DNA图谱 / 问答 / 问答详情

指数函数和对数函数的运算公式

2023-07-03 00:22:04
TAG: 函数
共3条回复
康康map
1对数的概念
如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.
由定义知:
①负数和零没有对数;
②a>0且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.
2对数式与指数式的互化

式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)
3对数的运算性质
如果a>0,a≠1,M>0,N>0,那么
(1)loga(MN)=logaM+logaN.
(2)logaMN=logaM-logaN.
(3)logaMn=nlogaM (n∈R).
问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?
②logaan=? (n∈R)
③对数式与指数式的比较.(学生填表)

式子ab=NlogaN=b名称a—幂的底数
b—
N—a—对数的底数
b—
N—运


质am·an=am+n
am÷an=
(am)n=
(a>0且a≠1,n∈R)logaMN=logaM+logaN
logaMN=
logaMn=(n∈R)
(a>0,a≠1,M>0,N>0)

难点疑点突破
对数定义中,为什么要规定a>0,,且a≠1?
理由如下:
①若a<0,则N的某些值不存在,例如log-28ue010
②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数ue010
③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数ue010
为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数ue010

解题方法技巧
1
(1)将下列指数式写成对数式:
①54=625;②2-6=164;③3x=27;④13m=5ue01073.
(2)将下列对数式写成指数式:
①log1216=-4;②log2128=7;
③log327=x;④lg0.01=-2;
⑤ln10=2.303;⑥lgπ=k.
解析由对数定义:ab=Nue039logaN=b.
解答(1)①log5625=4.②log2164=-6.
③log327=x.④log135.73=m.

解题方法
指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=Nue039logaN=b.(2)①12-4=16.②27=128.③3x=27.
④10-2=0.01.⑤e2.303=10.⑥10k=π.
2
根据下列条件分别求x的值:
(1)log8x=-23;(2)log2(log5x)=0;
(3)logx27=31+log32;(4)logx(2+3)=-1.
解析(1)对数式化指数式,得:x=8-23=?
(2)log5x=20=1. x=?
(3)31+log32=3×3log32=?27=x?
(4)2+3=x-1=1x. x=?
解答(1)x=8-23=(23)-23=2-2=14.
(2)log5x=20=1,x=51=5.
(3)logx27=3×3log32=3×2=6,
∴x6=27=33=(3)6,故x=3.
(4)2+3=x-1=1x,∴x=12+3=2-3.

解题技巧
①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.
②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3
已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.
解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;
思路二,对指数式的两边取同底的对数,再利用对数式的运算求值ue010
解答解法一∵logax=4,logay=5,
∴x=a4,y=a5,
∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.
解法二对所求指数式两边取以a为底的对数得
logaA=loga(x512y-13)
=512logax-13logay=512×4-13×5=0,
∴A=1.

解题技巧
有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4
设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围.
解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?
解答∵x>0,y>0,x·y1+lgx=1,
两边取对数得:lgx+(1+lgx)lgy=0.
即lgy=-lgx1+lgx(x≠110,lgx≠-1).
令lgx=t, 则lgy=-t1+t(t≠-1).
∴lg(xy)=lgx+lgy=t-t1+t=t21+t.

解题规律
对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.
∴Δ=S2+4S≥0,解得S≤-4或S≥0,
故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).
5
求值:
(1)lg25+lg2·lg50+(lg2)2;
(2)2log32-log3329+log38-52log53;
(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;
(4)求7lg20·12lg0.7的值.
解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.
(2)转化为log32的关系式.
(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?
(4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数,
设x=7lg20·12lg0.7能否先求出lgx,再求x?
解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2
=2lg5+lg2·(1+lg5)+(lg2)2
=lg5·(2+lg2)+lg2+(lg2)2
=lg102·(2+lg2)+lg2+(lg2)2
=(1-lg2)(2+lg2)+lg2+(lg2)2
=2-lg2-(lg2)2+lg2+(lg2)2=2.
(2)原式=2log32-(log325-log332)+log323-5log59
=2log32-5log32+2+3log32-9
=-7.
(3)由已知lgab=lg(a-2b)2 (a-2b>0),
∴ab=(a-2b)2, 即a2-5ab+4b2=0.
∴ab=1或ab=4,这里a>0,b>0.
若ab=1,则a-2b<0, ∴ab=1( 舍去).
∴ab=4,
∴log2a-log2b=log2ab=log24=2.
(4)设x=7lg20·12lg0.7,则
lgx=lg20×lg7+lg0.7×lg12 =(1+lg2)·lg7+(lg7-1)·(-lg2)
=lg7+lg2=14,
∴x=14, 故原式=14.

解题规律
①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3).
②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6
证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0);
(2)logab·logbc=logac;
(3)logab=1logba(b>0,b≠1);
(4)loganbm=mnlogab.
解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证.
(2)中logbc能否也换成以a为底的对数.
(3)应用(1)将logab换成以b为底的对数.
(4)应用(1)将loganbm换成以a为底的对数.
解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN,
∴b=logcNlogca.∴logaN=logcNlogca.
(2)由(1)logbc=logaclogab.
所以 logab·logbc=logab·logaclogab=logac.
(3)由(1)logab=logbblogba=1logba.

解题规律
(1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用.对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa=mnlogab.
7
已知log67=a,3b=4,求log127.
解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢?
解答已知log67=a,log34=b,
∴log127=log67log612=a1+log62.
又log62=log32log36=log321+log32,
由log34=b,得2log32=b.
∴log32=b2,∴log62=b21+b2=b2+b.
∴log127=a1+b2+b=a(2+b)2+2b.

