DNA图谱 / 问答 / 问答详情

衰变定律及同位素地质年代学的基本原理

2023-07-07 16:51:22
共1条回复
bikbok

1902年Rutheford通过实验发现放射性同位素衰变不同于一般的化学反应,具有如下性质:①衰变作用发生在原子核内部,反应结果由一种核素变成另一种核素;②衰变自发地不断地进行,并有恒定的衰变比例;③衰变反应不受温度、压力、电磁场和原子核存在形式等物理化学条件的影响;④衰变前和衰变后核数的原子数只是时间的函数。

根据放射性衰变的以上特性,Rutheford总结出放射性同位素衰变定律为:单位时间内衰变的原子数与现存放射性母体的原子数成正比。其数学表达式如下:

地球化学

式中:N为在t时刻存在的母体原子数;dN/dt为t时的衰变速率,负号表示N随时间减少;λ为衰变速率常数,表示单位时间内发生衰变的原子数与摩尔数的比例,可通过实验方法测定,单位为1/a或1/s。

将(6.7)式由t=0到t求积分,整理后得:

地球化学

N0为t=0时的衰变母体原子数。由此得:

地球化学

地球化学

(6.9)式是同位素衰变的基本公式,表明原子数为N0的放射性同位素,与经时间t后残存的母体原子数N之间的关系,N与t为指数函数。

设衰变产物子体的原子数为D*,当t=0时,D*=0,经时间t的衰变反应,则:

地球化学

将上式分别代入(6.9)和(6.10)式,得:

地球化学

对于衰变反应87Rb→87Sr+β,87Rb为母体,87Sr为子体,则:

地球化学

对于任何放射性同位素体系,放射性核素衰变掉初始原子数一半所需的时间称为半衰期,以T1/2表示。根据定义,当t=T1/2时,N=1/2N0,代入(6.9)式并整理后得:

地球化学

由此可见,T1/2与λ呈反比关系,衰变常数λ值愈小,半衰期愈长,核的寿命也愈长。

设N0=120,分别依式(6.9)和式(6.12)对时间作图,得N和D两条变化曲线(图6.1)。由图可见母体核素的原子数N随时间呈指数衰减,而子体核数的原子数D呈指数增长。当t→∞时,N→0,D*→N0。对于具体的放射性同位素体系,当t=10×T1/2时,N→0,已难于用现代仪器测定母体的同位素。因此,T1/2较小的衰变反应不宜用于地质计时。

放射性同位素衰变定律是同位素地质年代学的理论基础。由于质谱分析只能测定同一元素的同位素比值,不能直接测定单个同位素的原子数,因此在同位素年代学方法中,必须选取子体元素的其他同位素作参照,来进行同位素比值的测定。记参照的同位素为DS,并使等式(6.13)两边同除以DS,则:

地球化学

图6.1 子母体核素原子数N随时间呈指数曲线变化

如果在t=0时,将所研究体系中存在初始子体同位素,记作D0,则t时刻,子体同位素的原子数总数为:

地球化学

由(6.16)式得:

地球化学

将(6.17)式代入(6.15)式并整理,得:

地球化学

习惯上,将上式中(D0/DS)写作(D/DS0,则:

地球化学

上式是同位素地质年代学方法的基本公式,式中:D/DS代表样品现今的同位素原子数比值,用质谱测定;(D/DS0是样品初始同位素原子数比值;N/DS是母体同位素与参照同位素原子数比值,一般用同位素稀释法计算获得;λ是衰变常数。据上述参数可求解放射性衰变已经历过的时间t:

地球化学

根据式(6.19),要正确地获得岩石或矿物的年龄还必须满足以下条件:①应当选用适当半衰期的放射性同位素体系,这样才能积累起有显著数量的子核,同时保留一定数量未衰变的母核;②已准确测定衰变常数,经过长期的实验积累已给出较高精度的某些放射性同位素体系的衰变常数列于表6.3;③有高精度的同位素制样和质谱测定技术;④测定对象处于封闭体系中,母体和子体核素数只因衰变反应而改变,不存在它们脱离体系或从外部体系带入。

表6.3 衰变常数一览表

目前在地球科学研究中对新生代前的事件广泛应用的年代学方法有 U-Th-Pb法,Rb-Sr法,Sm-Nd 法,K-Ar 法等,第四纪研究的年代学方法主要为14 C法。

相关推荐

碘131的衰变常数怎么算

一、放射性核素半衰期的计算公式为:lt=loe-λt,lt为所用时间为t时的放射性活度,lo为标定值,e为自然对数的底,入为一常数,入=0.693/T1/2,T1/2为所用某种放射性核素的半衰期;分别计算不同放射性核素的入值,如碘-131的半衰期为8.04天,入=0.693/8.04=0.086194。
2023-07-07 07:53:581

放射性核素90Sr的半衰期为25年(一年为365天),求其衰变常数λ和平均寿命ι。并计算1毫克的这个

半衰期公式是这么推出的:根据衰变定律dN/N=-λdt ==>ln(N)=-λt+c ==>N=N0*exp(-λt),当N=0.5N0时,对应的时间τ就是这种核素的半衰期。代入得2=exp(λτ)==>τ=ln(2)/λ;对于本题,将τ=25年代入上式,得到衰变常数λ=ln(2)/25年=ln(2)/(25*365.25*24*3600)=1.2675*ln(2)*10^(-9)/s;平均寿命T为衰变常数λ的倒数:T=1/λ=1.14×10^9s≈36年1mol锶90质量为90克,1毫克Sr90的摩尔数为k=(0.001/90)(阿佛加德罗常数NA=6.02*10^23/mol),包含原子核的个数n=k*(NA)=6.69×10^18;一个半衰期(25年),有一半0.5n发生衰变,平均每秒衰变的个数0.5n/(25×365.25×24×3600)=1.02×10^11个(约为一千亿个)
2023-07-07 07:54:051

衰变规律

如果起始时刻放射性核素母核数目为N。由于衰变减少,精确实验测定表明t到t+dt内核衰变数目dN与dt与尚未衰变的母核数N乘积成正比,即核辐射场与放射性勘查写成等式:核辐射场与放射性勘查式中:λ为比例系数,称衰变常数;负号表示N随时间增长而减少,对(1-2-1)式积分后得核辐射场与放射性勘查图1-2-1 放射性核素衰变规律由(1-2-2)式可见由于核衰变放射性核素N随时间增长,呈负指数规律减少。若以lnN对t作图为一条直线,如图1-2-1所示,该直线的斜率为λ;也可以由(1-2-1)或(1-2-2)式直接计算得到。可见λ为每个原子核在单位时间内的衰变几率,称衰变常数,每个放射性核素都有固定的衰变常数(λ)。λ值大表示核衰变较慢,其量纲为时间的倒数。当核素衰变减少到原来一半时,(N=N1/2)所经历的时间(t=T)称为半衰期。将N=N1/2,t=T代入(1-2-2)式可得:核辐射场与放射性勘查每个放射性核素都有固定半衰期,例如238U的半衰期为4.468×109 a,232Th的半衰期为1.41×1010 a(141亿年),称为长寿命核素;218Po(RaA)半衰期为3.0 min,214Po(RaC′)半衰期为1.64×10-4s,210Po(RaF)半衰 期为138.4d,常称为短寿命核素。为了对衰变完结有个相对统一的说法,导出一个平均寿命τ=1.44T,用来表明放射性核素寿命。一般认为放射性核素经历10 T之后,已经衰变完了。
2023-07-07 07:54:121

U238的衰变常数是多少

铀-238自发裂变半衰期T=1.01E+16年,λ=ln2/T≈6.863E-17每年≈2.175E-24每秒.
2023-07-07 07:54:181

镭226,88Ra的半衰期1600年,求它的衰变常数,平均寿命,1克镭的放射性活度

已知镭的半衰期为1600年,求它的衰变常数和1克纯镭的放射性活度。解:1g类所含母核数为N=6.02X1023X1-266=2.66X1021个且T1/2=0.693/ λ.①A =λ·N ②由①②得:衰变常数λ=1.37X10-11,放射性活度A=3.644X1010.
2023-07-07 07:54:271

