DNA图谱 / 问答 / 问答详情

什么是细胞呼吸

2023-07-02 09:13:31
TAG: 细胞
共1条回复
ardim

指物质在细胞内的氧化分解,具体表现为氧的消耗和二氧化碳、水及三磷酸腺苷(ATP)的生成,又称细胞呼吸。其根本意义在于给机体提供可利用的能量。细胞呼吸可分为3个阶段,在第1阶段中,各种能源物质循不同的分解代谢途径转变成乙酰辅酶A。在第2阶段中,乙酰辅酶A(乙酰CoA)的二碳乙酰基,通过三羧酸循环转变为CO2和氢原子。在第3阶段中,氢原子进入电子传递链(呼吸链),最后传递给氧,与之生成水;同时通过电子传递过程伴随发生的氧化磷酸化作用产生ATP分子。生物体主要通过脱羧反应产生CO2,即代谢物先转变成含有羧基(-COOH)的羧酸,然后在专一的脱羧酶催化下,从羧基中脱去CO2。细胞中的氧化反应可以“脱氢”、“加氧”或“失电子”等多种方式进行,而以脱氢方式最为普遍,也最重要。在细胞呼吸的第1阶段中包括一些脱羧和氧化反应,但在三羧酸循环中更为集中。三羧酸循环是在需氧生物中普遍存在的环状反应序列。循环由连续的酶促反应组成,反应中间物质都是含有3个羧基的三羧酸或含有2个羧基的二羧酸,故称三羧酸循环。因柠檬酸是环上物质,又称柠檬酸循环。也可用发现者的名字命名为克雷布斯循环。在循环开始时,一个乙酰基以乙酰-CoA的形式,与一分子四碳化合物草酰乙酸缩合成六碳三羧基化合物柠檬酸。柠檬酸然后转变成另一个六碳三羧酸异柠檬酸。异柠檬酸脱氢并失去CO2,生成五碳二羧酸α-酮戊二酸。后者再脱去1个CO2,产生四碳二羧酸琥珀酸。最后琥珀酸经过三步反应,脱去2对氢又转变成草酰乙酸。再生的草酰乙酸可与另一分子的乙酰CoA反应,开始另一次循环。循环每运行一周,消耗一分子乙酰基(二碳),产生2分子CO2和4对氢。草酰乙酸参加了循环反应,但没有净消耗。如果没有其他反应消除草酰乙酸,理论上一分子草酰乙酸可以引起无限的乙酰基进行氧化。环上的羧酸化合物都有催化作用,只要小量即可推动循环。凡能转变成乙酰CoA或三羧酸循环上任何一种催化剂的物质,都能参加这循环而被氧化。所以此循环是各种物质氧化的共同机制,也是各种物质代谢相互联系的机制。三羧酸循环必须在有氧的情况下进行。环上脱下的氢进入呼吸链,最后与氧结合成水并产生ATP,这个过程是生物体内能量的主要来源。呼吸链由一系列按特定顺序排列的结合蛋白质组成。链中每个成员,从前面的成员接受氢或电子,又传递给下一个成员,最后传递给氧。在电子传递的过程中,逐步释放自由能,同时将其中大部分能量,通过氧化磷酸化作用贮存在ATP分子中。不同生物,甚至同一生物的不同组织的呼吸链都可能不同。有的呼吸链只含有一种酶,也有的呼吸链含有多种酶。但大多数呼吸链由下列成分组成,即:烟酰胺脱氢酶类、黄素蛋白类、铁硫蛋白类、辅酶Q和细胞色素类。这些结合蛋白质的辅基(或辅酶)部分,在呼吸链上不断地被氧化和还原,起着传递氢(递氢体)或电子(递电子体)的作用。其蛋白质部分,则决定酶的专一性。为简化起见,书写呼吸链时常略去其蛋白质部分。上图即是存在最广泛的NADH呼吸链和另一种FADH2呼吸链。图中用MH2代表任一还原型代谢物,如苹果酸。可在专一的烟酰胺脱氢酶(苹果酸脱氢酶)的催化下,脱去一对氢成为氧化产物M(草酰乙酸)。这类脱氢酶,以NAD+(烟酰胺腺嘌呤二核苷酸)或NADP+(烟酰胺腺嘌呤二核苷酸磷酸)为辅酶。这两种辅酶都含有烟酰胺(维生素PP)。在脱氢反应中,辅酶可接受1个氢和1个电子成为还原型辅酶,剩余的1个H+留在液体介质中。

NAD++2H(2H++2e)NADH+H+

NADP++2H(2H++2e)NADPH+H+

黄素蛋白类是以黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)为辅基的脱氢酶,其辅基中含核黄素(维生素B2)。NADH脱氢酶就是一种黄素蛋白,可以将NADH的氢原子加到辅基FMN上,在NADH呼吸链中起递氢体作用。琥珀酸脱氢酶也是一种黄素蛋白,可以将底物琥珀酸的1对氢原子直接加到辅基FAD上,使其氧化生成延胡索酸。FADH2继续将H传递给FADH2呼吸链中的下一个成员,所以FADH2呼吸链比NADH呼吸链短,伴随着呼吸链产生的ATP也略少。铁硫蛋白类的活性部位含硫及非卟啉铁,故称铁硫中心。其作用是通过铁的变价传递电子:Fe3++eFe2+。这类蛋白质在线粒体内膜上,常和黄素脱氢酶或细胞色素结合成复合物。在从NADH到氧的呼吸链中,有多个不同的铁硫中心,有的在NADH脱氢酶中,有的和细胞色素b及c1有关。辅酶Q是一种脂溶性醌类化合物,因广泛存在于生物界故又名泛醌。其分子中的苯醌结构能可逆地加氢还原成对苯二酚衍生物,在呼吸链中起中间传递体的作用。细胞色素是一类以铁卟啉(与血红素的结构类似)为辅基的红色或棕色蛋白质,在呼吸链中依靠铁的化合价变化而传递电子:Fe3++eFe2+。目前,发现的细胞色素有 b、c、c1、aa3等多种。这些细胞色素的蛋白质结构、辅基结构及辅基与蛋白质部分的连接方式均有差异。在典型的呼吸链中,其顺序是b→c1→c→aa3→O2。现在还不能把a和a3分开,而且只有aa3能直接被分子氧氧化,故将a和a3写在一起并称之为细胞色素氧化酶。生物界各种呼吸链的差异主要在于组分不同,或缺少某些中间传递体,或中间传递体的成分不同。如在分枝杆菌中用维生素K代替辅酶Q;又如许多细菌没有完整的细胞色素系统。呼吸链的组成虽然有许多差异,但其传递电子的顺序却基本一致。生物进化越高级,呼吸链就越完善。与呼吸链偶联的ATP生成作用叫做氧化磷酸化。NADH呼吸链每传递1对氢原子到氧,产生3个ATP分子。FADH2呼吸链则只生成2个ATP分子。

总结:

1.细胞呼吸的概念:

细胞呼吸(cellular respiration)是指细胞在有氧条件下从食物分子(主要指葡萄糖)中区的能量的过程。

糖类,脂质和蛋白质有机物在活细胞内氧化分解为CO2和水或分解为不彻底的氧化产物,且伴随着能量的释放。

2.细胞呼吸的特点:

有机物在酶的催化下,在温和的条件下氧化分解,能量逐步释放出来,没有出现剧烈的发光,发热现象。

3.细胞呼吸的本质:

氧化分解有机物释放能量。

4.细胞呼吸的意义

为生物体的生命活动提供能量;为体内的其他化合物的合成提供原料。

5.有氧呼吸:

1)概念:指细胞在有氧的参与下,通过多种酶的催化作用,把葡萄糖等的有机物彻底的分解产生二氧化碳和水,释放能量,产生许多的ATP的过程。

2)过程:第一阶段:1个分子的葡萄糖分解成2分子的丙酮酸,同时脱下4个(H),放出少量的能量,合成2个ATP,其余以热能散失,场所在细胞的基质中。

第二阶段:2个分子的丙酮酸和6个分子的水中的氢全部脱下20个(H),生成6分子的二氧化碳,释放少量的能量,合成2个ATP,其余散热消失,场所线粒体机基质。

第三阶段:在前两个阶段脱下的24个(H)与6个氧气分子结合成水,并释放大量的能量合成34个ATP,场所在线粒体的基质.(在线粒体内膜上!)

细胞呼吸的分类

细胞分为发酵、有氧呼吸、无氧呼吸三种(根据最终电子受体不同的分类方式),酵母酿酒、同型乳酸发酵、异型乳酸发酵等都是属于发酵的范畴,而不是无氧呼吸。无氧呼吸指的是,依然进行三羧酸循环,还原辅酶依然经过氧化呼吸链,只不过最终的电子受体不是氧气,而是硝酸根之类的罢了,其它过程几乎和有氧呼吸一样,并且最后产能较有氧呼吸少。简单的说,并不是没有利用分子氧的氧化就是无氧呼吸。

相关推荐

FAD (黄素腺苷酸二核苷酸磷酸),这个二核苷酸是什么意思?

分类: 教育/科学 >> 科学技术 问题描述: FMN 就不含腺苷酸,FAD难道是两种核苷酸的化合物?请高手解答!谢谢!! 解析: 说的对, FMN 是维生素B2(核黄素)在体内与磷酸结合转变而成的一种核苷酸,因为只有1个磷酸,所以称黄素单核苷酸;而 FAD 是由FMN 和 腺苷酸结合转变而成的,是由两种核苷酸形成的,所以叫黄素腺嘌呤二核苷酸, 其实,FAD也可以认为 是由1个B2(核黄素)和 1个ADP(腺苷二磷酸)结合而成的,所以名称中包括了其组成成分。
2023-07-02 00:04:441

:NADH和FADH2中文解释叫什么名称?

NADH(Nicotinamide adenine dinucleotide)是一种化学物质,是烟酰胺腺嘌呤二核苷酸的还原态,还原型辅酶Ⅰ。N指烟酰胺,A指腺嘌呤,D是二核苷酸。FADH2 ,还原型黄素二核苷酸、黄素腺嘌呤二核苷酸(FAD)递氢体、蛋白结合性载体(还原型电子载体)、还原型辅酶的一种。扩展资料:NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。NADH分子是线粒体中能量产生链中的控制标志物。监视NADH的氧化还原状态是表征活体内线粒体功能的最佳参数。紫外光可以在线粒体中激发NADH产生荧光,用来监测线粒体功能。FADH2中的H2分离成游离的氢离子(H+)和电子(e-): FADH2→FAD+2H+ +2e- 再往后是电子在多种细胞色素中顺序地进行传递。FADH2是FAD+的还原形式。参考资料来源:百度百科-FADH2百度百科-NADH
2023-07-02 00:04:581

黄素腺嘌呤二核苷酸的介绍

黄素腺嘌呤二核苷酸(FAD, flavin adenine dinucleotide)是某些氧化还原酶的辅酶,含有核黄素属于需氧脱氢酶类。
2023-07-02 00:05:171

NADH的化学成分

NADH,尼克酰胺腺嘌呤二核苷酸,还原态N指尼克酰胺,A指腺嘌呤,D是double分子式:C21H27N7O14P2 含有五种元素C,H,O,N,P 用于糖酵解和细胞呼吸作用中的柠檬酸循环。 NAD+ 则是氧化态。 葡萄糖代谢时直接经代谢所产生的ATP是十分的少的,而代谢产生的NADH或FADH2经由一个电子传递与氧化磷酸反应可产生大量的ATP。 烟酰胺腺嘌呤二核苷酸(氧化态)NAD+ 烟酰胺腺嘌呤二核苷酸(还原态)NADH 烟酰胺腺嘌呤二核苷酸磷酸(氧化态) NADPH 烟酰胺腺嘌呤二核苷酸磷酸(还原态) NADPH+ NAD+ + H+ + 2e- = NADH
2023-07-02 00:05:344

TPP,FAD的中文名称?