解题技巧
利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧ue0108
已知x,y,z∈R+,且3x=4y=6z.
(1)求满足2x=py的p值;
(2)求与p最接近的整数值;
(3)求证:12y=1z-1x.
解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?
解答(1)解法一3x=4yue03clog33x=log34yue03cx=ylog34ue03c2x=2ylog34=ylog316,
∴p=log316.
解法二设3x=4y=m,取对数得:
x·lg3=lgm,ylg4=lgm,
∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.
由2y=py, 得 2lgmlg3=plgmlg4,
∴p=2lg4lg3=lg42lg3=log316.
(2)∵2=log39<log316<log327=3,
∴2<p<3.
又3-p=log327-log316=log32716,
p-2=log316-log39=log3169,
而2716<169,
∴log32716<log3169,∴p-2>3-p.
∴与p最接近的整数是3.

解题思想
①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢?
②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+,
∴k>1,则 x=lgmlg3,y=lgmlg4,z=lgmlg6,
所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm,
故12y=1z-1x.
解法二3x=4y=6z=m,
则有3=m1x①,4=m1y②,6=m1z③,
③÷①,得m1z-1x=63=2=m12y.
∴1z-1x=12y.
9
已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1).
解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab?
解答logma+b3=logm(a+b3)212=

解题技巧
①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一.
②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.
∵a2+b2=7ab,
∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb),
即logma+b3=12(logma+logmb).

思维拓展发散
1
数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中N>0,1≤a<10,n∈Z.这就是用科学记数法表示真数N.其科学性体现在哪里?我们只要研究数N的常用对数,就能揭示其中的奥秘.
解析由已知,对N=a×10n取常用对数得,lgN=n+lga.真数与对数有何联系?
解答lgN=lg(a×10n)=n+lga.n∈Z,1≤a<10,
∴lga∈〔0,1).
我们把整数n叫做N的常用对数的首数,把lga叫做N的常用对数的尾数,它是正的纯小数或0.
小结:①lgN的首数就是N中10n的指数,尾数就是lga,0≤lga<1;
②有效数字相同的不同正数它们的常用对数的尾数相同,只是首数不同;
③当N≥1时,lgN的首数n比它的整数位数少1,当N∈(0,1)时,lgN的首数n是负整数,|n|-1与N的小数点后第一个不是0的有效数字前的零的个数相同.
师生互动
什么叫做科学记数法?
N>0,lgN的首数和尾数与a×10n有什么联系?
有效数字相同的不同正数其常用对数的什么相同?什么不同?
2
若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0ue010380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值.
解析①lg0.203 4=1ue010308 3,即lg0.203 4=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出.
解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4).
又lg1x=-lgx=-(n+lga),
∴(n-9)+(lga+0ue010380 4)=-n-lga,其中n-9是首数,lga+0ue010380 4是尾数,-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以:
n-9=-(n+1)
lga+0.380 4=1-lgaue03cn=4,
lga=0.308 3.
∴lgx=4+0.308 3=4.308 3,
∵lg0.203 4=1.308 3,∴x=2.034×104.
∴lg1x=-(4+0.308 3)=5.691 7.

解题规律
把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3
计算:
(1)log2-3(2+3)+log6(2+3+2-3);
(2)2lg(lga100)2+lg(lga).
解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简?
(2)中分母已无法化简,分子能化简吗?

解题方法
认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2
=-1+12log6(4+22+3·2-3)
=-1+12log66
=-12.
(2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2.
4
已知log2x=log3y=log5z<0,比较x,3y,5z的大小.
解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式.
解答设log2x=log3y=log5z=m<0.则
x=2m,y=3m,z=5m.
x=(2)m,3y=(33)m,5z=(55)m.
下面只需比较2与33,55的大小:
(2)6=23=8,(33)6=32=9,所以2<33.
又(2)10=25=32,(55)10=52=25,
∴2>55.
∴55<2<33. 又m<0,
图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x在第二象限的图像,如图2-7-1ue010

解题规律
①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化.
②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较ue010
①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m<0时,图像在第二象限从下到上,底从大到小.所以(33)m<(2)m<(55)m,故3y<x<5z.

潜能挑战测试

1(1)将下列指数式化为对数式:
①73=343;②14-2=16;③e-5=m.
(2)将下列对数式化为指数式:
①log128=-3;②lg10000=4;③ln3.5=p.
2计算:
(1)24+log23;(2)2723-log32;(3)2513log527+2log52.
3(1)已知lg2=0.301 0,lg3=0.477 1,求lg45;
(2)若lg3.127=a,求lg0.031 27.
4已知a≠0,则下列各式中与log2a2总相等的是()
A若logx+1(x+1)=1 ,则x的取值范围是()
A已知ab=M(a>0,b>0,M≠1),且logMb=x,则logMa的值为()
A若log63=0.673 1,log6x=-0.326 9, 则x为()
A若log5〔log3(log2x)〕=0,则x=.
98log87·log76·log65=.
10如果方程lg2x+(lg2+lg3)lgx+lg2·lg3=0的两根为x1、x2,那么x1·x2的值为.

11生态学指出:生物系统中,每输入一个营养级的能量,大约只有10%的能量流到下一个营养级.H1→H2→H3→H4→H5→H6这条生物链中(Hn表示第n个营养级,n=1,2,3,4,5,6).已知对H1输入了106千焦的能量,问第几个营养级能获得100千焦的能量?
12已知x,y,z∈R+且3x=4y=6z,比较3x,4y,6z的大小.
13已知a,b均为不等于1的正数,且axby=aybx=1,求证x2=y2.
14已知2a·5b=2c·5d=10,证明(a-1)(d-1)=(b-1)(c-1).
15设集合M={x|lg〔ax2-2(a+1)x-1〕>0},若M≠ue07e,Mue020{x|x<0},求实数a的取值范围.