单个放射性核素的衰变规律

天然放射性核素的衰变,都是自发的原子核内部的反应,与其周围的物理、化学、压力等外界无关。任何单一放射性核素的衰变,它的数量随时间增加而逐渐减少。实验证明,在t到t+dt的时间里,原子的衰变数dN正比于t时间尚未衰变的原子总数N。其微分表达式为-dN=λNdt即放射性勘探技术式中:λ——比例常数,称为衰变常数,表示单位时间内元素衰变的几率,单位为s-1、d-1、a-1等。式(1-1)右边的负号表示N值随时间增加而减少,亦即dN是负的。假定起始时(t=0)有N0个原子,经过t时刻后有N个原子未衰变,那么对式(1-1)积分,并取积分限t从0→t,原子数N从N0→N,则放射性勘探技术式(1-2)告诉我们,放射性核素的原子数N,随着时间t的增长而呈指数规律衰减。此式对所有已知的放射性核素的衰变规律都是正确的。若以lnN对时间t为坐标作图就得到一条直线,如图1-11所示。直线与横坐标夹角为φ,tanφ=λ,即直线的斜率为衰变常数λ。图1-11 放射性元素衰变曲线图放射性原子核衰变是个随机过程,式(1-2)所描述的是一个统计规律。一种放射性核素的全部原子核不是同时衰变,而是有先有后。对某一确定的原子核来说,事先并不知道它在何时衰变,但是从统计观点看,每个原子在单位时间里衰变几率是一定的,就是衰变常数λ。由(1-1)式可得放射性勘探技术式(1-3)说明,单位时间内衰变的原子数dN/dt与现有原子数N之比,即为衰变常数。可见衰变常数λ是描述放射性核素衰变速度的。λ愈大说明该核素衰变得愈快,反之,衰变得愈慢。每个放射性核素的λ是不相同的,如氡的衰变常数λRn=2.1×10-6s-1,镭的衰变常数λRa=1.37×10-11s-1。除了衰变常数λ外,通常还用半衰期T1/2来描述放射性核素的衰变速度。所谓半衰期,是指放射性核素原子数目衰减到原来数目一半所需要的时间。它与衰变常数有如下关系:从半衰期的定义出发,当t=T1/2时,则 ,根据式(1-2),将t=T1/2, 代入式(1-2),得放射性勘探技术两边取自然对数: 放射性勘探技术不难看出半衰期(T1/2)与衰变常数λ成反比关系。由某核素的半衰期能算出该核素的衰变常数。一定量的某种放射性核素的原子,经过一个半衰期,原子数目衰变掉一半,经过两个半衰期,还剩下原来原子数目的1/4。那么要经过多长时间才能衰变完呢?从理论上说,要经过无限长时间。但实际上当残留的原子数为起始原子数的1/1000时,就可认为衰变完了。由此可算得这个时间:放射性勘探技术可见,一种放射性核素经过10倍半衰期,衰变为原来的 ,不足原来的1/1000,可以认为衰变完了。显然,利用这个结论只有不足千分之一的误差。在放射性测量实际工作中,有时还用到“原子平均寿命τ”,表示放射性核素衰变速度,τ与λ和T1/2之间有一定关系:放射性勘探技术
2023-07-07 07:54:341

怎样理解衰变规律,衰变常数以及半衰期呢?

补充下,衰变是两种,射线是三种。三种射线: α射线、β射线、γ射线.衰变原子核放出α粒子或β粒子后,就变成新的原子核.这种变化称为原子核的衰变.1、衰变规律:原子核衰变时电荷数和质量数都守恒.质量数守恒(注意不是质量守恒);电荷数守恒;动量守恒;能量守恒.2、衰变方程:α衰变:AZX→A-4Z-2Y+42Heβ衰变:AZX→AZ+1Y+0-1e3、两个重要的方程:23892U→23490Th+42He23490Th→23491Pa+0-1e说明:γ射线是原子核受激发产生的,一般是伴随α衰变或β衰变进行的,即衰变模式是:α+γ,β+γ,没有α+β+γ这种模式!
2023-07-07 07:54:411

硅元素的衰变常数

与其放射性同位素有关。根据不同的放射性同位素会有所不同。最常见的硅的同位素为28Si,其本身是不稳定的,但是其半衰期非常长,可达到24亿年,在大多数情况下可以看作是稳定的。硅元素是一种化学元素,原子序数为14,化学符号为Si。硅元素是地壳中重要的非金属元素之一,占地壳总量的约28%,是人类社会中广泛应用的材料之一。
2023-07-07 07:54:481

衰变定律

根据卢瑟福和索迪(1902)的研究,放射性同位素的原子核会自发地发生衰变,它是原子核内部物质运动的一种固有规律,不受外界条件变化的影响,放射性元素的衰变速率与母核的含量成正比,即水文地球化学基础式中:da/dt为放射性元素的衰变速率;a为放射性元素的含量;λ为衰变常数。设放射性母体中放射性元素的初始含量为a0,经过t时间的衰变后放射性元素的含量为at,则对式(4—13)分离变量并积分可得:水文地球化学基础即水文地球化学基础或at=a0×e—λt (4—14)式(4—14)被称为放射性衰变定律,它表明放射性同位素的衰变过程是按指数规律衰减。放射性元素的半衰期被定义为放射性原子核衰变二分之一(与初始母核相比)所需的时间,若以T1/2表示放射性元素的半衰期,则当t=T1/2时,at=a0/2,代入式(4—14)可得:水文地球化学基础由于某种元素的衰变常数为定值,说明放射性元素的半衰期是一个常数。当已知放射性元素的半衰期T1/2或衰变常数λ时,若测得地下水中该放射性元素的浓度at及其初始浓度a0,则可由下式计算地下水的年龄:水文地球化学基础由于地下水中放射性元素的浓度at可通过取样进行测定,其衰变常数λ可在有关文献中查找。因此,使用放射性元素测定地下水年龄的关键问题是确定其在地下水中的初始浓度a0,这就要求深入了解地下水中这些放射性元素的来源。
2023-07-07 07:54:561

镭226,88Ra的半衰期1590年,求它的衰变常数,平均寿命,1毫克镭的放射性活度?

先求平均寿命。由题意,镭所剩的百分比p与时间t(年)的关系为p=(1/2)^(t/1590)所求平均寿命即为(约为2293.89)衰变常数即为平均寿命的倒数 ln2/1590,约为0.00043594放射性活度A即单位时间中衰变的原子核数,约等于30685170.15Bq具体过程:
2023-07-07 07:55:041

怎样计算放射性元素的半衰期???

是这样测的:①利用核物理仪器直接测定放射性同位素的放射性强度随时间的减少量,因此,又叫做直接测量法.该方法适用于半衰期短,放射性强度大(如α衰变)的同位素.②是地球化学方法或叫做间接测量法,通过测定已知年龄的矿物中母体与子体含量,利用年龄公式计算获得,这个已知的年龄是通过其它测年方法的测定获得,而该方法母体的半衰期已经过精确测定. 半衰期:放射性元素的原子核有半数发生衰变时所需要的时间。 原子核的衰变规律是: 其中:No是指初始时刻(t=0)时的原子核数 t为衰变时间,T为半衰期 N是衰变后留下的原子核数。放射性元素的半衰期长短差别很大,短的远小于一秒,长的可达数万年。不稳定(即具有放射性)的原子核在放射出粒子及能量后可变得较为稳定,这个过程称为衰变(Radioactive decay)。这些粒子或能量 (后者以电磁波方式射出) 统称辐射(radiation)。由不稳定原子核发射出来的辐射可以是α粒子、β粒子、γ射线或中子。放射性核素在衰变过程中,该核素的原子核数目会逐渐减少。衰变至只剩下原来质量一半所需的时间称为该核素的半衰期(half-life)。每种放射性核素都有其特定的半衰期,由几微秒到几百万年不等。原子核由于放出某种粒子而变为新核的现象.原子核是一个量子体系,核衰变是原子核自发产生的变化,它是一个量子跃迁过程,它服从量子统计规律.对任何一个放射性核素,它发生衰变的精确时刻是不能预知的,但作为一个整体,衰变的规律十分明确.若在dt时间间隔内发生核衰变的数目为dN,它必定正比于当时存在的原子核数目N,显然也正比于时间间隔。
2023-07-07 07:55:342

一个像“入”的数学符号是怎么念的?或者告诉我是哪位科学家发明的这个单位

λ  希腊字母  拉姆达  Λ   Lambda(大写Λ,小写λ),是第十一个希腊字母。   大写Λ用於:   粒子物理学上,Λ重子的符号   小写λ用於:   物理上的波长符号   放射学的衰变常数   线性代数中的特征值   西里尔字母的 Л 是由 Lambda 演变而成
2023-07-07 07:55:521

放射性核素衰变满足什么衰变规律

  指放射性核素的原子数或活度随时间而改变的规律(见放射性、核素)。1903年E.卢瑟福和F.索迪提出的放射性衰变理论首先揭示了放射性物质的不稳定性,并且在研究钍 X(224Ra)的放射性衰变率时提出了定量的负指数关系式。它的现代表示方式是:    (1)积分得:    (2)式(2)两边同乘以λ,则得到活度的相应关系:    (3)式中是放射性核素原子的衰变率;NO和N是起始时刻(t=0)和t时刻该核素原子的数目;AO和A是起始时刻和t时刻的活度;λ 是衰变常数,其物理意义是单位时间内原子核的衰变几率。   式(2)表示原子核衰变的统计规律,即放射性原子核的数目随时间按指数规律减少。每一种放射性核素单独衰变时都服从这一基本规律,但是各自具有特征的衰变常数。如铀238的 λ为1.55×10-10年-1,镭226的λ为4.33×10-4年-1。原子核的衰变有时是一代又一代地连续进行,这些混在一起的衰变情况非常复杂。   两次连续衰变规律   母体(核素1)衰变成子体(核素2),子体衰变成稳定核素,且母子体处于同一体系中。这时式(1)和式(2)可以计算不同时间核素 1和孤立的核素2的原子数。与核素1共同存在的核素 2的改变速率应该包括两部分,一部分是核素1的衰变而产生核素2,另一部分是核素2的衰变。所以:    (4)      (5)开始时只有母体核素,给定N1,0的样品中,N2随时间的变化只取决于λ1和λ2,有三种情况:   ①λ2》λ1 核素2的活度(A2)最初随时间而增加,然后达到某一饱和值,与核素1的活度(A1)相等,随后核素2的活度一直按核素1的半衰期衰减,出现长期平衡(图1)。曲线 c是核素1和2的活度总和,曲线a是开始时纯粹核素1的活度,曲线 b是从纯粹核素 1中逐渐积累的核素 2的活度,曲线b′是孤立的核素2的活度随时间衰减的状况。铀238中产生钍234,镭226中产生氡222都属于这种情况。另外,利用反应堆中的中子或加速器产生的离子束通过核反应生产放射性核素时,只要核反应速率保持恒定,放射性核素的活度变化也与长期平衡状况一致。   ②λ2>λ1 核素2的活度最初随时间而增大,在tm达到某一极大值后,核素2的活度大于核素1的活度,随后逐渐趋向于按核素1的半衰期衰减,出现暂时平衡(图2)。曲线a、b、b′、c的说明同图1。铅212中产生铋212,碲132中产生碘132都属于这种情况。   ③λ2<λ1在这种情况下不可能出现平衡,核素1和核素2的活度随时间改变的状况见图3 。   多次连续衰变规律  1910年英国数学家H.贝特曼得到了这一过程的解。原则上不论有多少成员的放射性衰变系列,数学求算各代成员的原子数和活度都是可能的。实际上中间成员常常可以忽略,一般以考虑两代放射性核素(即母子体)的情况为最普遍。   根据放射性衰变规律,除了计算放射性核素的原子数和活度(这方面的用途很多,如用于放射性核素的生产和地质样品年龄的测算中)以外,通过曲线分析还可以求出放射性核素的半衰期。
2023-07-07 07:56:391

