均值的控制,从而最终实现了对流经工作元件的电流控制。
参考资料:
百度百科—脉冲宽度调制
百度百科—占空比
- LuckySXyd
-
频率不控制什么,但是频率的高低会产生其他一些副作用。比如在电机控制中,频率太低会导致运动不稳定,如果频率刚好在人耳听觉范围,有时还会听到呼啸声。对于需要进行直流滤波的场合,频率越高,滤波的效果就越好。但是也不是说频率高一定好,太高的频率电机可能反应不过来。而且,如果PWM是由单片机产生的,那么他的频率和位数是成反比的(一些低端的单片机频率基本是确定的,位数也是确定的,不存在这个问题),比如说,单片机频率10M,如果PWM频率是5M,那么一个PWM周期内就只有两个机器周期,那么占空比的值就只有 0、50%、100%这三种。如果PWM频率是5k,那么一个PWM周期有2000个机器周期,占空比最小就可以去到1 / 2000 = 0.05%。所以实际运用中,要根据硬件因素设定频率,一旦设定了,也就不需要更改了,因为硬件是不会改变的。
占空比才是真正PWM应用的,其实就是开关的打开和关断的时间比值,这个比值在宏观上可以欺骗人眼,于是形成和电位器一样的作用。比如对一个电灯来说,你在1秒内,打开开关0.5秒,再关闭0.5秒,如此反复,那么电灯就会闪烁,但是如果是1毫秒内,0.5毫秒打开,0.5毫秒关闭,由于视觉暂留作用,也可能由于灯光的亮灭速度赶不上开关速度(还没全亮就又没电了),于是人眼不感觉电灯在闪烁,而是感觉灯的亮度少了一半。同理,如果是0.1毫秒开,0.9毫秒灭,感觉灯的亮度就只有1/10了。对于电机的原理也差不多,开关开时电机加速,关闭时电机减速,根据是加速时间多还是减速时间多,我们感觉总体的转速就是快了或慢了。当然,具体分析时还需考虑电机的电感作用,电感有滤波效果,但是用这个方式去理解也是成立的。
回到前面的频率问题,就如刚才说的,1秒内,0.5秒开,0.5秒灭,占空比是50%对吧?那么,1毫秒内,0.5毫秒开,0.5毫秒灭,占空比也是50%,对吧?如果是1秒呢,频率就是1HZ,如果是1毫秒,频率就是1KHZ,显然,同样是50%占空比,如果频率是1HZ,那电机肯定是跳着走的,灯光肯定闪得可以跳舞,不具有调速和调光的意义。
- bikbok
-
PWM就是Pulse-Width Modulation,脉冲宽度即在一个周期内输出高电平的时间,假如说周期T=64US,脉冲宽度D=32us,则占空比=D/T=32/64=50% ,脉冲宽度调整就是占空比的调整。
1、脉冲宽度调制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
2、脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
3、脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。