16在张江高科技园区的上海超级计算中心内,被称为“神威Ⅰ”的计算机运算速度为每秒钟384 000 000 000次.用科学记数法表示这个数为N=,若已知lg3.840=0.584 3,则lgN=.
17某工厂引进新的生产设备,预计产品的生产成本比上一年降低10%,试问经过几年,生产成本降低为原来的40%?(lg2=0.3, lg3=0.48)
18某厂为适应改革开放,完善管理机制,满足市场需求,某种产品每季度平均比上一季度增长10.4%,那么经过y季度增长到原来的x倍,则函数y=f(x)的解析式f(x)=.

名师助你成长
1.(1)①log7343=3.②log1416=-2.③lnm=-5.
(2)①12-3=8.②104=10 000.③ep=3.5.
2.(1)48点拨:先应用积的乘方,再用对数恒等式.
(2)98点拨:应用商的乘方和对数恒等式.
(3)144点拨:应用对数运算性质和积的乘方.
3.(1)0.826 6点拨:lg45=12lg45=12lg902=12(lg32+lg10-lg2).
(2)lg0.031 27=lg(3.127×10-2)=-2+lg3.127=-2+a
4.C点拨:a≠0,a可能是负数,应用对数运算性质要注意对数都有意义.
5.B点拨:底x+1>0且x+1≠1;真数x+1>0.
6.A点拨:对ab=M取以M为底的对数.
7.C点拨:注意0.673 1+0.326 9=1,log61x=0.326 9,
所以log63+log61x=log63x=1.∴3x=6, x=12.
8.x=8点拨:由外向内.log3(log2x)=1, log2x=3, x=23.
9.5点拨:log87·log76·log65=log85, 8log85=5.
10.16点拨:关于lgx的一元二次方程的两根是lgx1,lgx2.
由lgx1=-lg2,lgx2=-lg3,得x1=12,x2=13.
11.设第n个营养级能获得100千焦的能量,
依题意:106·10100n-1=100,
化简得:107-n=102,利用同底幂相等,得7-n=2,
或者两边取常用对数也得7-n=2.
∴n=5,即第5个营养级能获能量100千焦.
12ue010设3x=4y=6z=k,因为x,y,z∈R+,
所以k>1.取以k为底的对数,得:
x=1logk3,y=1logk4,z=1logk6.
∴3x=3logk3=113logk3=1logk33,
同理得:4y=1logk44,6z=1logk66.
而33=1281,44=1264,66=1236,
∴logk33>logk44>logk66.
又k>1,33>44>66>1,
∴logk33>logk44>logk66>0,∴3x<4y<6z.
13.∵axby=aybx=1,∴lg(axby)=lg(aybx)=0,
即xlga+ylgb=ylga+xlgb=0.(※)
两式相加,得x(lga+lgb)+y(lga+lgb)=0.
即(lga+lgb)(x+y)=0.∴lga+lgb=0 或x+y=0.
当lga+lgb=0时,代入xlga+ylgb=0,得:
(x-y)lga=0, a是不为1的正数lga≠0,∴x-y=0.
∴x+y=0或x-y=0,∴x2=y2.
14.∵2a5b=10,∴2a-1=51-b.两边取以2为底的对数,得:a-1=(1-b)log25.
∴log25=a-11-b(b≠1). 同理得log25=c-11-d(d≠1).
即b≠1,d≠1时,a-11-b=c-11-d.
∴(a-1)(1-d)=(c-1)(1-b),
∴(a-1)(d-1)=(b-1)(c-1).
当b=1,c=1时显然成立.
15.设lg〔ax2-2(a+1)x-1〕=t (t>0),则
ax2-2(a+1)x-1=10t(t>0).
∴10t>1 ,ax2-2(a+1)x-1>1,∴ax2-2(a+1)x-2>0.
①当a=0时,解集{x|x<-1}ue020{x|x<0};
当a≠0时,M≠ue07e且Mue020{x|x<0}.
∴方程ax2-2(a+1)x-2=0 必有两不等实根,设为x1,x2且x1<x2,则
②当a>0时,M={x|x<x1,或x>x2},显然不是{x|x<0}的子集;
③当a<0时,M={x|x1<x<x2}只要:
a<0,
Δ=4(a+1)2+8a>0,
x1+x2=2(a+1)a<0,
x1·x2=-2a>0.
解得3-2<a<0,综上所求,a的取值范围是:3-2<a≤0.
16.N=3.840×1011, lgN=11.584 3.
17.设经过x年,成本降为原来的40%.则
(1-10%)x=40%,两边取常用对数,得:
x·lg(1-10%)=lg40% ,
即x=lg0.4lg0.9=lg4-1lg9-1=2lg2-12lg3-1=10.
所以经过10年成本降低为原来的40%.
18.f(x)=log1.104x〔或f(x)=lgxlg1.104〕.
点拨:设原来一个季度产品为a,则a(1+10.4%)y=xa,∴y=log1.10

另外参看这个公式。对数函数运算公式
http://wenku.baidu.com/view/dc8f161b227916888486d75c.html
苏萦

建议去找本高中教材看一下,指数函数的运算公式和底数有关。

北境漫步

1对数的概念

如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义知:

①负数和零没有对数;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b.

特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718

28…)为底的对数叫做自然对数,记作logeN,简记为lnN.

2对数式与指数式的互化

式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)

3对数的运算性质

如果a>0,a≠1,M>0,N>0,那么

(1)loga(MN)=logaM+logaN.

(2)logaMN=logaM-logaN.

(3)logaMn=nlogaM

(n∈R).

问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?

②logaan=?

