- bikbok
-
抽屉原理 日常生活中,人们只要稍加留意,就不难发现某些带有规律性的事物.比如,将10个苹果放进9个抽屉,那么肯定有一个抽屉里放进了两个或更多的苹果.这是大家都能理解的一个简单道理,该道理即被称为抽屉原理或鸽笼原理(以鸽子比做苹果,以笼子比做抽屉).抽屉原理的一般形式为:将n+1个苹果放进n个抽屉里,则至少有一个抽屉里放进了两个或两个以上的苹果. 千万别小看这个既平常又简单的原理,许多有趣的问题,都可以用抽屉原理来 解决.比如,任意13个人中,必然有2个人是在同一个月份出生的.只需要将13个人看成苹果,12个月份看成抽屉,于是由抽屉原理就得到了结论.再比如,在边长为1的正方形内,任意给定5个点,则其中必有2个点,它们之间的距离不会大于1/2 .证明这个问题只需要将正方形分为面积相等的4等分,则4个小正方形的边长都是1/2,每个小正方形内任意两点之间的距离均不会大于大正方形的对角线长1/2. 将5个点看成苹果,4个小正方形看成抽屉,由抽屉原理,必然有一个小正方形中有2个点,于是这两个点之间的距离不大于1/2.
相关推荐
抽屉原理是什么意思?
抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。扩展资料:运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有一个属相是不少于4个人。这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。参考资料来源:百度百科-抽屉原理参考资料来源:百度百科-狄利克雷2023-07-09 05:45:247
什么是抽屉原理
抽屉原理指的是桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。又叫鸽巢原理、重叠原理。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。为小学六年级课程。在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,5的手套各有两只,同号的两只是一双。扩展资料:第一抽屉原理原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。原理1 、2 、3都是第一抽屉原理的表述。第二抽屉原理把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。参考资料:百度百科-抽屉原理2023-07-09 05:45:519
什么是抽屉原理?
抽屉原理一、 知识要点抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。 其中 k= (当n能整除m时) 〔 〕+1 (当n不能整除m时)(〔 〕表示不大于 的最大整数,即 的整数部分)原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。二、 应用抽屉原理解题的步骤第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业 求证:这5名学生中,至少有两个人在做同一科作业。证明:将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。即至少有两名学生在做同一科的作业。例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉若要符合题意,则小球的数目必须大于3大于3的最小数字是4故至少取出4个小球才能符合要求答:最少要取出4个球。例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。解:把50名学生看作50个抽屉,把书看成苹果根据原理1,书的数目要比学生的人数多即书至少需要50+1=51本答:最少需要51本。例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。解:把这条小路分成每段1米长,共100段每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果即至少有一段有两棵或两棵以上的树例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本试证明:必有两个学生所借的书的类型相同证明:若学生只借一本书,则不同的类型有A、B、C、D四种若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种共有10种类型把这10种类型看作10个“抽屉”把11个学生看作11个“苹果”如果谁借哪种类型的书,就进入哪个抽屉由抽屉原理,至少有两个学生,他们所借的书的类型相同例6、 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜试证明:一定有两个运动员积分相同证明:设每胜一局得一分由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能以这49种可能得分的情况为49个抽屉现有50名运动员得分则一定有两名运动员得分相同例7、 体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2。解:根据规定,多有同学拿球的配组方式共有以下9种:{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}以这9种配组方式制造9个抽屉将这50个同学看作苹果 =5.5……5由抽屉原理2k=〔 〕+1可得,至少有6人,他们所拿的球类是完全一致的2023-07-09 05:47:444
什么是“抽屉原理”?