TPP 磷酸三苯酯 化工原料 用途:适用于纤维素树脂、乙烯基树脂、天然橡胶、合成橡胶、硝化纤维、醋酸纤维素、环氧树酯、合成塑料、聚氯乙烯和丁腈橡胶等产品中FAD 黄素腺嘌呤二核苷酸 是某些氧化还原酶的辅酶,含有核黄素属于需氧脱氢酶类 适用范围:用于皮肤粘膜疾患、神经性耳鸣、脑动脉硬化、顽固性头痛、肝硬化、黄疸及期他肝病、眼疾、视网膜疾患。
2023-07-02 00:05:493

NAD FAD 是什么

NADPH 是一种辅酶,叫还原型辅酶Ⅱ,学名烟酰胺腺嘌呤二核苷酸磷酸,曾经被称为三磷酸吡啶核苷酸,英文triphosphopyridine nucleotide,使用缩写TPN,亦写作[H],亦叫作还原氢。在很多生物体内的化学反应中起递氢体的作用,具有重要的意义。它是烟酰胺腺嘌呤二核苷酸(NAD+)中与腺嘌呤相连的核糖环系2"-位的磷酸化衍生物,参与多种合成代谢反应,如脂类、脂肪酸和核苷酸的合成。这些反应中需要NADPH作为还原剂、氢负供体,NADPH是NADP+的还原形式。NADPH:reduced form of nicotinamide-adenine dinucleotide phosphate还原型烟酰胺腺嘌呤二核苷酸磷酸,还原型辅酶Ⅱ黄素腺嘌呤二核苷酸(英语:FAD),又称活性型维生素B2、核黄素-5"-腺苷二磷酸,是一种参与了重要的代谢反应的氧化还原辅酶。FAD是一种比NAD和NADP更强的氧化剂,能被1个电子或2个电子途径还原。 1. =flavin adenine dinucleotide 黄素腺嘌呤二核苷酸  FADH,黄素腺嘌呤二核苷酸,还原态。F指黄素,A指腺嘌呤,D是double。  FAD+ 则是氧化态。
2023-07-02 00:05:572

1.细胞呼吸和光合作用里德[H]分别是还原性辅酶一还是还原性辅酶二?

在细胞呼吸里的还原氢分为两种,一种是烟酰胺腺嘌呤二核苷酸。还有一种叫做黄素腺嘌呤二核苷酸。前者用NADH表示,后者用FADH2表示。两者携带的能量密度不同。相差一个ATP。(前者比后者多。)其中NADH叫做还原型辅酶一在光合作用里的辅酶就是NADPH,如果你比较NADH,发现两个英文字母里少了一个P。这就是一个磷酸基团。因此它的名字叫做烟酰胺腺嘌呤二核苷酸磷酸。它就是还原性辅酶二补充一下,在细胞呼吸里面也会产生NADPH,这是细胞呼吸的另一条途径,叫做磷酸戊糖循环,它是人体产生游离核苷酸的主要途径。这些核苷酸用于细胞信息传递和DNA复制,RNA转录等多个过程。希望能被采纳O(∩_∩)O~
2023-07-02 00:06:064

电子传递链的组成成分不包括?

选DNAD烟酰胺腺嘌呤二核苷酸(或尼克酰胺腺嘌呤二核苷酸或辅酶Ⅰ)(英语:nicotinamideadeninedinucleotide,简为NAD),曾称为二磷酸吡啶核苷酸(DPN)或辅脱氢酶Ⅰ或辅酶Ⅰ。是一种转递电子(更准确来说是:氢离子)的辅酶,它出现在细胞很多新陈代谢反应中。NADH或更准确NADHH是它的还原形式。FMN英文全称为:flavinmononucleotide,是黄素蛋白(flavoprotein)的辅基。生物氧化时,氧化呼吸链由4中具有传递电子能力的复合体组成,线粒体内膜蛋白质用胆酸等去污剂处理及离子交换层析分离,可纯化出内膜的呼吸链成分,得到这4中仍具有传的电子功能的蛋白质-酶复合体(complex),分别为复合体Ⅰ,复合体Ⅱ,复合体Ⅲ,复合体Ⅳ,各含有不同的组分。其中复合体Ⅰ又称为NADH-泛醌还原酶,在三羧酸循环和脂酸β-氧化等过程的脱氢酶催化反应中,大部分代谢物脱下的2H是由氧化型烟酰胺腺嘌呤二核苷酸(nicotinamideadeninedinucleotide,NAD+)接受,形成还原型烟酰胺腺嘌呤二核苷酸(NADH+H+)。NADH+H+的电子经复合体Ⅰ继续传递氧化。复合体Ⅰ由三部分组成,成“L“形,其一臂突出线粒体基质,由两部分组成,其中之一就是黄素蛋白。而FMN即为黄素蛋白的辅基。FAD(flavinadeninedinucletide)黄素腺嘌呤二核苷酸。黄素腺嘌呤二核苷酸,又称活性型维生素B2、核黄素-5"-腺苷二磷酸,是糖代谢三羧酸循环中的一种重要黄素辅酶,一些脱氢酶以它为辅基,维生素B2是它的活性基团。FAD是一种比NAD和NADP更强的氧化剂,能参与两个连续的电子传递或同时发生的两个电子的传递。F指黄素,A指腺嘌呤,D是指二核苷酸。COA、乙酰辅酶A是能源物质代谢的重要中间代谢产物,在体内能源物质代谢中是一个枢纽性的物质。糖、脂肪、蛋白质三大营养物质通过乙酰辅酶A汇聚成一条共同的代谢通路——三羧酸循环和氧化磷酸化,经过这条通路彻底氧化生成二氧化碳和水,释放能量用以ATP的合成。乙酰辅酶A是合成脂肪酸、酮体等能源物质的前体物质,也是合成胆固醇及其衍生物等生理活性物质的前体物质。
2023-07-02 00:06:121

煤的分析中Fad是什么成分

Fad没听说过应该是FCad吧,FC表示煤的固定碳含量ad指的是空气干燥基,合在一起就是空气干燥基固定碳含量。
2023-07-02 00:06:324

请高手解答关于黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)的理化性质各是什么?

顾名思义就是:物理和化学性质区别是:用最通俗的话说,物理变化就是A物质没有转变为其他物质(如B物质)的变化 而化学变化是A物质转变为其他物质(如B物质)的变化。 比方说,把水加热,水变成水蒸气,这是个物理变化,因为水从水变成水蒸气,水还是水,没有变成其他物质(也就是说,水的分子组成没有变,还是H2O)。而把木炭点着,这是个化学变化,因为此时木炭中的碳与空气中的氧反应生成二氧化碳,碳不再是碳,氧也不再是氧(也就是说,分子组成由C和O2变成了CO2)。如果这点你明白了,物理性质与化学性质的意思就很简单了,同物理变化有关的性质,如熔点、沸点,就是物理性质。而同化学变化有关的性质,如C和O2生成CO2的性质就是化学性质。(抄来)理解下就好
2023-07-02 00:06:391

维生素b2都有哪些功效

维生素b2的作用 维生素B2又称核黄素。在体内主要以黄素腺嘌呤二核苷酸(FAD)、黄素单核苷酸(FMN)的形式参与氧化还原反应。另外,核黄素还参与维生素B6与烟酸的代谢。最近的研究表明核黄素与体内的抗氧化防御体系也有密切关系。 我国居民膳食以植物性食物为主,核黄素摄入不足是存在的重要营养问题。 1、维生素B2的生理功能 (1)参与体内生物氧化与能量生成。核黄素在体内以两种辅基形式,即黄素腺嘌呤二核苷酸、黄素单核苷酸与特定蛋白质结合,形成黄素蛋白,通过三羧酸循环中的一些酶以及呼吸链等参与体内氧化还原反应与能量生成。 (2)黄素腺嘌呤二核苷酸、黄素单核苷酸分别作为辅酶参与色氨酸转变为烟酸、维生素B6转变为磷酸吡哆醛的过程。 (3)黄素腺嘌呤二核苷酸作为谷胱甘肽还原酶的辅酶,参与体内的抗氧化防御系统,维持还原性谷胱甘肽的浓度。 (4)提高机体对环境应激适应能力。 2、维生素B2缺乏的表现 核黄素缺乏会极大地影响肝黄素蛋白酶的模式,也显著地对肝结构有破坏。核黄素缺乏期间脂质过氧化作用增强。许多动物核黄素缺乏后表现为生长停滞、毛发脱落、生殖功能下降等,进一步发展可出现贫血、脂肪肝,子代可出现先天畸形。 人类核黄素缺乏后,早期表现为疲倦、乏力、口腔疼痛,眼睛出现瘙痒、烧灼感,继而出现口腔和阴囊病变,称“口腔生殖系综合征”,包括唇炎、口角炎、舌炎、皮炎、阴囊皮炎、角膜血管增生等。 核黄素缺乏一般往往伴有其他B族维生素的缺乏,因为核黄素缺乏会影响维生素B6和烟酸的代谢,由于核黄素缺乏影响铁的吸收,因此核黄素缺乏可以继发缺铁性贫血。此外,严重核黄素缺乏可引起免疫功能低下和胎儿畸形。 3、孕期、哺乳期妇女维生素B2的推荐摄入量 维生素B2 可耐受最高摄入量: 50mg/d 效用 促进发育和细胞的再生; 促使皮肤、指甲、毛发的正常生长; 帮助消除口腔内、唇、舌的炎症; 增进视力,减轻眼睛的疲劳; 和其他的物质相互作用来帮助碳水化合物、脂肪、蛋白质的代谢。 核黄素(维生素B2)为黄素酶类的辅酶组成部分,在生物氧化的呼吸链中起递氢作用,对神经细胞、视网膜代谢、脑垂体促肾上腺皮质激素的释放和胎儿的生长发育亦有影响;碳水化合物,脂肪和氨基酸的代谢与核黄素密切相关。若缺乏时,可出现舌炎、口角炎、脂溢性皮炎和阴囊炎、眼结膜炎、畏光等。核黄素的缺乏主要是因为机体摄取维生素B2量不足所致,成人每天需要量是15~20mg,肠道细菌虽能合成维生素B2,但量少,故主要靠食物提供。机体贮存有限,多余部分随尿排出。 由于核黄素缺乏症很少单独出现,常伴有B族维生素缺乏,最好给予复合维生素B进行防治。
2023-07-02 00:06:472

