DNA图谱 / 问答 / 问答详情

"任何生物个体的遗传物质只有一种"对吗

2023-07-01 17:33:53
TAG: 生物
共7条回复
豆豆staR

不是哇

蛋白质也于遗传有关!!!!!!!!!生物竞赛题。 我生物还是学的比较不错滴。嘿嘿

DNA RNA

除DNA外,有些病毒遗传物质是RNA

上面已经解释了问题。但是你要是觉得不够的话,就看下面

DNA是双螺旋结构,RNA是单螺旋结构的。

具体解释如下:

RNA指 ribonucleic acid 核糖核酸

核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。

在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。

DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分)

脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。

分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。

结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。

一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。

二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。

一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。

tt白

是的!!!!!高中老师专门强调!一种生物只有一种遗传物质!要么是DNA,要么是RNA.所有真核生物的遗传物质都是DNA,所有原核生物的遗传物质都是RNA,病毒有的是DNA,有的是RNA.既有DNA,又有RNA的生物的遗传物质是DNA.

这是高中生物中非常重要的结论啊!

奇石珠宝真君

对,因为对于一种特定的生物,遗传物质是一定的,但对于整个生物界来说,遗传物质不一定,主要有DNA.RNA等,一楼那位说的很详细了

小菜G的建站之路

只有一种,要么是DNA,要么是RNA,遗产物质不可能同时是DNA和RNA

出投笔记

不对的除了DNA 有些RNA也是

以心消业

这句话是对的.

ardim

错啊 几乎所有个体的遗传物质都不止一种

相关推荐

被称为“DNA之父”的是哪位科学家?

被称为“DNA之父”的是哪位科学家? A.桑格(Frederick Sanger)B.沃森(James Waston)C.摩尔根(Thomas H. Morgen)D.克里克(Francis Crick)E.查加夫(Erwin Chargaff)正确答案:沃森(James Waston)
2023-07-01 13:33:131

DNA是谁在哪一年发现的

DNA是1953年发现的
2023-07-01 13:33:231

跪求科学发现!!!

DNA的发现1869年,瑞士生化学家米歇尔(J.F.Miescher,1844-1895)在分析细胞的化学组成时,在细胞核内发现了核酸。1929年,俄裔美国生物化学家列文(P.A.leven,1869-1940)发现核酸可分为核糖核酸(RNA)与脱氧核糖核酸(DNA)。1928和1943年,英国细菌学家格里菲斯(F.Griffith,1877-1941)和美国细菌学家艾弗里(O.T.Averyy,1877-1955)先后通过肺炎双球菌的转化实验证明DNA具有传递遗传信息的功能。1950年,奥地利裔美国生物化学家查加夫(E.Chargaff,1905-?)发现DNA分子中的碱基A与T、G与C是配对存在的。具体的故事也可以参考http://hi.baidu.com/%CB%AB%B3%CC%5F%B9%E9%CD%BE/blog/item/48014c11742a1016b8127b2c.html 毕竟是20世纪三大最伟大的发现之一,可了解
2023-07-01 13:33:301

C60是如何发现的

C60是如何发现的 C60的发现最初始于天文学领域的研究,后经过试验制备得到的。 C60的发现最初始于天文学领域的研究,科学家们首先对星体之间广泛分布的碳尘产生了兴趣。学者们发现,星际间碳尘的黑色云状物中包含着由短链结构的原子构成的分子,也有一部分学者认为该云状物是从碳族星体红色巨星中产生的,理论天文学家推测,这些尘埃土中包含着呈现黑色的碳元素粒子。 后来英国的克罗脱为了探明红色巨星产生的碳分子结构,对星际尘埃中含有碳元素的几种分子进行了确认。美国的霍夫曼和德国的克拉其莫也制造出了宇宙中类似的尘埃。他们将其与煤炭燃烧后遗留的黑色物质进行比较,发现了气化物质在紫外线吸收实验中留下了清晰的痕迹,并称之为"驼峰光谱"。后来由美国的柯尔、史沫莱和英国的克罗脱解释出该现象的理由,并为此获得了诺贝尔化学奖。 C60分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯。 C60是单纯由碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形。其相对分子质量为720。 C60是80年代中期新发现的一种碳原子簇,它是单质,是石墨、金刚石的同素异形体。C60具有广泛的应用前景。 碳60是如何发现的 C60分子C60分子是一种由60个碳原子构成的分子,它形似足球,是一种很稳定的分子,主要应用于材料科学,超导体等方面。金刚石、石墨、C60分子的结构示意图.世人瞩目的足球烯-C60.C60分子是一种由60个碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形,它形似足球,因此又被称为足球烯。足球烯是美国休斯顿赖斯大学的克罗脱(Kroto, H.W.)和史沫莱(Smalley, R.E.)等人于1985年提出的,他们用大功率镭射束轰击石墨使其气化,用1MPa压强的氦气产生超声波,使被镭射束气化的碳原子通过一个小喷嘴进入真空膨胀,并迅速冷却形成新的碳原子,从而得到了C60。C60的组成及结构已经被质谱,X射线分析等实验证明。此外,还有C70等许多类似C60分子也已被相继发现。1991年,科学家们发现,C60中掺以少量某些金属后具有超导性,且这种材料的制作工艺比制作传统的超导材料——陶瓷要简单,质地又十分坚硬,所以人们预言C60在超导材料领域具有广阔的应用前景。碳60分子俗称布基球,由60个碳原子构成,它们组成一个笼状结构。这一分子于1985年被发现后因它具有特殊性质,一直是化学家们的热门研究物件。 DNA是如何发现的? DNA的发现 自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题,人们开始了对核酸和蛋白质的研究。 早在1868年,人们就已经发现了核酸。在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌""作战"而战死的白细胞和被杀死的人体细胞的"遗体"。于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用。他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质。霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的。于是他便给这种从细胞核中分离出来的物质取名为"核素",后来人们发现它呈酸性,因此改叫"核酸"。从此人们对核酸进行了一系列卓有成效的研究。 20世纪初,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成的。其中碱基有4种(腺瞟吟、鸟嘌吟、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。 列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推汇出核酸的基本结构是由4个含不同碱基的核苷酸连线成的四核苷酸,以此为基础聚合成核酸,提出了"四核苷酸假说"。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识。人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用。 蛋白质的发现比核酸早30年,发展迅速。进人20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现。 1902年,德国化学家费歇尔提出氨基酸之间以肽链相连线而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链。于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此,那时生物界普遍倾向于认为蛋白质是遗传资讯的载体。 1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有美菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。格里菲斯称该核酸为"转化因子"。 1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的"转化因子",并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明"转化因子"是DNA。但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。 美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进人大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。进人细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。 1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。这个实验证明DNA有传递遗传资讯的功能,而蛋白质则是由DNA的指令合成的。这一结果立即为学术界所接受。 几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948-1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。 1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志著分子生物学的诞生。 沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进人芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到义大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。 克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?--活细胞的物理面貌卜书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是开启遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索著DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。 1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立DNA结构模型,只能利用别人的分析资料。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。 有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的"B型"DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种影象比以前得到的"A型"简单得多,只要稍稍看一下"B型"的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。 克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念。 他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。 有一次,沃森又在按著自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连线的腺膘吟一胸腺嘧啶对竟然和由3个氢键连线的鸟嘌岭一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。 经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。 下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验资料作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线资料分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。 DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。 本文摘自《创造发明1000例》广西师范大学出版社2001年7月版 翡翠是如何发现的 现在只剩下故事可以追寻啦. 比较靠谱的说法是缅甸人自己发现的,因为现在接近产地的小镇勐拱名字的意思就是鼓城,传说此地发现有鼓型的蓝玉,应该就是翡翠了。 黑洞是如何发现的 黑洞看不见摸不著,天文学家主要是通过黑洞区强大的X射线源进行探索的。黑洞本身虽然不能发出任何光线,但它对于周围物体、天体的巨大引力依然存在。当周围物质被它强大的引力所吸引而逐渐向黑洞坠落时,就会发射出强大的X射线,形成天空中的X射线源。通过对X射线源的搜寻观测,人们就可找到黑洞的踪迹。 电子是如何发现的? 电子是构成原子的基本粒子之一,质量极小,带单位负电荷,不同的原子拥有的电子数目不同,例如,每一个碳原子中含有6个电子,每一个氧原子中含有8个电子。能量高的离核较远,能量低的离核较近。通常将电子在离核远近不同的区域内运动称为电子的分层排布。 早在1881年,电子就被剑桥大学卡文迪许实验室的约瑟夫·汤姆生发现了,他提出,任何电荷都由基本电荷组成,并给电荷的这一最小单位取名为电子。 实际存在的电子是英国物理学家汤姆孙在1897年发现的。他在观测阴极射线在磁场和静电场作用下的偏转,并测定阴极射线中的粒子和氢离子的比荷(粒子电荷与粒子质量之比值)时,发现阴极射线微粒的比荷要比氢离子的大1000多倍。由于两者所带电荷一样,汤姆孙判定阴极射线微粒要比最轻的原子——氢原子还要轻许多。后来把这种微粒正式取名为电子。 电子的发现打破了原子是不能再分割的物质最小单元的传统观念。因为电子来自原子,表明原子具有内部结构。随着对电子研究的深入,量子论的许多重要概念都由此萌发。例如,电子波动性的发现证实物质波假设是正确的;对正电子存在的预言引出反粒子、反物质等重要概念。 狄拉克最早在理论上预言了正电子的存在。1932年,美国安德森在宇宙线实验中首次发现正电子。正电子是电子的反粒子,用e+表示,所带的电量与电子电量相等,符号相反,质量与电子质量相同。 电子的应用 20世纪科学技术发展的动力很大程度上来自电子的应用,无线电电子学、微电子技术、亚微米电子束加工技术、电子管、电子计算机、电子显微镜、正负电子对撞机等带电子一词的学科与仪器装置,都是现代科技发展史上的一座座里程碑。其他如大规模积体电路、映象管、电晶体等仪器装置里,唱主角的也是电子,尽管它们的名字里没有电子两字。 形形 *** 的电子装置归根结底要有两种功能,一是如何产生电子,二是如何控制电子。电子通常由电子枪产生,电子枪一般由加热的电热丝(如钨丝)和涂层金属薄片的阴极及带高压的阳极组成,这些涂上涂层的金属片(如涂上氧化钡和氧化锶混合物的镍片)被加热后会发射大量电子,如果这些电子被带正电的阳极吸引,就形成一股电子流。电子在电场中要受电场力的作用,运动的电子在磁场中要受磁场力的作用,利用电场和磁场可按需控制电子的运动,从而制造出各种电子装置。 电视机映象管里的电子枪,能发射成束的电子流,在电子枪到荧光屏间加一些电磁偏转装置,就能控制电子束打到荧光屏上指定的一点,使荧光粉发亮。让电子束高速扫描在荧光屏上,就能使荧光屏显示出一幅幅影象 电子是人们最早发现的带有单位负电荷的一种基本粒子。英国物理学家汤姆逊是第一个用实验证明电子存在的人,时间是1897年。 汤姆逊是一位很有成就的物理学家,他28岁就成了英国皇家学会会员,并且担任了有名的卡文迪许实验室主任。 X射线的发现,特别是它可以穿透生物组织而显示其骨骼影像的能力,给予英国卡文迪许实验室的研究人员以极大激励。汤姆逊倾向于克鲁克斯的观点,认为它是一种带电的原子。 导致X射线产生的阴极射线究竟是什么?德国和英国物理学家之间出现了激烈的争论。德国物理学家赫兹于1892年宣称阴极射线不可能是粒子,而只能是一种以太波。所有德国物理学家也附和这个观点,但以克鲁克斯为代表的英国物理学家却坚持认为阴极射线是一种带电的粒子流,思路极为敏捷的汤姆逊立即投身到这场事关阴极射线性质的争论之中。 1895年,法国年轻的物理学家佩兰在他的博士论文中,谈到了测定阴极射线电量的实验。他使阴级射线经过一个小孔进入阴极内的空间,并打到收集电荷的法拉第筒上,静电计显示出带负电;当将阴极射线管放到磁极之间时,阴极射线则发生偏转而不能进入小孔,集电器上的电性立即消失,从而证明电荷正是由阴极射线携带的。佩兰通过他的实验结果明确表示支援阴极射线是带负电的粒子流这一观点,但当时他认为这种粒子是气体离子。对此,坚持阴极射线是以太波的德国物理学家立即反驳,认为即使从阴极射线发出了带负电的粒子,但它同阴极射线路径一致的证据并不充分,所以静电计所显示的电荷不一定是阴极射线传入的。 对于佩兰的实验,汤姆逊也认为给以太说留下了空子,为此,他专门设计了一个巧妙的实验装置,重做佩兰实验。他将两个有隙缝的同轴圆筒置于一个与放电管连线的玻璃泡中;从阴极A出来的阴极射线通过管颈金属塞的隙缝进入该泡;金属塞与阴极B连线。这样,阴极射线除非被磁体偏转,不会落到圆筒上。外圆筒接地,内圆筒连线验电器。当阴极射线不落在隙缝时,送至验电器的电荷就是很小的;当阴极射线被磁场偏转落在隙缝时,则有大量的电荷送至验电器。电荷的数量令人惊奇:有时在一秒钟内通过隙缝的负电荷,足能将1.5微法电容的电势改变20伏特。如果阴极射线被磁场偏转很多,以至超出圆筒的隙缝,则进入圆筒的电荷又将它的数值降到仅有射中目标时的很小一部分。所以,这个实验表明,不管怎样用磁场去扭曲和偏转阴极射线,带负电的粒子又是与阴极射线有着密不可分的联络的。这个实验证明了阴极射线和带负电的粒子在磁场作用下遵循同样路径,由此证实了阴极射线是由带负电荷的粒子组成的,从而结束了这场争论,也为电子的发现奠定了基础。 如何成功地使阴极射线在电场作用下发生偏转?早在1893年,赫兹曾做过这种尝试,但失败了。汤姆逊认为,赫兹的失败,主要在于真空度不够高,引起残余气体的电离,静电场建立不起来所致。于是汤姆逊采用阴极射线管装置,通过提高放电管的真空度而取得了成功。通过这个实验和提高放电管真空度,汤姆逊不仅使阴? 电子的发现和阴极射线的实验研究联络在一起的,而阴极射线的发现和研究又是以真空管放电现象开始的.早在1858年,德国物理学家普吕克在利用放电管研究气体放电时发现了阴极射线.普吕克利用真空泵,发现随着玻璃管内空气稀薄到一定程度时,管内放电逐渐消失,这时在阴极对面的玻璃管壁上出现了绿色荧光.当改变管外所加的磁场时,荧光的位置也会发生变化,可见,这种荧光是从阴极所发出的射线撞击玻璃管壁所产生的。 阴极射线究竟是什么呢?在19世纪后30年中,许多物理学家投入了研究.当时英国物理学家克鲁克斯等人已经根据阴极射线在磁场中偏转的事实,提出阴极射线是带负电的微粒,根据偏转算出阴极射线粒子的荷质比(e/m),要比氢离子的荷质比大1000倍之多.当时,赫兹和他的学生勒纳德,在阴极射线管中加了一个垂直于阴极射线的电场,企图观察它在电场中的偏转,为此他们认为阴极射线不带电.实际上当时是由于真空度还不高,建立不起静电场. J.J.汤姆生设计了新的阴极射线管(图1),在电场作用下由阴极C发出的阴极射线,通过Α和B聚焦,从另一对电极D和E间的电场中穿过.右侧管壁上贴有供侧量偏转用的标尺.他重复了赫兹的电场偏转实验,开始也没有看见任何偏转.但他分析了不发生偏转的原因可能是电场建立不起来。于是,他利用当时最先进的真空技术获得高真空,终于使阴极射线在电场中发生了稳定的电偏转,从偏转方向也明确表明阴极射线是带负电的粒子.他还在管外加上了一个与电场和射线速度都垂直的磁场(此磁场由管外线圈产生),当电场力eE与磁场的洛仑兹力evB相等时,可以使射线不发生偏转而打到管壁中央。经过推算可知,阴极射线粒子的荷质比e/m≈1011C/kg.通过进一步的实验,汤姆生发现用不同的物质材料或改变管内气体种类,测得射线粒子的荷质比e/m保持不变.可见这种粒子是各种材料中的普适成分。 1898年,汤姆生又和他的学生们继续做直接测量带电粒子电量的研究.其中之一就是用威尔逊云室,测得了电子电荷是1.1x10-19C,并证明了电子的质量约是氢离子的千分之一.于是,汤姆生最终解开了阴极射线之谜.这以后不少科学家较精确地测量了电子的电荷值,其中有代表性的是美国科学家密立根,在1906年第一次测得电子电荷量e=l.34X10-19C,1913年最后测得e=1.59x10-19C.在当时条件下,这是一个高精度的测量值.近代精确的电子电荷量e=1.60217733(49)x10-19C(括号中的值是测量误差). “X射线”是如何发现的 X射线的发现者威廉·康拉德·伦琴于1845年出生在德国尼普镇。他于1869年从苏黎世大学获得哲学博士学位。在随后的十九年间,伦琴在一些不同的大学工作,逐步地赢得了优秀科学家的声誉。1888年他被任命为维尔茨堡大学物理所物理学教授兼所长。1895年伦琴在这里发现了X射线。
2023-07-01 13:33:391