抽屉原理 原理:多于n个的球以任意方式全部放入n个抽屉中,一定存在一个抽屉,它里面有两个或两个以上的球。 1. 任意11个整数中,一定有两个数,它们的差是10的倍数。 2. 设任意n+1个实数在[0 1)中,求证在它们中存在两个数且它们的差少于1/n。 3. 在前10个自然数中任取6个数,求证:一定存在两个数,其中一个是另一个的整数倍(如果把10改为200,6改为101,则是莫斯科第10届奥林匹克竞赛竞赛题。) 4. 在前91个自然数中任取10个数,求证其中存在两个数,它们相互的比值在[2/3,3/2]内(苏联基辅第49届数学竞赛题)。 5. 任意m个整数,求证:一定可以从找到若干整数,使得它们的和可被m整数(若m=100则是第12届莫斯科奥林匹克数学竞赛题)。 6. 任意给定10自然数,试证明:可以用减、乘两种运算把它们适当连起来,其结果能被1890整除。 其中一种简单的表述法为: 若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子。 或者这么说: 若有K个笼子和KN+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少k+1只鸽子。 鸽巢原理,又名狄利克雷抽屉原理、鸽笼原理。 其中一种简单的表述法为: 若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子。 或者这么说: 若有n个笼子和kn+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少k+1只鸽子。 拉姆齐定理是此原理的推广。 抽屉原理 原理一:如果把n+1个元素放入n个 *** 中,则至少有一个 *** 中有2个或2个以上的元素。 原理二:把m个元素任意放入n (m>n) 个 *** 中,则至少有一个 *** 中含有k个或k个以上的元素,其中 (i) k=m/n 当n能整除m; (ii) k=[m/n]+1 当n不能整除m。 原理三:把无穷多个元素放入有限个 *** 里,则至少存在一个 *** 中个有无穷多个元素。 例题 在边长为2的正方形中,任意取5点,求证:至少有两个点之间的距离不大于√2。 在边长为1的正方形中,任意放入9个点,求证:在以这些点为顶点的诸多三角形中,必有一个三角形的面积不超过 1/8。 在直径为5的圆中放入10个点,求证:其中必有两个点的距离小于2。 求证:在任意给出的5个数中,必有3个数,其和能被3整除。 任给12个整数,求证:其中必有两个数,它们的和或者差恰是20的倍数。 证明:从任意给定的n个不同的自然数中,总能找到若干个,使它们的和是n的倍数。 求证:在任意给出的12个数中,一定存在8个整数,记为a1 a2 ... a8使得 (a1-a2)(a3-a4)(a5-a6)(a7-a8)能被1155整除。 已知7个自然数a1 a2 ... a7,把它们重新排列后得到b1 b2 ... b7,求证:(a1-b1)(a2-b2)...(a7-b7)为偶数。 在直角坐标系中,把横纵坐标全是整数的点称为整点。在坐标平面上任意给定5个整点,求证:其中一定有两个点,它们的联线中点仍为整点。 求证:在1 4 7 10 ... 100中任选20个数,其中至少有不同的两组数,其和全等于104。 从自然数1 2 ... 99 100中,任意取出51个数,求证:其中一定有两个数,它们中的一个是另一个的倍数。 任选6个人,试证:其中必有3人,他们相互认识或都不认识。 一个由21个小正方形组成的3x7矩形,任意给每一个小正方形任意涂上红色或蓝色,证明:不论怎样涂色,总可在图中找出一个矩形,它的4个角上的小正方形的颜色相同。 在平面上给出1993个点,并且从中任取3个点,其中就有两个点的距离小于1。证明:存在一个半径为1的圆,它至少包含了给出的1993个点中的997个点。 图片参考:geo.yahoo/serv?s=382076083&t=1166921882&f=-w63 『抽屉原理』是数学名家狄利克雷的著作,是一种重要的思考方法。关键是构造抽屉求出最少的抽屉2023-07-09 05:47:501
什么叫抽屉原理
问题一:什么是抽屉原理? 抽屉原理被称为鸽巢原理。它是组合数学中一个重要的原理 问题二:抽屉原理怎么解释 原理就是现在有多个抽屉有比抽屉个数多的物体往抽屉里面放那首先要先保证每个抽屉里面都有物体,换句话说,先保证不让空抽屉出现等每个抽屉都有1个物体了,再往随便哪个抽屉里面放一个物体。依次类推,直到每个抽屉都有两个物体了,再到每个抽屉都有三个物体。。。。。。 问题三:抽屉原理是什么意思? 抽屉原理 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。 抽屉原理的一般含义为:“如果每个抽屉代表一个 *** ,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个 *** 中去,其中必定至少有一个 *** 里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。 一. 抽屉原理最常见的形式 原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。 [证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能. 原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。 [证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能. 原理1 2都是第一抽屉原理的表述 第二抽屉原理: 把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m―1)个物体。 [证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能 二.应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:400人中至少有两个人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同. “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.) 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 (一) 整除问题 把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是......>> 问题四:什么是抽屉原理? 抽屉原理被称为鸽巢原理。它是组合数学中一个重要的原理 问题五:抽屉原理是什么意思? 抽屉原理 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。 抽屉原理的一般含义为:“如果每个抽屉代表一个 *** ,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个 *** 中去,其中必定至少有一个 *** 里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。 一. 抽屉原理最常见的形式 原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。 [证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能. 原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。 [证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能. 原理1 2都是第一抽屉原理的表述 第二抽屉原理: 把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m―1)个物体。 [证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能 二.应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:400人中至少有两个人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同. “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.) 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 (一) 整除问题 把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是......>> 问题六:抽屉原理中的“至少”是什么意思 这个的意思是不相同的,但如果有这两个词同时在,那么必须是在一定的情况下,做至少。 也就是说做最坏的打算2023-07-09 05:47:561
抽屉原理是什么?