求专业高手解释 NAD 、 NAD+ 、 NADH 、 NADH2、和 FAD FAD+ FADH2

NAD 是Nicotinamide Adenine Dinucleotide缩写,即酰胺腺嘌呤二核苷酸 它是一种辅酶,既可以做氧化剂,也可以做还原剂,作用是在氧化还原反应中电子传递,携带NAD+ 是氧化剂形态NADH 是还原剂形态NADH2 是其在呼吸作用中NADH携带 H+ 的形态NADH和NADPH功能可以认为是一样的,区别是后者多参与新陈代谢中的合成代谢flavin adenine dinucleotide (FAD) 黄素腺嘌呤二核苷酸和NAD类似,也是辅酶,更强的还原辅助因子,是VB2的活性衍生态FAD 完全氧化态 FADH 半还原态 FADH2 还原态他们主要作用是氧化磷酸化,电子传递链中的能量传递体
2023-07-02 00:06:552

请给一下NADPH和FAD的英文全名

NADPH 是一种辅酶,叫还原型辅酶Ⅱ,学名烟酰胺腺嘌呤二核苷酸磷酸,曾经被称为三磷酸吡啶核苷酸,英文triphosphopyridine nucleotide,使用缩写TPN,亦写作[H],亦叫作还原氢。在很多生物体内的化学反应中起递氢体的作用,具有重要的意义。它是烟酰胺腺嘌呤二核苷酸(NAD+)中与腺嘌呤相连的核糖环系2"-位的磷酸化衍生物,参与多种合成代谢反应,如脂类、脂肪酸和核苷酸的合成。这些反应中需要NADPH作为还原剂、氢负供体,NADPH是NADP+的还原形式。NADPH:reduced form of nicotinamide-adenine dinucleotide phosphate还原型烟酰胺腺嘌呤二核苷酸磷酸,还原型辅酶Ⅱ黄素腺嘌呤二核苷酸(英语:FAD),又称活性型维生素B2、核黄素-5"-腺苷二磷酸,是一种参与了重要的代谢反应的氧化还原辅酶。FAD是一种比NAD和NADP更强的氧化剂,能被1个电子或2个电子途径还原。 1. =flavin adenine dinucleotide 黄素腺嘌呤二核苷酸  FADH,黄素腺嘌呤二核苷酸,还原态。F指黄素,A指腺嘌呤,D是double。  FAD+ 则是氧化态。
2023-07-02 00:07:033

什么是腺嘌呤

腺嘌呤,又称6-氨基嘌呤,是组成DNA和RNA分子的四种核碱基的一种。腺嘌呤是一种含氮杂环衍生物。腺嘌呤及其衍生物具有多种生化功能,参与细胞呼吸,参与合成能量丰富的三磷酸腺苷、辅酶烟酰胺腺嘌呤二核苷酸和黄素腺嘌呤二核苷酸。它还参与蛋白质、DNA和RNA的合成。腺嘌呤与DNA中的胸腺嘧啶(T)或RNA中的尿嘧啶(U)互补。扩展资料腺嘌呤与核糖连接形成腺苷,腺嘌呤与脱氧核糖连接形成脱氧腺苷。当腺苷中加入三个磷酸基团时,它形成一种核苷三磷酸,腺苷三磷酸(ATP)。腺嘌呤是用于合成核酸的核苷酸的两个嘌呤核碱基之一(另一个是鸟嘌呤)。在DNA中,腺嘌呤通过两个氢键与胸腺嘧啶结合,以帮助稳定DNA结构。在RNA中,腺嘌呤与尿嘧啶结合。参考资料来源:百度百科-维生素B4
2023-07-02 00:07:135

在生化中FAD是什么意思?

黄素腺嘌呤二核苷酸(FAD)。
2023-07-02 00:07:341

人体细胞中都有5种碱基,8种核苷酸这句话对吗?

对的,生物体中常见的碱基有5种,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U) 。核苷酸八种:腺嘌呤核糖核苷酸(A)、鸟嘌呤核糖核苷酸(G)、胞嘧啶核糖核苷酸(C)、尿嘧啶核糖核苷酸(U)、腺嘌呤脱氧核糖核苷酸(A)、鸟嘌呤脱氧核糖核苷酸(G)、胞嘧啶脱氧核糖核苷酸(C)、胸腺嘧啶脱氧核糖核苷酸(T)。扩展资料:核苷酸的一些功能:1、 ATP还可将高能磷酸键转移给UDP、CDP及GDP生成UTP 、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且 UDP还有携带转运葡萄糖的作用。2、腺苷酸还是几种重要辅酶,如辅酶Ⅰ(烟酰胺腺嘌呤二核苷酸,(NAD+)、辅酶Ⅱ(磷酸烟酰胺腺嘌呤二核苷酸,NADP+)、黄素腺嘌呤二核苷酸(FAD)及辅酶A(CoA)的组成成分。NAD+及 FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与糖有氧氧化及脂肪酸氧化作用。3、核苷酸对于许多基本的生物学过程有一定的调节作用。一切生物体的基本成分,对生物的生长、发育、繁殖和遗传都起着主宰作用。如在奶粉作为维持宝宝胃肠道正常功能,减少腹泻和便秘、提高免疫力,少生病的作用。参考资料来源:百度百科-核苷酸参考资料来源:百度百科-碱基
2023-07-02 00:07:424

维生素B2的作用

维生素B2的作用:1、促进发育和细胞的再生;2、参与细胞的生长代谢;3、与其他物质配合参与多种新陈代谢;4、促进生长发育,维护皮肤和细胞膜的完整性;5、预防和消除口腔生殖综合征;6、促使皮肤、指甲、毛发的正常生长;7、促进机体对铁的吸收,可防贫血8、增进视力,减轻眼睛疲劳。扩展资料维生素B2有3个特点:一、是易被光线(特别是紫外线)破坏;二、是在碱溶液中加热可被破坏,故与食物、药物同用要多加注意。三、是体内储量有限,必须每天补充。 我们平时每天可通过食物或营养品补充维生素B2,如能与维生素B1、维生素B6、维生素C及叶酸一同摄入,效果更佳。部分特殊患者则可用药补充。正常情况下,维生素B2不会蓄积在体内,所以即使摄入过量一般不会中毒。参考资料来源:百度百科-维生素b2
2023-07-02 00:08:0012

NADH与NADPH的不同?有何用处?

一、作用不同:辅酶1和辅酶2都是辅酶,辅酶1排名第一,是人体最重要的辅酶,人体内大约有一半的反应需要辅酶1参与。随着人体的衰老,NAD+水平组件降低,相关的细胞反应和代谢减弱,就会带来一些显而易见的变化,比如皱纹,比如脱发,比如精力变差易疲劳等等,这些都是代谢和细胞反应变差的问题。NAD+参与着体内上千个细胞反应,重要性显而易见了。二、含义不同:在细胞呼吸里的还原氢分为两种,一种是烟酰胺腺嘌呤二核苷酸,还有一种叫做黄素腺嘌呤二核苷酸,前者用NADH表示,后者用FADH2表示.两者携带的能量密度不同,相差一个ATP。(前者比后者多)其中NADH叫做还原型辅酶一在光合作用里的辅酶就是NADPH,如果比较NADH,发现两个英文字母里少了一个P,这就是一个磷酸基团,因此它的名字叫做烟酰胺腺嘌呤二核苷酸磷酸,它就是还原性辅酶二。扩展资料:NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。NADH分子是线粒体中能量产生链中的控制标志物。NADH水平的上升指示代谢失衡的出现。监视NADH的氧化还原状态是表征活体内线粒体功能的最佳参数。紫外光可以在线粒体中激发NADH产生荧光,用来监测线粒体功能。NADPH通常作为生物合成的还原剂,并不能直接进入呼吸链接受氧化。只是在特殊的酶的作用下,NADPH上的H被转移到NAD+上,然后由NAD+进入呼吸链。参考资料来源:百度百科-还原型辅酶
2023-07-02 00:09:031

nadh fadh 什么意思?

NADH,烟酰胺腺嘌呤二核苷酸,还原态,还原型辅酶Ⅰ。N指烟酰胺,A指腺嘌呤,D是二核苷酸。 用于糖酵解和细胞呼吸作用中的柠檬酸循环。 NAD+ 则是氧化态。 葡萄糖代谢时直接经代谢所产生的ATP是十分的少的,而代谢产生的NADH或FADH2经由一个电子传递与氧化磷酸反应可产生大量的ATP。 烟酰胺腺嘌呤二核苷酸(氧化态)NAD+ 烟酰胺腺嘌呤二核苷酸(还原态)NADH 烟酰胺腺嘌呤二核苷酸磷酸(还原态) NADPH 烟酰胺腺嘌呤二核苷酸磷酸(氧化态) NADP+ NAD+ + H+ + 2e- = NADH NADP+ + H+ + 2e- = NADPH 他们都是辅酶,用来实现电子传递。 FADH2 ,黄素腺嘌呤二核苷酸(FAD)递氢体、蛋白结合性载体(还原型电子载体)   FADH2中的H2分离成游离的氢离子(H+)和电子(e-): FADH2→FAD+2H+ +2e- 再往后是电子在多种细胞色素中顺序地进行传递。FADH2是FAD+的还原形式   NADH和FADH2都是人体内糖类(葡萄糖、果糖等)无氧酵解和有氧氧化中必须的物质,都是B族维生素的衍生物,参与电子传递和氧化磷酸途径产生ATP。
2023-07-02 00:09:173

什么可以字母表示生物中的一些词

第一章 1,氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。 5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm. 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。 12,纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。 13,球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。 14,角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。 15,胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。 16,疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。 17,伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。 18,二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。 19,范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。 20,蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。 21,肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。 22,复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。 23,波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。 24,血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。 25,别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。 26,镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe)。 第三章 1,酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是 通过降低活化能加快反应的速度。 2,脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。 3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。 4,酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。 5,比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。 6,活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。 7,活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。 8,酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。 9,共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。 10,靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。 11,初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。 12,米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s]) 13,米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。 14,催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。 15,双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。 16,竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而 υmax不变。 17,非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。 18,反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。 19,丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。 20,酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。 21,调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。 22,别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。 23,别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。 24,齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。 25,序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。 26,同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。 27,别构调节酶(allosteric modulator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。 第四章 1,维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。 2,水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。 3,脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。 4,辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。 5,辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。 6,尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。 7,黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。 8,硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。 9,黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。 10,磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。 11,生物素(biotin):参与脱羧反应的一种酶的辅助因子。 12,辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。 13,类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素。 14,转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。 第五章 1,醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。 2,酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。 3,异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。 4,异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。 5,变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。 6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。 7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。 8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。 9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。 10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。 11,还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。 12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。 13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。 14,极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。 15,肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。 16,糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。 17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。 第六章 1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。 2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。 3,不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。 4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。 5,三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。 6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。 7,鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。 8,鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。 9,卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。 10,脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。 11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。 12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。 13,内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。 14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。 15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。 16,通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。 17,通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。 18,(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。 19,被动转运(passive transport):那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。 20,主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。 21,协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。 22,胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程。 第七章 1,核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。 2,核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。 3,cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。 4,磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。 5,脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。 6,核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。 7,核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA . 8,信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA . 9, 转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。 10,转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。 11,转导(作用)(transduction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。 12,碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。 13,夏格夫法则(Chargaff"s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。 14,DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。 15.大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现
2023-07-02 00:09:254