什么时间是谁发现了遗传物质DNA的双螺旋结构

1953年4月25日,克里克和沃森在英国杂志《自然》上公开了他们的DNA模型.经过在剑桥大学的深入学习后,两人将DNA的结构描述为双螺旋,在双螺旋的两部分之间,由四种化学物质 DNA双螺旋组成的碱基对扁平环连结着.他们谦逊地暗示说,遗传物质可能就是通过它来复制的.这一设想的意味是令人震惊的:DNA恰恰就是传承生命的遗传模板.  1953年沃森和克里克提出著名的DNA双螺旋结构模型,他们构造出一个右手性的双螺旋结构.当碱基排列呈现这种结构时分子能量处于最低状态.沃森后来撰写的《双螺旋:发现DNA结构的故事》(科学出版社1984年出版过中译本)中,有多张DNA结构图,全部是右手性的.这种双螺旋展示的是DNA分子的二级结构.
2023-07-01 13:33:473

求沃森和克里克(双螺旋结构发现者)的资料

  沃森  Watson, James Dewey  美国生物学家  克里克  Crick, Francis Harry Compton  英国生物物理学家  20世纪50年代初,英国科学家威尔金斯等用X射线衍射技术对DNA结构潜心研究了3年,意识到DNA是一种螺旋结构。女物理学家富兰克林在1951年底拍到了一张十分清晰的DNA的X射线衍射照片。  1952年,美国化学家鲍林发表了关于DNA三链模型的研究报告,这种模型被称为α螺旋。沃森与威尔金斯、富兰克林等讨论了鲍林的模型。威尔金斯出示了富兰克林在一年前拍下的DNAX射线衍射照片,沃森看出了DNA的内部是一种螺旋形的结构,他立即产生了一种新概念:DNA不是三链结构而应该是双链结构。他们继续循着这个思路深入探讨,极力将有关这方面的研究成果集中起来。根据各方面对DNA研究的信息和自己的研究和分析,沃森和克里克得出一个共识:DNA是一种双链螺旋结构。这真是一个激动人心的发现!沃森和克里克立即行动,马上在实验室中联手开始搭建DNA双螺旋模型。从1953年2月22日起开始奋战,他们夜以继日,废寝忘食,终于在3月7日,将他们想像中的美丽无比的DNA模型搭建成功了。  沃森、克里克的这个模型正确地反映出DNA的分子结构。此后,遗传学的历史和生物学的历史都从细胞阶段进入了分子阶段。  由于沃森、克里克和威尔金斯在DNA分子研究方面的卓越贡献,他们分享1962年的诺贝尔生理医学奖。  詹姆斯·沃森  沃森(出生于1928年)美国生物学家.  20世纪40年代末和50年代初,在DNA被确认为遗传物质之后,生物学家们不得不面临着一个难题:DNA应该有什么样的结构,才能担当遗传的重任?它必须能够携带遗传信息,能够自我复制传递遗传信息,能够让遗传信息得到表达以控制细胞活动,并且能够突变并保留突变。这4点,缺一不可,如何建构一个DNA分子模型解释这一切?  当时主要有三个实验室几乎同时在研究DNA分子模型。第一个实验室是伦敦国王学院的威尔金斯、弗兰克林实验室,他们用X射线衍射法研究DNA的晶体结构。当X射线照射到生物大分子的晶体时,晶格中的原子或分子会使射线发生偏转,根据得到的衍射图像,可以推测分子大致的结构和形状。第二个实验室是加州理工学院的大化学家莱纳斯·鲍林(Linus Pauling)实验室。在此之前,鲍林已发现了蛋白质的a螺旋结构。第三个则是个非正式的研究小组,事实上他们可说是不务正业。23岁的年轻的遗传学家沃森于1951年从美国到剑桥大学做博士后时,虽然其真实意图是要研究DNA分子结构,挂着的课题项目却是研究烟草花叶病毒。比他年长12岁的克里克当时正在做博士论文,论文题目是“多肽和蛋白质:X射线研究”。沃森说服与他分享同一个办公室的克里克一起研究DNA分子模型,他需要克里克在X射线晶体衍射学方面的知识。他们从1951年10月开始拼凑模型,几经尝试,终于在1953年3月获得了正确的模型。关于这三个实验室如何明争暗斗,互相竞争,由于沃森一本风靡全球的自传《双螺旋》而广为人知。值得探讨的一个问题是:为什么沃森和克里克既不像威尔金斯和弗兰克林那样拥有第一手的实验资料,又不像鲍林那样有建构分子模型的丰富经验(他们两个人都是第一次建构分子模型),却能在这场竞赛中获胜?  这些人中,除了沃森,都不是遗传学家,而是物理学家或化学家。威尔金斯虽然在1950年最早研究DNA的晶体结构,当时却对DNA究竟在细胞中干什么一无所知,在1951年才觉得DNA可能参与了核蛋白所控制的遗传。弗兰克林也不了解DNA在生物细胞中的重要性。鲍林研究DNA分子,则纯属偶然。他在1951年11月的《美国化学学会杂志》上看到一篇核酸结构的论文,觉得荒唐可笑,为了反驳这篇论文,才着手建立DNA分子模型。他是把DNA分子当作化合物,而不是遗传物质来研究的。这两个研究小组完全根据晶体衍射图建构模型,鲍林甚至根据的是30年代拍摄的模糊不清的衍射照片。不理解DNA的生物学功能,单纯根据晶体衍射图,有太多的可能性供选择,是很难得出正确的模型的。  沃森在1951年到剑桥之前,曾经做过用同位素标记追踪噬菌体DNA的实验,坚信DNA就是遗传物质。据他的回忆,他到剑桥后发现克里克也是“知道DNA比蛋白质更为重要的人”。但是按克里克本人的说法,他当时对DNA所知不多,并未觉得它在遗传上比蛋白质更重要,只是认为DNA作为与核蛋白结合的物质,值得研究。对一名研究生来说,确定一种未知分子的结构,就是一个值得一试的课题。在确信了DNA是遗传物质之后,还必须理解遗传物质需要什么样的性质才能发挥基因的功能。像克里克和威尔金斯,沃森后来也强调薛定谔的《生命是什么?》一书对他的重要影响,他甚至说他在芝加哥大学时读了这本书之后,就立志要破解基因的奥秘。如果这是真的,我们就很难明白,为什么沃森向印第安那大学申请研究生时,申请的是鸟类学。由于印第安那大学动物系没有鸟类学专业,在系主任的建议下,沃森才转而从事遗传学研究。当时大遗传学家赫尔曼·缪勒(Hermann Muller)恰好正在印第安那大学任教授,沃森不仅上过缪勒关于“突变和基因”的课(分数得A),而且考虑过要当他的研究生。但觉得缪勒研究的果蝇在遗传学上已过了辉煌时期,才改拜研究噬菌体遗传的萨尔瓦多·卢里亚(Salvador Luria)为师。但是,缪勒关于遗传物质必须具有自催化、异催化和突变三重性的观念,想必对沃森有深刻的影响。正是因为沃森和克里克坚信DNA是遗传物质,并且理解遗传物质应该有什么样的特性,才能根据如此少的数据,做出如此重大的发现。  他们根据的数据仅有三条:第一条是当时已广为人知的,即DNA由6种小分子组成:脱氧核糖,磷酸和4种碱基(A、G、T、C),由这些小分子组成了4种核苷酸,这4种核苷酸组成了DNA.第二条证据是最新的,弗兰克林得到的衍射照片表明,DNA是由两条长链组成的双螺旋,宽度为20埃。第三条证据是最为关键的。美国生物化学家埃尔文·查戈夫(Erwin Chargaff)测定DNA的分子组成,发现DNA中的4种碱基的含量并不是传统认为的等量的,虽然在不同物种中4种碱基的含量不同,但是A和T的含量总是相等,G和C的含量也相等。  查加夫早在1950年就已发布了这个重要结果,但奇怪的是,研究DNA分子结构的这三个实验室都将它忽略了。甚至在查加夫1951年春天亲访剑桥,与沃森和克里克见面后,沃森和克里克对他的结果也不加重视。在沃森和克里克终于意识到查加夫比值的重要性,并请剑桥的青年数学家约翰·格里菲斯(John Griffith)计算出A吸引T,G吸引C,A+T的宽度与G+C的宽度相等之后,很快就拼凑出了DNA分子的正确模型。  沃森和克里克在1953年4月25日的《自然》杂志上以1000多字和一幅插图的短文公布了他们的发现。在论文中,沃森和克里克以谦逊的笔调,暗示了这个结构模型在遗传上的重要性:“我们并非没有注意到,我们所推测的特殊配对立即暗示了遗传物质的复制机理。”在随后发表的论文中,沃森和克里克详细地说明了DNA双螺旋模型对遗传学研究的重大意义:一、它能够说明遗传物质的自我复制。这个“半保留复制”的设想后来被马修·麦赛尔逊(Matthew Meselson)和富兰克林·斯塔勒(Franklin W.Stahl)用同位素追踪实验证实。二、它能够说明遗传物质是如何携带遗传信息的。三、它能够说明基因是如何突变的。基因突变是由于碱基序列发生了变化,这样的变化可以通过复制而得到保留。  但是遗传物质的第四个特征,即遗传信息怎样得到表达以控制细胞活动呢?这个模型无法解释,沃森和克里克当时也公开承认他们不知道DNA如何能“对细胞有高度特殊的作用”。不过,这时,基因的主要功能是控制蛋白质的合成,这种观点已成为一个共识。那么基因又是如何控制蛋白质的合成呢?有没有可能以DNA为模板,直接在DNA上面将氨基酸连接成蛋白质?在沃森和克里克提出DNA双螺旋模型后的一段时间内,即有人如此假设,认为DNA结构中,在不同的碱基对之间形成形状不同的“窟窿”,不同的氨基酸插在这些窟窿中,就能连成特定序列的蛋白质。但是这个假说,面临着一大难题:染色体DNA存在于细胞核中,而绝大多数蛋白质都在细胞质中,细胞核和细胞质由大分子无法通过的核膜隔离开,如果由DNA直接合成蛋白质,蛋白质无法跑到细胞质。另一类核酸RNA倒是主要存在于细胞质中。RNA和DNA的成分很相似,只有两点不同,它有核糖而没有脱氧核糖,有尿嘧啶(U)而没有胸腺嘧啶(T)。早在1952年,在提出DNA双螺旋模型之前,沃森就已设想遗传信息的传递途径是由DNA传到RNA,再由RNA传到蛋白质。在1953~1954年间,沃森进一步思考了这个问题。他认为在基因表达时,DNA从细胞核转移到了细胞质,其脱氧核糖转变成核糖,变成了双链RNA,然后再以碱基对之间的窟窿为模板合成蛋白质。这个过于离奇的设想在提交发表之前被克里克否决了。克里克指出,DNA和RNA本身都不可能直接充当连接氨基酸的模板。遗传信息仅仅体现在DNA的碱基序列上,还需要一种连接物将碱基序列和氨基酸连接起来。这个“连接物假说”,很快就被实验证实了。  1958年,克里克提出了两个学说,奠定了分子遗传学的理论基础。第一个学说是“序列假说”,它认为一段核酸的特殊性完全由它的碱基序列所决定,碱基序列编码一个特定蛋白质的氨基酸序列,蛋白质的氨基酸序列决定了蛋白质的三维结构。第二个学说是“中心法则”,遗传信息只能从核酸传递给核酸,或核酸传递给蛋白质,而不能从蛋白质传递给蛋白质,或从蛋白质传回核酸。沃森后来把中心法则更明确地表示为遗传信息只能从DNA传到RNA,再由RNA传到蛋白质,以致在1970年发现了病毒中存在由RNA合成DNA的反转录现象后,人们都说中心法则需要修正,要加一条遗传信息也能从RNA传到DNA.事实上,根据克里克原来的说法,中心法则并无修正的必要。  碱基序列是如何编码氨基酸的呢?克里克在这个破译这个遗传密码的问题上也做出了重大的贡献。组成蛋白质的氨基酸有20种,而碱基只有4种,显然,不可能由1个碱基编码1个氨基酸。如果由2个碱基编码1个氨基酸,只有16种(4的2次方)组合,也还不够。因此,至少由3个碱基编码1个氨基酸,共有64种组合,才能满足需要。1961年,克里克等人在噬菌体T4中用遗传学方法证明了蛋白质中1个氨基酸的顺序是由3个碱基编码的(称为1个密码子)。同一年,两位美国分子遗传学家马歇尔·尼伦伯格(Marshall Nirenberg)和约翰·马特哈伊(John Matthaei)破解了第一个密码子。到1966年,全部64个密码子(包括3个合成终止信号)被鉴定出来。作为所有生物来自同一个祖先的证据之一,密码子在所有生物中都是基本相同的。人类从此有了一张破解遗传奥秘的密码表。  DNA双螺旋模型(包括中心法则)的发现,是20世纪最为重大的科学发现之一,也是生物学历史上惟一可与达尔文进化论相比的最重大的发现,它与自然选择一起,统一了生物学的大概念,标志着分子遗传学的诞生。这门综合了遗传学、生物化学、生物物理和信息学,主宰了生物学所有学科研究的新生学科的诞生,是许多人共同奋斗的结果,而克里克、威尔金斯、弗兰克林和沃森,特别是克里克,就是其中最为杰出的英雄。  克里克  弗朗西斯·哈里·康普顿·克里克(Francis Harry Compton Crick 1916.6.8——2004.7.28)  生于英格兰中南部一个郡的首府北安普敦。小时酷爱物理学。1934年中学毕业后,他考入伦敦大学物理系,3年后大学毕业,随即攻读博士学位。然而,1939年爆发的第二次世界大战中断了他的学业,他进入海军部门研究鱼雷,也没有什么成就。待战争结束,步入"而立之年"的克里克在事业上仍一事无成。1950年,也就是他34岁时考入剑桥大学物理系攻读研究生学位,想在著名的卡文迪什实验室研究基本粒子。  这时,克里克读到著名物理学家薛定谔的一本书《生命是什么》,书中预言一个生物学研究的新纪元即将开始,并指出生物问题最终要靠物理学和化学去说明,而且很可能从生物学研究中发现新的物理学定律。克里克深信自己的物理学知识有助于生物学的研究,但化学知识缺乏,于是开始发愤攻读有机化学、X射线衍射理论和技术,准备探索蛋白质结构问题。  1951年,美国一位23岁的生物学博士沃森来到卡文迪什实验室,他也受到薛定谔《生命是什么》的影响。克里克同他一见如故,开始了对遗传物质脱氧核糖核酸DNA分子结构的合作研究。他们虽然性格相左,但在事业上志同道合。沃森生物学基础扎实,训练有素;克里克则凭借物理学优势,又不受传统生物学观念束缚,常以一种全新的视角思考问题。他们二人优势互补,取长补短,并善予吸收和借鉴当时也在研究DNA分子结构的鲍林、威尔金斯和弗兰克林等人的成果,结果经不足两年时间的努力便完成了DNA分子的双螺旋结构模型。而且,克里克以其深邃的科学洞察力,不顾沃森的犹豫态度,坚持在他们合作的第一篇论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话,使他们不仅发现了DNA的分子结构,而且丛结构与功能的角度作出了解释。  1962年,46岁的克里克同沃森、威尔金斯一道荣获诺贝尔生物学或医学奖。  后来,克里克又单独首次提出蛋白质合成的中心法则,即遗传密码的走向是:DNA→RNA→蛋白质。他在遗传密码的比例和翻译机制的研究方面也做出了贡献。1977年,克里克离开了剑桥,前往加州圣地亚哥的索尔克研究院担任教授。  2004年7月28日深夜,弗朗西斯·克里克在与结肠癌进行了长时间的搏斗之后,在加州圣地亚哥的桑顿医院里逝世,享年88岁。
2023-07-01 13:33:543