放射性元素每年减少约0.014%,求半衰期

放射性元素的衰变速率可以用指数函数来描述:N = N0 * e^(-λt),其中N是现在放射性元素的量,N0是初始的放射性元素的量,λ是衰变常数,t是时间。半衰期是指时间t,在这段时间内放射性元素的数量减少到初始值的一半。因此,在半衰期结束时,数量变为原来的1/2,即N = N0 / 2。根据上述两个公式,我们可以得到:N/N0 = e^(-λt) = 0.99 (因为每年减少约0.014%等于减少了0.00014倍)取自然对数:ln(0.99) = - λt解出λ:λ = ln(2)/半衰期将半衰期代入 ln(0.99) = - λt 中,可以解出半衰期 t = ln(2) / (λ * ln(0.99))代入已知数据,得到半衰期约为 49.6 年(取两位小数)。因此,如果一个放射性物质每年减少约0.014%,则其半衰期大约为49.6年。
2023-07-07 07:56:451

24Na 衰变到 24Mg 衰变常数是多少

24Na衰变道24Mg的半衰期T(1/2)=14.99 h,则衰变常数为λ=ln(2)/14.99/3600=0.000012836 (1次/s)衰变过程中会释放一个1392keV的电子,同时24Mg从激发态到态跃迁释放两条级联γ线,能量为1369keV,2754keV。
2023-07-07 07:56:532

粒子平均寿命是衰变常数的倒数怎么理解?

粒子寿命(particle lifetime)是指粒子产生后到衰变时为止平均存在的时间。简称为寿命,又称平均寿命。粒子运动速度很快甚至接近光速 时,由于相对论性的效应,其平均寿命将比粒子静止时的长,表现为同一种粒子的平均寿命随速度的增加而增加。粒子物理学中提到粒子的平均寿命都是指在该种粒子静止时所观测到的平均寿命。至于粒子运动时的平均寿命,则根据相对论的公式进行推算。现在已知的可衰变的基本粒子,其平均寿命分布在很大的范围内。中子的平均寿命最长,为885.7±0.8秒,其他粒子的平均寿命都短于10-5秒,最短的约为10-25秒。粒子物理学中称为稳定粒子(见衰变)的基本粒子,现已测定的平均寿命除W粒子和Z粒子外都大于10-20秒。粒子物理学中称为不稳定粒子的基本粒子,现已测定的平均寿命都小于10-20秒。考虑到粒子的质量m总是随粒子的运动速度而改变,粒子物理学中提到质量都是指粒子在静止时所表现的质量。微观现象的普遍规律决定了只有完全稳定的粒子其质量才具有完全确定的值,可衰变的粒子的质量分布在某一确定值附近的一定范围内。这种分布可用该种粒子的质量分布P(m)图表示出来。粒子的质量分布图中有一个最大值。这个最大值所对应的质量M就是通常所说该种粒子的质量。最大值两边曲线降到最大值一半处的两点之间的质量差用Г代表。Г反映了由于粒子是可衰变的而引起的粒子质量分布的范围,Г称为衰变宽度。Г=h/τc2(等于平均寿命τ的倒数乘普朗克常数h再除以光速c2)。换言之,自然单位制中衰变宽度等于平均寿命的倒数,它直接反映粒子稳定的程度。实验中直接测量的通常是平均寿命或衰变宽度。对于绝大多数粒子,平均寿命很短而衰变宽度大,所以实验上通常是直接测量衰变宽度。只有平均寿命很长的粒子,如平均寿命约为10-8秒,才能直接测量它的平均寿命。
2023-07-07 07:57:013

衰变规律

如果起始时刻放射性核素母核数目为N。由于衰变减少,精确实验测定表明t到t+dt内核衰变数目dN与dt与尚未衰变的母核数N乘积成正比,即dN∝Ndt写成等式:核辐射场与放射性勘查式中:λ为比例系数,称衰变常数;负号表示N随时间增长而减少,对(1-2-1)式积分后得lnN=lnN0-λt 或 N=N0e-λt (1-2-2)图1-2-1 放射性核素衰变规律由(1-2-2)式可见由于核衰变放射性核素N随时间增长,呈负指数规律减少。若以lnN对t作图为一条直线,如图1-2-1所示,该直线的斜率为λ;也可以由(1-2-1)或(1-2-2)式直接计算得到。可见λ为每个原子核在单位时间内的衰变几率,称衰变常数,每个放射性核素都有固定的衰变常数(λ)。λ 值大表示核衰变较慢,其量纲为时间的倒数。当核素衰变减少到原来一半时,(N=N1/2)所经历的时间(t=T)称为半衰期。将N=N1/2,t=T代入(1-2-2)式可得:核辐射场与放射性勘查每个放射性核素都有固定半衰期,例如238U的半衰期为4.468×109a,232Th的半衰期为1.41×1010a(141亿年),称为长寿命核素;218Po(RaA)半衰期为3.0min,214Po(RaC′)半衰期为1.64×10-4s,210Po(RaF)半衰期为138.4d,常称为短寿命核素。为了对衰变完结有个相对统一的说法,导出一个平均寿命τ=1.44T,用来表明放射性核素寿命。一般认为放射性核素经历10T之后,已经衰变完了。
2023-07-07 07:57:251

公式λ*T=In2是怎么推出来的 (λ为衰变常数 T为半衰期)

根据半衰期定义有 e^(-λT)=1/2 两边取对数得 -λT=ln(1/2)=-ln2 λT=ln2
2023-07-07 07:57:341

放射性衰变定律

放射性母体核素衰变成稳定子体的速率与任一时间t时剩余母体原子数n成正比:地球化学式中:λ是比例常数,它是每个放射性核素的特征值,称之为衰变常数 (以时间的倒数单位表示,如年-1或y-1、a-1),表示放射性原子在给定时间内衰变的几率;dn/dt项是母体原子数的变化率,为负是因为此变化率随时间减小。整理式 (6-1),得到:地球化学式 (6-2)从t=0~t积分,假定t=0 时的原子数为n0:地球化学因此:地球化学改写为地球化学一个放射性核素衰变速率常用半衰期 (t1/2 )来描述,单位为年(a、y )、百万年(Ma、Myr)、十亿年(Ga、Gyr),它是母体原子衰变到初始量一半所需要的时间。将n=n0/2 和t=t1/2代入方程式 (6-5),两边取自然对数,得到:地球化学因为放射成因子体 (以右上角*号表示)原子数D*等于消耗掉的母体原子数:地球化学因为n0=neλt,将n0 代入方程式 (6-7),得到:地球化学也就是:地球化学如果t=0 时,子体原子数为D0 ,即初始子体,在自然界总存在,时间t后子体原子总数为地球化学这个方程是同位素地质年代学的基本工具。放射性核素的衰变常数通常由盖革-穆勒计数或闪烁计数测定。盖革-穆勒计数器包含有中心金属电极的玻璃或铝薄壁管组成的电离室 (图6-1),其中充有氩与少量挥发性组分 (如甲烷、酒精或卤素)的混合物。中心电极为阳极,电离室壁为阴极。当带负电的β-粒子或γ射线穿过电离室的壁,在混合气体中形成离子。带负电的离子或电子便被吸引到中心阳极,从而产生小的电流流过电离室。这些电信号由电子仪器计数并以模拟或数字形式显示。图6-1 盖革-穆勒计数器示意图W—薄的窗口;P—可调高压直流电源;I—绝缘体;R—电阻;G—接地;A—放大器;+—阳极;-—阴极
2023-07-07 07:57:421

Co 的半衰期为5.3年,现有0.5克的钴源,它的放射性活度是多少?