三羧酸循环名词解释生物化学

柠檬酸循环(citric acid cycle):也称为三羧酸循环(tricarboxylic acid cycle,TCA循环,TCA),Krebs循环。是用于将乙酰CoA中的乙酰基氧化成二氧化碳和还原当量的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。反应物乙酰辅酶A(Acetyl-CoA)(一分子辅酶A和一个乙酰相连)是糖类、脂类、氨基酸代谢的共同的中间产物,进入循环后会被分解最终生成产物二氧化碳并产生H,H将传递给辅酶I--尼克酰胺腺嘌呤二核苷酸(NAD+) (或者叫烟酰胺腺嘌呤二核苷酸)和黄素腺嘌呤二核苷酸(FAD),使之成为NADH + H+和FADH2。 NADH + H+ 和 FADH2 携带H进入呼吸链,呼吸链将电子传递给O2产生水,同时偶联氧化磷酸化产生ATP,提供能量。真核生物的线粒体基质和原核生物的细胞质是三羧酸循环的场所。它是呼吸作用过程中的一步,之后高能电子在NAHD+H+和FADH2的辅助下通过电子传递链进行氧化磷酸化产生大量能量。
2023-07-02 00:09:321

不参与脱氢的辅酶是(  )。

【答案】:D脱氢酶的辅酶有TPP、FMN、FAD、NAD和NADP。其中TPP(焦磷酸硫胺素)是α-酮酸氧化脱氢酶系的辅酶;FMN(黄素单核苷酸)和FAD(黄素腺嘌呤二核苷酸)是黄酶(黄素蛋白)的辅酶,作为呼吸链的组成成分,与糖、脂和氨基酸的代谢密切有关;NAD(烟酰胺腺嘌呤二核苷酸)和NADP(烟酰胺腺嘌呤二核苷酸磷酸)是脱氢酶的主要构成辅基,由VB3即维生素PP(烟酸)转化来的。细胞色素(Cyt)是电子传递体,并不参与脱氢。
2023-07-02 00:09:391

什么是酯键?

    酯键是一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的键.该酯键成了两个醇之间的桥梁.。  例如一个核苷的3ˊ羟基与另一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二酯键.酯的基本结构可以写成:O ║ C—O—R′ ∣ R
2023-07-02 00:09:482

有氧呼吸中,葡萄糖与脂肪耗氧量的比较?

葡萄糖中只含有C、H、O,脂肪只含有C、H、O,脂肪和葡萄糖相比,脂肪的C、H比例比葡萄糖的含量高,等量的葡萄糖和脂肪氧化分解时,脂肪耗氧量多,产生的能量多。有氧呼吸是指细胞在氧气的参与下,通过酶的催化作用,把糖类等有机物彻底氧化分解,产生出二氧化碳和水,同时释放出大量的能量的过程。有氧呼吸是高等动植物进行呼吸作用的主要形式。有氧呼吸是高等动、植物进行呼吸作用的主要形式,通常所说的呼吸作用就是指有氧呼吸。在线粒体的内膜上前两阶段脱下的共24个[H]与从外界吸收或叶绿体光合作用产生的6个O2结合成水;在此过程中释放大量的能量,其中一部分能量用于合成ATP,产生大量的能量。这一阶段需要氧的参与,是在线粒体内膜上进行的。反应式:24[H]+6O2酶→12H2O+大量能量(34ATP) (24[H]为10*2NADH和2*FADH2)。1NADH生成2.5ATP(旧为3ATP),1FADH2生成1.5ATP(旧为2ATP)。以上内容参考:百度百科-有氧呼吸
2023-07-02 00:10:143

生物 土壤中的磷以什么形式被植物细胞吸收 吸收后可用于合成哪些含磷的有机物

  土壤中磷元素存在两种形式,无机磷和有机磷,而主要吸收无机磷,有机磷需要转化才能被吸收,在无机磷中正磷酸盐是其吸收的主要形式。磷酸二氢根最易被吸收,磷酸氢根次之,磷酸根几乎不被吸收。植物主要的含磷核苷酸衍生物: ATP(腺苷三磷酸)   NAD(烟酰胺腺嘌呤二核苷酸,辅酶Ⅰ)   NADP(烟酰胺腺嘌呤二核苷酸磷酸,辅酶Ⅱ)   FAD(黄素腺嘌呤二核苷酸)   FMN(黄素单核苷酸)
2023-07-02 00:10:291

平时所吃的食物以及呼吸获得的氧气如何一步步到组织细胞被利用的?

这个说起来有点麻烦。食物:吃进去的食物通过胃、小肠消化为小分子物质,被小肠绒毛吸收后进入体液和血液,经过循环系统输送到每一个细胞,透过细胞膜进入细胞,在细胞质中氧化分解。其中,糖等含碳物质中的碳经过糖酵解途径、三羧酸循环氧化为二氧化碳,透过细胞膜进入血液,由血液中的红细胞携带到肺部,通过气体交换,由呼吸排出体外。而其中的氢在三羧酸循环中被分离出来,由NAD(烟酰胺腺嘌呤二核苷酸,简称为辅酶Ⅰ)、NADP(烟酰胺腺嘌呤二核苷酸磷酸,简称为辅酶II)、FMN(黄素单核苷酸)和FAD(黄素腺嘌呤二核苷酸)等,携带进入细胞的线粒体,经过呼吸链(电子传递链)把氢交给通过呼吸进入细胞的氧,生成水。氧气:通过呼吸系统进入体内的氧气,经过肺部的气体交换,由血液中的红细胞携带到每一个细胞外,透过细胞膜进入细胞,再进入细胞中的线粒体中,在线粒体内经过呼吸链(电子传递链)接受氢,生成水。食物就是这样,通过体内一系列生理生化反应,最终变成了二氧化碳和水。
2023-07-02 00:10:511

生物化学英文缩写《急急急急急急》!?_ FAS FAD FADH2 FMN IU IF EC

我只知道FAD是黄素腺嘌呤二核苷酸,FADH2是还原型黄素腺嘌呤二核苷酸,FMN是黄素单核苷酸
2023-07-02 00:10:581

6、核酸降解的产物核苷酸及其衍生物的作用有哪些?

核酸降解的产物核苷酸及其衍生物的作用有哪些核算逐步降解的产物:核酸在生物体内核酸酶、核苷酸酶、核苷酶等的作用下,分解为氨、尿素、尿囊素、尿囊酸、尿酸等终产物,排泄到体外。知识点延伸:在核酸的分解过程中,产生的核糖可以沿磷酸戊糖途径代谢,产生的核苷酸及其衍生物几乎参与细胞的所有生化过程。如ATP是生物体内的通用能源;腺苷酸还是几种重要辅酶的组成成分;cAMP和cGMP作为激素作用的第二信使,是生物体内物质代谢的重要调节物质。
2023-07-02 00:11:072

维生素b1与b和b2的区别

1、物理、化学性质不同维生素b1:白色结晶,溶于水,微溶于乙醇、氯仿;盐酸盐为白色结晶性粉末,易潮解,有苦味,易溶于水,稍溶于乙醇,不溶于乙醚,熔点为245~250℃。在碱性条件下易分解变质。可由以丙烯腈或丙二腈为原料的合成路线制得。通常用乙基-β-丙酸乙酯、甲酸乙酯、金属钠丝等为原料进行合成法生产。维生素b2:水溶性维生素,但微溶于水,在27.5℃下,溶解度为12mg/100mL。可溶于氯化钠溶液,易溶于稀的氢氧化钠溶液,在碱性溶液中容易溶解,在强酸溶液中稳定。耐热、耐氧化。光照及紫外照射引起不可逆的分解。2、生理作用不同:维生素B1是人体能量代谢,特别是糖代谢所必需的,故人体对硫胺的需要量通常与摄取的热量有关。当人体的能量主要来源于糖类时,维生素B1的需要量最大。维生素B1还是维持心脏,神经及消化系统正常功能所必需的。当维生素B1缺乏时,按其程度,依次可出现下列反应:神经系统反应(干性脚气病),心血管系统反应(湿性脚气病)Wernicke(韦尼克氏)脑病及Korsakoff综合症(多神经炎性精神病)。维生素B2分子中异咯嗪上1,5位N存在的活泼共轭双键有关,既可作氢供体,又可作氢递体。在人体内以黄素腺嘌呤二核苷酸(FAD)和黄素单核苷酸(FMN)两种形式参与氧化还原反应,起到递氢的作用,是机体中一些重要的氧化还原酶的辅基,如:琥珀酸脱氢酶、黄嘌呤氧化酶及NADH脱氢酶等。主要参与的生化反应有呼吸链能量产生,氨基酸、脂类氧化,嘌呤碱转化为尿酸,芳香族化合物的羟化,蛋白质与某些激素的合成,铁的转运、储存及动员,参与叶酸、吡多醛、尼克酸的代谢等。3、代谢过程不同维生素B1:食物中的维生素B1有三种形式,即游离形式、硫胺素焦磷酸脂和蛋白磷酸复合物。结合形式的维生素B1在消化道裂解后被吸收。吸收的主要部位是空肠和回肠。大量饮茶会降低肠道对维生素B1的吸收;酒精中含有抗硫胺素物质;叶酸缺乏可导致维生素B1吸收障碍。维生素B1由尿排出,不能被肾小管再吸收。维生素B2:膳食中的大部分维生素B2是以黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)辅酶形式和蛋白质结合存在。进入胃后,在胃酸的作用下,与蛋白质分离,在上消化道转变为游离型维生素B2后,在小肠上部被吸收。当摄入量较大时,肝肾常有较高的浓度,但身体贮存维生素B2的能力有限,超过肾阈即通过泌尿系统,以游离形式排出体外,因此每日身体组织的需要必需由饮食供给。扩展资料:维生素B1注意事项:1、抽烟、喝酒、常摄取砂糖的人要增加维生素B1的摄取量;2、在妊娠、哺乳期或是服用避孕药的女性需要大量的维生素B1;3、假如您有在饭后服用胃酸抑制剂的习惯,那么您就会丧失在这顿饭中所摄取到的B1;4、处于紧张状态的人——生病、焦虑、精神打击、手术后等——不仅需要B1,而且需要B族中所有的维生素,也就是说应该加服复合维生素B制剂。5、维生素B1缺乏的预防和治疗,如“脚气病”,周围神经炎及消化不良。6、妊娠或哺乳期,甲状腺功能亢进,烧伤,长期慢性感染,重体力劳动,吸收不良综合症伴肝胆疾病,小肠系统疾病及胃切除后维生素B1的补充。参考资料来源:百度百科-维生素B1参考资料来源:百度百科-维生素B2
2023-07-02 00:11:161

NADPH是什么?有什么作用?