(n∈R)

③对数式与指数式的比较.(学生填表)

式子ab=NlogaN=b名称a—幂的底数

b—

N—a—对数的底数

b—

N—运

质am·an=am+n

am÷an=

(am)n=

(a>0且a≠1,n∈R)logaMN=logaM+logaN

logaMN=

logaMn=(n∈R)

(a>0,a≠1,M>0,N>0)

难点疑点突破

对数定义中,为什么要规定a>0,且a≠1?

理由如下:

①若a<0,则N的某些值不存在,例如log-28ue010

②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数ue010

③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数ue010

为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数ue010

解题方法技巧

1

(1)将下列指数式写成对数式:

①54=625;②2-6=164;③3x=27;④13m=5ue01073.

(2)将下列对数式写成指数式:

①log1216=-4;②log2128=7;

③log327=x;④lg0.01=-2;

⑤ln10=2.303;⑥lgπ=k.

解析由对数定义:ab=Nue039logaN=b.

解答(1)①log5625=4.②log2164=-6.

③log327=x.④log135.73=m.

解题方法

指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=Nue039logaN=b.(2)①12-4=16.②27=128.③3x=27.

④10-2=0.01.⑤e2.303=10.⑥10k=π.

2

根据下列条件分别求x的值:

(1)log8x=-23;(2)log2(log5x)=0;

(3)logx27=31+log32;(4)logx(2+3)=-1.

解析(1)对数式化指数式,得:x=8-23=?

(2)log5x=20=1.

x=?

(3)31+log32=3×3log32=?27=x?

(4)2+3=x-1=1x.

x=?

解答(1)x=8-23=(23)-23=2-2=14.

(2)log5x=20=1,x=51=5.

(3)logx27=3×3log32=3×2=6,

∴x6=27=33=(3)6,故x=3.

(4)2+3=x-1=1x,∴x=12+3=2-3.

解题技巧

①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.

②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3

已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.

解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

思路二,对指数式的两边取同底的对数,再利用对数式的运算求值ue010

解答解法一∵logax=4,logay=5,

∴x=a4,y=a5,

∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.

解法二对所求指数式两边取以a为底的对数得

logaA=loga(x512y-13)

=512logax-13logay=512×4-13×5=0,

∴A=1.

解题技巧

有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4

设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围.

解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?

解答∵x>0,y>0,x·y1+lgx=1,

两边取对数得:lgx+(1+lgx)lgy=0.

即lgy=-lgx1+lgx(x≠110,lgx≠-1).

令lgx=t,

则lgy=-t1+t(t≠-1).

∴lg(xy)=lgx+lgy=t-t1+t=t21+t.

解题规律

对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.

∴Δ=S2+4S≥0,解得S≤-4或S≥0,

故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).

5

求值:

(1)lg25+lg2·lg50+(lg2)2;

(2)2log32-log3329+log38-52log53;

(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;

(4)求7lg20·12lg0.7的值.

解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.

(2)转化为log32的关系式.

(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?

(4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数,

设x=7lg20·12lg0.7能否先求出lgx,再求x?

解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2

=2lg5+lg2·(1+lg5)+(lg2)2

=lg5·(2+lg2)+lg2+(lg2)2

=lg102·(2+lg2)+lg2+(lg2)2

=(1-lg2)(2+lg2)+lg2+(lg2)2

=2-lg2-(lg2)2+lg2+(lg2)2=2.

(2)原式=2log32-(log325-log332)+log323-5log59

=2log32-5log32+2+3log32-9

=-7.

(3)由已知lgab=lg(a-2b)2

(a-2b>0),

∴ab=(a-2b)2,

即a2-5ab+4b2=0.

∴ab=1或ab=4,这里a>0,b>0.

若ab=1,则a-2b0,a≠1,c>0,c≠1,N>0);

(2)logab·logbc=logac;

(3)logab=1logba(b>0,b≠1);

(4)loganbm=mnlogab.

解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证.

(2)中logbc能否也换成以a为底的对数.

(3)应用(1)将logab换成以b为底的对数.

(4)应用(1)将loganbm换成以a为底的对数.

解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN,

∴b=logcNlogca.∴logaN=logcNlogca.

(2)由(1)logbc=logaclogab.

所以

logab·logbc=logab·logaclogab=logac.

(3)由(1)logab=logbblogba=1logba.

解题规律

(1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用.对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa=mnlogab.

7

已知log67=a,3b=4,求log127.

解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢?

解答已知log67=a,log34=b,

∴log127=log67log612=a1+log62.

又log62=log32log36=log321+log32,

由log34=b,得2log32=b.

∴log32=b2,∴log62=b21+b2=b2+b.

∴log127=a1+b2+b=a(2+b)2+2b.

解题技巧

利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧ue0108

已知x,y,z∈R+,且3x=4y=6z.

(1)求满足2x=py的p值;

(2)求与p最接近的整数值;

(3)求证:12y=1z-1x.

解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?

解答(1)解法一3x=4yue03clog33x=log34yue03cx=ylog34ue03c2x=2ylog34=ylog316,

∴p=log316.

解法二设3x=4y=m,取对数得:

x·lg3=lgm,ylg4=lgm,

∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.

由2y=py,

2lgmlg3=plgmlg4,

∴p=2lg4lg3=lg42lg3=log316.

(2)∵2=log390,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab?

解答logma+b3=logm(a+b3)212=

解题技巧

①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一.

②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.

∵a2+b2=7ab,

∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb),

即logma+b3=12(logma+logmb).

思维拓展发散

1

数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中N>0,1≤alogk44>logk66>0,∴3x0).

∴10t>1

,ax2-2(a+1)x-1>1,∴ax2-2(a+1)x-2>0.

①当a=0时,解集{x|x

相关推荐

指数函数公式是什么?