1、活度=比活度*质量,2、若N是1毫克原子(1mA)的总原子数,衰变常数λ,则:比活度=λN=In2除以半衰期T1/2N=0.693N/T1/23、1毫克原子的任何物质原子数都相同,等于阿伏加德罗常数,即6.022×10^23个比活度=6.022×10^23...
2023-07-07 07:57:491

铀的普通同位素u-233进行α衰变,半衰期为4.47年,问衰变常数是多少

放射性同位素的原子核,在自发地放射出某种粒子或r射线后变成另一种不同的核,这种现象就叫衰变.放射性物质的能量就会因这种自发射而逐渐减少.放射a衰变;放射β粒子的衰变为β衰变.衰变前的核为母体,衰变后的核为子体. (1)衰变定律—指数衰减规律 放射性物质的衰变速度有的很快,有的则很慢,它是放射性同位素的特征.对于一定的放射性物质,其衰变速度是恒定的.所有放射性同位素的衰变速度完全不能因外素加以改变.各种放射性同位素都有有自己特定的相对衰变速度,相对衰变速度即为衰变常数. 通过对大量原子核进行研究,发现所有的放射性物质其原子核数目随时间t的变化都遵守一种普遍的衰变规律.它表示单位时间内衰变核的数目与尚未衰变核的灵数目之比.一般关系式为: ue781λ= 式中 —dN/dt—在时间间隔dt内一个给定原子核由该核能态发生核跃迁的概率; N—物质在t时的尚未衰变原子数. 由此经验证明,代入数学推导的指数衰减定律,可得放射性衰变规律: N=Noe 式中 N—物质在t时尚未衰变的原子数: e—自然对数的底; N —原有的(当t=0时)物质原子数; —该物质的衰变常数. 式(1-5)表明了放射性物质的原子数随时间成指数规律减少.指数衰减规律在核辐射防护、放射性同位素的应用和生产等许多方面有着重要用途. (2)半衰期 表征放射性核素自发跃迁的另一个参数是半衰期T .放射性的半衰期是指放射性物质的原子数因衰变而减少到原来一半所需的时间.根据半衰期是指放射性物质的原子数因衰变而减少到原来一半所需的时间,.根据半衰期定义和指数衰减规律式(1-5)可求出半衰期T 与衰变常数λ的关系. 当t= T 时,NT ,代入式(1-5)得;N /2=N . 所以 =e 即 T = 可见T 与λ成反比关系,即放射性核素的半核素的半衰期越大,衰变常数就越小(放射性核素变越慢);反之半衰期越短,衰变常数就越大.例如:铀238: =45×10 年, =4.383×10 S ;氡222: T =3.825日, =2.096×10 S . (3)平均寿命 表征放射性素自发核跃迁的参数除T 、 外,还常用到平均寿命 。所谓平均寿命是指某种放射性核素平均生存时间。 与T 、 的关系表示为:(推导略) =1/ (1-1) = T /0.693 1.44 T (1-2) T =0.693 (1-3) 铯137和钴60都是射线探伤常用的 射线元。 Cs原子核质量数A=137(质子数Z=55,N=82)。 Co原子核质量数A=60(质子数Z=27,N=33)。过程是有92%的原子核放出具有0.51MeV的 粒子,跃迁至 Ba(钡)的激发能级,然后又放出具有0.66MeV的 射线粒子,跃迁至其基级,变成稳定的 Ba。在 Cs的 衰变过程中,伴随着 射线的产生,还有8%的原子核直接放出具有1.77MeV的 粒子,不放出 射线,而同样变成 Ba。 Co的半衰期T=5.3年。 Co在0.31MeV的 粒子衰变过程中放出具有1.77MeV能量和1.33MeV能量的 射线粒子,变成稳定的 Ni(Z=28,N=32) 射线X射线虽然产生机理不同,但同属电磁波,性质十分相似,不过 射线波长比一般X射线更短。 射线能量与波长关系仍然为式(1-3)指出那样: =hc/ . 射线能量以兆电子伏特(MeV)来衡量。许多核衰变表明, 射线往往与 射线、 射线其他射线一起产生。
2023-07-07 07:58:181

已知co60放射性同位素的半衰期为5.3年,其衰变常数是多少

=0.693/5.3=0.131/年
2023-07-07 07:58:271

137Cs的衰变常数

0.0231/年
2023-07-07 07:58:331

某种放射性核素在24h 内衰变为原来的1/8,求它的半衰期,衰变常数和平均寿命。

24h到1/8,12h到1/4,6小时到1/2。所以半衰期应该是6h。衰变常数有计算公式,如下:算得你的衰变常数应该是3.21e-5
2023-07-07 07:58:423

重金属元素衰变公式

衰变公式 衰变公式:dN/dt=-kN,N为剩余的衰变原子核数,N0为初始衰变原子核数,k为衰变常数,t为时间。而且放射性物质的原子核改变速度dN/dt与当时的剩余的衰变原子核的总数N成正比。 放射性元素的原子核有半数发生衰变时所需要的时间,叫半衰期。 对原式进行积分: t=-1/k*ln|N|+c; ln|N|-kc=-kt; N=N0,t=0代入得c=lnN0/k; 所以ln(N/N0)=-ktorN=N0*e^(-kt)。
2023-07-07 07:58:531

β衰变详细资料大全

原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变。放出电子的衰变过程称为β - 衰变;放出正电子的衰变过程称为β + 衰变;原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道电子俘获。 俘获K层电子叫K俘获,俘获L层的叫L俘获,其余类推。通常,K俘获的几率最大。在 β衰变中,原子核的质量数不变,只是电荷数改变了一个单位。 基本介绍 中文名 :β衰变 外文名 :β-decay 提出者 :泡利 提出时间 :1930 套用学科 :物理学 适用领域范围 :原子物理 介绍,发展,衰变规律,原理,双重β衰变, 介绍 β衰变 β-decay β衰变的半衰期分布在接近10秒到10年的范围内,发射出粒子的能量最大为几兆电子伏。β衰变不仅在重核范围内发生,在全部元素周期表范围内都存在β放射性核素。因此,对β衰变的研究比α衰变的研究更重要。 β衰变中,原子核发生下列三种类型的变化: X→ Y+e - +-ve(β - 衰变) X→ Y+e + +ve(β + 衰变) X+e - → Y+ve(EC) 式中X和Y分别代表母核和子核;A和Z是母核质量数和电荷数; e - 、e + 为电子和正电子,-ve、ve为反电子中微子和电子中微子。 三种类型释放的衰变能分别为 Qβ-=(mx-mY)c^2 Qβ+=(mx-mY-2me)c^2, QEC=(mx-mY)c^2-wi 式中mX、mY分别为母核原子和子核原子的静质量;me为电子静质量;wi为轨道电子结合能;c为真空光速。 轨道电子俘获可俘获K层电子 ,称为K俘获 ;也可以俘获L层电子,称为L俘获。轨道电子俘获所形成的子核原子于缺少一个内层电子而处于激发态,可通过外层电子跃迁发射X射线标识谱或发射俄歇电子而退激。最初以为β-连衰变仅放出电子,实际测量发现,放出的电子能 量从零到 Qβ- 连续分布 ,曾困惑物理学家多年 。 1930年W.E.泡利提出β-衰变放出e-的同时还放出一个静质量为零、自旋为1/2的中性粒子,衰变能为电子和该粒子分享 ,该粒子后来被称为中微子,1952年以后被实验确凿证实。 β衰变属于弱相互作用。1956 年李政道和杨振宁提出弱相互作用过程宇称不守恒,第二年吴健雄等人利用极化核 60 Co的β衰变实验首次证实了宇称不守恒 。这一发现不仅促进了β衰变本身的研究,也促进了粒子物理的发展。 发展 β衰变 是放射性原子核放射电子(β粒子)和中微子而转变为另一种核的过程。1896年,亨利·贝克勒(A. H. Becquerel)发现铀的放射性;1897年,卢瑟福(E. Rutherford)和约瑟夫·汤姆孙(J. J. Thomson)通过在磁场中研究铀的放射线偏转,发现铀的放射线有带正电,带负电和不带电三种,分别被称为α射线,β射线和γ射线,相应的发出β射线衰变过程也就被命名为β衰变。 放出正电子的称为“正β衰变”,放出电子的称为“负β衰变”。在正β衰变中,核内的一个质子转变成中子,同时释放一个正电子和一个中微子;在负β衰变中,核内的一个中子转变为质子,同时释放一个电子和一个反中微子。此外电子俘获也是β衰变的一种,称为电子俘获β衰变。 因为β粒子就是电子,而电子的质量比起核的质量来要小很多,所以一个原子核放出一个β粒子后,它的质量只略微减少。 衰变规律 新核的质量数不变,电荷数增加1,新核在元素周期表中的位置要向后移一位。β衰变中放出的电子能量是连续分布的,但对每一种衰变方式有一个最大的限度,可达几兆电子伏特以上,这部分能量由中微子带走。 1957年,吴健雄博士用钴-60的β衰变实验证明了在弱相互作用中的宇称不守恒。 原理 三种类型 β衰变中,原子核发生下列三种类型的变化: 其中X和Y分别表示母核和子核, A 和 Z 为母核的质量数和质子数,e - 和e + 为电子和正电子, -v 和v为反电子中微子和电子中微子。 β衰变能分别表示为 β衰变 其中 m x和 m y为母核原子和子核原子的静止质量, m e为电子的静止质量, W i为轨道电子结合能,с为光速。 β衰变 轨道电子俘获过程所形成的子核原子,由于缺少了一个内层电子,原子处于激发状态,它可以通过不同方式退激。对于K俘获,当L层电子跳到K层填充空位,可以发射标识X射线,或称特征X 射线。它的能量是 K层和L层电子的结合能之差 hv = W k- W L;当L层电子跳到K层空位时,也可以不发射标识X射线,而把能量交给另一个L层电子,使其克服结合能而飞出,这种电子称为俄歇电子,它的动能 E e= hv - W L= W k-2 W L。轨道电子俘获总伴随有标识X射线或俄歇电子的产生。 β衰变的电子中微子理论  β衰变中放出的β粒子的能量是从 连续分布的。为了解释这一现象,1930年,W.泡利提出了β衰变放出中性微粒的假说。1933年,E.费密在此基础上提出了β衰变的电子中微子理论。这个理论认为:中子和质子可以看作是同一种粒子(核子)的两个不同的量子状态,它们之间的相互转变,相当于核子从一个量子态跃迁到另一个量子态,在跃迁过程中放出电子和中微子。β粒子是核子的不同状态之间跃迁的产物,事先并不存在于核内。所以,引起β衰变的是电子-中微子场同原子核的相互作用,这种作用属于弱相互作用。这个理论成功地解释了β谱的形状,给出了β衰变的定量的描述。 β跃迁几率  根据量子力学的微扰论,费密理论给出单位时间发射动量在 p 到 p +d p 间β粒子的几率为, (1) β衰变 式中 g 是弱相互作用常数, M if是跃迁矩阵元,啚是普朗克常数 h 除以2 π , F ( Z , E )是库仑改正因子,它描述核的库仑场对发射β粒子的影响,是子核电荷数 Z 和β粒子能量 E 的函式。跃迁几率的大小主要由跃迁矩阵元| M if|的大小决定。 β跃迁分类  根据跃迁矩阵元的大小,可将β跃迁分为容许跃迁、一级禁戒跃迁、二级禁戒跃迁等。级次越高,跃迁几率越小;相邻两级间,几率可以相差几个数量级。 费密理论给出β衰变对母核同子核间的自旋和宇称变化的选择定则:对于允许跃迁,自旋变化|Δ I |=0,1,宇称变化 Δ π =+1;对于一级禁戒跃迁,|Δ I |=0,1,2,Δ π =-1;对于二级以上的如 n 级禁戒跃迁,|Δ I |= n , n +1,Δ π =(-1)。 β衰变的居里描绘 在β衰变的研究中,常将式(1)改写为, (2)式中。对容许跃迁,| M if|与β粒子的能量无关, K 为常数。此时若以为纵坐标, E 为横坐标作图,则得一条直线。直线同横轴的交点为β粒子的最大能量 E m。这种图称为居里描绘,也称费密-居里图。这样,居里描绘可用来精确地测定 E m。此外,也可用来分解复杂的β谱。对于禁戒跃迁, M if往往不是常数,则按式(2)作图时不是一条直线。这时可引入一个同β粒子能量有关的因子 S n( E )对居里描绘进行改正,即把 K 中同能量有关的因子分出来,,使 K ┡为常数。此时式(2)可写成 β衰变 ,改正后的居里描绘取 β衰变 对 E 作图,仍是一条直线。 S n( E )由理论可以计算。因而,通过理论同实验的比较,可决定 S n( E ),从而可以定出禁戒跃迁级次 n 。 β衰变 萨晋关系 通过对β粒子动量分散式(1)的积分,假定跃迁矩阵元 M if同β粒子能量的关系可以忽略,便得到β衰变常数λ或半衰期 T ½。,(3) β衰变 式中 f ( Z , E m)称为费密积分函式。 p m为电子的最大动量。 当β粒子的最大能量远大于它的静止能量,并且可以忽略核的库仑场对发射β粒子的影响时, β衰变 从而可得关系。 这一关系称为萨晋关系,它表示β衰变常数(或半衰期)随β粒子的最大能量 E m的变化而剧烈地变化。 β衰变 由萨晋关系可见,仅仅以半衰期(或衰变常数)的大小不能反映β跃迁的级次。 因此需要引入比较半衰期 fT ½。由于 fT ½值与| M if|成反比,而| M if|的大小对不同级次的跃迁有很大差别,从而 fT ½值可用来比较跃迁的 β衰变 级次。这就是称 fT ½为比较半衰期的由来。 实验测得的各级跃迁的lg fT ½值大致范围如下:跃迁级次 lg fT ½ 容 许 3~6一级禁戒 6~10二级禁戒 10~13 β衰变 三级禁戒 15~18β 衰变中的宇称不守恒 在β衰变的研究中的一个重要的突破是1956年李政道和杨振宁提出的弱相互作用中的宇称不守恒,第二年吴健雄等人利用极化核钴的β衰变实验首次证实了宇称不守恒,这一发现不仅促进了β衰变本身的研究,也促进了粒子物理学的发展。 双重β衰变 β衰变 双重β衰变,亦作ββ衰变,是β衰变的一个特例,包含原子核内两个单位的转变,只发生于特定的原子核。双重β衰变正常来说会放出两对中微子,但现时有科学家猜想是否有可能发现不放出中微子的双重β衰变,称为“无中微子双β衰变”。物理学者尚未能验证此程式存在,推长半衰期下限至10年。
2023-07-07 07:59:001