三个公式:1、把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。2、把多于mn+1个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。3、把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是所说的“抽屉原理”。原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。抽屉原理证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。原理2:把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。原理1 、2 、3都是第一抽屉原理的表述。2023-07-09 05:48:041
什么是抽屉原理 抽屉原理介绍
什么是抽屉原理 1. 桌子上有十个苹果。我们应该把这十个苹果放在九个抽屉里。不管我们怎么放,我们都会发现至少有一个抽屉能装下至少两个苹果。这种现象就是我们所说的“抽屉原理”。 2. 抽屉原理的一般含义是:“如果每个抽屉代表一组,每个苹果可以代表一个元素。如果n+1个元素被放入n个集合中,那么在一个集合中必须至少有两个元素。 3.抽屉原理有时被称为鸽子窝原理。这是组合学中的一个重要原理。2023-07-09 05:48:241
抽屉原理是什么意思
抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。1958年6/7月号的《美国数学月刊》上有这样一道题目:“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”这个问题可以用如下方法简单明了地证出:在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。2023-07-09 05:48:321
抽屉原理是什么
2023-07-09 05:49:241
什么是抽屉原理啊?
把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件; 原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。 具体参见http://baike.baidu.com/view/8899.htm2023-07-09 05:49:522
数学中抽屉原理是什么
抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。 其中一种简单的表述法为:若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子里有2只鸽子。 另一种为:若有n个笼子和mn+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子里有m+1只鸽子。2023-07-09 05:49:581
什么是抽屉原理
01 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的"抽屉原理"。 02 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。 把3个苹果放进2个抽屉里,必须有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它能够解决一些相当复杂甚至无从下手的问题。 03 抽屉原理的一般含义为:"如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。" 04 构造抽屉的方法 运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有几个人属相相同呢?这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。2023-07-09 05:50:071
什么是抽屉原理背景
抽屉原理 日常生活中,人们只要稍加留意,就不难发现某些带有规律性的事物.比如,将10个苹果放进9个抽屉,那么肯定有一个抽屉里放进了两个或更多的苹果.这是大家都能理解的一个简单道理,该道理即被称为抽屉原理或鸽笼原理(以鸽子比做苹果,以笼子比做抽屉).抽屉原理的一般形式为:将n 1个苹果放进n个抽屉里,则至少有一个抽屉里放进了两个或两个以上的苹果. 千万别小看这个既平常又简单的原理,许多有趣的问题,都可以用抽屉原理来 解决.比如,任意13个人中,必然有2个人是在同一个月份出生的.只需要将13个人看成苹果,12个月份看成抽屉,于是由抽屉原理就得到了结论.再比如,在边长为1的正方形内,任意给定5个点,则其中必有2个点,它们之间的距离不会大于1/2 .证明这个问题只需要将正方形分为面积相等的4等分,则4个小正方形的边长都是1/2,每个小正方形内任意两点之间的距离均不会大于大正方形的对角线长1/2. 将5个点看成苹果,4个小正方形看成抽屉,由抽屉原理,必然有一个小正方形中有2个点,于是这两个点之间的距离不大于1/2. 奇偶性参考 http://baike.baidu.com/view/580425.htm2023-07-09 05:50:151
抽屉原理、最不利原则和最值问题三者有什么区别?
抽屉原理,实际上就是平均原理。a个物体,分配到b个抽屉里,必有一个里面≥a/b;如果a2023-07-09 05:50:241
什么是抽屉原理
桌上有十个梨,要把这十个梨放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个梨。这一现象就是我们所说的“抽屉原理”。 举例:同年出生的400人中至少有2个人的生日相同。解:将一年中的365天(或366天)视为365(366)个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。抽屉原理的一般含义为:“如果每个盒子代表一个集合,每一个梨就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。”2023-07-09 05:50:331
抽屉原理是什么意思
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。2023-07-09 05:50:434
什么叫抽屉原理?