指数公式如下:1、y=c(c为常数)y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna y=e^x y"=e^x4、y=logax y"=logae/x y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x名词解释:指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:05:271

指数函数公式是什么?

指数函数公式:y=a^x(a为常数且以a>0,a≠1)。函数的定义域是R。在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式。指数函数基本性质:(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。(2)指数函数的值域为(0,+∞)。(3)函数图形都是上凹的。(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
2023-07-02 22:05:421

指数公式是?

指数的计算公式:y=a^x(a>0且不=1)。指数函数的一般形式为y=a^x(a>0且不=1),函数图形上凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。对数运算公式:如果a>0,a≠1,M>0,N>0,那么:1、loga(MN)=logaM+logaN。2、logaMN=logaM-logaN。3、logaMn=nlogaM(n∈R)。指数是幂运算au207f(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,au207f表示n个a连乘。当n=0时,au207f=1。
2023-07-02 22:05:561

指数函数的公式

Y=a^x(a>0且不=1)指数函数的一般形式为y=a^x(a>0且不=1),函数图形上凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:06:146

指数函数运算法则公式有哪些

同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n),我已经为大家整理了指数函数的运算公式,快来看看吧。 指数函数运算公式 同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n) 同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n) 幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn) 积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n) 指数函数定义 指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。 几个基本的函数的导数 y=a^x,y"=a^xlna y=c(c为常数),y"=0 y=x^n,y"=nx^(n-1) y=e^x,y"=e^x y=logax(a为底数,x为真数),y"=1/x*lna y=lnx,y"=1/x y=sinx,y"=cosx y=cosx,y"=-sinx y=tanx,y"=1/cos^2x
2023-07-02 22:06:311

指数函数的导数公式是什么?

指数函数导数公式:(a^x)"=(a^x)(lna)。y=a^x两边同时取对数:lny=xlna两边同时对x求导数:==>y"/y=lna==>y"=ylna=a^xlna导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。
2023-07-02 22:06:381

指数函数求导公式

2023-07-02 22:06:541

指数函数的求导公式是什么?

指数函数的求导公式:(a^x)"=(lna)(a^x)求导证明:y=a^x两边同时取对数,得:lny=xlna两边同时对x求导数,得:y"/y=lna所以y"=ylna=a^xlna,得证扩展资料:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限,在一个函数存在导数时,称这个函数可导或者可微分,可导的函数一定连续,不连续的函数一定不可导。如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。
2023-07-02 22:07:141

指数函数求导公式是什么 什么是指数函数

1、指数函数求导公式是(a^x)"=(lna)(a^x)。 2、指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。 3、在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:07:221

高中数学指数运算公式是什么

指数运算公式是:1、a^log(a)(b)=b2、log(a)(a)=13、log(a)(MN)=log(a)(M)+log(a)(N)4、log(a)(M÷N)=log(a)(M)-log(a)(N)5、log(a)(M^n)=nlog(a)(M)6、log(a)[M^(1/n)]=log(a)(M)/n注意:和对数相比,指数及指数运算要简单得多。但是还是有些基础不是很好的高中同学,对指数运算不够熟练,导致影响后面知识的学习。如对数、指数函数、数列、二项式定理等都需要用到指数及指数运算。指数运算法则是一种数学运算规律。两个或者两个以上的数、量合并成一个数、量的计算叫加法。(如:a+b=c)。两个数相加,交换加数的位置,和不变。 a+b=b+a。三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 (a+b)+c=a+(b+c)。
2023-07-02 22:07:311

幂函数和指数函数,求导公式?

(x^a)"=ax^(a-1)证明:y=x^a两边取对数lny=alnx两边对x求导(1/y)*y"=a/x所以y"=ay/x=ax^a/x=ax^(a-1)y=a^x两边同时取对数:lny=xlna两边同时对x求导数:==>y"/y=lna==>y"=ylna=a^xlna拓展资料:幂函数:一般的,形如y=x(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续性的极为深刻的知识。指数函数:是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。
2023-07-02 22:08:046

指数函数的期望公式

指数分布的参数为λ,则指数分布的期望为1/λ;方差为(1/λ)^2  E(X)==∫x*f(x)dx==∫λx*e^(-λx)dx=-(xe^(-λx)+1/λ*e^(-λx))|(正无穷到0)=1/λ  E(X^2)==∫x^2*f(x)dx=∫x^2*λ*e^(λx)dx=-(2/λ^2*e^(-λx)+2x*e^(-λx)+λx^2*e^(-λx))|(正无穷到0)=2/λ^2  DX=E(X^2)-(EX)^2=2/λ^2-(1/λ)^2=1/λ^2
2023-07-02 22:08:591

指数运算的8个运算法则都有什么,要全的

2023-07-02 22:09:081

指数函数的导数公式怎么推导

解:设:指数函数为:y=a^xy"=lim【△x→0】[a^(x+△x)-a^x]/△xy"=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△xy"=lim【△x→0】(a^x){[(a^(△x)]-1}/△xy"=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x…………(1)设:[(a^(△x)]-1=M则:△x=log【a】(M+1)因此,有:‘{[(a^(△x)]-1}/△x=M/log【a】(M+1)=1/log【a】[(M+1)^(1/M)]当△x→0时,有M→0故:lim【△x→0】{[(a^(△x)]-1}/△x=lim【M→0】1/log【a】[(M+1)^(1/M)]=1/log【a】e=lna代入(1),有:y"=(a^x)lim【△x→0】{[(a^(△x)]-1}/△xy"=(a^x)lna证毕。
2023-07-02 22:09:314

指数函数的积分公式是什么?