0.693是什么常数

衰变常数(decay constant),表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率。定义衰变常数是各种放射性核素的特征参数。与半衰期一样是表示放射性元素衰变速度的一项指标。衰变常数(λ)与半衰期(Tu2081/u2082)有下列关系:λ=0.693/T1/2;T1/2=0.693/λ。λ值愈大,放射性元素衰变愈快,半衰
2023-07-07 07:59:441

衡量不稳定核素衰变能力的客观参数

衡量不稳定核素衰变能力的客观参数为衰变常数。一、衰变常数定义衰变常数(decay constant)表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率。衰变常数是各种放射性核素的特征参数。与半衰期一样是表示放射性元素衰变速度的一项指标。二、衰变常数和半衰期的关系衰变常数(λ)与半衰期(T1/2)有下列关系:λ=0.693/T1/2;T1/2=0.693/λ。λ值愈大,放射性元素衰变愈快,半衰期愈短。对放射性核素的衰变现象进行观察统计,实验发现,用加压、加热、加电磁场、机械运动等物理或化学手段不能改变指数衰减规律,亦不能改变其衰变常数。这表明,放射性衰变是由原子核内部运动规律所决定的。三、物理意义它的物理意义就是在单位时间内每一个核的衰变几率。每一种放射性核素都有它特定的衰变常数,λ数值大的放射性核素衰变得快,小的则慢。衰变常数的单位是s-1,例如,Co的衰变常数为4.439×10 s-1,而Ag的衰变常数则为4.73×10 s-1。由此可知,衰变常数也是用来表示放射性核素的特征。
2023-07-07 08:00:021

半衰期与衰变常数关系

半衰期和衰变常数(λ)的关系是:λ·T1/2=0.693半哀期:从统计意义上讲,半衰期是指一个时间段T,在T这段时间内,一种元素的一种不稳定同位素原子发生衰变的概率为50%。衰变常数:衰变常数(decay constant),表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率。
2023-07-07 08:00:246

衰变常数指的是

单位时间(如Is或la)内原子核发生衰变的几率衰变常数(decay constant),表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率。定义:衰变常数是各种放射性核素的特征参数。与半衰期一样是表示放射性元素衰变速度的一项指标。衰变常数(λ)与半衰期(T1/2)有下列关系:λ=0.693/T1/2;T1/2=0.693/λ。λ值愈大,放射性元素衰变愈快,半衰期愈短。对放射性核素的衰变现象进行观察统计,实验发现,用加压、加热、加电磁场、机械运动等物理或化学手段不能改变指数衰减规律,亦不能改变其衰变常数。这表明,放射性衰变是由原子核内部运动规律所决定的。意义:它的物理意义就是在单位时间内每一个核的衰变几率。每一种放射性核素都有它特定的衰变常数,λ数值大的放射性核素衰变得快,小的则慢。衰变常数的单位是s-1,例如,Co的衰变常数为4.439×10 s-1,而Ag的衰变常数则为4.73×10 s-1。由此可知,衰变常数也是用来表示放射性核素的特征。
2023-07-07 08:00:381

衰变常数的介绍

衰变常数(decay constant),表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率。
2023-07-07 08:00:581

衰变常数的计算方法

计算公式如图中1式,其中N(t)代表t时刻的原子核数目,λ代表衰变常数。与半衰期的换算关系如图中2式,其中T代表半衰期。
2023-07-07 08:01:131

衰变常数、平均寿命、半衰期之间的关系

半衰期:T1/2 衰败常数:λ平均寿命:τT1/2 =0.693/λτ=1/λT1/2:是放射性核素的物理特性,可以直接查找相关资料获得
2023-07-07 08:01:261

衰变的类型有哪些?