双螺旋结构发现者的资料/简介(共五位)

楼主说的是下面这段资料中这个弗兰克林吧 她是维尔金斯的助手,因过早去世而与诺贝尔奖失之交臂。沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进人芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。 克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?--活细胞的物理面貌卜书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。 1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。 有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的"B型"DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的"A型"简单得多,只要稍稍看一下"B型"的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。 克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念。 他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。 有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌岭一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。 经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。 下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。
2023-07-01 13:34:031

无机物进化到微生物

无机物——————有机小分子物质(氨基酸)————————有机大分子物质(蛋白质)——————生命(拥有基本代谢功能和繁殖功能) 英国科学家米勒作了一个实验,它将氨气,氢气,水蒸气等混合气体加热,然后通过电火花的洗礼,再接着冷却,最后在所得液体中发现了最简单的如氨基酸类的有机物。这就是生物进化的第一阶段。 原始地球中,大气中充满了氨气,氢气,co2,等等无机物质(大多数从地 球表层火山喷出来的),当时乌烟瘴气的大气层中,闪电密布,大概过了多少亿年,积累了许久的量变在一次巨大的闪电袭击下突然间质变,成为了一个有机物。然后,越来越多的有机物落到了原始海洋中(还是喷出来的……),慢慢的,他们聚集到一起,在强烈的紫外线和闪电攻击下,成为了基本的大分子有机物。后来,有很多物质不停的变化,成为了一个细胞中的各种物质,比如线粒体等等。后来,他们聚集在一起,生成了隔离水和细胞液的细胞膜,就此,第一个“生命”诞生了,虽然他只能有基本的新陈代谢和繁殖能力,但他是个定义上的生命。之后那就是越来越多的细胞聚集在一起,成为了多细胞生物。 DNA,原名脱氧核糖核酸,他就是一种大分子有机物,生物的遗传物质分RNA,DNA,有的蛋白质也有遗传功能。是DNA指导氨基酸合成和本体一样的蛋白质,并且组成到一起。 生命的组合完全是意外的,就像我刚才跟你陈述的过程,只有非常小的几率,他们合成了,并且,如果第一个生命不幸夭折了,那就还要等很久很久。 (原创)DNADNA(为英文Deoxyribonucleic acid的缩写),又称脱氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料,有时被称为“遗传微粒”。DNA是一种分子,可组成遗传指令,以引导生物发育与生命机能运作。主要功能是长期性的资讯储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。 单体脱氧核糖核酸聚合而成的聚合体——脱氧核糖核酸链,也被称为DNA。在繁殖过程中,父代把它们自己DNA的一部分(通常一半,即DNA双链中的一条)复制传递到子代中,从而完成性状的传播。因此,化学物质DNA会被称为“遗传微粒”。原核细胞的拟核是一个长DNA分子。真核细胞核中有不止一个染色体,每条染色体上含有一个或两个DNA。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA. DNA是一种长链聚合物,组成单位称为核苷酸,而糖类与磷酸分子借由酯键相连,组成其长链骨架。每个糖分子都与四种碱基里的其中一种相接,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,是蛋白质氨基酸序列合成的依据。读取密码的过程称为转录,是根据DNA序列复制出一段称为RNA的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。DNA是遗传信息的载体,故亲代DNA必须以自身分子为模板准确的复制成两个拷贝,并分配到两个子细胞中去,完成其遗传信息载体的使命。而DNA的双链结构对于维持这类遗传物质的稳定性和复制的准确性都是极为重要的。 (一)DNA的半保留复制 Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,发现DNA在复制过程中碱基间的氢键首先断裂(通过解旋酶),双螺旋结构解旋分开,每条链分别作模板合成新链。由于每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。 (二)DNA复制过程 1.DNA双螺旋的解旋 (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) (2)DNA解链酶(DNA helicase) (3)DNA解链 2.冈崎片段与半不连续复制 3.复制的引发和终止 (三)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。[编辑本段]【DNA的理化性质】 DNA是大分子高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度。DNA对紫外线有吸收作用,当核酸变性时,吸光值升高;当变性核酸可复性时,吸光值又会恢复到原来水平。温度、有机溶剂、酸碱度、尿素、酰胺等试剂都可以引起DNA分子变性,即使得DNA双键间的氢键断裂,双螺旋结构解开。 DNA(deoxyribonucleic acid)指脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。[编辑本段]【分布和功能】 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。[编辑本段]【DNA的发现】 自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题,人们开始了对核酸和蛋白质的研究。 早在1868年,人们就已经发现了核酸。在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌“作战”而战死的白细胞和被杀死的人体细胞的“遗体”。于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用。他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质。霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的。于是他便给这种从细胞核中分离出来的物质取名为 “核素”,后来人们发现它呈酸性,因此改叫“核酸”。从此人们对核酸进行了一系列卓有成效的研究。 20世纪初,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成的。其中碱基有4种(腺瞟吟、鸟嘌吟、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。 列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了"四核苷酸假说"。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识。人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用。 蛋白质的发现比核酸早30年,发展迅速。进入20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现。 1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链。于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体。 1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有美菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。格里菲斯称该核酸为"转化因子"。 1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的“转化因子”,并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明“转化因子”是DNA。但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。 美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进入大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。进入细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。 1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由 DNA的指令合成的。这一结果立即为学术界所接受。 几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948- 1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A 与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。 1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。 沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。 克里克(1916一2004)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?-活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920一1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。 1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立 DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。 有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的“B型”DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的“A型”简单得多,只要稍稍看一下“B型”的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。 克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念。 他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。 沃森(左)和克里克有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌吟一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了 DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。 经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。 威尔金斯富兰克林下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。 20世纪30年代后期,瑞典的科学家们就证明DNA是不对称的。第二次世界大战后,用电子显微镜测定出DNA分子的直径约为2nm。 DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4 种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。[编辑本段]【DNA重组技术的发展】 20世纪50年代,DNA双螺旋结构被阐明,揭开了生命科学的新篇章,开创了科学技术的新时代。随后,遗传的分子机理――DNA复制、遗传密码、遗传信息传递的中心法则、作为遗传的基本单位和细胞工程蓝图的基因以及基因表达的调控相继被认识。至此,人们已完全认识到掌握所有生物命运的东西就是DNA和它所包含的基因,生物的进化过程和生命过程的不同,就是因为DNA和基因运作轨迹不同所致。 知道DNA的重大作用和价值后,生命科学家首先想到能否在某些与人类利益密切相关的方面打破自然遗传的铁律,让患病者的基因改邪归正以达治病目的,把不同来源的基因片段进行“嫁接”以产生新品种和新品质……于是,一个充满了诱惑力的科学幻想奇迹般地成为现实。这是发生在20世纪70年代初的事情。 实现这一科学奇迹的科技手段就是DNA重组技术。1972年,美国科学家保罗?伯格首次成功地重组了世界上第一批DNA分子,标志着DNA重组技术――基因工程作为现代生物工程的基础,成为现代生物技术和生命科学的基础与核心。 DNA重组技术的具体内容就是采用人工手段将不同来源的含某种特定基因的DNA片段进行重组,以达到改变生物基因类型和获得特定基因产物的目的的一种高科学技术。 到了20世纪70年代中后期,由于出现了工程菌以及实现DNA重组和后处理都有工程化的性质,基因工程或遗传工程作为DNA重组技术的代名词被广泛使用。现在,基因工程还包括基因组的改造、核酸序列分析、分子进化分析、分子免疫学、基因克隆、基因诊断和基因治疗等内容。可以说,DNA重组技术创立近 30多年来所获得的丰硕成果已经把人们带进了一个不可思议的梦幻般的科学世界,使人类获得了打开生命奥秘和防病治病“魔盒”的金钥匙。 目前,DNA重组技术已经取得的成果是多方面的。到20世纪末,DNA重组技术最大的应用领域在医药方面,包括活性多肽、蛋白质和疫苗的生产,疾病发生机理、诊断和治疗,新基因的分离以及环境监测与净化。 许多活性多肽和蛋白质都具有治疗和预防疾病的作用,它们都是从相应的基因中产生的。但是由于在组织细胞内产量极微,所以采用常规方法很难获得足够量供临床应用。 基因工程则突破了这一局限性,能够大量生产这类多肽和蛋白质,迄今已成功地生产出治疗糖尿病和精神分裂症的胰岛素,对血癌和某些实体肿瘤有疗效的抗病毒剂――干扰素,治疗侏儒症的人体生长激素,治疗肢端肥大症和急性胰腺炎的生长激素释放抑制因子等100多种产品。 基因工程还可将有关抗原的DNA导入活的微生物,这种微生物在受免疫应激后的宿主体内生长可产生弱毒活疫苗,具有抗原刺激剂量大、且持续时间长等优点。目前正在研制的基因工程疫苗就有数十种之多,在对付细菌方面有针对麻风杆菌、百日咳杆菌、淋球菌、脑膜炎双球菌等的疫苗;在对付病毒方面有针对甲型肝炎、乙型肝炎、巨细胞病毒、单纯疱疹、流感、人体免疫缺陷病毒等的疫苗……。我国乙肝病毒携带者和乙肝患者多达一二亿,这一情况更促使了我国科学家自行成功研制出乙肝疫苗,取得了巨大的社会效益和经济效益。 抗体是人体免疫系统防病抗病的主要武器之一,20世纪70年代创立的单克隆抗体技术在防病抗病方面虽然发挥了重要作用,但由于人源性单抗很难获得,使得单抗在临床上的应用受到限制。为解决此问题,近年来科学家采用DNA重组技术已获得了人源性抗体,这种抗体既可保证它与抗原结合的专一性和亲合力,又能保证正常功能的发挥。目前,已有多种这样的抗体进行了临床试验,如抗HER-2人源化单抗治疗乳腺癌已进入Ⅲ期试验,抗IGE人源化单抗治疗哮喘病已进入Ⅱ期试验。 抗生素在治疗疾病上起到了重要作用,随着抗生素数量的增加,用传统方法发现新抗生素的几率越来越低。为了获取更多的新型抗生素,采用DNA重组技术已成为重要手段之一。目前人们已获得数十种基因工程“杂合”的抗生素,为临床应用开辟了新的治疗途径。 值得指出的是,以上所述基因工程多肽、蛋白质、疫苗、抗生素等防治药物不仅在有效控制疾病,而且在避免毒副作用方面也往往优于以传统方法生产的同类药品,因而更受人们青睐。 人类疾病都直接或间接与基因相关,在基因水平上对疾病进行诊断和治疗,则既可达到病因诊断的准确性和原始性,又可使诊断和治疗工作达到特异性强、灵敏度高、简便快速的目的。于基因水平进行诊断和治疗在专业上称为基因诊断和基因治疗。目前基因诊断作为第四代临床诊断技术已被广泛应用于对遗传病、肿瘤、心脑血管疾病、病毒细菌寄生虫病和职业病等的诊断;而基因治疗的目标则是通过DNA重组技术创建具有特定功能的基因重组体,以补偿失去功能的基因的作用,或是增加某种功能以利对异常细胞进行矫正或消灭。 在理论上,基因治疗是治本治愈而无任何毒副作用的疗法。不过,尽管至今国际上已有100多个基因治疗方案正处于临床试验阶段,但基因治疗在理论和技术上的一些难题仍使这种治疗方法离大规模应用还有一段很长的距离。不论是确定基因病因还是实施基因诊断、基因治疗、研究疾病发生机理,关键的先决条件是要了解特定疾病的相关基因。随着“人类基因组计划”的临近完成,科学家们对人体全部基因将会获得全面的了解,这就为运用基因重组技术造逼于人类健康事业创造了条件。 不过,虽然基因技术向人类展示了它奇妙的“魔术师”般的魅力,但也有大量的科学家对这种技术的发展予以人类伦理和生态演化的自然法则的冲击表示出极大的担忧。从理论上来讲,这种技术发展的一个极致就是使人类拥有了创造任何生命形态或从未有过的生物的能力。人们能够想像这将是怎样的结果吗? 科学家在DNA中发现除基因密码之外的新密码 据台湾媒体报道,美国与以色列科学家相信,他们已在DNA(去氧核醣核酸)之中找到除了基因密码之外的第二种密码。新发现的密码负责决定核体—亦即DNA所环绕的微型蛋白质线轴—之位置。这些线轴同时保护与控制通往DNA本身的途径。 这项发现若获得证实,可能开启有关控制基因更高位阶的机制新知。譬如,每一种人体细胞得以激活其所需基因,却又无法触及其它种类细胞所使用的基因等既关键又神秘的过程。 以色列魏兹曼研究院的塞格尔与美国西北大学的威顿及其同僚,在这一期“自然”科学期刊中,撰文描述这种DNA新密码。 每一个人体细胞里都有约三千万个核体。之所以需要这么多的核体,是因为DNA线包覆每一个核体仅一.六五次,每个DNA螺旋就包含一百四十七个单位,而且单一染色体里的DNA分子在长度上可能就有高达二亿二千五百万个单位。 生物学家多年来一直怀疑,DNA上的某些位置,特别是DNA最容易弯曲的那些位置,可能比其它位置更有利于核体的存在,但整体模式并不显而易见。如今,塞格尔与威顿博士分析了酵母菌基因内约二百个位置的序列,这些都是既知核体纠结在一起的地方,两人发现其中确实隐含一个模式存在。 透过了解此一模式,他们成功预测其它有机体大约五成核体的位置。这个模式乃是能让DNA更容易弯曲,以及紧密包复核体的两种序列结合而成。但在此一模式中,每一个核体纠结的位置仅需若干序列出现即可,因此并不明显。正由于其形成条件松散,因此并不与基因密码冲突。
2023-07-01 13:34:2615

生物体内的DNA可否只含有两种碱基

不能只含有两种碱基,A=T,C=G互相配对,且只能是他们之间的配对,因为它们相连的键不一样,遵循查加夫(E.Chargaff)规则,每个碱基都有自己的功能,所以结合在一起形成的DNA链具有和遗传的信息,缺少哪个都不行,况且,任何一个碱基发生突变也会给生命有机体带来一些影响,大多是不利的影响.DNA贩子都是由4种基本的核苷酸组成的,有时候这些核苷酸会加以修饰,比如甲基化等,或者还有存在一些稀有碱基,同样是组成因素,DNA分子都含有这四种碱基,甚至会有一些稀有碱基存在,或者存在被修饰的碱基,比如5-甲基胞嘧啶等.
2023-07-01 13:34:541

dna验血胎儿性别准吗

检验孕妇血液可查胎儿性别?不可靠,更不提倡性别检查众所周知,怀孕是一个女人一生中非常重要的大事,胎儿的性别本来是随机的,并且不随人的意愿而改变。然而,很多父母或家里的长辈非常在意孕妇肚子里孩子的性别,而我国老一辈人中重男轻女的思想也仍然存在。因此,很多人会想尽办法要在胎儿还可以打掉之时,检查孩子的性别,如果不如父母或老人的心愿就立刻打掉。那么,胎儿的性别可以通过孕妇验血而判别吗?以色列的科学家曾发现,检验孕妇血液内一种激素的水平,可以在妇女怀孕仅十六天后就可以预知胎儿的性别是男是女。但这种办法并不可靠,即便借助超声波检查,可以提高检查的可靠性,但结果仍然有可能出错。根据我国法律的规定,医院及医护人员不得告知孕妇腹中胎儿的性别,就是为了减少因性别不符合家人心愿就打胎的情况。医院也不得设置检查胎儿性别的检测项目,但我国的香港并没有相关规定,香港的妇产医院也有专门检查胎儿DNA的项目。因此,可以通过简单的通过抽取孕妇胳膊的静脉血液,并从母亲血液中分离出胎儿的DNA,从而获得胎儿DNA情况。现在香港DNA基因工程发展得已经十分成熟,香港地区一直是中西交汇,医学水准也和国际接轨。一般来说,怀孕满7周以上,只需抽取孕妇手臂上的静脉血化验其中的染色体,就能让心急的父母提早知道胎儿情况。DNA系统检测在孕早期能达到百分之九十九以上的准确率,是目前国际医学结公认最早,最准确,最安全的鉴定方法,不会对孕妇及胎儿产生影响。如果孕妈妈真的十分想知道胎儿的情况和性别,以便提前为孩子的培养和教育做准备。一般可以选择到香港的权威医院做检查,但需要提前在网上或电话预约,没有预约是不能当天安排检查的。检查后的结果一般隔天或两三天内就可以拿到,孕妈妈也可以选择邮寄或在网上查看的方式得到结果,可以说是非常人性化,并且十分照顾孕妇的身体情况了。如果只是单纯的想知道胎儿性别,其实并不需要刻意的了解。一是因为国家的确明令禁止医院不得透露胎儿性别,二是因为不论是男孩还是女孩,都是母亲身上的肉。孕育生命本身是一件非常神圣又充满爱的事情,不要让简单的性别来界定胎儿是否要得到父母的爱。
2023-07-01 13:35:033

一直说基因,从哪里寻找那些已经消失的基因?