指数函数的积分公式是∫e^x dx = e^x+c∫e^(-x) dx = -e^x+c(c为常数)因为e^x的微分还是e^x,所以上面的积分可以直接得到~在这里补充一下一般指数函数的积分:y=a^x 的积分为(a^x)/ln(a) + c-------------------------扩展资料积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。参考资料来源:百度百科-积分公式
2023-07-02 22:09:431

指数函数求导公式

指数函数求导公式:(a^x)"=(a^x)(lna)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。 指数函数的导数公式是什么 y=a^x 两边同时取对数: lny=xlna 两边同时对x求导数: ==>y"/y=lna ==>y"=ylna=a^xlna 导数的求导法则 由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下: 1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。 2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。 3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。 4、如果有复合函数,则用链式法则求导。
2023-07-02 22:10:111

对数函数指数函数幂函数的所有公式

kankan
2023-07-02 22:10:211

指数函数公式

指数函数有两种写法:1. POWER(2,3)=82. 2^3=8 (^ 6上面那个符号)指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。自变量在指数位置的函数就是指数函数,如y=a^x,a﹥0且系数为1,x∈R,y(0,+∞)①如果a=0,那么指数x≠0的时候,函数值等于1,x=0的时候,函数式无意义。②如果a<0,那么a的x次方这个幂将不连续,且出现无法确定是否有意义的不定点。因为负数不能开偶数次方,所以当x是最简分数的时候,分母为偶数的指数将使得a的x次方无意义。所以只能研究a大于0的情况下的指数函数。
2023-07-02 22:11:181

如何运用函数的乘法公式计算指数函数的运算法则

指数函数的运算法则如下:一、乘法1、同底数幂相乘,底数不变,指数相加。2、幂的乘方,底数不变,指数相乘。3、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。4、分式乘方,分子分母各自乘方。二、除法1、同底数幂相除,底数不变,指数相减。2、规定:(1)任何不等于零的数的零次幂都等于1。(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。记忆口诀:有理数的指数幂,运算法则要记住。指数加减底不变,同底数幂相乘除。指数相乘底不变,幂的乘方要清楚。积商乘方原指数,换底乘方再乘除。非零数的零次幂,常值为1不糊涂。负整数的指数幂,指数转正求倒数。看到分数指数幂,想到底数必非负。乘方指数是分子,根指数要当分母。指数函数的一般形式为y=a^x(a>0且不=1),函数图形下凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。
2023-07-02 22:11:441

指数函数的积分公式是怎样推导出来的

2023-07-02 22:12:144

对数函数和指数函数的转换

指数和对数的转换公式是:a^y=xy=log(a)(x)。对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数,图象关于直线y=x对称的两函数互为反函数,可表示为x=a^y。因此指数函数里对于a存在规定:a>0且a≠1,对于不同大小a会形成不同的函数图形关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。比较两个指数式或对数式的大小可通过指数函数或对数函数的单调性来比较两个指数式或对数式的大小。求函数y=afx的单调区间,应先求出fx的单调区间,然后根据y=au的单调性来求出函数y=afx的单调区间。求函数y=logafx的单调区间,则应先求出fx的单调区间,然后根据y=logau的单调性来求出函数y=logafx的单调区间。
2023-07-02 22:12:421

指数和对数的转换公式是什么?

对数函数与指数函数的互换公式是y=a^x,log(a)y=x 。1、对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。2、因此指数函数里对于a存在规定——a>0且a≠1,对于不同大小a会形成不同的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。3、对数函数和指数函数都是重要的基本初等函数之一。一般地,函数y=logaX叫做对数函数,也就是说以幂为自变量,指数为因变量,底数为常量的函数,叫对数函数。4、一般地,函数y=a^x叫做指数函数,函数的定义域是R。在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:13:041

指数函数公式 公式讲解

1、公式:(x^a)=ax^(a-1)。 2、证明:y=x^a取对数lny=alnx两边对x求导(1/y)*y=a/x所以y=ay/x=ax^a/x=ax^(a-1)y=a^x。 3、两边取对数:lny=xlna两边同时对x求导数:==>y/y=lna==>y=ylna=a^xlna。 4、指数函数:是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R 。
2023-07-02 22:13:171

excel中指数函数怎么写?

常用的是以e为底的指数函数,用=exp(2)这种方式输入即可,别的指数用power函数,Excel输入该公式的具体过程是:1,第一步,首先,在电脑上找到Excel表格文档位置,双击打开,如图所示。2,第二步,接着,在窗口中选择“输入以下的函数”回车输入内容。如图所示。3,最后一步,即可看到Excel表格程序中的指数函数计算完成,问题解决。
2023-07-02 22:13:241

e指数的运算法则及公式是什么?

e指数的运算法则及公式是:(1)ln e = 1(2)ln e^x = x(3)ln e^e = e(4)e^(ln x) = x(5)de^x/dx = e^x(6)d ln x / dx = 1/x(7)∫e^x dx = e^x + c(8)∫xe^xdx = xe^x - e^x + c(9)e^x = 1+x+x^2/2!+x^3/3!+x^4/4!+....(10)d(e^x sinx)/dx = e^x sinx +e^xcosx=e^x(sinx+cosx)e在数学上它是函数:lim(1+1/x)^x,X的X次方,当X趋近无穷时的极限。人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究lim(1+1/x)^x,X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。
2023-07-02 22:13:491

指数函数的公式都有哪些

指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于 0 的时候,y等于1。当0<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于 0 的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。
2023-07-02 22:14:472

指数函数的导数公式f(x)=a的x次方*lna(a>0),为什么没有a不等于1?.急!谢了.

a=1时,f(x)=1^x=1 ==> f"(x)=0=1^x*ln1 所以a=1时这个公式仍然成立,情况被包含进去了,不用去掉1这个点
2023-07-02 22:15:101

指数计算公式是什么?