是一种辅酶,叫还原型辅酶Ⅱ(NADPH),学名烟酰胺腺嘌呤二核苷酸,在很多生物体内的化学反应中起递氢体的作用,具有重要的意义。还有NADP,是其氧化形式。常常存在于糖类代谢过程中。来自于维生素PP。NAD+和NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,辅酶Ⅰ)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶Ⅱ),是VitPP的衍生物。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单递氢体。NADPH(还原型辅酶II)NADPH通常作为生物合成的还原剂,并不能直接进入呼吸链接受氧化。只是在特殊的酶的作用下,NADPH上的H被转移到NAD+上,然后由NADH进人呼吸链。植物本身生理活动直接消耗的供能物质是ATP,主要是呼吸作用在线粒体内产生的。光能则是在叶绿体内转化为NADPH用于光合作用。维生素(vitamin)是指一类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给的小分子有机化合物。维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有VitA、VitD、VitE和VitK四种;水溶性维生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,叶酸等。1.TPP:即焦磷酸硫胺素,由硫胺素(VitB1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中α-酮酸的氧化脱羧反应。2.FMN和FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的衍生物。FMN或FAD通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)。3.NAD+和NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,辅酶Ⅰ)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶Ⅱ),是VitPP的衍生物。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单递氢体。4.磷酸吡哆醛和磷酸吡哆胺:是VitB6的衍生物。磷酸吡哆醛和磷酸吡哆胺可作为氨基转移酶,氨基酸脱羧酶,半胱氨酸脱硫酶等的辅酶。5.CoA:泛酸(遍多酸)在体内参与构成辅酶A(CoA)。CoA中的巯基可与羧基以高能硫酯键结合,在糖、脂、蛋白质代谢中起传递酰基的作用,是酰化酶的辅酶。6.生物素:是羧化酶的辅基,在体内参与CO2的固定和羧化反应。7.FH4:由叶酸衍生而来。四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。8.VitB12衍生物:VitB12分子中含金属元素钴,故又称为钴胺素。VitB12在体内有多种活性形式,如5"-脱氧腺苷钴胺素、甲基钴胺素等。其中,5"-脱氧腺苷钴胺素参与构成变位酶的辅酶,甲基钴胺素则是甲基转移酶的辅酶。
2023-07-02 00:11:253

p/o比值的名词解释是什么?

P/O比值是:一对电子经NADH(酰胺腺嘌呤二核苷酸的还原态)氧化呼吸链,P/O值约等于2.5,生成2.5分子ATP(三磷酸腺苷);一对电子经FADH2(黄素腺嘌呤二核苷酸递氢体)氧化呼吸链,P/O值约等于1.5,即生成1.5分子ATP。电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP(二磷酸腺苷)磷酸化生成ATP。经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP的分子数)称为磷氧比值(P/O)。由于无机磷酸用于ADP磷酸化生成ATP,因此P/O比值可以反映物质氧化时每消耗1摩尔氧原子生成的ATP数。偶联部位:生物氧化的特点之一,就是在营养物质的氧化过程中,能量是逐步释放的。当底物脱下的氢沿着呼吸链传递时,自由能由高到低逐渐降低,释放的总自由能为-220.23kJ/mol,其中,每一步骤释放的自由能多少也不等。其中有3处释放的自由能较多,足可以供ADP与无机磷酸作用生成ATP反应所需要的能量(ΔG ═ +30.5 kJ/mol)。在这些步骤上,就可能发生底物氧化与ADP磷酸化的偶联,生成ATP 。
2023-07-02 00:11:341

FAD (黄素腺苷酸二核苷酸磷酸),这个二核苷酸是什么意思?

说的对,FMN 是维生素B2(核黄素)在体内与磷酸结合转变而成的一种核苷酸,因为只有1个磷酸,所以称黄素单核苷酸;而FAD 是由FMN 和 腺苷酸结合转变而成的,是由两种核苷酸形成的,所以叫黄素腺嘌呤二核苷酸, 其实,FAD也可以认为 是由1个B2(核黄素)和 1个ADP(腺苷二磷酸)结合而成的,所以名称中包括了其组成成分。
2023-07-02 00:12:022

:NADH和FADH2中文解释叫什么名称?

NADH(Nicotinamide adenine dinucleotide)是一种化学物质,是烟酰胺腺嘌呤二核苷酸的还原态,还原型辅酶Ⅰ。N指烟酰胺,A指腺嘌呤,D是二核苷酸。FADH2 ,还原型黄素二核苷酸、黄素腺嘌呤二核苷酸(FAD)递氢体、蛋白结合性载体(还原型电子载体)、还原型辅酶的一种。扩展资料:NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。NADH分子是线粒体中能量产生链中的控制标志物。监视NADH的氧化还原状态是表征活体内线粒体功能的最佳参数。紫外光可以在线粒体中激发NADH产生荧光,用来监测线粒体功能。FADH2中的H2分离成游离的氢离子(H+)和电子(e-): FADH2→FAD+2H+ +2e- 再往后是电子在多种细胞色素中顺序地进行传递。FADH2是FAD+的还原形式。参考资料来源:百度百科-FADH2百度百科-NADH
2023-07-02 00:12:121

生物化学中dh2是什么

黄素蛋白,。D=double,加起来就是黄素腺嘌呤二核苷酸(还原型).一分子NADH2产生2.5ATP,一分子FADH2产生1.5ATP,这是现在的算法。FADH2中的H2分离成游离的氢离子(H+)和电子(e-): FADH2→FAD+2H+ +2e- 再往后是电子在多种细胞色素中顺序地进行传递。FADH2是FAD+的还原形式NADH和FADH2都是人体内糖类(葡萄糖、果糖等)无氧酵解和有氧氧化中必须的物质,都是B族维生素的衍生物,参与电子传递和氧化磷酸途径产生ATP。
2023-07-02 00:12:411

什么是腺嘌呤

腺嘌呤,又称6-氨基嘌呤,是组成DNA和RNA分子的四种核碱基的一种。腺嘌呤是一种含氮杂环衍生物。腺嘌呤及其衍生物具有多种生化功能,参与细胞呼吸,参与合成能量丰富的三磷酸腺苷、辅酶烟酰胺腺嘌呤二核苷酸和黄素腺嘌呤二核苷酸。它还参与蛋白质、DNA和RNA的合成。腺嘌呤与DNA中的胸腺嘧啶(T)或RNA中的尿嘧啶(U)互补。扩展资料腺嘌呤与核糖连接形成腺苷,腺嘌呤与脱氧核糖连接形成脱氧腺苷。当腺苷中加入三个磷酸基团时,它形成一种核苷三磷酸,腺苷三磷酸(ATP)。腺嘌呤是用于合成核酸的核苷酸的两个嘌呤核碱基之一(另一个是鸟嘌呤)。在DNA中,腺嘌呤通过两个氢键与胸腺嘧啶结合,以帮助稳定DNA结构。在RNA中,腺嘌呤与尿嘧啶结合。参考资料来源:百度百科-维生素B4
2023-07-02 00:12:491

求生物化学名词英语缩写

CDP 胞苷二磷酸(cytidine diphosphate)CTP 胞苷三磷酸(cytidine triphosphate)EMP 糖酵解途径(Emoden-Meyerbof-Parnas pathway)GDP 鸟苷二磷酸(guanosine diphosphate)GTP 鸟苷三磷酸(guanosine triphosphate)IU 国际单位(international unit)IF 起始因子(initiation factor)、等电聚焦(isoelectric focusing)NADH 烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)的还原形式NADPH 烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADP+)的还原形式UMP 鸟苷酸(uridine monophosphate)UDP 尿苷二磷酸(uridine diphosphate)UTP 尿苷三磷酸(uridine triphosphate) FAS、ETC、FADF2不确定,以下给你参考FAS 美国科学家联合会(Federation of American Scientists)、TNF受体家族的Fas基因EC 酶学委员会(enzyme commission) ETC 等等(etc.)FA 脂肪酸(fatty acid)FAD 黄素腺嘌呤二核苷酸(flacin adenine dinucleotide)FADH2 还原型黄素腺嘌呤二核苷酸(flavin adenine dinucleotide,reduced)
2023-07-02 00:13:022

人体细胞中都有5种碱基,8种核苷酸这句话对吗?

对的,生物体中常见的碱基有5种,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U) 。核苷酸八种:腺嘌呤核糖核苷酸(A)、鸟嘌呤核糖核苷酸(G)、胞嘧啶核糖核苷酸(C)、尿嘧啶核糖核苷酸(U)、腺嘌呤脱氧核糖核苷酸(A)、鸟嘌呤脱氧核糖核苷酸(G)、胞嘧啶脱氧核糖核苷酸(C)、胸腺嘧啶脱氧核糖核苷酸(T)。扩展资料:核苷酸的一些功能:1、 ATP还可将高能磷酸键转移给UDP、CDP及GDP生成UTP 、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且 UDP还有携带转运葡萄糖的作用。2、腺苷酸还是几种重要辅酶,如辅酶Ⅰ(烟酰胺腺嘌呤二核苷酸,(NAD+)、辅酶Ⅱ(磷酸烟酰胺腺嘌呤二核苷酸,NADP+)、黄素腺嘌呤二核苷酸(FAD)及辅酶A(CoA)的组成成分。NAD+及 FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与糖有氧氧化及脂肪酸氧化作用。3、核苷酸对于许多基本的生物学过程有一定的调节作用。一切生物体的基本成分,对生物的生长、发育、繁殖和遗传都起着主宰作用。如在奶粉作为维持宝宝胃肠道正常功能,减少腹泻和便秘、提高免疫力,少生病的作用。参考资料来源:百度百科-核苷酸参考资料来源:百度百科-碱基
2023-07-02 00:13:091

还原性辅酶1和2分别是什么

在细胞呼吸里的还原氢分为两种,一种是烟酰胺腺嘌呤二核苷酸.还有一种叫做黄素腺嘌呤二核苷酸. 前者用NADH表示,后者用FADH2表示.两者携带的能量密度不同.相差一个ATP.(前者比后者多.)其中NADH叫做还原型辅酶一 在光合作用里的辅酶就是NADPH,如果你比较NADH,发现两个英文字母里少了一个P.这就是一个磷酸基团.因此它的名字叫做烟酰胺腺嘌呤二核苷酸磷酸.它就是还原性辅酶二 补充一下,在细胞呼吸里面也会产生NADPH,这是细胞呼吸的另一条途径,叫做磷酸戊糖循环,它是人体产生游离核苷酸的主要途径.这些核苷酸用于细胞信息传递和DNA复制,RNA转录等多个过程. 希望能被采纳
2023-07-02 00:13:552

还原性辅酶1和2区别是什么?