首先需要确定,基因是可遗传的核苷酸序列。人们首先从分析遗传学认识了基因。基因是产生一条多肽链或功能RNA所需的全部核苷酸序列。基因支持着生命的基本构造和性能。一、基因被发现的历程(分子遗传学)19世纪60年代,奥地利遗传学家格雷戈尔·孟德尔提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。1909年丹麦遗传学家约翰逊(W. Johansen,1859~1927)在《精密遗传学原理》一书中正式提出“基因”概念。二、核苷酸序列的发现1869年 瑞士生化学家米歇尔在细胞核内发现了核酸。1929年,俄裔美国生物化学家列文发现核酸可分为核糖核酸(RNA)与脱氧核糖核酸(DNA)。1928和1943年,英国细菌学家格里菲斯和美国细菌学家艾弗里先后通过肺炎双球菌的转化实验证明DNA具有传递遗传信息的功能。1950年,奥地利裔美国生物化学家查加夫发现DNA分子中的碱基A与T、G与C是配对存在的。1953年,美国生物学家沃森和英国生物物理学家克里克根据DNA分子碱基配对原则,构建出了DNA分子的双螺旋结构模型。三、进一步认识基因20世纪50年代以后,随着分子遗传学的发展,尤其是沃森和克里克提出DNA双螺旋结构以后,人们进一步认识了基因的本质,即基因是具有遗传效应的DNA片段。研究结果还表明,每条染色体只含有1~2个DNA分子,每个DNA分子上有多个基因,每个基因含有成百上千个脱氧核苷酸。自从RNA病毒发现之后,基因的存在方式不仅仅只存在于DNA上,还存在于RNA上。由于不同基因的脱氧核糖核苷酸的排列顺序(碱基序列)不同,因此,不同的基因就含有不同的遗传信息
2023-07-01 13:35:111

生物化学 环状DNA复制 这是电镜下的复制眼 哪位大神能告诉我它上面那几条线分别代表什么?

DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T ,C=G 查加夫(Chargaff)法则(即碱基互补配对原则)。你看到的就是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine)他们在DNA的两条反螺旋链直接互补配对,为了分别所以使用了不同的颜色。这些高中生物有。
2023-07-01 13:35:422

内的DNA可否只含有两种碱基

不能只含有两种碱基,A=T,C=G互相配对,且只能是他们之间的配对,因为它们相连的键不一样,遵循查加夫(E.Chargaff)规则,每个碱基都有自己的功能,所以结合在一起形成的DNA链具有和遗传的信息,缺少哪个都不行,况且,任何一个碱基发生突变也会给生命有机体带来一些影响,大多是不利的影响.DNA贩子都是由4种基本的核苷酸组成的,有时候这些核苷酸会加以修饰,比如甲基化等,或者还有存在一些稀有碱基,同样是组成因素,DNA分子都含有这四种碱基,甚至会有一些稀有碱基存在,或者存在被修饰的碱基,比如5-甲基胞嘧啶等.
2023-07-01 13:35:512

DNA合成是什么?

DNA(为英文Deoxyribonucleic acid的缩写),又称脱氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。原核细胞的拟核是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA. a. DNA是由脱氧核苷酸的单体聚合而成的聚合体。 b. DNA的单体称为脱氧核苷酸,每一种脱氧核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根,DNA都是由C、H、O、N、P五种元素组成的。 c. DNA的含氮碱基又可分为四类:鸟嘌呤(Guanine)、胸腺嘧啶(Thymine)、腺嘌呤(Adenine)、胞嘧啶(Cytosine) d. DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。 e. DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A(腺嘌呤脱氧核苷酸)=T(胸腺嘧啶脱氧核苷酸 )C(胞嘧啶脱氧核苷酸)=G(鸟嘌呤脱氧核苷酸)。 A与T之间以两个氢键相连,C与G之间以三个氢键相连。DNA是由四种更小的东西组成,这四种东西的总名字叫核苷酸,就像四个兄弟一样,它们都姓核苷酸,但名字却有所不同,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T),这四种名字很难记,不过只要记住DNA是由四种核苷酸只是随便聚在一起的、而且它们相互的连接没有什么规律,但后来核苷酸其实不一样,而且它们相互组合的方式也千变万化,大有奥秘。现在,人们已基本上了解了遗传是如何发生的。20世纪的生物学研究发现:人体是由细胞构成的,细胞由细胞膜、细胞质和细胞核等组成。已知在细胞核中有一种物质叫染色体,它主要由一些叫做脱氧核糖核酸(DNA)的物质组成。 生物的遗传物质存在于所有的细胞中,这种物质叫核酸。核酸由核苷酸聚合而成。每个核苷酸又由磷酸、核糖和碱基构成。碱基有五种,分别为腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)。每个核苷酸只含有这五种碱基中的一种。 单个的核苷酸连成一条链,两条核苷酸链按一定的顺序排列,然后再扭成“麻花”样,就构成脱氧核糖核酸(DNA)的分子结构。在这个结构中,每三个碱基可以组成一个遗传的“密码”,而一个DNA上的碱基多达几百万,所以每个DNA就是一个大大的遗传密码本,里面所藏的遗传信息多得数不清,这种DNA分子就存在于细胞核中的染色体上。它们会随着细胞分裂传递遗传密码。 人的遗传性状由密码来传递。人大概有2.5万个基因,而每个基因是由密码来决定的。人的基因中既有相同的部分,又有不同的部分。不同的部分决定人与人的区别,即人的多样性。人的DNA共有30亿个遗传密码,排列组成约2.5万个基因。DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。
2023-07-01 13:36:141

什么是RNA二级结构?

所谓RNA二级结构就是单链RNA分子自身缠绕配对可以形成茎环结构。例如tRNA可以形成三叶草的二级结构,而三级结构就是倒L形状的。有些软件可以计算的,如RNA structure等软件。楼上的不懂不要乱说,RNAi是小分子双链RNA,并不是什么二级结构。
2023-07-01 13:36:235

想知道模型法是什么?

通过模型来揭示原型的形态、特征和本质的方法称为模型法。模型法借助于与原型相似的物质模型或抽象反映原型本质的思想模型,间接地研究客体原形的性质和规律。通俗的说就是通过引入模型,能方便我们解释那些难以直接观察到的事物的内部构造,事物的变化以及事物之间的关系的符号、公式、表格、实物等,将物理问题实际化。例如,揭示生物大分子的结构,用建立理想模型的方法是一种成功的选择。模型实际上是假设的一种特殊形式,也可以说是科学性和假定性的辩证统一。它不仅要在时间中接受检验,而且还要在实践中扩展、补充和修正。1951年11月,沃森在前人研究的基础上着手建立DNA分子模型工作,但由于计算错误,第一次建立的DNA分子模型定为三股链的结构。后来,他对DNA分子中碱基间的吸引力重新进行计算,并受到查加夫工作的启发,解决了“碱基配对”的问题。他们有看到了富兰克林工作部分细节报告,经过反复讨论,终于在1953年初提出了DNA双螺旋结构的分子模型。
2023-07-01 13:36:391

RNA有没有遗传信息??

原核和真核细胞的RNA没有没有遗传信息。在原核和真核细胞中DNA是遗传物质,RNA不是。楼上几位说道某些病毒的RNA是遗传物质是对的,但病毒不是细胞,它不具有细胞结构,这是常识。“中心法则说道遗传信息可以从DNA流向RNA”` 那就是说RNA有遗传信息的话,那照你这么说蛋白质也有喽。书上还说“进而流向蛋白质”呢,呵呵,所以不应那样考虑。
2023-07-01 13:36:5510

DNA与RNA的区别

DNA是双螺旋结构,RNA是单螺旋结构的。 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。
2023-07-01 13:37:204

DNA和RNA的区别

DNA是双螺旋结构,RNA是单螺旋结构的。 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。参考资料:百度文库
2023-07-01 13:38:053

DNA能不能转为RNA?

分类: 理工学科 问题描述: 顺便问一个生物方面的问题:rRNA是什么? 解析: 不能 RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。 1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。 2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。 3.碱的作用:DNA耐碱RNA易被碱水解。 4.显色反应: 鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物 DNA ------→ 蓝紫色化合物苔黑酚 二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们。 DNA和RNA的鉴别染色 利用吖啶橙的变色特性可鉴别DNA和RNA。吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记。观察死亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体。虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用。 5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA。DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA。 6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害。当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml。用A260/A280还可来表示核酸的纯度。 7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA ; 超螺旋DNA > 解链环状DNA ; 松弛环状DNA ; 线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA。 8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法。 9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量。 聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定。过去几天几星期才能做到的事情,用PCR几小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑。 PCR技术简史 PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”。 PCR的实现 1985年美国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应。其原理类似于DNA的体内复制,只是在试管中给 DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间。 PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的 Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加。②引物链延伸反应在37℃下进行,容易发生模板和引物之 间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一。此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于 Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难。这使得 PCR技术在一段时间内没能引起生物医学界的足够重视。1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段。但每循环一次,仍需加入新酶。1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶。此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的 60%,在95℃下反应2h后其残留活性是原来的40%。②在热变性时不会被钝化,不必在每次扩增反应后再加新酶。③大大提高了扩增片段特异性和扩增效 率,增加了扩增长度(2.0Kb)。由于提高了扩增的特异性和效率,因而其灵敏性也大大提高。为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase)。此酶的发现使PCR广泛的被应用。 PCR技术基本原理 PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。 PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%, 但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进 入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多数情 况下,平台期的到来是不可避免的。 PCR扩增产物 可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5"端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所 结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3"端开始延伸,其5"端是固定的,3"端则没 有固定的止点,长短不一,这就是“长产物片段”。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。引物在与新链结合 时,由于新链模板的5"端序列是固定的,这就等于这次延伸的片段3"端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的 “短产物片段”。不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用。 PCR反应体系与反应条件 标准的PCR反应体系: 10×扩增缓冲液 10ul 4种dNTP混合物 各200umol/L 引物 各10~100pmol 模板DNA 0.1~2ug Taq DNA聚合酶 2.5u Mg2+ 1.5mmol/L 加双或三蒸水至 100ul PCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。 设计引物应遵循以下原则: ①引物长度: 15-30bp,常用为20bp左右。 ②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段。 ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 ④避免引物内部出现二级结构,避免两条引物间互补,特别是3"端的互补,否则会形成引物二聚体,产生非特异的扩增条带。 ⑤引物3"端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。 ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。 ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。 引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。 酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。 dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。 模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。 SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的 *** 白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接 用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。 Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。 PCR反应条件的选择 PCR反应条件为温度、时间和循环次数。 温度与时间的设置: 基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。 ①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则 需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。 ②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长 度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度: Tm值(解链温度)=4(G+C)+2(A+T) 复性温度=Tm值-(5~10℃) 在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。 ③延伸温度与时间:Taq DNA聚合酶的生物学活性: 70~80℃ 150核苷酸/S/酶分子 70℃ 60核苷酸/S/酶分子 55℃ 24核苷酸/S/酶分子 高于90℃时, DNA合成几乎不能进行。 PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。 循环次数 循环次数决定PCR扩增程度。PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。 PCR反应特点 特异性强 PCR反应的特异性决定因素为: ①引物与模板DNA特异正确的结合; ②碱基配对原则; ③Taq DNA聚合酶合成反应的忠实性; ④靶基因的特异性与保守性。 其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。 灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。 简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。 对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测。 PCR扩增产物分析 PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论。PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法。 凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性。PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件。 琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶,供检测用。 聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析。 酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究。 分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法。 Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交。此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研。 斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析。 DNA是双螺旋结构,RNA是单螺旋结构的。 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序 *** 定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。
2023-07-01 13:38:221

基因转录时,核糖核苷酸之间通过碱基配对连接 为什么不对?

DNA的基本介绍(DNA,脱氧核糖核酸的英文简称),又称脱氧核糖核酸,是DNA染色体的主要化学成分,也是遗传物质的组成。有时被称为“遗传粒子”,原因是在繁殖过程中,父亲将自己的DNA复制给后代,从而完成了性状的繁殖。dna的结构可分为四级结构:一级结构、二级结构、三级结构和四级结构。DNA是一种长链聚合物,DNA腺嘌呤脱氧核苷酸(四单元,潮湿的脱氧腺苷)、胸腺嘧啶核苷(脱氧胸苷)、胞嘧啶核苷酸(脱氧胞苷),鸟嘌呤核苷酸(dGMP dioxyguanosine)。脱氧核糖(五戊糖)和磷酸分子通过酯键连接的长链骨架,安装在外面,装在里面的四个基地。每一个糖分子都与四个碱基之一相连,这些碱基沿着DNA长链排列,形成一个指导蛋白质合成的遗传密码。读取密码的过程称为转录,利用DNA双链中的单链作为模板转录称为信使核糖核酸的核酸分子。大多数RNA合成蛋白质的信息,而其他人都有特殊的功能,如rRNA、snRNA,siRNA。在细胞中,DNA与蛋白质结合形成染色体,整组染色体统称为基因组。对人类来说,正常的身体包含46个染色体。在细胞分裂时,染色体在间期,间期复制,可分阶段G1,DNA合成,DNA合成前期,-,和g2-dna合成。对于真核生物,如动物、植物和真菌,染色体主要存在于细胞核中;对于原核生物,如细菌,它们主要分布在细胞质中。染色体上的染色质蛋白质,如组织蛋白质,组织和压缩DNA以帮助DNA与其他蛋白质相互作用,从而调节基因转录。dna分子结构是由两个核苷酸通过一个碱基序列相互连接而成的长链。大多数的DNA包含两个这么长的线,和一些DNA的单链,如大肠杆菌噬菌体phi X174,G4,M13,等等。DNA有环DNA和链DNA点。在某些类型的DNA中,5 -胞嘧啶能够在一定的范围内取代胞嘧啶,其中5的小麦胚芽DNA特别丰富。在某些噬菌体,5 -羟甲基胞嘧啶胞嘧啶取代。在40年代末,查加夫(E.Chargaff)发现,不同物种的DNA碱基组成不同,但其中数等于腺嘌呤胸腺嘧啶数(A = T),鸟嘌呤胞嘧啶(G = C)数等于该数,其中数等于嘌呤和嘧啶数的总和,与DNA的结构概貌的几个层次。一级结构是指由核酸组成的四个基本单元——DNA(核苷酸),通过3,5"两个磷酸酯键合在一起的线性聚合物,以及DNA序列的基本单位。每个DNA的一级结构由三部分组成:一分子含氮碱基+分子(DNA)+五磷酸己糖分子。核酸的氮基可分为四类:腺嘌呤(腺嘌呤,缩写为A),胸腺嘧啶(胸腺嘧啶,缩写为T),胞嘧啶(胞嘧啶,缩写为C)和鸟嘌呤(鸟嘌呤,简称G)。DNA的四个氮基成分是种属特异性的。同一树种不同个体间的四种氮碱比是相同的,但不同品种间的氮含量存在差异。四种奇怪的氮碱比DNA,DNA中的=每一生物,C = G Chargaff(Chargaff)规则(即碱基互补配对)。两级结构的两级结构指的是两个形成DNA双螺旋结构的多核苷酸链反向平行卷曲。DNA的二级结构分为两类:一是右手螺旋,如A-DNA、B-DNA,cDNA,促进下,等对方是左手双螺旋,如Z-DNA。James Watson和Francis Click发现的双螺旋是水结合型DNA,称为B,在细胞中最常见(见图表)。DNA是单链的,一般存在于原核生物,如大肠杆菌噬菌体φX174,G4,M13,等等。有些DNA是环状的,有些DNA是线性的。碱A和T之间可以形成G和C之间的氢键形成三个氢键,使两个多聚脱氧核苷酸形成互补的双链,由于基地两碱基的分布不在同一平面,氢键碱基对沿长轴旋转的角度,依据形态
2023-07-01 13:38:471

DNA为什么是双螺旋结构,对于存在于线粒体和叶绿体中的DNA是如何转录和翻译的。

奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948- 1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A 与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。  1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。
2023-07-01 13:38:571

谁能帮我整理一下高中的生物史啊?!!