1、β衰变原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变。放出电子的衰变过程称为β-衰变;放出正电子的衰变过程称为β+衰变;原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道电子俘获。2、α衰变α衰变,又名阿尔法衰变,是一种放射性衰变(核衰变);发生α衰变时,一颗α粒子会从原子核中射出; α衰变发生后,原子核的质量数会减少4个单位,其原子序数也会减少了2个单位。3、γ衰变是放射性元素衰变的一种形式。反应时放出伽马射线(是电磁波的一种,不是粒子)。由于此衰变不涉及质量或电荷变化,故此并没有特别重要的化学反应式。扩展资料:衰变1、衰变速度放射性物质的衰变速度有的很快,有的则很慢,它是放射性同位素的特征。对于一定的放射性物质,其衰变速度是恒定的。所有放射性同位素的衰变速度完全不能因外素加以改变。各种放射性同位素都有有自己特定的相对衰变速度,相对衰变速度即为衰变常数。2、衰变定律通过对大量原子核进行研究,发现所有的放射性物质其原子核数目随时间t的变化都遵守一种普遍的衰变规律。放射性同位素的原子数随时间作负指数函数而衰减,这就是衰变定律。实验表明,在时间dt内,放射元素衰变的原子核数dN跟放射性元素的原子核数N以及dt成正比。dN=-λNdt。式中λ是比例恒量,叫做衰变恒量,表征放射性元素衰变的快慢。式中出现的负号是由于放射性元素的原子核数目是随着时间的增加而减少的。3、衰变规律放射性衰变遵从指数衰变规律。放射性核是一个量子体系,核衰变是一个量子跃迁过程,遵从量子力学的统计规律,也就是说,对于任何一个放射性核,发生衰变的时刻完全是偶然的,不能预料,而大量放射性核的集合作为一个整体,衰变规律是十分确定的。设t=0时刻的放射性核数为N0,t时刻放射性核数为N,则指数衰变规律为N=N0e-λt,式中λ称为衰变常数,表示单位时间内放射性核的衰变概率,它反映了放射性核衰变的快慢。λ值越大,衰变越快;反之则相反。实际中常用半衰期T1/2或平均寿命τ来反映衰变的快慢。半衰期是放射性核衰变掉一半所需的时间;平均寿命是指不同核衰变有早有晚,完全是偶然事件,对于全部核的寿命取平均得平均寿命。参考资料:百度百科--衰变
2023-07-07 08:01:321

U238的衰变常数是多少

铀-238自发裂变半衰期T=1.01E+16年,λ=ln2/T≈6.863E-17每年≈2.175E-24每秒.
2023-07-07 08:01:451

三种衰变的本质各是怎么样的?

1、β衰变:原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变。放出电子的衰变过程称为β-衰变;放出正电子的衰变过程称为β+衰变;原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道电子俘获。俘获K层电子叫K俘获,俘获L层的叫L俘获,其余类推。通常,K俘获的几率最大。在 β衰变中,原子核的质量数不变,只是电荷数改变了一个单位。2、α衰变:α衰变,又名阿尔法衰变,是一种放射性衰变(核衰变);发生α衰变时,一颗α粒子会从原子核中射出(附注:α粒子,又名阿尔法粒子,即氦-4核,u2074u2082He,即一颗由2颗质子和2颗中子组成的原子核); α衰变发生后,原子核的质量数会减少4个单位,其原子序数也会减少了2个单位。3、伽马衰变﹝γ衰变)是放射性元素衰变的一种形式。反应时放出伽马射线(是电磁波的一种,不是粒子)。由于此衰变不涉及质量或电荷变化,故此并没有特别重要的化学反应式。扩展资料:不稳定(即具有放射性)的原子核在放射出粒子及能量后可变得较为稳定,这个过程称为衰变。这些放射出的粒子或能量(后者以电磁波方式射出) 统称辐射(radiation)。由不稳定原子核发射出来的辐射可以是α粒子、β粒子、γ射线或中子。放射性核素在衰变过程中,该核素的原子核数目会逐渐减少。衰变至只剩下原来质量一半所需的时间称为该核素的半衰期(half-life)。每种放射性核素都有其特定的半衰期,由几微秒到几百万年不等。原子核由于放出某种粒子而变为新核的现象。原子核是一个量子体系,核衰变是原子核自发产生的变化,它是一个量子跃迁过程,它服从量子统计规律。对任何一个放射性核素,它发生衰变的精确时刻是不能预知的,但作为一个整体,衰变的规律十分明确。若在dt时间间隔内发生核衰变的数目为dN,它必定正比于当时存在的原子核数目N,显然也正比于时间间隔dt .衰变不受任何条件的影响,是物质特有的性质。参考资料:百度百科-β衰变参考资料:百度百科-γ衰变参考资料:百度百科-α衰变
2023-07-07 08:02:058

32P的半衰期为14.3天,求它的衰变常数和平均寿命?

已知镭的半衰期为1600年,求它的衰变常数和1克纯镭的放射性活度。解:1g类所含母核数为N=6.02X1023X1-266=2.66X1021个且T1/2=0.693/ λ.①A =λ·N ②由①②得:衰变常数λ=1.37X10-11,放射性活度A=3.644X1010.
2023-07-07 08:03:241

衰变规律详细资料大全

放射性衰变遵从的指数衰变规律。放射性核是一个量子体系,核衰变是一个量子跃迁过程,遵从量子力学的统计规律,也就是说,对于任何一个放射性核,发生衰变的时刻完全是偶然的,不能预料,而大量放射性核的集合作为一个整体,衰变规律是十分确定的。 基本介绍 中文名 :衰变规律 外文名 :decay law 性质 :科学 类别 :物理 衰变规律 decay law 对于某一放射性元素集合体,在dt 时间内衰变的原子数dN与此时刻母核数N和dt乘积成正比。积分运算后可得衰变规律方程。其中λ为衰变常量,τ为母核平均寿命。设t=0时刻的放射性核数为N0,t时刻放射性核数为N,则指数衰变规律为N=N0e-λt,式中λ称为衰变常数,表示单位时间内放射性核的衰变机率,它反映了放射性核衰变的快慢。λ值越大,衰变越快;反之则相反。实际中常用半衰期T1/2或平均寿命τ来反映衰变的快慢。半衰期是放射性核衰变掉一半所需的时间;平均寿命是指不同核衰变有早有晚,完全是偶然事件,对于全部核的寿命取平均得平均寿命。根据指数衰变规律有 活度 衰变微分方程 衰变规律方程 通常在核物理学中习惯采用半衰期T1/2描述核衰变快慢,而在粒子物理学中常用平均寿命描述粒子的稳定性。不同放射性核素的半衰期有很大的差别,从10-9秒到109年。 半衰期与母核平均寿命关系 半衰期是鉴别不同放射性核素的重要指标。半衰期的一个重要套用是地质学中用以确定地质年代,考古学中用以确定古生物或文物的年代。考古学中常用的放射性核素是14C,T1/2=5730年。 碳14衰变方程
2023-07-07 08:03:311

核衰变有几种形式?

1、β衰变原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变。放出电子的衰变过程称为β-衰变;放出正电子的衰变过程称为β+衰变;原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道电子俘获。2、α衰变α衰变,又名阿尔法衰变,是一种放射性衰变(核衰变);发生α衰变时,一颗α粒子会从原子核中射出; α衰变发生后,原子核的质量数会减少4个单位,其原子序数也会减少了2个单位。3、γ衰变是放射性元素衰变的一种形式。反应时放出伽马射线(是电磁波的一种,不是粒子)。由于此衰变不涉及质量或电荷变化,故此并没有特别重要的化学反应式。扩展资料:衰变1、衰变速度放射性物质的衰变速度有的很快,有的则很慢,它是放射性同位素的特征。对于一定的放射性物质,其衰变速度是恒定的。所有放射性同位素的衰变速度完全不能因外素加以改变。各种放射性同位素都有有自己特定的相对衰变速度,相对衰变速度即为衰变常数。2、衰变定律通过对大量原子核进行研究,发现所有的放射性物质其原子核数目随时间t的变化都遵守一种普遍的衰变规律。放射性同位素的原子数随时间作负指数函数而衰减,这就是衰变定律。实验表明,在时间dt内,放射元素衰变的原子核数dN跟放射性元素的原子核数N以及dt成正比。dN=-λNdt。式中λ是比例恒量,叫做衰变恒量,表征放射性元素衰变的快慢。式中出现的负号是由于放射性元素的原子核数目是随着时间的增加而减少的。3、衰变规律放射性衰变遵从指数衰变规律。放射性核是一个量子体系,核衰变是一个量子跃迁过程,遵从量子力学的统计规律,也就是说,对于任何一个放射性核,发生衰变的时刻完全是偶然的,不能预料,而大量放射性核的集合作为一个整体,衰变规律是十分确定的。设t=0时刻的放射性核数为N0,t时刻放射性核数为N,则指数衰变规律为N=N0e-λt,式中λ称为衰变常数,表示单位时间内放射性核的衰变概率,它反映了放射性核衰变的快慢。λ值越大,衰变越快;反之则相反。实际中常用半衰期T1/2或平均寿命τ来反映衰变的快慢。半衰期是放射性核衰变掉一半所需的时间;平均寿命是指不同核衰变有早有晚,完全是偶然事件,对于全部核的寿命取平均得平均寿命。参考资料:百度百科--衰变
2023-07-07 08:03:381

公式λ*T=In2是怎么推出来的 (λ为衰变常数 T为半衰期)

根据半衰期定义有e^(-λT)=1/2两边取对数得-λT=ln(1/2)=-ln2λT=ln2
2023-07-07 08:04:041

放射性元素衰变符合什么反应速率方程

衰变常数(decay constant),表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率 定义 衰变常数是各种放射性核素的特征参数。与半衰期一样是表示放射性元素衰变速度的一项指标。衰变常数(λ)与半衰期(T1/2)有下列关系:λ=0.693/T1/2;T1/2=0.693/λ。λ值愈大,放射性元素衰变愈快,半衰期愈短。对放射性核素的衰变现象进行观察统计,实验发现,用加压、加热、加电磁场、机械运动等物理或化学手段不能改变指数衰减规律,亦不能改变其衰变常数。这表明,放射性衰变是由原子核内部运动规律所决定的。 物理意义它的物理意义就是在单位时间内每一个核的衰变几率。每一种放射性核素都有它特定的衰变常数,λ数值大的放射性核素衰变得快,小的则慢。衰变常数的单位是s-1,例如,Co的衰变常数为4.439×10 s-1,而Ag的衰变常数则为4.73×10 s-1。由此可知,衰变常数用来表示放射性核素的特征。
2023-07-07 08:04:111