一、作用不同:辅酶1和辅酶2都是辅酶,辅酶1排名第一,是人体最重要的辅酶,人体内大约有一半的反应需要辅酶1参与。随着人体的衰老,NAD+水平组件降低,相关的细胞反应和代谢减弱,就会带来一些显而易见的变化,比如皱纹,比如脱发,比如精力变差易疲劳等等,这些都是代谢和细胞反应变差的问题。NAD+参与着体内上千个细胞反应,重要性显而易见了。二、含义不同:在细胞呼吸里的还原氢分为两种,一种是烟酰胺腺嘌呤二核苷酸,还有一种叫做黄素腺嘌呤二核苷酸,前者用NADH表示,后者用FADH2表示.两者携带的能量密度不同,相差一个ATP。(前者比后者多)其中NADH叫做还原型辅酶一在光合作用里的辅酶就是NADPH,如果比较NADH,发现两个英文字母里少了一个P,这就是一个磷酸基团,因此它的名字叫做烟酰胺腺嘌呤二核苷酸磷酸,它就是还原性辅酶二。扩展资料:NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。NADH分子是线粒体中能量产生链中的控制标志物。NADH水平的上升指示代谢失衡的出现。监视NADH的氧化还原状态是表征活体内线粒体功能的最佳参数。紫外光可以在线粒体中激发NADH产生荧光,用来监测线粒体功能。NADPH通常作为生物合成的还原剂,并不能直接进入呼吸链接受氧化。只是在特殊的酶的作用下,NADPH上的H被转移到NAD+上,然后由NAD+进入呼吸链。参考资料来源:百度百科-还原型辅酶
2023-07-02 00:14:041

不参与脱氢的辅酶是(  )

【答案】:D脱氢酶的辅酶有TPP、FMN、FAD、NAD和NADP。其中TPP(焦磷酸硫胺素)是α-酮酸氧化脱氢酶系的辅酶;FMN(黄素单核苷酸)和FAD(黄素腺嘌呤二核苷酸)是黄酶(黄素蛋白)的辅酶,作为呼吸链的组成成分,与糖、脂和氨基酸的代谢密切有关;NAD(烟酰胺腺嘌呤二核苷酸)和NADP(烟酰胺腺嘌呤二核苷酸磷酸)是脱氢酶的主要构成辅基,由VB3即维生素PP(烟酸)转化来的。细胞色素(Cyt)是电子传递体,并不参与脱氢。
2023-07-02 00:14:181

有氧呼吸的相关内容

有氧呼吸 - 介绍指物质在细胞内的氧化分解,具体表现为氧的消耗和二氧化碳、水及三磷酸腺苷(ATP)的生成,又称细胞呼吸。其根本意义在于给机体提供可利用的能量。 在第1阶段中,各种能源物质循不同的分解代谢途径转变成乙酰辅酶A。在第2阶段中,乙酰辅酶A(乙酰CoA)的二碳乙酰基,通过三羧酸循环转变为CO2和氢原子。在第3阶段中,氢原子进入电子传递链(呼吸链),最后传递给氧,与之生成水;同时通过电子传递过程伴随发生的氧化磷酸化作用产生ATP分子。 生物体主要通过脱羧反应产生CO2,即代谢物先转变成含有羧基(-COOH)的羧酸,然后在专一的脱羧酶催化下,从羧基中脱去CO2。细胞中的氧化反应可以“脱氢”、“加氧”或“失电子”等多种方式进行,而以脱氢方式最为普遍,也最重要。在细胞呼吸的第1阶段中包括一些脱羧和氧化反应,但在三羧酸循环中更为集中。三羧酸循环是在需氧生物中普遍存在的环状反应序列。循环由连续的酶促反应组成,反应中间物质都是含有3个羧基的三羧酸或含有2个羧基的二羧酸,故称三羧酸循环。因柠檬酸是环上物质,又称柠檬酸循环。也可用发现者的名字命名为克雷布斯循环。在循环开始时,一个乙酰基以乙酰-CoA的形式,与一分子四碳化合物草酰乙酸缩合成六碳三羧基化合物柠檬酸。柠檬酸然后转变成另一个六碳三羧酸异柠檬酸。异柠檬酸脱氢并失去CO2,生成五碳二羧酸α-酮戊二酸。后者再脱去1个CO2,产生四碳二羧酸琥珀酸。最后琥珀酸经过三步反应,脱去2对氢又转变成草酰乙酸。再生的草酰乙酸可与另一分子的乙酰CoA反应,开始另一次循环。循环每运行一周,消耗一分子乙酰基(二碳),产生2分子CO2和4对氢。草酰乙酸参加了循环反应,但没有净消耗。如果没有其他反应消除草酰乙酸,理论上一分子草酰乙酸可以引起无限的乙酰基进行氧化。环上的羧酸化合物都有催化作用,只要小量即可推动循环。凡能转变成乙酰CoA或三羧酸循环上任何一种催化剂的物质,都能参加这循环而被氧化。所以此循环是各种物质氧化的共同机制,也是各种物质代谢相互联系的机制。三羧酸循环必须在有氧的情况下进行。 环上脱下的氢进入呼吸链,最后与氧结合成水并产生ATP,这个过程是生物体内能量的主要来源。呼吸链由一系列按特定顺序排列的结合蛋白质组成。链中每个成员,从前面的成员接受氢或电子,又传递给下一个成员,最后传递给氧。在电子传递的过程中,逐步释放自由能,同时将其中大部分能量,通过氧化磷酸化作用贮存在ATP分子中。不同生物,甚至同一生物的不同组织的呼吸链都可能不同。有的呼吸链只含有一种酶,也有的呼吸链含有多种酶。但大多数呼吸链由下列成分组成,即:烟酰胺脱氢酶类、黄素蛋白类、铁硫蛋白类、辅酶Q和细胞色素类。这些结合蛋白质的辅基(或辅酶)部分,在呼吸链上不断地被氧化和还原,起着传递氢(递氢体)或电子(递电子体)的作用。其蛋白质部分,则决定酶的专一性。为简化起见,书写呼吸链时常略去其蛋白质部分。上图即是存在最广泛的NADH呼吸链和另一种FADH2呼吸链。图中用MH2代表任一还原型代谢物,如苹果酸。可在专一的烟酰胺脱氢酶(苹果酸脱氢酶)的催化下,脱去一对氢成为氧化产物M(草酰乙酸)。这类脱氢酶,以NAD+(烟酰胺腺嘌呤二核苷酸)或NADP+(烟酰胺腺嘌呤二核苷酸磷酸)为辅酶。这两种辅酶都含有烟酰胺(维生素PP)。在脱氢反应中,辅酶可接受1个氢和1个电子成为还原型辅酶,剩余的1个H+留在液体介质中。 NAD++2H(2H++2e)NADH+H+NADP++2H(2H++2e)NADPH+H+黄素蛋白类是以黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)为辅基的脱氢酶,其辅基中含核黄素(维生素B2)。NADH脱氢酶就是一种黄素蛋白,可以将NADH的氢原子加到辅基FMN上,在NADH呼吸链中起递氢体作用。琥珀酸脱氢酶也是一种黄素蛋白,可以将底物琥珀酸的1对氢原子直接加到辅基FAD上,使其氧化生成延胡索酸。FADH2继续将H传递给FADH2呼吸链中的下一个成员,所以FADH2呼吸链比NADH呼吸链短,伴随着呼吸链产生的ATP也略少。 铁硫蛋白类的活性部位含硫及非卟啉铁,故称铁硫中心。其作用是通过铁的变价传递电子:Fe3++eFe2+。这类蛋白质在线粒体内膜上,常和黄素脱氢酶或细胞色素结合成复合物。在从NADH到氧的呼吸链中,有多个不同的铁硫中心,有的在NADH脱氢酶中,有的和细胞色素b及c1有关。辅酶Q是一种脂溶性醌类化合物,因广泛存在于生物界故又名泛醌。其分子中的苯醌结构能可逆地加氢还原成对苯二酚衍生物,在呼吸链中起中间传递体的作用。细胞色素是一类以铁卟啉(与血红素的结构类似)为辅基的红色或棕色蛋白质,在呼吸链中依靠铁的化合价变化而传递电子:Fe3++eFe2+。当今发现的细胞色素有 b、c、c1、aa3等多种。这些细胞色素的蛋白质结构、辅基结构及辅基与蛋白质部分的连接方式均有差异。在典型的呼吸链中,其顺序是b→c1→c→aa3→O2。如今当今,还不能把a和a3分开,而且只有aa3能直接被分子氧氧化,故将a和a3写在一起并称之为细胞色素氧化酶。生物界各种呼吸链的差异主要在于组分不同,或缺少某些中间传递体,或中间传递体的成分不同。如在分枝杆菌中用维生素K代替辅酶Q;又如许多细菌没有完整的细胞色素系统。呼吸链的组成虽然有许多差异,但其传递电子的顺序却基本一致。生物进化越高级,呼吸链就越完善。与呼吸链偶联的ATP生成作用叫做氧化磷酸化。NADH呼吸链每传递1对氢原子到氧,产生3个ATP分子。FADH2呼吸链则只生成2个ATP分子。
2023-07-02 00:14:271

生物化学名词解释英文版?

第一章 1,氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。 5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm. 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。 12,纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。 13,球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。 14,角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。 15,胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。 16,疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。 17,伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。 18,二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。 19,范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。 20,蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。 21,肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。 22,复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。 23,波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。 24,血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。 25,别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。 26,镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe)。 第三章 1,酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是 通过降低活化能加快反应的速度。 2,脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。 3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。 4,酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。 5,比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。 6,活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。 7,活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。 8,酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。 9,共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。 10,靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。 11,初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。 12,米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s]) 13,米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。 14,催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。 15,双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。 16,竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而 υmax不变。 17,非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。 18,反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。 19,丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。 20,酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。 21,调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。 22,别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。 23,别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。 24,齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。 25,序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。 26,同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。 27,别构调节酶(allosteric modulator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。 第四章 1,维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。 2,水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。 3,脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。 4,辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。 5,辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。 6,尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。 7,黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。 8,硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。 9,黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。 10,磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。 11,生物素(biotin):参与脱羧反应的一种酶的辅助因子。 12,辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。 13,类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素。 14,转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。 第五章 1,醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。 2,酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。 3,异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。 4,异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。 5,变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。 6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。 7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。 8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。 9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。 10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。 11,还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。 12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。 13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。 14,极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。 15,肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。 16,糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。 17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。 第六章 1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。 2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。 3,不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。 4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。 5,三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。 6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。 7,鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。 8,鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。 9,卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。 10,脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。 11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。 12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。 13,内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。 14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。 15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。 16,通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。 17,通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。 18,(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。 19,被动转运(passive transport):那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。 20,主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。 21,协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。 22,胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程。 第七章 1,核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。 2,核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。 3,cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。 4,磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。 5,脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。 6,核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。 7,核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA . 8,信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA . 9, 转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。 10,转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。 11,转导(作用)(transduction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。 12,碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。 13,夏格夫法则(Chargaff"s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。 14,DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。 15.大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。
2023-07-02 00:14:435

如何快速理解和记忆三羧酸循环?