埃弗里,O.T. Oswald Theodore Avery (1877~1955) 美国细菌学家。1877年10月21日生于加拿大新斯科舍哈利法克斯,1955年2月20日卒于美国田纳西州纳什维尔。1887年随作牧师的父亲迁入美国纽约市。1904年毕业于哥伦比亚大学医学院,后到布鲁克林的霍格兰实验室研究并讲授细菌学和免疫学。1913年转到纽约的洛克菲勒研究所附属医院工作,直到1948年退休。 他和C.麦克劳德、M.麦卡锡于1944年共同发现不同型的肺炎双球菌(Diplococcus pneumoniae)的转化因子是 DNA。英国微生物学家F.格里菲思于1928年就发现:将已经死亡的Ⅲ型肺炎双球菌和活的Ⅱ型菌分别注射入小白鼠体内,小白鼠表现正常;若将两者混合注入,则小白鼠死亡,并从其尸体中可分离出活的可致病的Ⅲ型肺炎双球菌。格里菲思由此推测,在Ⅲ型的死菌体中必有一种转化因子,能使Ⅱ型转化为Ⅲ型,而且这种转化可以遗传给后代。埃弗里和他的同事则进一步从被高温杀死的Ⅲ型菌中分离出蛋白质、荚膜的成分(粘多糖)和 DNA,将这几种成分分别同活的Ⅱ型菌混合培养,发现只有 DNA能使活的Ⅱ型转化为Ⅲ型,即使无荚膜、不致病的可转化为有荚膜、能致病的肺炎双球菌。证明了格里菲思所说的转化因子就是脱氧核糖核酸(DNA)。这项实验第一次证明了遗传物质是DNA而不是蛋白质。虽然这一发现,曾引起争论和怀疑,但的确推动了DNA的研究,直至1953年DNA双螺旋结构的发现。 他早年就熟悉肺炎双球菌,研究过肺炎双球菌的免疫性。提出肺炎双球菌可根据其免疫的专一性来进行分类,而这种免疫专一性是由于不同菌型的荚膜中所含的多糖引起的。由此他建立起对不同型肺炎双球菌的灵敏检验法。 沃森,J.D. James Dewey Watson (1928~ ) 美国分子生物学家。1928年4月6日生于芝加哥。1947年毕业于芝加哥大学,得学士学位,后进印第安纳大学研究生院深造,1950年得博士学位后去丹麦哥本哈根大学从事噬菌体的研究,1951~1953年在英国剑桥大学卡文迪什实验室进修,1953年回国,1953~1955年在加州理工大学工作,1955年去哈佛大学执教,先后任助教授和副教授,1961年升为教授。在哈佛期间,主要从事蛋白质生物合成的研究。1968年起任纽约长岛冷泉港实验室主任,主要从事肿瘤方面的研究。1951~1953年在英国期间,他和英国分子生物学家F.H.C.克里克合作,根据X射线对 DNA晶体的衍射研究结果、DNA分子中碱基组成的规律性(查加夫规律)和其他一些实验数据,提出了DNA的双螺旋结构学说。他们认为DNA分子是由两条多核苷酸链相互绕在一起构成的一个双螺旋,两条链的走向相反,都是右手螺旋,由脱氧核糖和磷酸构成的骨架在外侧,碱基在内侧,两条链的碱基由氢键联系,总是腺嘌呤核苷(A)和胸腺嘧啶核苷(T)配对,鸟嘌呤核苷(G)和胞嘧啶核苷(C)配对,在B型的DNA分子中碱基对平面垂直于螺旋轴,两个相邻碱基的距离为3.4埃,每10对碱基构成一个完整的螺旋,螺旋的宽度为20埃。这个学说不但阐明了DNA的基本结构,并且为一个DNA分子如何复制成两个结构相同DNA分子以及DNA怎样传递生物体的遗传信息提供了合理的说明。沃森在生物学方面受过基本训练,他对DNA是遗传的物质基础有深刻的信念,而克里克则是学物理的,他熟悉晶体结构的测定方法,他们两人的合作相得益彰,因此取得这项重大成就。它被认为是生物科学中具有革命性的发现,是20世纪最重要的科学成就之一。由于提出DNA的双螺旋模型学说,沃森和克里克及M.H.F.威尔金斯一起获得了1962年诺贝尔生理学或医学奖。 森是美国科学院院士。著有《基因的分子生物学》(1976)、《双螺旋》(1968)等书。此外,他还获得了许多科学奖和不少大学的荣誉学位。 克里克,F.H.C. Francis Harry Compton Crick (1916~ ) 英国分子生物学家。1916年6月8日生于北安普敦,1937年获伦敦大学学士学位。第二次世界大战期间参加英国海军制造磁性水雷的工作。1947~1949年至剑桥斯特兰奇韦斯实验室工作。1949~1953年,在剑桥大学卡文迪什实验物理学实验室工作。在此期间和J.D.沃森合作,提出了著名的 DNA双螺旋学说。1953年获剑桥大学博士学位。1953~1954年去美国布鲁克林工业学院工作。以后回到英国医学研究委员会剑桥分子生物学实验室工作。1976年去美国索尔克生物学研究所任研究教授,主要从事脑的研究。 克里克和同事提出了“三联密码”的看法,即遗传密码由3个核苷酸组成,3个核苷酸可以转译成一个氨基酸。此外,他还从立体化学的角度提出了“摆动假说”,指出密码子和反密码子结合时,密码子的第一和第二两个核苷酸和反密码子的第三和第二两个核苷酸严格按照沃森-克里克碱基配对的规则结合,但密码子的第三个核苷酸和反密码子的第一个核苷酸之间的结合则可有一定的“自由”,如尿嘧啶核苷(U)除可和腺嘌呤核苷(A)配对外,还可和鸟嘌呤核苷(G)配对,鸟嘌呤核苷除和胞嘧啶核苷(C)配对外,还可和尿嘧啶核苷配对,而次黄嘌呤核苷 (I)则和胞嘧啶核苷、尿嘧啶核苷或腺嘌呤核苷均可配对。 因提出DNA的双螺旋结构学说,他和J.D.沃森及M.H.F.威尔金斯一起,获得了1962年诺贝尔生理学或医学奖。他是英国皇家学会会员,著有《分子和人》等。他还获得了许多科学奖和不少大学授予的荣誉学位。 达尔文,C.R. Charles Robert Darwin (1809~1882) 英国生物学家,进化论的主要奠基人。1809年2月12日生于英国什鲁斯伯里,1882年4月19日卒于肯特郡。1831年毕业于剑桥大学,同年12月27日参加英国海军贝格尔舰环绕世界的考察航行,先在南美洲东海岸的巴西、阿根廷等地和西海岸及相邻的岛屿上考察,然后跨太平洋至大洋洲,继而越过印度洋到达南非,再绕好望角经大西洋回到巴西,最后于1836年10月2日返抵英国。 回国后,他在多病的情况下坚持整理了考察中收集的大量资料,陆续发表了有关生物学及地质学的考察报告,其中包括《贝格尔舰所经各国的地质及博物调查日记》(1839)、《贝格尔舰航行动物志》(1840~1843)、以及三册有关珊瑚礁、火山岛的地质报告(1842~1846)。他在地质学论著中,提出环礁是因海底下沉、珊瑚向上堆生而成的著名论断。这5年的旅行考察更促使他思索物种起源的问题。他研究了各方面的大量证据,逐渐认识到,形形色色的物种实际都是由共同祖先进化而来的。他通过植物栽培和家畜驯养的事例,感到进化的原因可能是大自然对生物采取了类似的选择方式——去劣存优。他还注意到,生物界中普遍存在着个体差异;适应环境的物种可以孳生繁衍,不适应的则可能灭绝。他又从T.R.马尔萨斯的《人口论》中得到启示:每一物种均有巨大的繁殖力,但存活者只占极少数,这说明自然界中存在着剧烈的生存竞争,这种竞争造成大量死亡,从而维持了种群数目的相对稳定。经过多年的探索,他逐渐形成了一个系统的进化思想:生物界本来就存在着个体差异,在生存竞争的压力下,适者生存,不适者被淘汰;物种所保留的有利性状在世代传递过程中逐渐积累,经过性状分异和中间类型消失便形成新种。1842~1844年间,他写过短文论述这些思想,但只给少数朋友看过。1846年以后,他研究了藤壶化石种及现存种的分类问题,对物种变异有了更深刻的理解;并于1851~1854年先后发表了4篇论述蔓足类的专著。此后他又不断与友人探讨,进一步充实和发展了他的进化思想。1858年6月18日,他接到博物学家A.R.华莱士的一篇文章,其中表述了与他相同的进化论见解。这时他才在朋友的敦促下写出了自己的进化观点,与华莱士的文章同于7月1日的伦敦林奈学会上发表。他们的文章当时没有引起普遍的注意。1859年11月24日出版了他的《物种起源》,书中详细介绍了他20年来收集到的丰富证据,充分论证了生物的进化,并明确提出自然选择学说来说明进化机理。书出版后迅即售完,在社会上引起极大反响。进化论的出现使生物界的种种现象都得到一个统一的解释:生物的一致性可以用共同祖先来说明;物种的多样性则完全是进化适应的结果。进化论的出现在哲学和社会科学领域中也产生极大影响;它猛烈冲击了当时支配思想领域的神学观念。 此后,达尔文的著作大都是对进化学说的进一步阐释和发展。例如1868年的《动物和植物在家养下的变异》论述了人工选择问题;1871年的《人类的由来及性选择》则把进化学说推广到人类。此外,还有一系列著作探讨了植物界中的许多适应现象,如1862年的《兰花诱虫授粉的种种策略》、1865年的《攀缘植物的运动及习性》、1875年的《食虫植物》以及1877年的《植物界中异花授粉和自花授粉的效果》等。1872年发表的《人类和动物的表情》可算是最早的一部行为学著作;而1881年的《蚯蚓对园田土壤形成的作用》则是土壤生态学的先驱。他还研究了植物的向光和向地运动,根据实验断定在植物体中存在着某种能传递信息的物质;预见了后来发现的生长素。 孟德尔,G.J. Gregor Johann Mendel (1822~1884) 奥地利遗传学家,遗传学的奠基人。1822年7月22日生于奥地利的海因岑多夫(今捷克的海恩塞斯),1884年1月6日卒于布吕恩(今捷克的布尔诺)。他于1840年以优异的成绩毕业于特罗保的预科学校,即进入奥尔米茨哲学院学习。1843年因家贫而辍学;同年10月到奥古斯丁修道院做修道士。1847年被任命为神父。1849年受委派到茨纳伊姆中学任希腊文和数学代课教师。1851~1853年去维也纳大学学习物理学、化学、数学、动物学和植物学,在此期间受到著名物理学家J.C.多普勒的数学和统计学的熏陶、植物学家F.J.A.N.翁格尔的物种可变和植物通过杂交可能产生新种观点的影响,这一切对他以后创造性的科学研究起了很大作用。1853年夏,他从维也纳大学毕业回修道院。1854年被委派到布吕恩技术学校任物理学和博物学的代理教师。他在那里工作了14年之久。 从1856~1863年,他进行了8年的豌豆杂交实验,并于1865年在布吕恩自然科学研究协会上报告了他的研究结果。1866年又在该会会刊上发表了题为《植物杂交试验》的论文。他在这篇论文中提出了遗传因子(现称基因)及显性性状、隐性性状等重要概念,并阐明其遗传规律,后人称之为孟德尔定律(包括“分离定律”及“独立分配定律”)。孟德尔在实验中对于解决什么问题(亦即遗传规律)、选择什么材料和怎样分析结果,都有十分清晰的构思。他冲出了已往生物学界一直因循的活力论和目的论窠臼、敢于借鉴物理学中的粒子运动,即粒子的随机结合和分离作为实验设计分析的基点。在实验方法上一反前人笼统描述亲子间总合性状相似和不同的做法,把诸如茎杆高度、子叶颜色等作为各自独立的性状,并设想个体的总合性状乃是由多种独立性状随机组合和分离的产物。他的另一超人之处是在数据处理上没有忽视未表达所研究的独立性状的个体的数目。他所建立的测交法最能说明他对隐性个体遗传内涵的重视。但是这些发现当时并未受到学术界的重视。直到1900年,孟德尔定律才由 3位植物学家——荷兰的H.德·弗里斯、德国的C.E.科伦斯和奥地利的 E.von切尔马克通过各自的工作分别予以证实,成为近代遗传学的基础。从此孟德尔也被公认为科学遗传学的奠基人。 除了进行过植物杂交试验之外,孟德尔还从事过植物嫁接和养蜂等方面的研究。此外,他还进行了长期的气象观测,并且于1871年发表过一篇有关龙卷风成因的学术论文。他生前是维也纳动、植物学会会员、并且是布吕恩自然科学研究协会和奥地利气象学会的创始人之一。施莱登,M.J. Matthias Jakob Schleiden (1804~1881) 德国植物学家,细胞学说的创始人之一。1804年4月5日生于汉堡,1881年6月23日卒于美因河畔法兰克福。早年在海德堡学习法律(1824~1827),并在汉堡作过律师。因对植物学有浓厚兴趣而攻习植物学,于1831年毕业于耶拿大学。1850年任耶拿大学植物学教授。当时植物学界流行的研究是形态分类学,而他则通过研究植物显微镜下的结构来描述和命名新种。自17世纪R.胡克把在显微镜下看到的木栓薄片中的小室称为“细胞”以来,不少学者对许多动、植物的显微结构都进行过描述,但并未引出规律性的概念。施莱登根据他多年在显微镜下观察植物组织结构的结果,认为在任何植物体中,细胞是结构的基本成分;低等植物由单个细胞构成,高等植物则由许多细胞组成。1838年,他发表了著名的《植物发生论》一文,提出了上述观点。该文刊登在1838年出版的《米勒氏解剖学和生理学文集》上。德国动物学家T.A.H.施万将此概念扩展到动物界,从而形成了所有植物和动物均由细胞构成这一科学概念即“细胞学说”,并首次载于1839年发表的施万所著的《动物和植物的结构与生长的一致性的显微研究》一文中。“细胞学说”被恩格斯誉为19世纪自然科学三大发现之一,对生物科学的发展起了巨大的促进作用。施莱登也认识到细胞核的重要性,并观察到细胞核与细胞分裂有关。他还描述过细胞中活跃的物质运动,即现在所说的原生质川流运动。他是首先接受达尔文进化论的德国生物学家之一。 施万,T.A.H. Theodor Ambrose Hubert Schwann (1810~1882) 德国动物学家和生理学家。1810年12月 7日生于诺伊斯,1882年1月11日卒于科隆。他开创了现代组织学并是细胞学说的创立人之一。他受教育于波恩、维尔茨堡和柏林大学,1834年获博士学位生涯后,成为生理学家J.P.弥勒的助教。 1834~1839年是他在科研工作中最富创新的年代。他研究消化过程,发现了胃中与消化有关的物质——胃蛋白酶。这是从动物组织提取的第一个酶。他设计了实验来测计荷载相同重量的肌肉受到相同刺激时收缩长度的变化,并对收缩强度与刺激强度进行比较借助物理方法显示生理功能,为生理学研究开辟了新的定量途径。他通过实验认识到酒精发酵与酵母的代谢有关,有机物的腐烂是由于活的有机体(微生物)的代谢的结果。并且首先使用“代谢作用”(metabolism)一词。他的重大贡献是1839年发表的《动植物结构和生长一致性的显微研究》。他受植物学家M.J.施莱登的影响,认为脊索细胞(或软骨细胞)与植物细胞有相似性,并认为细胞是各种组织的基本单位,所以有不同形状都是由于细胞分化的结果。因此,基本单位虽然在生理上完全不同,却可能是根据同一法则发育出来的。他和施莱登共同奠定细胞学说的基础。但是他也接受了施莱登的错误观点,认为细胞是在基质内通过结晶的过程形成的。1839年后,由于发酵的见解而受到当时权威人士的攻击,使他的处境十分困难,长期处于忧虑和抑郁状态。后来L.巴斯德的实验才证明他的见解是正确的。 1839~1848年他在卢万大学任生理学教授,发展了胆导管的实验方法,研究胆汁在消化中的作用,认为在消化道中不能没有胆汁。1848年在列日大学任生理学教授并兼任解剖学、胚胎学教授。在这个日益兴旺的工业区他还发展了一系列煤矿用的排水和急救设备。直到1879年他退休之前,依然讲授生理学。他在中年以后有越来越明显的宗教倾向。
2023-07-01 13:39:062