1、loga(MN)=logaM+logaN;2、logaMN=logaM-logaN;3、logaMn=nlogaM (n∈R);a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,au207f表示n个a连乘。当n=0时,au207f=1。扩展资料:指数作为幂运算au207f(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角。幂运算(指数运算)是一种关于幂的数学运算。同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减。幂的幂,底数不变,指数相乘。下面a≠0。当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。
2023-07-02 22:15:171

指数公式是什么?

1、loga(MN)=logaM+logaN;2、logaMN=logaM-logaN;3、logaMn=nlogaM (n∈R);a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,au207f表示n个a连乘。当n=0时,au207f=1。指数作为幂运算au207f(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角。幂运算(指数运算)是一种关于幂的数学运算。同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减。幂的幂,底数不变,指数相乘。下面a≠0。当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。
2023-07-02 22:15:401

幂函数和指数函数怎么导出来?

幂函数y=x^a和指数函数y=a^x的求导公式分别为:y"=a*x^(a-1),y"=a^x*lna。【扩展资料】当a的值大于1时,指数函数的增长速率是要比幂函数的增长速率要高的。如下图所示,比如当a=2时,幂函数是y=x^2,指数函数是y=2^x,分别对其求导,可以分别得到y=2x和y=2^x*ln2。指数函数的增长实际上是一种激增模式,在实际实例中,比如病毒的扩散速率,就跟指数函数非常之像;再比如人口的增长模式,也近乎于一种指数函数。而对于幂函数,其增长速率相对一般。
2023-07-02 22:15:541

excel指数函数公式是什么?

excel指数函数有两种写法:1.POWER(2,3)=82.2^3=8(^6上面那个符号)指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。
2023-07-02 22:16:081

excel指数函数公式

excel指数函数有两种写法:1. POWER(2,3)=82. 2^3=8 (^ 6上面那个符号)指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。
2023-07-02 22:16:295

指数函数y=a^x的导数怎样列式?

y=a^xy"=a^x lna
2023-07-02 22:17:102

指数函数图像怎么画

看以下的图片,底数在0到1之间时,是减函数。底数在大于1时,是增函数。恒过(0,1)点,都在X轴上方!资料拓展用excel绘制指数函数的方法:选中数据区域,然后在EXCEL的插入菜单中找到图表,插入相应的图表,然后给某个系列添加趋势线,最后设置趋势线格式,勾选显示公式,里面有指数,幂,多项式等供选择指数函数的定义:指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。指数函数的特点:(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。(如右图)》。(4)y=a的x次方与y=a分之1的x次方的图像关于y轴对称。
2023-07-02 22:17:185

指数函数的求导公式是什么?

指数函数的求导公式:(a^x)"=(lna)(a^x)求导证明:y=a^x两边同时取对数,得:lny=xlna两边同时对x求导数,得:y"/y=lna所以y"=ylna=a^xlna,得证扩展资料注意事项1.不是所有的函数都可以求导;2.可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。部分导数公式:1.y=c(c为常数) y"=02.y=x^n y"=nx^(n-1)3.y=a^x;y"=a^xlna;y=e^x y"=e^x4.y=logax y"=logae/x;y=lnx y"=1/x5.y=sinx y"=cosx6.y=cosx y"=-sinx7.y=tanx y"=1/cos^2x8.y=cotx y"=-1/sin^2x9.y=arcsinx y"=1/√1-x^210.y=arccosx y"=-1/√1-x^211.y=arctanx y"=1/1+x^212.y=arccotx y"=-1/1+x^2
2023-07-02 22:18:151

指数函数的公式是什么?

指数函数8个基本公式如下:1、y=c(c为常数)y"=0。2、y=x^n y"=nx^(n-1)。3、y=a^x y"=a^xlna y=e^x y"=e^x。4、y=logax y"=logae/x y=lnx y"=1/x。5、y=sinx y"=cosx。6、y=cosx y"=-sinx。7、y=tanx y"=1/cos^2x。8、y=cotx y"=-1/sin^2x。指数函数基本性质:(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。(2)指数函数的值域为(0,+∞)。(3)函数图形都是上凹的。(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。指数函数运算公式:同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。
2023-07-02 22:18:341

指数函数公式是什么?

指数函数8个基本公式如下:1、y=c(c为常数)y"=0。2、y=x^n y"=nx^(n-1)。3、y=a^x y"=a^xlna y=e^x y"=e^x。4、y=logax y"=logae/x y=lnx y"=1/x。5、y=sinx y"=cosx。6、y=cosx y"=-sinx。7、y=tanx y"=1/cos^2x。8、y=cotx y"=-1/sin^2x。指数函数基本性质:(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。(2)指数函数的值域为(0,+∞)。(3)函数图形都是上凹的。(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。指数函数运算公式:同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。
2023-07-02 22:18:461

请问指数函数的公式是什么啊?

指数函数8个基本公式如下:1、y=c(c为常数)y"=0。2、y=x^n y"=nx^(n-1)。3、y=a^x y"=a^xlna y=e^x y"=e^x。4、y=logax y"=logae/x y=lnx y"=1/x。5、y=sinx y"=cosx。6、y=cosx y"=-sinx。7、y=tanx y"=1/cos^2x。8、y=cotx y"=-1/sin^2x。指数函数基本性质:(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。(2)指数函数的值域为(0,+∞)。(3)函数图形都是上凹的。(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。指数函数运算公式:同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。
2023-07-02 22:18:591

指数函数8个基本公式是什么?

八个公式:1、y=c(c为常数)y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna y=e^x y"=e^x4、y=logax y"=logae/x y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x名词解释:指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:19:141

指数函数8个基本公式是什么?