三羧酸循环(tricarboxylic acid cycle )是一个由一系列酶促反应构成的循环反应系统,在该反应过程中,首先由乙酰辅酶A(C2)与草酰乙酸(OAA)(C4)缩合生成含有3个羧基的柠檬酸(C6),经过4次脱氢(3分子NADH+H+和1分子FADH2),1次底物水平磷酸化,最终生成2分子CO2,并且重新生成草酰乙酸的循环反应过程。两个碳原子以CO2的形式离开循环。循环最后草酰乙酸会再次生成,再次从乙酰辅酶A中得到两个碳原子。就是说,一分子六碳化合物(柠檬酸)经过多部反应分解成一分子四碳化合物(草酰乙酸)。草酰乙酸会在接下来的反应中遵循同样的途径获得两个碳原子,再次成为柠檬酸。
2023-07-02 00:15:033

nadh与nadp的区别在哪?

一、作用不同:辅酶1和辅酶2都是辅酶,辅酶1排名第一,是人体最重要的辅酶,人体内大约有一半的反应需要辅酶1参与。随着人体的衰老,NAD+水平组件降低,相关的细胞反应和代谢减弱,就会带来一些显而易见的变化,比如皱纹,比如脱发,比如精力变差易疲劳等等,这些都是代谢和细胞反应变差的问题。NAD+参与着体内上千个细胞反应,重要性显而易见了。二、含义不同:在细胞呼吸里的还原氢分为两种,一种是烟酰胺腺嘌呤二核苷酸,还有一种叫做黄素腺嘌呤二核苷酸,前者用NADH表示,后者用FADH2表示.两者携带的能量密度不同,相差一个ATP。(前者比后者多)其中NADH叫做还原型辅酶一在光合作用里的辅酶就是NADPH,如果比较NADH,发现两个英文字母里少了一个P,这就是一个磷酸基团,因此它的名字叫做烟酰胺腺嘌呤二核苷酸磷酸,它就是还原性辅酶二。扩展资料:NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。NADH分子是线粒体中能量产生链中的控制标志物。NADH水平的上升指示代谢失衡的出现。监视NADH的氧化还原状态是表征活体内线粒体功能的最佳参数。紫外光可以在线粒体中激发NADH产生荧光,用来监测线粒体功能。NADPH通常作为生物合成的还原剂,并不能直接进入呼吸链接受氧化。只是在特殊的酶的作用下,NADPH上的H被转移到NAD+上,然后由NAD+进入呼吸链。参考资料来源:百度百科-还原型辅酶
2023-07-02 00:15:491

NAD与NADP的区别是什么?

一、作用不同:辅酶1和辅酶2都是辅酶,辅酶1排名第一,是人体最重要的辅酶,人体内大约有一半的反应需要辅酶1参与。随着人体的衰老,NAD+水平组件降低,相关的细胞反应和代谢减弱,就会带来一些显而易见的变化,比如皱纹,比如脱发,比如精力变差易疲劳等等,这些都是代谢和细胞反应变差的问题。NAD+参与着体内上千个细胞反应,重要性显而易见了。二、含义不同:在细胞呼吸里的还原氢分为两种,一种是烟酰胺腺嘌呤二核苷酸,还有一种叫做黄素腺嘌呤二核苷酸,前者用NADH表示,后者用FADH2表示.两者携带的能量密度不同,相差一个ATP。(前者比后者多)其中NADH叫做还原型辅酶一在光合作用里的辅酶就是NADPH,如果比较NADH,发现两个英文字母里少了一个P,这就是一个磷酸基团,因此它的名字叫做烟酰胺腺嘌呤二核苷酸磷酸,它就是还原性辅酶二。扩展资料:NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。NADH分子是线粒体中能量产生链中的控制标志物。NADH水平的上升指示代谢失衡的出现。监视NADH的氧化还原状态是表征活体内线粒体功能的最佳参数。紫外光可以在线粒体中激发NADH产生荧光,用来监测线粒体功能。NADPH通常作为生物合成的还原剂,并不能直接进入呼吸链接受氧化。只是在特殊的酶的作用下,NADPH上的H被转移到NAD+上,然后由NAD+进入呼吸链。参考资料来源:百度百科-还原型辅酶
2023-07-02 00:16:021

有氧呼吸简介

目录 1 拼音 2 注解 1 拼音 yǒu yǎng hū xī 2 注解 有氧呼吸是指物质在细胞内的氧化分解,具体表现为氧的消耗和二氧化碳、水及三磷酸腺苷(ATP)的生成,又称细胞呼吸。其根本意义在于给机体提供可利用的能量。细胞呼吸可分为3个阶段,在第1阶段中,各种能源物质循不同的分解代谢途径转变成乙酰辅酶A。在第2阶段中,乙酰辅酶A(乙酰CoA)的二碳乙酰基,通过三羧酸循环转变为CO2和氢原子。在第3阶段中,氢原子进入电子传递链(呼吸链),最后传递给氧,与之生成水;同时通过电子传递过程伴随发生的氧化磷酸化作用产生ATP分子。生物体主要通过脱羧反应产生CO2,即代谢物先转变成含有羧基(COOH)的羧酸,然后在专一的脱羧酶催化下,从羧基中脱去CO2。细胞中的氧化反应可以“脱氢”、“加氧”或“失电子”等多种方式进行,而以脱氢方式最为普遍,也最重要。在细胞呼吸的第1阶段中包括一些脱羧和氧化反应,但在三羧酸循环中更为集中。三羧酸循环是在需氧生物中普遍存在的环状反应序列。循环由连续的酶促反应组成,反应中间物质都是含有3个羧基的三羧酸或含有2个羧基的二羧酸,故称三羧酸循环。因柠檬酸是环上物质,又称柠檬酸循环。也可用发现者的名子命名为克雷布斯循环。在循环开始时,一个乙酰基以乙酰CoA的形式,与一分子四碳化合物草酰乙酸缩合成六碳三羧基化合物柠檬酸。柠檬酸然后转变成另一个六碳三羧酸异柠檬酸。异柠檬酸脱氢并失去CO2,生成五碳二羧酸α酮戊二酸。后者再脱去1个CO2,产生四碳二羧酸琥珀酸。最后琥珀酸经过三步反应,脱去2对氢又转变成草酰乙酸。再生的草酰乙酸可与另一分子的乙酰CoA反应,开始另一次循环。循环每运行一周,消耗一分子乙酰基(二碳),产生2分子CO2和4对氢。草酰乙酸参加了循环反应,但没有净消耗。如果没有其他反应消除草酰乙酸,理论上一分子草酰乙酸可以引起无限的乙酰基进行氧化。环上的羧酸化合物都有催化作用,只要小量即可推动循环。凡能转变成乙酰CoA或三羧酸循环上任何一种催化剂的物质,都能参加这循环而被氧化。所以此循环是各种物质氧化的共同机制,也是各种物质代谢相互联系的机制。三羧酸循环必须在有氧的情况下进行。环上脱下的氢进入呼吸链,最后与氧结合成水并产生ATP,这个过程是生物体内能量的主要来源。呼吸链由一系列按特定顺序排列的结合蛋白质组成。链中每个成员,从前面的成员接受氢或电子,又传递给下一个成员,最后传递给氧。在电子传递的过程中,逐步释放自由能,同时将其中大部分能量,通过氧化磷酸化作用贮存在ATP分子中。不同生物,甚至同一生物的不同组织的呼吸链都可能不同。有的呼吸链只含有一种酶,也有的呼吸链含有多种酶。但大多数呼吸链由下列成分组成,即:烟酰胺脱氢酶类、黄素蛋白类、铁硫蛋白类、辅酶Q和细胞色素类。这些结合蛋白质的辅基(或辅酶)部分,在呼吸链上不断地被氧化和还原,起著传递氢(递氢体)或电子(递电子体)的作用。其蛋白质部分,则决定酶的专一性。为简化起见,书写呼吸链时常略去其蛋白质部分。上图即是存在最广泛的NADH呼吸链和另一种FADH2呼吸链。图中用MH2代表任一还原型代谢物,如苹果酸。可在专一的烟酰胺脱氢酶(苹果酸脱氢酶)的催化下,脱去一对氢成为氧化产物M(草酰乙酸)。这类脱氢酶,以NAD (烟酰胺腺嘌呤二核苷酸)或NADP (烟酰胺腺嘌呤二核苷酸磷酸)为辅酶。这两种辅酶都含有烟酰胺(维生素PP)。在脱氢反应中,辅酶可接受1个氢和1个电子成为还原型辅酶,剩余的1个H 留在液体介质中。 NAD 2H(2H 2e)NADH H NADP 2H(2H 2e)NADPH H 黄素蛋白类是以黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)为辅基的脱氢酶,其辅基中含核黄素(维生素B2)。NADH脱氢酶就是一种黄素蛋白,可以将NADH的氢原子加到辅基FMN上,在NADH呼吸链中起递氢体作用。琥珀酸脱氢酶也是一种黄素蛋白,可以将底物琥珀酸的1对氢原子直接加到辅基FAD上,使其氧化生成延胡索酸。FADH2继续将H传递给FADH2呼吸链中的下一个成员,所以FADH2呼吸链比NADH呼吸链短,伴随着呼吸链产生的ATP也略少。铁硫蛋白类的活性部位含硫及非卟啉铁,故称铁硫中心。其作用是通过铁的变价传递电子:Fe3 eFe2 。这类蛋白质在线粒体内膜上,常和黄素脱氢酶或细胞色素结合成复合物。在从NADH到氧的呼吸链中,有多个不同的铁硫中心,有的在NADH脱氢酶中,有的和细胞色素b及c1有关。辅酶Q是一种脂溶性醌类化合物,因广泛存在于生物界故又名泛醌。其分子中的苯醌结构能可逆地加氢还原成对苯二酚衍生物,在呼吸链中起中间传递体的作用。细胞色素是一类以铁卟啉(与血红素的结构类似)为辅基的红色或棕色蛋白质,在呼吸链中依靠铁的化合价变化而传递电子:Fe3 eFe2 。目前,发现的细胞色素有 b、c、c1、aa3等多种。这些细胞色素的蛋白质结构、辅基结构及辅基与蛋白质部分的连接方式均有差异。在典型的呼吸链中,其顺序是b→c1→c→aa3→O2。现在还不能把a和a3分开,而且只有aa3能直接被分子氧氧化,故将a和a3写在一起并称之为细胞色素氧化酶。生物界各种呼吸链的差异主要在于组分不同,或缺少某些中间传递体,或中间传递体的成分不同。如在分枝杆菌中用维生素K代替辅酶Q;又如许多细菌没有完整的细胞色素系统。呼吸链的组成虽然有许多差异,但其传递电子的顺序却基本一致。生物进化越高级,呼吸链就越完善。与呼吸链偶联的ATP生成作用叫做氧化磷酸化。NADH呼吸链每传递1对氢原子到氧,产生3个ATP分子。FADH2呼吸链则只生成2个ATP分子。
2023-07-02 00:16:301

什么是腺嘌呤

腺嘌呤是脱氧核糖核酸和核糖核酸中的一种碱基,缩写为A。在脱氧核糖核酸中,与胸腺嘧啶配对。在核糖核酸中,它与尿嘧啶配对。旧称维生素B4。是一种嘌呤,在生物化学上具有许多不同的功用。于细胞呼吸中,是以富有能量的腺苷三磷酸,以及辅因子烟酰胺腺嘌呤二核苷酸、黄素腺嘌呤二核苷酸等形式发生作用,并且在蛋白质生物合成过程里作为DNA与RNA的组成物。
2023-07-02 00:16:361

还原性辅酶1和2区别是什么?