DNA链间距离

1953年以前化学家L.C.波林等用建造分子模型的方法解决了蛋白质的 α-螺旋结构问题,并试图用同样的方法解决DNA的结构。L.C.波林提出的DNA模型虽然与事实不符,但可作为J.D.沃森和F.H.C.克里克的借鉴。E.查加夫等人分析了许多不同来源 DNA的碱基组成,发现DNA中4种碱基的克分子比总是A=T、G=C,这个实验结果导致双链互补概念的建立。英国人M.威尔金斯和R.富兰克林等对 DNA的 X射线晶体衍射分析为DNA双螺旋结构提供了必要的数据。 特点 当DNA钠盐在92%相对湿度下,DNA呈B型双螺旋。其结构有以下特点:①由两条DNA链组成,其中糖和磷酸骨架绕着一个螺旋轴形成右手螺旋。双螺旋的直径为20埃,螺旋表面有两条沟,一条大沟和一条小沟。这两条沟对一些蛋白质识别碱基顺序起非常重要的作用;②碱基对之间的氢键把两条DNA链维系在一起。碱基平面与螺旋轴垂直,碱基对在螺旋内部,糖和磷酸骨架则在外部;③两条DNA链绕螺旋轴旋转一周(360°)包括10个碱基对,沿螺旋轴方向的距离为34埃,相邻碱基对之间的距离为3.4埃,旋转角度为 36°;④碱基平面之间的疏水作用在稳定双螺旋结构方面起着重要的作用,它相当甚至大于碱基对之间氢键的作用;⑤两条脱氧核糖核酸链的化学结构方向相反,即一条链是:……磷酸-5"-脱氧核糖-3"-磷酸……,另一条链是:……磷酸-3"-脱氧核糖-5"-磷酸……(图2);⑥双螺旋结构中碱基对由于几何形状的限制,只能是A与T配对,G与C配对(图3)。这两种碱基对的形状和大小都近似相同。它们的糖苷键也有相同的位置和方向。如果嘌呤与嘌呤或嘧啶与嘧啶配对,这样的碱基对在双螺旋结构中就会大于或小于观察到的螺旋直径(20埃);⑦具有二次旋转对称性。即一对碱基旋转180°并不影响双螺旋的对称性。因此,双螺旋结构只限定碱基配对的方式,并不限定碱基顺序,碱基对可以是A/T,G/C,也可以是T/A、C/G;⑧已知一条DNA链的碱基顺序和方向, 可以推断出另一条DNA链的碱基顺序和方向,也就是说两条链的碱基顺序是互补的。 双螺旋结构中,核苷酸之间3",5"-磷酸二酯键的几何构型有利于碱基之间疏水作用的形成,从而有利于稳定DNA双螺旋结构。一条DNA链与另一条核糖核酸(RNA)链之间通过碱基对(A/U,G/C)的氢键也可以形成类似于DNA双螺旋结构的 DNA-RNA杂交链。在转录过程中就出现这种DNA-RNA杂交链。 无论在原核细胞中,还是在真核细胞中,DNA都以双螺旋结构的形式存在。在一些噬菌体中,例如大肠杆菌噬菌体ΦX174和M13的DNA则是单链环状结构。这些噬菌体进入寄主细菌以后立即复制成双链环状结构。 构型 当DNA钠盐在75%相对湿度下,则呈现A型双螺旋。A型与B型的区别在于前者的碱基平面不是垂直于螺旋轴,而有 20°的倾斜度,两个相邻碱基对的距离为2.56埃,绕螺旋轴的旋转角度为32.7°,每旋转一周包括11个碱基对,螺距为28埃。 A型和B型是DNA双螺旋结构的两个基本构型。当DNA钠盐的相对湿度更低或在一些人工合成的DNA链中,还会出现一些其他构型,其中多数与A型或B型相似。有些人工合成的DNA链,如dCpGpCpGpCpGp在一定条件下会形成左手双螺旋或称Z型DNA。与B型DNA相比,Z型DNA细而长,碱基对偏离轴心靠近双螺旋的外侧,容易同外界因子相互作用。用Z型DNA抗体进行实验,发现天然DNA中也存在Z型结构。 外界因素对DNA双螺旋的构型有明显的影响,除湿度外,盐的种类和浓度也会影响DNA的构型。一般认为,DNA在水溶液中以B型结构存在,但是,与纤维状DNA的B型结构稍有区别。水溶液的状态发生变化,如加热或加入有机溶剂,对DNA的构型会产生很大的影响。 双螺旋结构模型也合理地解释了DNA的变性(见脱氧核糖核酸)。热、 酸、碱、尿素等都能破坏维系双螺旋结构的氢键和疏水作用,从而使原有一定刚性的结构变为无规则线团状,原来深埋在双螺旋内的发色基团——碱基暴露出来,因此变性DNA表现出粘度降低、沉降速度增加和紫外线吸收值增高(增色效应)等性质。
2023-07-01 13:39:212

被称为“遗传学的奠基人,现代遗传学之父”的是哪位科学家?

被称为“遗传学的奠基人,现代遗传学之父”的是哪位科学家? A.孟德尔(Gregor J. Mendel)B.摩尔根(Thomas H. Morgen)C.沃森(James Waston)D.查加夫(Erwin Chargaff)E.米歇尔(Friedrich Miescher)正确答案:孟德尔(Gregor J. Mendel)
2023-07-01 13:39:271

DNA 的发现史

您是要完整版本的吗?——那我就复制下好了。 自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题,人们开始了对核酸和蛋白质的研究。 早在1868年,人们就已经发现了核酸。在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌""作战"而战死的白细胞和被杀死的人体细胞的"遗体"。于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用。他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质。霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的。于是他便给这种从细胞核中分离出来的物质取名为 "核素",后来人们发现它呈酸性,因此改叫"核酸"。从此人们对核酸进行了一系列卓有成效的研究。 20世纪初,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成的。其中碱基有4种(腺瞟吟、鸟嘌吟、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。 列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了"四核苷酸假说"。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识。人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用。 蛋白质的发现比核酸早30年,发展迅速。进入20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现。 1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链。于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体。 1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有荚菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。格里菲斯称该核酸为"转化因子"。 1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的"转化因子",并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明"转化因子"是DNA。但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。 美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进入大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。进入细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。 1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由 DNA的指令合成的。这一结果立即为学术界所接受。 几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948- 1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A 与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。 1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。 沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。 克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?-活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。 1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立 DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。 有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的"B型"DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的"A型"简单得多,只要稍稍看一下"B型"的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。 克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念。 他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。 有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌岭一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了 DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。 经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。 下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。 20世纪30年代后期,瑞典的科学家们就证明DNA是不对称的。第二次世界大战后,用电子显微镜测定出DNA分子的直径约为2nm。 DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4 种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。
2023-07-01 13:39:361

发现遗传物质的化学本质是dna是谁

DNA的发现自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题,人们开始了对核酸和蛋白质的研究.早在1868年,人们就已经发现了核酸.在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌""作战"而战死的白细胞和被杀死的人体细胞的"遗体".于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用.他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质.霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的.于是他便给这种从细胞核中分离出来的物质取名为"核素",后来人们发现它呈酸性,因此改叫"核酸".从此人们对核酸进行了一系列卓有成效的研究.20世纪初,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子.核苷酸是由碱基、核糖和磷酸构成的.其中碱基有4种(腺瞟吟、鸟嘌吟、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA).列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了"四核苷酸假说".这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识.人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用.蛋白质的发现比核酸早30年,发展迅速.进人20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现.1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链.于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用.如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用.因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体.1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验.他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌.这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌.这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有美菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏).格里菲斯称该核酸为"转化因子".1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的"转化因子",并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明"转化因子"是DNA.但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用.美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移.因为他们在电子显微镜下观察到了噬菌体的形态和进人大肠杆菌的生长过程.噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它.它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩.当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了.进人细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌.1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验.他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S.先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖.这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由DNA的指令合成的.这一结果立即为学术界所接受.几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果.在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性.因此,他对列文的"四核苷酸假说"产生了怀疑.在1948-1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果.实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等.说明DNA分子中的碱基A与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据.1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生.沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进人芝加哥大学学习.当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程.在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密".他善于集思广益,博取众长,善于用他人的思想来充实自己.只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识.沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员.为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学.有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片.从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回.什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克.克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学.1946年,他阅读了《生命是什么?--活细胞的物理面貌卜书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣.1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了.当时克里克比沃森大12岁,还没有取得博士学位.但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸.同时沃森感到在他所接触的人当中,克里克是最聪明的一个.他们每天交谈至少几个小时,讨论学术问题.两个人互相补充,互相批评以及相互激发出对方的灵感.他们认为解决DNA分子结构是打开遗传之谜的关键.只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构.为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末.在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题.从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往.1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立DNA结构模型,只能利用别人的分析数据.他们很快就提出了一个三股螺旋的DNA结构的设想.1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败.有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的"B型"DNA的X射线衍射的照片.沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的"A型"简单得多,只要稍稍看一下"B型"的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了.克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势.他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念.他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设.有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性.突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌岭一胞嘧啶对有着相同的形状,于是精神为之大振.因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了.查加夫规律也就一下子成了DNA双螺旋结构的必然结果.因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了.那么,两条链的骨架一定是方向相反的.经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装.从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对.由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的.下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较.他们又一次打电话请来了威尔金斯.不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上.1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖.DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想.从此,人们立即以遗传学为中心开展了大量的分子生物学的研究.首先是围绕着4种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究.1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念.它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位.在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的.一定结构的DNA,可以控制合成相应结构的蛋白质.蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的.因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的.在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类.现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势.本文摘自《创造发明1000例》广西师范大学出版社2001年7月版
2023-07-01 13:39:453

DNA作为遗传物质是如何被发现的

DNA的发现及双螺旋结构模型(The discovery of DNA and Double helix model) DNA即脱氧核糖核酸,是染色体的主要化学成分和遗传信息的主要载体,其分子结构是由两条核苷酸链组成的双螺旋形。 1869年,瑞士生化学家米歇尔(J.F.Miescher,1844-1895)在分析细胞的化学组成时,在细胞核内发现了核酸。1929年,俄裔美国生物化学家列文(P.A.leven,1869-1940)发现核酸可分为核糖核酸(RNA)与脱氧核糖核酸(DNA)。1928和1943年,英国细菌学家格里菲斯(F.Griffith,1877-1941)和美国细菌学家艾弗里(O.T.Averyy,1877-1955)先后通过肺炎双球菌的转化实验证明DNA具有传递遗传信息的功能。1950年,奥地利裔美国生物化学家查加夫(E.Chargaff,1905-?)发现DNA分子中的碱基A与T、G与C是配对存在的。 1953年,美国生物学家沃森(J.Watson,1928- )和英国生物物理学家克里克(F.Crick,1916-2004),在英国女生物学家富兰克琳(R.Franklin,1920-1958)和英国生物物理学家威尔金斯(M.Wilkins,1916-2004)对DNA晶体所作的X光衍射分析的基础上,根据DNA分子碱基配对原则,构建出了DNA分子的双螺旋结构模型。双螺旋结构显示出DNA分子在细胞分裂时能够被精确复制,解释了其在遗传和进化中的作用。同时,沃森和克里克还预言了遗传信息的复制、传递和表达传递过程是从DNA → RNA→蛋白质,被称为“中心法则”。不久,这一设想被其他科学家的发现所证实。 DNA及其双螺旋结构的发现,揭示了基因复制和遗传信息传递的奥秘,并由此引发了一场蔚为壮观的生命科学和生物技术革命。拒绝抄袭!
2023-07-01 13:40:145