镭226,88Ra的半衰期1600年,求它的衰变常数,平均寿命,1克镭的放射性活度

已知镭的半衰期为1600年,求它的衰变常数和1克纯镭的放射性活度。解:1g类所含母核数为N=6.02X1023X1-266=2.66X1021个且T1/2=0.693/ λ.①A =λ·N ②由①②得:衰变常数λ=1.37X10-11,放射性活度A=3.644X1010.
2023-07-07 08:04:201

放射性同位素衰变定律

放射性同位素衰变不受任何外界条件的影响,并以其固有的速度进行。不同放射性同位素衰变速度不一,但最终都变成稳定同位素。放射性同位素衰变速率(dN/dt)与现有母体原子数(N)成正比。其表达式则为dN/dt∝N等式可写成:同位素地球化学式中:λ为衰变常数,代表单位时间内母体原子的衰变几率;“-”表示母体原子的数量随时间的增加而减少。对上式积分得同位素地球化学式中:K为积分常数。当t=0时,放射性母体原子数为N0,即N=N0,则K=lnN0,代入上式则为:同位素地球化学其指数方程为同位素地球化学式中:N0为t0时母体同位素原子数;N为经t时间衰变后所剩余的母体同位素的原子数。公式表示的物理意义是:放射性母体同位素随时间的推移呈指数函数衰减。这被称为放射性衰变基本定律。根据衰变前后同位素原子数目不变的原则,则N0=N+D。代入上式得同位素地球化学其意义是:放射性成因的子体同位素原子数D随时间的推移呈指数函数增长。这里所指的是封闭体系的单阶段衰变。由于衰变常数(λ)的数值很小,实际使用中常常引入半衰期T1/2的概念。半衰期就是放射性母体同位素的原子数衰减一半时所需要的时间。半衰期(T1/2)与衰变常数(λ)的关系为同位素地球化学
2023-07-07 08:04:281

放射性衰变分为哪几种形式?

1、β衰变原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变。放出电子的衰变过程称为β-衰变;放出正电子的衰变过程称为β+衰变;原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道电子俘获。2、α衰变α衰变,又名阿尔法衰变,是一种放射性衰变(核衰变);发生α衰变时,一颗α粒子会从原子核中射出; α衰变发生后,原子核的质量数会减少4个单位,其原子序数也会减少了2个单位。3、γ衰变是放射性元素衰变的一种形式。反应时放出伽马射线(是电磁波的一种,不是粒子)。由于此衰变不涉及质量或电荷变化,故此并没有特别重要的化学反应式。扩展资料:衰变1、衰变速度放射性物质的衰变速度有的很快,有的则很慢,它是放射性同位素的特征。对于一定的放射性物质,其衰变速度是恒定的。所有放射性同位素的衰变速度完全不能因外素加以改变。各种放射性同位素都有有自己特定的相对衰变速度,相对衰变速度即为衰变常数。2、衰变定律通过对大量原子核进行研究,发现所有的放射性物质其原子核数目随时间t的变化都遵守一种普遍的衰变规律。放射性同位素的原子数随时间作负指数函数而衰减,这就是衰变定律。实验表明,在时间dt内,放射元素衰变的原子核数dN跟放射性元素的原子核数N以及dt成正比。dN=-λNdt。式中λ是比例恒量,叫做衰变恒量,表征放射性元素衰变的快慢。式中出现的负号是由于放射性元素的原子核数目是随着时间的增加而减少的。3、衰变规律放射性衰变遵从指数衰变规律。放射性核是一个量子体系,核衰变是一个量子跃迁过程,遵从量子力学的统计规律,也就是说,对于任何一个放射性核,发生衰变的时刻完全是偶然的,不能预料,而大量放射性核的集合作为一个整体,衰变规律是十分确定的。设t=0时刻的放射性核数为N0,t时刻放射性核数为N,则指数衰变规律为N=N0e-λt,式中λ称为衰变常数,表示单位时间内放射性核的衰变概率,它反映了放射性核衰变的快慢。λ值越大,衰变越快;反之则相反。实际中常用半衰期T1/2或平均寿命τ来反映衰变的快慢。半衰期是放射性核衰变掉一半所需的时间;平均寿命是指不同核衰变有早有晚,完全是偶然事件,对于全部核的寿命取平均得平均寿命。参考资料:百度百科--衰变
2023-07-07 08:04:351

λ怎么读

错了……c=λf是波速=波长×频率 ,这个读法就挺正确……要是非要读成外国语,c表示光在真空中传播速度,就是英语里那个c字母的读法λ表示波长,用中文标读法大概是“拉姆达”或“莱姆达”f表示频率,英文frequency,就是英语里字母f那个读法。
2023-07-07 08:05:014

放射性核素衰变满足什么规律

公式http://gongjushu.cnki.net/refbook/ShowDetail.aspx?Table=CRFDOTHERINFO&ShowField=Content&TitleField=Title-ShowTitle&Field=OTHERID&Value=R20061208400A000009最下面是公式
2023-07-07 08:05:401