指数函数8个基本公式是:1、y=c(c为常数)y"=0。2、y=x^n y"=nx^(n-1)。3、y=a^x y"=a^xlna y=e^x y"=e^x。4、y=logax y"=logae/x y=lnx y"=1/x。5、y=sinx y"=cosx。6、y=cosx y"=-sinx。7、y=tanx y"=1/cos^2x。8、y=cotx y"=-1/sin^2x。9、指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。10、在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:19:291

指数函数公式

Y=a^x(a>0且不=1)指数函数的一般形式为y=a^x(a>0且不=1),函数图形上凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:19:442

指数函数8个基本公式是什么?

指数函数8个基本公式是如下:1、y=c(c为常数)y"=0。2、y=x^n y"=nx^(n-1)。3、y=a^x y"=a^xlna y=e^x y"=e^x。4、y=logax y"=logae/x y=lnx y"=1/x。5、y=sinx y"=cosx。6、y=cosx y"=-sinx。7、y=tanx y"=1/cos^2x。8、y=cotx y"=-1/sin^2x。
2023-07-02 22:19:591

指数函数8个基本公式分别是?

指数函数8个基本公式:1、y=c(c为常数)y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna y=e^x y"=e^x4、y=logax y"=logae/x y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x名词解释:指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:20:111

指数函数是什么?

指数函数公式:y=a^x(a为常数且以a>0,a≠1)。函数的定义域是R。在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式。指数函数的形式有y=a^x。指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。 指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2。718281828,还称为欧拉数 。指数函数的图象是单调的,始终在一、二象限,经过(0,1)点;幂函数需要具体问题具体分析。指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1),当a>1时,函数是递增函数,且y>0;当0<a<1时,函数是递减函数,且y>0.幂函数:自变量x在底数的位置上,y=x^a(a不等于1)。a不等于1,但可正可负,取不同的值,图像及性质是不一样的。 2、性质不同幂函数性质:(1)正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;(2)负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。(3)零值性质当α=0时,幂函数y=xa有下列性质:y=x0的图像是直线y=1去掉一点(0,1)。 它的图像不是直线。指数函数性质:(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此不予考虑,同时a等于0函数无意义一般也不考虑。(2)指数函数的值域为(0,+∞)。(3)函数图形都是上凹的。(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减。(5)可以看出,就是当a从0趋向于无穷大的过程中(不等于0),函数曲线分别趋向于接近y轴正半轴和x轴负半轴单调递减函数的位置,以及单调递增函数的位置。Y轴的正半轴和X轴的负半轴。水平线y=1是由减到增的过渡位置。(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。(7)指数函数无界。(8)指数函数是非奇非偶函数。 指数函数具有反函数,其反函数是对数函数,它是一个多值函数。2幂函数的单调区间当α为整数时,α的正负性和奇偶性决定了函数的单调性:①当α为正奇数时,图像在定义域为R内单调递增;②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增;③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减);④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。当α为分数时(且分子为1),α的正负性和分母的奇偶性决定了函数的单调性:①当α>0,分母为偶数时,函数在第一象限内单调递增;②当α>0,分母为奇数时,函数在第一三象限各象限内单调递增;③当α<0,分母为偶数时,函数在第一象限内单调递减;④当α<0,分母为奇数时,函数在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。
2023-07-02 22:20:252

指数函数运算公式

Y=a^x(a>0且不=1)指数函数的一般形式为y=a^x(a>0且不=1),函数图形上凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:20:392

指数函数公式

Y=a^x(a>0且不=1)指数函数的一般形式为y=a^x(a>0且不=1),函数图形上凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:21:002

指数的公式是什么?

指数函数运算法则公式:同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)指数函数指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫作指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。指数函数是非奇非偶函数。指数函数具有反函数,其反函数是对数函数,它是一个多值函数。几个基本的函数的导数y=a^x,y"=a^xlnay=c(c为常数),y"=0y=x^n,y"=nx^(n-1)y=e^x,y"=e^xy=logax(a为底数,x为真数),y"=1/x*lnay=lnx,y"=1/xy=sinx,y"=cosxy=cosx,y"=-sinxy=tanx,y"=1/cos^2x
2023-07-02 22:21:061

指数函数运算公式

同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n);、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n);、幂的乘方,底数不变,指数相(a^m)^n=a^(mn);、积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,还称为欧拉数。一般地,y=a^x函数(a为常数且以au003e0,a≠1)叫做指数函数,函数的定义域是R。
2023-07-02 22:21:221

指数函数公式

Y=a^x(a>0且不=1)指数函数的一般形式为y=a^x(a>0且不=1),函数图形上凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
2023-07-02 22:21:312

指数函数导数 指数函数的求导公式是什么

1、指数函数的求导公式:(a^x)=(lna)(a^x) 2、部分导数公式: (1)y=c(c为常数) y=0 (2)y=x^n y=nx^(n-1) (3)y=a^x;y=a^xlna;y=e^x y=e^x (4)y=logax y=logae/x;y=lnx y=1/x (5)y=sinx y=cosx (6)y=cosx y=-sinx (7)y=tanx y=1/cos^2x (8)y=cotx y=-1/sin^2x (9)y=arcsinx y=1/√1-x^2 (10)y=arccosx y=-1/√1-x^2 (11)y=arctanx y=1/1+x^2 (12)y=arccotx y=-1/1+x^2 3、求导证明: y=a^x 两边同时取对数,得:lny=xlna 两边同时对x求导数,得:y/y=lna 所以y=ylna=a^xlna,得证。 4、注意事项 不是所有的函数都可以求导; 可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
2023-07-02 22:21:401