詹姆斯·杜威·沃森的科学研究

20世纪40年代末和50年代初,在DNA被确认为遗传物质之后,生物学家们不得不面临着一个难题:DNA应该有什么样的结构,才能担当遗传的重任?它必须能够携带遗传信息,能够自我复制传递遗传信息,能够让遗传信息得到表达以控制细胞活动,并且能够突变并保留突变。这四点,缺一不可,如何建构一个DNA分子模型解释这一切?当时主要有三个实验室几乎同时在研究DNA分子模型。第一个实验室是伦敦国王学院的威尔金斯、弗兰克林实验室,他们用X射线衍射法研究DNA的晶体结构。当X射线照射到生物大分子的晶体时,晶格中的原子或分子会使射线发生偏转,根据得到的衍射图像,可以推测分子大致的结构和形状。第二个实验室是加州理工学院的大化学家莱纳斯·鲍林(Linus Pauling)实验室。在此之前,鲍林已发现了蛋白质的a螺旋结构。第三个则是个非正式的研究小组,事实上他们可说是不务正业。1951年,23岁的年轻的遗传学家沃森于从美国到剑桥大学做博士后时,虽然其真实意图是要研究DNA分子结构,挂着的课题项目却是研究烟草花叶病毒。比他年长12岁的克里克当时正在做博士论文,论文题目是“多肽和蛋白质:X射线研究”。沃森说服与他分享同一个办公室的克里克一起研究DNA分子模型,他需要克里克在X射线晶体衍射学方面的知识。1951年10月,沃森和同事克里克一开始拼凑模型,几经尝试,终于在1953年3月获得了正确的模型。关于这三个实验室如何明争暗斗,互相竞争,由于沃森一本风靡全球的自传《双螺旋》而广为人知。值得探讨的一个问题是:为什么沃森和克里克既不像威尔金斯和弗兰克林那样拥有第一手的实验资料,又不像鲍林那样有建构分子模型的丰富经验(他们两个人都是第一次建构分子模型),却能在这场竞赛中获胜?这些人中,除了沃森,都不是遗传学家,而是物理学家或化学家。威尔金斯虽然在1950年最早研究DNA的晶体结构,当时却对DNA究竟在细胞中干什么一无所知,在1951年才觉得DNA可能参与了核蛋白所控制的遗传。弗兰克林也不了解DNA在生物细胞中的重要性。鲍林研究DNA分子,则纯属偶然。1951年11月,他在《美国化学学会杂志》上看到一篇核酸结构的论文,觉得荒唐可笑,为了反驳这篇论文,才着手建立DNA分子模型。他是把DNA分子当作化合物,而不是遗传物质来研究的。这两个研究小组完全根据晶体衍射图建构模型,鲍林甚至根据的是30年代拍摄的模糊不清的衍射照片。不理解DNA的生物学功能,单纯根据晶体衍射图,有太多的可能性供选择,是很难得出正确的模型的。 沃森在1951年到剑桥之前,曾经做过用同位素标记追踪噬菌体DNA的实验,坚信DNA就是遗传物质。据他的回忆,他到剑桥后发现克里克也是“知道DNA比蛋白质更为重要的人”。但是按克里克本人的说法,他当时对DNA所知不多,并未觉得它在遗传上比蛋白质更重要,只是认为DNA作为与核蛋白结合的物质,值得研究。对一名研究生来说,确定一种未知分子的结构,就是一个值得一试的课题。在确信了DNA是遗传物质之后,还必须理解遗传物质需要什么样的性质才能发挥基因的功能。像克里克和威尔金斯,沃森后来也强调薛定谔的《生命是什么?》一书对他的重要影响,他甚至说他在芝加哥大学时读了这本书之后,就立志要破解基因的奥秘。如果这是真的,我们就很难明白,为什么沃森向印第安那大学申请研究生时,申请的是鸟类学。由于印第安那大学动物系没有鸟类学专业,在系主任的建议下,沃森才转而从事遗传学研究。当时大遗传学家赫尔曼·缪勒(Hermann Muller)恰好正在印第安那大学任教授,沃森不仅上过缪勒关于“突变和基因”的课(分数得A),而且考虑过要当他的研究生。但觉得缪勒研究的果蝇在遗传学上已过了辉煌时期,才改拜研究噬菌体遗传的萨尔瓦多·卢里亚(SalvadorLuria)为师。但是,缪勒关于遗传物质必须具有自催化、异催化和突变三重性的观念,想必对沃森有深刻的影响。正是因为沃森和克里克坚信DNA是遗传物质,并且理解遗传物质应该有什么样的特性,才能根据如此少的数据,做出如此重大的发现。他们根据的数据仅有三条:第一条是当时已广为人知的,即DNA由六种小分子组成:脱氧核糖,磷酸和四种碱基(A、G、T、C),由这些小分子组成了四种核苷酸,这四种核苷酸组成了DNA。第二条证据是最新的,弗兰克林得到的衍射照片表明,DNA是由两条长链组成的双螺旋,宽度为20埃。第三条证据是最为关键的。美国生物化学家埃尔文·查戈夫(Erwin Chargaff)测定DNA的分子组成,发现DNA中的4种碱基的含量并不是传统认为的等量的,虽然在不同物种中四种碱基的含量不同,但是A和T的含量总是相等,G和C的含量也相等。 查加夫早在1950年就已发布了这个重要结果,但奇怪的是,研究DNA分子结构的这三个实验室都将它忽略了。甚至在查加夫1951年春天亲访剑桥,与沃森和克里克见面后,沃森和克里克对他的结果也不加重视。在沃森和克里克终于意识到查加夫比值的重要性,并请剑桥的青年数学家约翰·格里菲斯(John Griffith)计算出A吸引T,G吸引C,A+T的宽度与G+C的宽度相等之后,很快就拼凑出了DNA分子的正确模型。沃森和克里克在1953年4月25日的《自然》杂志上以1000多字和一幅插图的短文公布了他们的发现。在论文中,沃森和克里克以谦逊的笔调,暗示了这个结构模型在遗传上的重要性:“我们并非没有注意到,我们所推测的特殊配对立即暗示了遗传物质的复制机理。”在随后发表的论文中,沃森和克里克详细地说明了DNA双螺旋模型对遗传学研究的重大意义:一、它能够说明遗传物质的自我复制。这个“半保留复制”的设想后来被马修·麦赛尔逊(Matthew Meselson)和富兰克林·斯塔勒(Franklin W. Stahl)用同位素追踪实验证实。二、它能够说明遗传物质是如何携带遗传信息的。三、它能够说明基因是如何突变的。基因突变是由于碱基序列发生了变化,这样的变化可以通过复制而得到保留。但是遗传物质的第四个特征,即遗传信息怎样得到表达以控制细胞活动呢?这个模型无法解释,沃森和克里克当时也公开承认他们不知道DNA如何能“对细胞有高度特殊的作用”。不过,这时,基因的主要功能是控制蛋白质的合成,这种观点已成为一个共识。那么基因又是如何控制蛋白质的合成呢?有没有可能以DNA为模板,直接在DNA上面将氨基酸连接成蛋白质?在沃森和克里克提出DNA双螺旋模型后的一段时间内,即有人如此假设,认为DNA结构中,在不同的碱基对之间形成形状不同的“窟窿”,不同的氨基酸插在这些窟窿中,就能连成特定序列的蛋白质。但是这个假说,面临着一大难题:染色体DNA存在于细胞核中,而绝大多数蛋白质都在细胞质中,细胞核和细胞质由大分子无法通过的核膜隔离开,如果由DNA直接合成蛋白质,蛋白质无法跑到细胞质。另一类核酸RNA倒是主要存在于细胞质中。RNA和DNA的成分很相似,只有两点不同,它有核糖而没有脱氧核糖,有尿嘧啶(U)而没有胸腺嘧啶(T)。早在1952年,在提出DNA双螺旋模型之前,沃森就已设想遗传信息的传递途径是由DNA传到RNA,再由RNA传到蛋白质。在1953~1954年间,沃森进一步思考了这个问题。他认为在基因表达时,DNA从细胞核转移到了细胞质,其脱氧核糖转变成核糖,变成了双链RNA,然后再以碱基对之间的窟窿为模板合成蛋白质。这个过于离奇的设想在提交发表之前被克里克否决了。克里克指出,DNA和RNA本身都不可能直接充当连接氨基酸的模板。遗传信息仅仅体现在DNA的碱基序列上,还需要一种连接物将碱基序列和氨基酸连接起来。这个“连接物假说”,很快就被实验证实了。1958年,克里克提出了两个学说,奠定了分子遗传学的理论基础。第一个学说是“序列假说”,它认为一段核酸的特殊性完全由它的碱基序列所决定,碱基序列编码一个特定蛋白质的氨基酸序列,蛋白质的氨基酸序列决定了蛋白质的三维结构。第二个学说是“中心法则”,遗传信息只能从核酸传递给核酸,或核酸传递给蛋白质,而不能从蛋白质传递给蛋白质,或从蛋白质传回核酸。沃森后来把中心法则更明确地表示为遗传信息只能从DNA传到RNA,再由RNA传到蛋白质,以致在1970年发现了病毒中存在由RNA合成DNA的反转录现象后,人们都说中心法则需要修正,要加一条遗传信息也能从RNA传到DNA.事实上,根据克里克原来的说法,中心法则并无修正的必要。碱基序列是如何编码氨基酸的呢?克里克在这个破译这个遗传密码的问题上也做出了重大的贡献。组成蛋白质的氨基酸有二十种,而碱基只有四种,显然,不可能由一个碱基编码一个氨基酸。如果由两个碱基编码一个氨基酸,只有十六种(4的2次方)组合,也还不够。因此,至少由三个碱基编码一个氨基酸,共有六十四种组合,才能满足需要。1961年,克里克等人在噬菌体T4中用遗传学方法证明了蛋白质中一个氨基酸的顺序是由三个碱基编码的(称为一个密码子)。同一年,两位美国分子遗传学家马歇尔·尼伦伯格(Marshall Nirenberg)和约翰·马特哈伊(John Matthaei)破解了第一个密码子。到1966年,全部六十四个密码子(包括三个合成终止信号)被鉴定出来。作为所有生物来自同一个祖先的证据之一,密码子在所有生物中都是基本相同的。人类从此有了一张破解遗传奥秘的密码表。DNA双螺旋模型(包括中心法则)的发现,是20世纪最为重大的科学发现之一,也是生物学历史上惟一可与达尔文进化论相比的最重大的发现,它与自然选择一起,统一了生物学的大概念,标志着分子遗传学的诞生。这门综合了遗传学、生物化学、生物物理和信息学,主宰了生物学所有学科研究的新生学科的诞生,是许多人共同奋斗的结果,而克里克、威尔金斯、弗兰克林和沃森,特别是克里克,就是其中最为杰出的英雄。
2023-07-01 13:40:391

dna发现的几个主要的事件简单描述(就那六个科学家的) 大约十件事左右 谢啦

自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题,人们开始了对核酸和蛋白质的研究。早在1868年,人们就已经发现了核酸。在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌""作战"而战死的白细胞和被杀死的人体细胞的"遗体"。于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用。他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质。霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的。于是他便给这种从细胞核中分离出来的物质取名为"核素",后来人们发现它呈酸性,因此改叫"核酸"。从此人们对核酸进行了一系列卓有成效的研究。20世纪初,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成的。其中碱基有4种(腺瞟吟、鸟嘌吟、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了"四核苷酸假说"。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识。人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用。蛋白质的发现比核酸早30年,发展迅速。进人20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现。1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链。于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体。1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有美菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。格里菲斯称该核酸为"转化因子"。1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的"转化因子",并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明"转化因子"是DNA。但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进人大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。进人细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由DNA的指令合成的。这一结果立即为学术界所接受。几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948-1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进人芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?--活细胞的物理面貌卜书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的"B型"DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的"A型"简单得多,只要稍稍看一下"B型"的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念。他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌岭一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。
2023-07-01 13:41:023

科学家是怎么证明染色体是遗传物质的载体?

下面的希望对你有帮助自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题,人们开始了对核酸和蛋白质的研究。 遗传学创始人孟德尔早在1868年,人们就已经发现了核酸。在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌“作战”而战死的白细胞和被杀死的人体细胞的“遗体”。于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用。他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质。霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的。于是他便给这种从细胞核中分离出来的物质取名为 “核素”,后来人们发现它呈酸性,因此改叫“核酸”。从此人们对核酸进行了一系列卓有成效的研究。 20世纪初,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。 列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了"四核苷酸假说"。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识。人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用。 美国遗传学家摩尔根蛋白质的发现比核酸早30年,发展迅速。进入20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现。 1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链。于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体。 1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有荚膜菌与活的无荚膜菌同时放在试管中培养,无荚膜菌全部变成了有荚膜菌,并发现使无荚膜菌长出蛋白质荚膜的就是已死的有荚膜菌壳中遗留的核酸(因为在加热中,荚膜中的核酸并没有被破坏)。格里菲斯称该核酸为"转化因子"。 1944年,美国细菌学家艾弗里(1877--1955)从有荚膜菌中分离得到活性的“转化因子”,并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明“转化因子”是DNA。但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。 美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进入大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。进入细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。 1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由 DNA的指令合成的。这一结果立即为学术界所接受。 几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948- 1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A 与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。 1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。 沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。 克里克(1916一2004)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?-活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920一1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。 1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立 DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。 有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的“B型”DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的“A型”简单得多,只要稍稍看一下“B型”的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。 克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念。 他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。 沃森(左)和克里克有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌吟一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了 DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。 经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。 富兰克林下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。 20世纪30年代后期,瑞典的科学家们就证明DNA是不对称的。第二次世界大战后,用电子显微镜测定出DNA分子的直径约为2nm。 DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4 种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。
2023-07-01 13:41:101

20世纪生物学 成就

20世纪生物学最大的成就是DNA双螺旋结构的发现
2023-07-01 13:41:271

如果生物考试给我一个不认识的病毒 我怎么知道它的遗传物质是DNA还是RNA?求解

DNA是双螺旋结构,RNA是单螺旋结构的。具体解释如下:RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。
2023-07-01 13:41:523

说明DNA的化学组成与结构。

DNA是以脱氧核苷酸(磷酸基团、脱氧核糖、碱基A,T,C,G)为基本单位组成的,其元素构成为C,H,O,N,P。其结构为反向双螺旋结构,十分稳定。其中,A与T配对,C与G配对。主要是区别其与RNA的区别我答到点上没?如果没有的话,可以追问哦【化学吧】为您解答。。
2023-07-01 13:42:093

Wastson和crick提出DNA双螺旋结构模型的背景和依据

这个链接对您的问题有较为详细的阐述:http://baike.baidu.com/view/25292.htm20世纪40年代末和50年代初,在DNA被确认为遗传物质之后,生物学家们不得不面临着一个难题:DNA应该有什么样的结构,才能担当遗传的重任?它必须能够携带遗传信息,能够自我 DNA双螺旋结构特点图复制传递遗传信息,能够让遗传信息得到表达以控制细胞活动,并且能够突变并保留突变。这4点,缺一不可,如何建构一个DNA分子模型解释这一切?   当时主要有三个实验室几乎同时在研究DNA分子模型。第一个实验室是伦敦国王学院的威尔金斯、弗兰克林实验室,他们用X射线衍射法研究DNA的晶体结构。当X射线照射到生物大分子的晶体时,晶格中的原子或分子会使射线发生偏转,根据得到的衍射图像,可以推测分子大致的结构和形状。第二个实验室是加州理工学院的大化学家莱纳斯·鲍林(Linus Pauling)实验室。在此之前,鲍林已发现了蛋白质的a螺旋结构。第三个则是个非正式的研究小组,事实上他们可说是不务正业。23岁的年轻的遗传学家沃森于1951年从美国到剑桥大学做博士后时,虽然其真实意图是要研究DNA分子结构,挂着的课题项目却是研究烟草花叶病毒。比他年长12岁的克里克当时正在做博士论文,论文题目是“多肽和蛋白质:X射线研究”。沃森说服与他分享同一个办公室的克里克一起研究DNA分子模型,他需要克里克在X射线晶体衍射学方面的知识。他们从1951年10月开始拼凑模型,几经尝试,终于在1953年3月获得了正确的模型。关于这三个实验室如何明争暗斗,互相竞争,由于沃森一本风靡全球的自传《双螺旋》而广为人知。值得探讨的一个问题是:为什么沃森和克里克既不像威尔金斯和弗兰克林那样拥有第一手的实验资料,又不像鲍林那样有建构分子模型的丰富经验(他们两个人都是第一次建构分子模型),却能在这场竞赛中获胜?   这些人中,除了沃森,都不是遗传学家,而是物理学家或化学家。威尔金斯虽然在1950年最早研究DNA的晶体结构,当时却对DNA究竟在细胞中干什么一无所知,在1951年才觉得DNA可能参与了核蛋白所控制的遗传。弗兰克林也不了解DNA在生物细胞中的重要性。鲍林研究DNA分子,则纯属偶然。他在1951年11月的《美国化学学会杂志》上看到一篇核酸结构的论文,觉得荒唐可笑,为了反驳这篇论文,才着手建立DNA分子模型。他是把DNA分子当作化合物,而不是遗传物质来研究的。这两个研究小组完全根据晶体衍射图建构模型,鲍林甚至根据的是30年代拍摄的模糊不清的衍射照片。不理解DNA的生物学功能,单纯根据晶体衍射图,有太多的可能性供选择,是很难得出正确的模型的。   沃森在1951年到剑桥之前,曾经做过用同位素标记追踪噬菌体DNA的实验,坚信DNA就是遗传物质。据他的回忆,他到剑桥后发现克里克也是“知道DNA比蛋白质更为重要的人”。但是按克里克本人的说法,他当时对DNA所知不多,并未觉得它在遗传上比蛋白质更重要,只是认为DNA作为与核蛋白结合的物质,值得研究。对一名研究生来说,确定一种未知分子的结构,就是一个值得一试的课题。在确信了DNA是遗传物质之后,还必须理解遗传物质需要什么样的性质才能发挥基因的功能。像克里克和威尔金斯,沃森后来也强调薛定谔的《生命是什么?》一书对他的重要影响,他甚至说他在芝加哥大学时读了这本书之后,就立志要破解基因的奥秘。如果这是真的,我们就很难明白,为什么沃森向印第安那大学申请研究生时,申请的是鸟类学。由于印第安那大学动物系没有鸟类学专业,在系主任的建议下,沃森才转而从事遗传学研究。当时大遗传学家赫尔曼·缪勒(Hermann Muller)恰好正在印第安那大学任教授,沃森不仅上过缪勒关于“突变和基因”的课(分数得A),而且考虑过要当他的研究生。但觉得缪勒研究的果蝇在遗传学上已过了辉煌时期,才改拜研究噬菌体遗传的萨尔瓦多·卢里亚(Salvador Luria)为师。但是,缪勒关于遗传物质必须具有自催化、异催化和突变三重性的观念,想必对沃森有深刻的影响。正是因为沃森和克里克坚信DNA是遗传物质,并且理解遗传物质应该有什么样的特性,才能根据如此少的数据,做出如此重大的发现。   他们根据的数据仅有三条:第一条是当时已广为人知的,即DNA由6种小分子组成:脱氧核糖,磷酸和4种碱基(A、G、T、C),由这些小分子组成了4种核苷酸,这4种核苷酸组成了DNA。第二条证据是最新的,弗兰克林得到的衍射照片表明,DNA是由两条长链组成的双螺旋,宽度为20埃。第三条证据是最为关键的。美国生物化学家埃尔文·查戈夫(Erwin Chargaff)测定DNA的分子组成,发现DNA中的4种碱基的含量并不是传统认为的等量的,虽然在不同物种中4种碱基的含量不同,但是A和T的含量总是相等,G和C的含量也相等。   查加夫早在1950年就已发布了这个重要结果,但奇怪的是,研究DNA分子结构的这三个实验室都将它忽略了。甚至在查加夫1951年春天亲访剑桥,与沃森和克里克见面后,沃森和克里克对他的结果也不加重视。在沃森和克里克终于意识到查加夫比值的重要性,并请剑桥的青年数学家约翰·格里菲斯(John Griffith)计算出A吸引T,G吸引C,A+T的宽度与G+C的宽度相等之后,很快就拼凑出了DNA分子的正确模型。
2023-07-01 13:42:521

dna合成的原料到底是什么?