放射性衰变

不稳定核素的原子核能自发地放出某种射线而变成另一种核素的原子核,这种现象称为放射性衰变或核衰变。具有不稳定原子核的核素,称为放射性核素。11.2.1 放射性衰变的类型放射性衰变主要有α衰变、β衰变、γ跃迁三种类型。此外,重原子核还要产生自发裂变。11.2.1.1 α衰变α衰变是核内放出α粒子,即氦核()的过程。母核(用 X表示)经衰变后,转化成质量数减少4,原子序数减少2的子核(用Y表示)。即勘查技术工程学同一种放射性核素发生α衰变时放出的α粒子能量是一定的。但是,有的核素衰变时只放出单一能量的α粒子,有的核素衰变时则放出几种不同能量的α粒子,后者可伴随放出γ光子。例如,226 Ra经α衰变放出4.785MeV和4.602MeV两种能量的α粒子,并分别形成处于基态和激发态的氡核。处于激发态的氡核很快跃迁到基态,并放出能量为0.183 MeV的γ光子(图11-2)。11.2.1.2 β衰变图11-2 镭的α衰变纲图β衰变是核内放出β粒子或俘获一个轨道电子的过程。β粒子是电子和正电子的统称。β衰变有β-衰变、β+衰变和轨道电子俘获三种方式。β-衰变是核内放出电子(0)和反中微子)的过程。母核经衰变后转化成原子序数(增加1的子核。即勘查技术工程学β+衰变是核内放出正电子()及中微子(ν)的过程。母核经β+衰变后转化成原子序数减少1的子核,即勘查技术工程学上述式中的中微子和反中微子是一对质量几乎为零,速度接近光速的中性粒子。它们的差别仅在于自旋方向不同以及与物质作用的性质不同。原子核中质子过剩时,核还可能捕获一个轨道电子并放出中微子,这就是轨道电子俘获。通常原子核俘获离核最近的k层电子的几率最大,所以这一过程又称为k俘获。轨道电子俘获本身并不发射β射线。母核经轨道电子俘获后产生原子序数减少1的子核,即勘查技术工程学原子核俘获了一个轨道电子后,在核外的电子壳层上就出现一个空位。这时能量较高的电子就会跃迁到这个空位上来,多余的能量以特征X射线(一种低能电磁辐射)的形式放出。在某些情况下,较外层(如l层)的电子向k层跃迁时,多余的能量直接给同一层的某个电子,使之摆脱原子的束缚,成为自由电子。这个自由电子又称为俄歇电子。图11-3 40K的衰变纲图天然放射性核素的β衰变主要是β-衰变和轨道电子俘获。例如40K的核有88%经β-衰变成为40Ca,有12%的核经轨道电子俘获转化成40Ar,并放出能量为1.46 MeV的γ光子。图11-3为40K的衰变图。11.2.1.3 γ跃迁放射性核素经过α衰变或β衰变后,形成的子核往往处于激发态,处于这种状态的子核是不稳定的,当它向较低级的激发态或基态跃迁时,其多余的能量将以三种形式释放。1)放出特征γ射线。γ射线是从原子核内发出的一种波长极短(10-13~10-8 m)的电磁辐射,其能量取决于跃迁前后核的两能级间的能量差。另一方面,γ射线又是速度等于光速的γ光子流。γ光子的静止质量为零,因此γ跃迁前后母核与子核的质量数和电荷数相等,改变的只是能量状态。γ跃迁实质上是能量不同的同种原子核发生的跃迁现象。一般情况下,原子核处于激发态的时间极短(约10-13 s),它们很快就跃迁到较低能态或基态,并放出γ光子,因而不能形成独立的核素(图11-2,图11-3)。有的原子核处于激发态的时间较长,其寿命可用仪器测出,这种寿命可测量的激发态称为同质异能态。处于同质异能态的核素可以作为一种独立的核素看待。我们将质量数A和原子序数Z相同而寿命不同的一类核素称为同质异能素。同质异能素之间的跃迁则称为同质异能跃迁。例如镤的同位素234Pa和234Pam就是一对同质异能素,其中234Pam的核处于同质异能态。0.15%的234Pam经同质异能跃迁放出γ光子而转变成234Pa(图11-4)。2)发射内转换电子。原子核从激发态向较低能态或基态跃迁时,还可以不通过发射γ光子而直接把核的激发能量转交给核外k、l层或其他壳层的电子,并使之发射出来,这种现象称为内转换。内转换过程放出的电子称为内转换电子。其能量近似等于衰变能(跃迁前后原子核的能量差)与电子结合能之差。例如198Au经β-衰变后变成198Hg,汞处于激发态,其能量为411.8keV,其中一部分将发射内转换电子。同质异能迁跃也可以放出内转换电子,例如60Com到60Co的同质异能跃迁(用IT表示)放出的电子就是内转换电子(图11-5)。图11-4 234Pa衰变纲图图11-5 60Co衰变纲图内转换电子发射以后,原子中发射该电子的壳层就出现一个空位。当较外层电子向这个空位跃迁时,如同β衰变中的轨道电子俘获一样,其多余的能量将以发射特征X射线或俄歇电子的形式释放。3)发射电子对。当激发核的能量大于二倍电子静止能量(mec2),激发核会将其能量转换为电子-正电子对,这一过程称为内电子对效应。11.2.1.4 自发裂变自发裂变是指重原子核自发地分裂成两个或几个子核(又称碎片),并放出能量的现象。原子核自发裂变的速度很慢。238U约需1016a、203Th约需1.5×1017a、232Th约需1022a才有一半的核产生自发裂变。11.2.2 放射性衰变的基本规律11.2.2.1 放射性衰变的基本规律核衰变是原子核的自发转变过程,这个过程仅取决于它的内部特性,而与外部条件(温度、压力、电磁场)及核素本身所处的化学状态基本上没有关系。实验表明,对原子核数目足够多的放射性核素而言,在t至t+dt时间,原子核的衰变数量dN与时间间隔dt及t时刻该核素的原子核数目N成正比,即或勘查技术工程学式中比例系数λ称为衰变常数,单位为s-1,其数值随放射性核素的种类而异。负号表示原子核的数目N随时间的延长而减少。令t=0时的原子核数目为N0,对(11.2-5)式积分,则有勘查技术工程学上式表明,在核衰变中,放射性核素的原子核数目随时间呈指数规律减少,这就是放射性衰变的基本规律。按照统计观点,某种核素的衰变常数就是该核素中每个原子核单位时间内衰变的几率。λ值愈大,该核素衰变得愈快。11.2.2.2 半衰期通常还用一种称为半衰期的量来表示核衰变的快慢。半衰期T1/2是指一定种类处于特定能态的放射性核素,其现有原子核数目衰减一半所需要的时间。将N=N0/2,t=T1/2代入(11.2-6)式,可导出半衰期与衰变常数的关系式勘查技术工程学从理论上讲,对于一定量的放射性核素,需要无限长的时间才能衰变完。实际上,当残留的原子核数仅为起始原子核数的千分之一时,就可以认为该核素全部衰变完了。将N=N0/1000代入(11.2-6)式,可导出衰变所需要的时间勘查技术工程学上式说明,一种核素经过10倍半衰期的时间,就可以认为它已经衰变完了。例如,钍射气(220 Rn)的半衰期为55.6 s,大约经过10min就可认为它衰变完了。铀-238的半衰期为4.47×109a,需要经过45亿年才能认为它衰变完了。可见,所谓“无限长时间”只是一个相对的概念。11.2.2.3 平均寿命实际工作中还用平均寿命τ来表示放射性核素的衰变速度。平均寿命是指某核素的原子核衰变前的平均生存时间。设在t到t+dt时间间隔内有-dN个核发生衰变,它们已经生存了t时间,故由(11.2-5)式和(11.2-6)式,它们生存时间的总和为勘查技术工程学由于核的衰变需要无限长时间才能结束,故 N 0 个原子核的总寿命为。按照平均寿命的定义,有勘查技术工程学可见,平均寿命是衰变常数的倒数。平均寿命与半衰期的关系为勘查技术工程学11.2.3 放射性衰变的统计分布11.2.3.1 放射性衰变的统计涨落放射性衰变的基本规律可以通过精确的实验证明,但前提条件必须是原子核数目无限多。一般情况下,即使所有条件都稳定不变,重复测量中每次测得的结果也不会完全相同,甚至会出现很大差别。可见,同一放射性样品在相同时间间隔内,其衰变计数并不完全相同,而是围绕着一个平均值上、下起伏,这种现象称为放射性衰变的统计涨落。放射性衰变之所以出现统计涨落,是因为对任何放射性样品来说,其中每个核的衰变,都是由其自身特性决定且孤立进行的,与其他核是否衰变无关。此外,哪一个核先衰变,哪一个核后衰变,纯属偶然事件。因此,无论仪器制得如何精密,实验做得如何准确,测量过程中核衰变的涨落都是不可避免的。11.2.3.2 放射性衰变的统计分布放射性衰变统计涨落的规律可以用泊松分布来描述。设若干相等时间间隔内核衰变计数的平均值为,则某时间间隔内的计数N(N=0,1,2,…)出现的概率P(N)为勘查技术工程学根据泊松分布的性质,核衰变计数的方差等于其平均值,即勘查技术工程学或均方误差勘查技术工程学式中 m 为相等时间间隔的数目,即测量次数。σ反映了放射性衰变涨落的大小,-N 则反映了放射性衰变的集中趋势。当计数较大(≥20)时,放射性衰变的统计分布规律则要用正态分布表示,即勘查技术工程学由于N出现在期望值附近的概率较大,故均方误差勘查技术工程学可以证明,若进行重复测量,数据出现在范围内的概率为68.27%。统计涨落使观测数据出现的差异,称为统计误差,它是核测量的主要误差来源。若用相对均方误差ε来表示测量的精度。则有图11-6 天然放射性系列勘查技术工程学可见,计数N越大,相对误差ε越小。也就是说,提高测量精度的途径是要有足够的计数。当计数率(单位时间的计数值)一定时,可采用延长测量时间的办法来增大计数,从而提高测量精度。
2023-07-07 08:05:501

放射物理与防护题:已知198au的半衰期为2.69天.求它的衰变常熟和平均寿命?

衰变常数为λ,则 λ=[ln(2)]/T = 平均寿命:T"=1/λ= 自己代入数据算吧.
2023-07-07 08:05:571

核衰变分为哪几类?

1、β衰变原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变。放出电子的衰变过程称为β-衰变;放出正电子的衰变过程称为β+衰变;原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道电子俘获。2、α衰变α衰变,又名阿尔法衰变,是一种放射性衰变(核衰变);发生α衰变时,一颗α粒子会从原子核中射出; α衰变发生后,原子核的质量数会减少4个单位,其原子序数也会减少了2个单位。3、γ衰变是放射性元素衰变的一种形式。反应时放出伽马射线(是电磁波的一种,不是粒子)。由于此衰变不涉及质量或电荷变化,故此并没有特别重要的化学反应式。扩展资料:衰变1、衰变速度放射性物质的衰变速度有的很快,有的则很慢,它是放射性同位素的特征。对于一定的放射性物质,其衰变速度是恒定的。所有放射性同位素的衰变速度完全不能因外素加以改变。各种放射性同位素都有有自己特定的相对衰变速度,相对衰变速度即为衰变常数。2、衰变定律通过对大量原子核进行研究,发现所有的放射性物质其原子核数目随时间t的变化都遵守一种普遍的衰变规律。放射性同位素的原子数随时间作负指数函数而衰减,这就是衰变定律。实验表明,在时间dt内,放射元素衰变的原子核数dN跟放射性元素的原子核数N以及dt成正比。dN=-λNdt。式中λ是比例恒量,叫做衰变恒量,表征放射性元素衰变的快慢。式中出现的负号是由于放射性元素的原子核数目是随着时间的增加而减少的。3、衰变规律放射性衰变遵从指数衰变规律。放射性核是一个量子体系,核衰变是一个量子跃迁过程,遵从量子力学的统计规律,也就是说,对于任何一个放射性核,发生衰变的时刻完全是偶然的,不能预料,而大量放射性核的集合作为一个整体,衰变规律是十分确定的。设t=0时刻的放射性核数为N0,t时刻放射性核数为N,则指数衰变规律为N=N0e-λt,式中λ称为衰变常数,表示单位时间内放射性核的衰变概率,它反映了放射性核衰变的快慢。λ值越大,衰变越快;反之则相反。实际中常用半衰期T1/2或平均寿命τ来反映衰变的快慢。半衰期是放射性核衰变掉一半所需的时间;平均寿命是指不同核衰变有早有晚,完全是偶然事件,对于全部核的寿命取平均得平均寿命。参考资料:百度百科--衰变
2023-07-07 08:06:031

放射性核素衰变的速度取决于

放射性核素衰变的速度取决于衰变常数衰变常数(decay constant),表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率。衰变常数是各种放射性核素的特征参数。与半衰期一样是表示放射性元素衰变速度的一项指标。衰变常数(λ)与半衰期(T1/2)有下列关系:λ=0.693/T1/2;T1/2=0.693/λ。λ值愈大,放射性元素衰变愈快,半衰期愈短。对放射性核素的衰变现象进行观察统计,实验发现,用加压、加热、加电磁场、机械运动等物理或化学手段不能改变指数衰减规律,亦不能改变其衰变常数。这表明,放射性衰变是由原子核内部运动规律所决定的。它的物理意义就是在单位时间内每一个核的衰变几率。每一种放射性核素都有它特定的衰变常数,λ数值大的放射性核素衰变得快,小的则慢。衰变常数的单位是s-1,例如,Co的衰变常数为4.439×10 s-1,而Ag的衰变常数则为4.73×10 s-1。由此可知,衰变常数也是用来表示放射性核素的特征。
2023-07-07 08:06:151