一、作用不同:辅酶1和辅酶2都是辅酶,辅酶1排名第一,是人体最重要的辅酶,人体内大约有一半的反应需要辅酶1参与。随着人体的衰老,NAD+水平组件降低,相关的细胞反应和代谢减弱,就会带来一些显而易见的变化,比如皱纹,比如脱发,比如精力变差易疲劳等等,这些都是代谢和细胞反应变差的问题。NAD+参与着体内上千个细胞反应,重要性显而易见了。二、含义不同:在细胞呼吸里的还原氢分为两种,一种是烟酰胺腺嘌呤二核苷酸,还有一种叫做黄素腺嘌呤二核苷酸,前者用NADH表示,后者用FADH2表示.两者携带的能量密度不同,相差一个ATP。(前者比后者多)其中NADH叫做还原型辅酶一在光合作用里的辅酶就是NADPH,如果比较NADH,发现两个英文字母里少了一个P,这就是一个磷酸基团,因此它的名字叫做烟酰胺腺嘌呤二核苷酸磷酸,它就是还原性辅酶二。扩展资料:NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。NADH分子是线粒体中能量产生链中的控制标志物。NADH水平的上升指示代谢失衡的出现。监视NADH的氧化还原状态是表征活体内线粒体功能的最佳参数。紫外光可以在线粒体中激发NADH产生荧光,用来监测线粒体功能。NADPH通常作为生物合成的还原剂,并不能直接进入呼吸链接受氧化。只是在特殊的酶的作用下,NADPH上的H被转移到NAD+上,然后由NAD+进入呼吸链。参考资料来源:百度百科-还原型辅酶
2023-07-02 00:16:451

人体通过什么过程释放能量(名称)

有氧呼吸有氧呼吸 - 介绍指物质在细胞内的氧化分解,具体表现为氧的消耗和二氧化碳、水及三磷酸腺苷(ATP)的生成,又称细胞呼吸。其根本意义在于给机体提供可利用的能量。细胞呼吸可分为3个阶段,在第1阶段中,各种能源物质循不同的分解代谢途径转变成乙酰辅酶A。在第2阶段中,乙酰辅酶A(乙酰CoA)的二碳乙酰基,通过三羧酸循环转变为CO2和氢原子。在第3阶段中,氢原子进入电子传递链(呼吸链),最后传递给氧,与之生成水;同时通过电子传递过程伴随发生的氧化磷酸化作用产生ATP分子。生物体主要通过脱羧反应产生CO2,即代谢物先转变成含有羧基(-COOH)的羧酸,然后在专一的脱羧酶催化下,从羧基中脱去CO2。细胞中的氧化反应可以“脱氢”、“加氧”或“失电子”等多种方式进行,而以脱氢方式最为普遍,也最重要。在细胞呼吸的第1阶段中包括一些脱羧和氧化反应,但在三羧酸循环中更为集中。三羧酸循环是在需氧生物中普遍存在的环状反应序列。循环由连续的酶促反应组成,反应中间物质都是含有3个羧基的三羧酸或含有2个羧基的二羧酸,故称三羧酸循环。因柠檬酸是环上物质,又称柠檬酸循环。也可用发现者的名子命名为克雷布斯循环。在循环开始时,一个乙酰基以乙酰-CoA的形式,与一分子四碳化合物草酰乙酸缩合成六碳三羧基化合物柠檬酸。柠檬酸然后转变成另一个六碳三羧酸异柠檬酸。异柠檬酸脱氢并失去CO2,生成五碳二羧酸α-酮戊二酸。后者再脱去1个CO2,产生四碳二羧酸琥珀酸。最后琥珀酸经过三步反应,脱去2对氢又转变成草酰乙酸。再生的草酰乙酸可与另一分子的乙酰CoA反应,开始另一次循环。循环每运行一周,消耗一分子乙酰基(二碳),产生2分子CO2和4对氢。草酰乙酸参加了循环反应,但没有净消耗。如果没有其他反应消除草酰乙酸,理论上一分子草酰乙酸可以引起无限的乙酰基进行氧化。环上的羧酸化合物都有催化作用,只要小量即可推动循环。凡能转变成乙酰CoA或三羧酸循环上任何一种催化剂的物质,都能参加这循环而被氧化。所以此循环是各种物质氧化的共同机制,也是各种物质代谢相互联系的机制。三羧酸循环必须在有氧的情况下进行。环上脱下的氢进入呼吸链,最后与氧结合成水并产生ATP,这个过程是生物体内能量的主要来源。呼吸链由一系列按特定顺序排列的结合蛋白质组成。链中每个成员,从前面的成员接受氢或电子,又传递给下一个成员,最后传递给氧。在电子传递的过程中,逐步释放自由能,同时将其中大部分能量,通过氧化磷酸化作用贮存在ATP分子中。不同生物,甚至同一生物的不同组织的呼吸链都可能不同。有的呼吸链只含有一种酶,也有的呼吸链含有多种酶。但大多数呼吸链由下列成分组成,即:烟酰胺脱氢酶类、黄素蛋白类、铁硫蛋白类、辅酶Q和细胞色素类。这些结合蛋白质的辅基(或辅酶)部分,在呼吸链上不断地被氧化和还原,起着传递氢(递氢体)或电子(递电子体)的作用。其蛋白质部分,则决定酶的专一性。为简化起见,书写呼吸链时常略去其蛋白质部分。上图即是存在最广泛的NADH呼吸链和另一种FADH2呼吸链。图中用MH2代表任一还原型代谢物,如苹果酸。可在专一的烟酰胺脱氢酶(苹果酸脱氢酶)的催化下,脱去一对氢成为氧化产物M(草酰乙酸)。这类脱氢酶,以NAD+(烟酰胺腺嘌呤二核苷酸)或NADP+(烟酰胺腺嘌呤二核苷酸磷酸)为辅酶。这两种辅酶都含有烟酰胺(维生素PP)。在脱氢反应中,辅酶可接受1个氢和1个电子成为还原型辅酶,剩余的1个H+留在液体介质中。 NAD++2H(2H++2e)NADH+H+ NADP++2H(2H++2e)NADPH+H+ 黄素蛋白类是以黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)为辅基的脱氢酶,其辅基中含核黄素(维生素B2)。NADH脱氢酶就是一种黄素蛋白,可以将NADH的氢原子加到辅基FMN上,在NADH呼吸链中起递氢体作用。琥珀酸脱氢酶也是一种黄素蛋白,可以将底物琥珀酸的1对氢原子直接加到辅基FAD上,使其氧化生成延胡索酸。FADH2继续将H传递给FADH2呼吸链中的下一个成员,所以FADH2呼吸链比NADH呼吸链短,伴随着呼吸链产生的ATP也略少。铁硫蛋白类的活性部位含硫及非卟啉铁,故称铁硫中心。其作用是通过铁的变价传递电子:Fe3++eFe2+。这类蛋白质在线粒体内膜上,常和黄素脱氢酶或细胞色素结合成复合物。在从NADH到氧的呼吸链中,有多个不同的铁硫中心,有的在NADH脱氢酶中,有的和细胞色素b及c1有关。辅酶Q是一种脂溶性醌类化合物,因广泛存在于生物界故又名泛醌。其分子中的苯醌结构能可逆地加氢还原成对苯二酚衍生物,在呼吸链中起中间传递体的作用。细胞色素是一类以铁卟啉(与血红素的结构类似)为辅基的红色或棕色蛋白质,在呼吸链中依靠铁的化合价变化而传递电子:Fe3++eFe2+。目前,发现的细胞色素有 b、c、c1、aa3等多种。这些细胞色素的蛋白质结构、辅基结构及辅基与蛋白质部分的连接方式均有差异。在典型的呼吸链中,其顺序是b→c1→c→aa3→O2。现在还不能把a和a3分开,而且只有aa3能直接被分子氧氧化,故将a和a3写在一起并称之为细胞色素氧化酶。生物界各种呼吸链的差异主要在于组分不同,或缺少某些中间传递体,或中间传递体的成分不同。如在分枝杆菌中用维生素K代替辅酶Q;又如许多细菌没有完整的细胞色素系统。呼吸链的组成虽然有许多差异,但其传递电子的顺序却基本一致。生物进化越高级,呼吸链就越完善。与呼吸链偶联的ATP生成作用叫做氧化磷酸化。NADH呼吸链每传递1对氢原子到氧,产生3个ATP分子。FADH2呼吸链则只生成2个ATP分子。
2023-07-02 00:17:005

鸟嘌呤和腺嘌呤有啥区别?

一、分子结构不同1、鸟嘌呤:由一个嘧啶环和一个咪唑环稠和而成的,是嘌呤的一种,由碳和氮原子组成具有特征性双环结构,并与胞嘧啶(cytosine)以三个氢键相连。2、腺嘌呤:通过两个氢键与胸腺嘧啶结合。二、类型不同1、鸟嘌呤:是嘌呤类有机化合物。2、腺嘌呤:是一种含氮杂环衍生物。三、作用不同1、鸟嘌呤:鸟嘌呤不仅自身可以有多种异构体,还具有4种DNA碱基中最小的绝热电离势,以游离或结合态存在于海鸟粪中,是五种不同核碱中的其中之一,并同时存在于脱氧核醣核酸及核醣核酸中。2、腺嘌呤:腺嘌呤及其衍生物具有多种生化功能,参与细胞呼吸,参与合成能量丰富的三磷酸腺苷(ATP)、辅酶烟酰胺腺嘌呤二核苷酸(NAD)和黄素腺嘌呤二核苷酸(FAD)。它还参与蛋白质、DNA和RNA的合成。参考资料来源:百度百科-腺嘌呤百度百科-鸟嘌呤
2023-07-02 00:17:231