一分子磷酸,一分子脱氧核糖(五碳糖),一分子碱基合成一分子脱氧核糖核苷酸,然后很多个脱氧核糖核苷酸合成DNA。1、物理性质:DNA是高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度,可被甲基绿染成绿色。DNA对紫外线(260nm)有吸收作用,利用这一特性,可以对DNA进行含量测定。当核酸变性时,吸光度升高,称为增色效应;当变性核酸重新复性时,吸光度又会恢复到原来的水平。较高温度、有机溶剂、酸碱试剂、尿素、酰胺等都可以引起DNA分子变性,即DNA双链碱基间的氢键断裂,双螺旋结构解开—也称为DNA的解螺旋。2、分子结构:DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成比例不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。3、分布功能:原核细胞的染色体是一个长DNA分子,但是原核细胞没有真正的细胞核。真核细胞核中有不止一条染色体,每条染色体只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。
2023-07-01 13:43:041

植物有DNA吗?

在地球上的生物中,除了少数病毒外,都是以DNA作为遗传物质的,它是主要的遗传物质,决定生物的性状。{DNA(转录)——RNA(翻译)——蛋白质(性状)}是绝大多数生物的生命和性状表现过程。但少数病毒可以进行RNA(逆转录)——DNA的过程。高等生物(如植物)的DNA大多在细胞核的染色体中,低等生物(如蓝藻)的DNA位于细胞的中央,无细胞结够生物(如乙肝病毒)的DNA被蛋白质外壳包裹在其中。 脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播a. DNA是由核酸的单体聚合而成的聚合体。 b. 每一种核酸由三个部分所组成:一分子含氮盐基+一分子五碳糖(脱氧核糖)+一分子磷酸根。 c. 核酸的含氮盐基又可分为四类:鸟嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C) d. DNA的四种含氮盐基组成具有物种特异性。即四种含氮盐基的比例在同物种不同个体间是一致的,但再不同物种间则有差异。 e. DNA的四种含氮沿基比例具有奇特的规律性,每一种生物体DNA中 A≈T C≈G 加卡夫法则。 生命的遗传奥秘茂藏在DNA和RNA中 现在人们都知道DNA和RNA是遗传物质,但是什么叫DNA呢?其实DNA和RNA是一种核酸的东西,因为它藏在细胞核内,又具有酸性,因为在它刚被发现的时候就被称为核酸。 核酸是一个叫米歇尔的瑞士青年化学家发现的,那还是1869年的事,到了1909年,一位美国生化学家又发现核酸中的碳水化合物有两种核糖分子,因此核酸也有两种,一种叫脱氧核糖酸,英文缩写就是DNA,另一种是核糖核酸,英文缩写是RNA。DNA一般只在细胞核中,而RNA除了在细胞核中外,还分布在细胞质中。 DNA和RNA与生物遗传基因细菌学家艾弗里通过研究肺炎球菌转化时,偶然发现了DNA,就是那个被很多人找了很久的基因物质。在DNA上带着生命的遗传秘密的基因物质,这样,对于到底什么是决定生命遗传现象的探索,终于到了揭开秘密的时候了,这时已是20世纪40年代。 组成DNA的4种核苷酸的排列组合顺序大有奥秘 解开DNA的秘密 当发现基因就是DNA后,人们还是想知道,这个DNA是怎么样的一种东西,它又是通过什么具体的办法把生命的那么多信息传递给新的接班人的呢? 首先人们想知道DNA是由什么组成的,人类总是爱这样刨问底。结果有一个叫莱文的科学家通过研究,发现DNA是由四种更小的东西组成,这四种东西的总名字叫核苷酸,就像四个兄弟一样,它们都姓核苷酸,但名字却有所不同,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T),这四种名字很难记,不过只要记住DNA是由四种核苷酸只是随便聚在一起的、而且它们相互的连接没有什么规律,但后来核苷酸其实不一样,而且它们相互组合的方式也千变万化,大有奥秘。现在,人们已基本上了解了遗传是如何发生的。20世纪的生物学研究发现:人体是由细胞构成的,细胞由细胞膜、细胞质和细胞核等组成。已知在细胞核中有一种物质叫染色体,它主要由一些叫做脱氧核糖核酸(DNA)的物质组成。 生物的遗传物质存在于所有的细胞中,这种物质叫核酸。核酸由核苷酸聚合而成。每个核苷酸又由磷酸、核糖和碱基构成。碱基有五种,分别为腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)。每个核苷酸只含有这五种碱基中的一种。 单个的核苷酸连成一条链,两条核苷酸链按一定的顺序排列,然后再扭成“麻花”样,就构成脱氧核糖核酸(DNA)的分子结构。在这个结构中,每三个碱基可以组成一个遗传的“密码”,而一个DNA上的碱基多达几百万,所以每个DNA就是一个大大的遗传密码本,里面所藏的遗传信息多得数不清,这种DNA分子就存在于细胞核中的染色体上。它们会随着细胞分裂传递遗传密码。 人的遗传性状由密码来传递。人有10万个基因,而每个基因是由密码来决定的。人的基因中既有相同的部分,又有不同的部分。不同的部分决定人与人的区别,即人的多样性。人的DNA共有30亿个遗传密码,排列组成10万个基因。DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA
2023-07-01 13:43:1515

比较DNA和RNA的组成和结构的区别

基本简介脱氧核糖核酸(DNA,为英文Deoxyribonucleicacid的缩写),又称去氧核糖核酸,是脱氧核糖核酸染色体的主要化学成分,同时也是组成基因的材料。有时也被称为“遗传微粒”,原因是在繁殖过程中,父代会把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。DNA的结构: DNA的结构一般可划分为一级结构、二级结构、三级结构和四级结构四个水平。DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP 脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP 脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP 脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP 脱氧鸟苷)。而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白质的合成。读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。在细胞内,DNA能与蛋白质结合形成染色体,整组染色体则统称为染色体组。对于人类而言,正常的体细中含有46条染色体。染色体在细胞分裂之前会先在分裂间期完成复制,细胞分裂间期又可划分为:G1期-DNA合成前期、S期-DNA合成期、G2-DNA合成后期。对于真核生物,如动物、植物及真菌而言,染色体主要存在于细胞核内;而对于原核生物,如细菌而言,则主要存在于细胞质中的拟核内。染色体上的染色质蛋白,如组织蛋白,能够将DNA进行组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录。分子结构DNA是由许多脱氧核苷酸按一定碱基顺序彼此用磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。一级结构每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T ,C=G 查加夫(Chargaff)法则(即碱基互补配对原则).二级结构二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形 成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状。碱基对之间的距离是0.34nm,10个碱基对转一周,故旋转一周(螺距)是3.4nm,这是β-DNA的结构,在生物体内自然生成的DNA几乎都是以β-DNA结构存在。三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间三级结构,也称为超螺旋结构。DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变。超螺旋是克服张力而形成的。当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态。如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态。但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋。 四级结构核酸以反式作用存在(如核糖体、剪接体),这可看作是核酸的四级水平的结构。拓扑结构也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,它可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。结构特点DNA的结构一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。核糖核酸(缩写为RNA,即RibonucleicAcid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA中的T。与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,核糖核酸但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA(转运RNA),rRNA(核糖体RNA),mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。在病毒方面,很多病毒只以RNA作为其唯一的遗传信息载体(有别于细胞生物普遍用双链DNA作载体)。1982年以来,研究表明,不少RNA,如I、II型内含子,RNaseP,HDV,核糖体大亚基RNA等等有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶(ribozyme)。20世纪90年代以来,又发现了RNAi(RNAinterference,RNA干扰)等等现象,证明RNA在基因表达调控中起到重要作用。在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。
2023-07-01 13:43:555

生物体内的DNA可否只含有两种碱基? DNA分子都含有四种核苷酸这句话对吗?

不能只含有两种碱基,A=T,C=G互相配对,且只能是他们之间的配对,因为它们相连的键不一样,遵循查加夫(E.Chargaff)规则,每个碱基都有自己的功能,所以结合在一起形成的DNA链具有和遗传的信息,缺少哪个都不行,况且,任何一个碱基发生突变也会给生命有机体带来一些影响,大多是不利的影响。DNA贩子都是由4种基本的核苷酸组成的,有时候这些核苷酸会加以修饰,比如甲基化等,或者还有存在一些稀有碱基,同样是组成因素,DNA分子都含有这四种碱基,甚至会有一些稀有碱基存在,或者存在被修饰的碱基,比如5-甲基胞嘧啶等。
2023-07-01 13:44:392

为什么DNA分子难以通过核膜和细胞器膜?

DNA分子量太大,无法自由扩散通过生物膜;DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP 脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP 脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP 脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP 脱氧鸟苷)。而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白质的合成。读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。在细胞内,DNA能与蛋白质结合形成染色体,整组染色体则统称为染色体组。对于人类而言,正常的体细中含有46条染色体。染色体在细胞分裂之前会先在分裂间期完成复制,细胞分裂间期又可划分为:G1期-DNA合成前期、S期-DNA合成期、G2-DNA合成后期。对于真核生物,如动物、植物及真菌而言,染色体主要存在于细胞核内;而对于原核生物,如细菌而言,则主要存在于细胞质中的拟核内。染色体上的染色质蛋白,如组织蛋白,能够将DNA进行组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录。
2023-07-01 13:45:012

什么是DNA?什么是RNA?DNA和RNA有多大区别?

DNA是双螺旋结构,RNA是单螺旋结构的。 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。
2023-07-01 13:45:418

DNA ,RNA是什么?从何而来?

DNA是双螺旋结构,RNA是单螺旋结构的。 RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。
2023-07-01 13:46:462

DNA和RNA有什么区别呢?同样是遗传物质,脱氧核糖核酸,和核糖核酸

一:分布不同,即DNA主要在细胞核内,RNA主要在细胞质中; 二:数量不同,DNA是由两条脱氧核苷酸链组成,RNA只有一条核糖核苷酸链组成! 三:它们的核糖不同! DNA是双螺旋结构,RNA是单螺旋结构的. 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链.分子量比DNA小,但在大多数细胞中比DNA丰富.RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA).这3类RNA分子都是单链,但具有不同的分子量、结构和功能. 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA.近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒.类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA).hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程).自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进.目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸. DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分.遗传信息的绝大部分贮存在DNA分子中. 分布和功能 原核细胞的染色体是一个长DNA分子.真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子.不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起.DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中.DNA病毒的遗传物质也是DNA. 结构:DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链.大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基.在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%.在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶.40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和.一般用几个层次描绘DNA的结构. 一级结构 DNA的一级结构即是其碱基序列.基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中.1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖.自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立.如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等.现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来. 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程.经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表. 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近.Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名.这种构型适合多核苷酸链的嘌呤嘧啶交替区.1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA.
2023-07-01 13:46:521

DNA和RNA的三个最主要的区别

RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。 1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。 2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。 3.碱的作用:DNA耐碱RNA易被碱水解。 4.显色反应: 鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物 DNA ------→ 蓝紫色化合物苔黑酚 二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们。 DNA和RNA的鉴别染色 利用吖啶橙的变色特性可鉴别DNA和RNA。吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记。观察死亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体。虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用。 5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA。DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA。 6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害。当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml。用A260/A280还可来表示核酸的纯度。 7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA ; 超螺旋DNA > 解链环状DNA ; 松弛环状DNA ; 线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA。 8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法。 9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量。
2023-07-01 13:47:015

RNA的碱基组成与DNA完全不同 这句话对的错的?为什么

这是错误的.DNA是双螺旋结构,RNA是单螺旋结构的。 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。参考资料:http://www.pep.com.cn/200406/ca457068.htm
2023-07-01 13:47:183

中华文化的DNA是什么

傩文化可以说是中华文明的文化DNA(基因)。傩文化离我们这么久远,研究傩文化有什么现实意义? 傩文化是一种特定社会的“意识形态”,就像“儒家文化”是封建主义社会的意识形态一样,“傩文化”则是古代中国原始社会农耕阶段的意识形态。因此,研究“傩文化”与研究“儒家文化”的意义是没有多大差别的。但由于“傩文化”是中国原始时代的意识形态,根据马克思、恩格斯极力推崇的美国人类学家摩尔根的学说:“人类必须先获得文明的一切要素,然后才能进入文明社会”的哲理,中华文明的“文明要素”就在古老的傩文化之中。因此,傩文化可以说是中华文明的文化DNA(基因)。我们研究生物的DNA,能够在生物学界产生一场空前的生物学革命,我们研究物质分子的DNA,曾导致了原子弹、宇宙飞船等尖端科学的诞生。我们也同样可以企望从中华文明之源的傩文化基因中,清除阻碍社会发展的有害基因,筛选能促进社会发展的有益基因,使我们的祖国能够突飞猛进地前进。“杂交稻之父”袁隆平院士说:“旧式的驯化稻之所以不能再增产,完全是驯化过度的结果,要想进一步增产,就必须在驯化稻中注入野生稻的野性基因,获得远缘杂交优势,形成良性组合、恢复它的野性活力。”因此,如何利用文化基因的良性组合,建立一个具有中国特色的和平、幸福、公正、公平、充满活力的未来社会,这就是研究傩文化的意义所在,也是我研究傩文化的最终目的。 详细资料:http://zhidao.baidu.com/question/16597767.html?si=1
2023-07-01 13:47:282

基因是什么?与碱基有何关系?与碱基对又有何关系?

基因是有遗传效应的DNA片段。DNA由很多对脱氧核苷酸构成,而碱基又是核苷酸的组成单位。(脱氧核苷酸由核糖,碱基和磷酸组成)。很多对脱氧核苷酸排列在一起,如果这段脱氧核苷酸列可以一起遗传,编码蛋白质,也就是有遗传效应,就称为一个基因。因为两条脱氧核苷酸链是通过碱基配对结合在一起的,配对的一对碱基即称为碱基对。A与T或U配对,G与C配对
2023-07-01 13:47:373

DNA是双链结构,RNA是单链结构,这样说对吗?

RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。 1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。 2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。 3.碱的作用:DNA耐碱RNA易被碱水解。 RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构 DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。
2023-07-01 13:47:461

DNA 与RNA的区别

DNA是双螺旋结构,RNA是单螺旋结构的。具体解释如下:RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现 因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。 <收起 参考资料:www.pep.com.cn/200406/ca457068.htm
2023-07-01 13:48:074

DNA和RNA有什么区别

DNA是双螺旋结构,RNA是单螺旋结构的。 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA。 希望可以帮到你!
2023-07-01 13:48:333