如果将多余N个的元素任意放进N个抽屉里,那么至少有一个抽屉至少放进2个或2个以上的元素,这就是抽屉原理。2023-07-09 05:50:492
数学中抽屉原理是什么?
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2件. 抽屉原理2:将多于mxn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于(m+1)件. 抽屉原理的本质是最差原则,很多题目不能直接用抽屉原理来解答的,均可以通过最差原则来求解.2023-07-09 05:51:181
什么是容斥原理,什么是抽屉原理?
容斥原理就是:在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。抽屉原理是:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终会发现至少可以找到一个抽屉里面至少放两个苹果。这一现象就是抽屉原理。2023-07-09 05:51:261
什么是”抽屉原则”,数学精英学的
抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体.例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体.抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[nm]+1个物体:当n不能被m整除时.②k=nm个物体:当n能被m整除时.理解知识点:[X]表示不超过X的最大整数.例:[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉.也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算.【命题方向】经典题型:例1:在任意的37个人中,至少有( )人属于同一种属相.A、3 B、4 C、6分析:把12个属相看做12个抽屉,37人看做37个元素,利用抽屉原理最差情况:要使属相相同的人数最少,只要使每个抽屉的元素数尽量平均,即可解答解:37÷12=3…13+1=4(人)答:至少有4人的属相相同.故选:B点评:此题考查了利用抽屉原理解决实际问题的灵活应用,关键是从最差情况考虑例2:在一个不透明的箱子里放了大小相同的红、黄、蓝三种颜色的玻璃珠各5粒.要保证每次摸出的玻璃珠中一定有3粒是同颜色的,则每次至少要摸( )粒玻璃珠.A、3 B、5 C、7 D、无法确定分析:把红、黄、蓝三种颜色看做3个抽屉,考虑最差情况:每种颜色都摸出2粒,则一共摸出2×3=6粒玻璃珠,此时再任意摸出一粒,必定能出现3粒玻璃珠颜色相同,据此即可解答解:根据题干分析可得:2×3+1=7(粒),答:至少摸出7粒玻璃珠,可以保证取到3粒颜色相同的玻璃珠.故选:C2023-07-09 05:51:351
请问,公务员考试里面,行测中的数学运算,抽屉原理是指什么呢?
第一抽屉原理原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。抽屉原理证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。原理1 、2 、3都是第一抽屉原理的表述。第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。2023-07-09 05:51:411
最常见的抽屉原理是什么 把常见的几种写下来 说明道理 我好举1反3 速度
1:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同。解:解决抽屉原理采用最不利原则。即尽量让每个小朋友选的东西都不一样。那么:1,白兔,白兔;2,熊猫,熊猫;3,长颈鹿,长颈鹿;4,白兔,熊猫;5,熊猫,长颈鹿;6,白兔,长颈鹿。最极端的情况是上述6种情况都有,所以第七个小朋友无论选哪两种都能保证有两个选的玩具相同。2:一副牌,抽几张才能保证有6张花色相同的扑克?解:同样采用最不利原则。尽量让其花色不同且达不到6个的数量。所以,先把大小王抽出,然后四种花色的牌每种各抽出5张,那么下一张无论抽哪一种花色,都能保证有6张花色相同的牌,即需要抽出:2+4*5+1=23张。3:一副牌,抽几张能保证有3张相同点数的扑克?解:同样采用最不利原则。尽量让其点数不同其达不到3个的数量。所以,先把大小王抽出,然后各个点数的牌每种各抽出2张,然后下一张无论抽哪一种花色,都能保证有3张相同点数的牌,即需要抽出:2+2*13+1=29张。4:有一大筐苹果核梨子,分成若干堆,如果要确保找到这样两堆,使这两堆中梨子的总数和苹果的总数都是偶数,那么,至少要把这些苹果和梨子分成多少堆?解:至少是5堆。一堆中苹果、梨子的个数形式为(奇数、偶数),(偶数、奇数),(奇数、奇数),(偶数、偶数)。最极端的情况下,分的堆中,符合上述四种情况的都存在。所以,当分为上述四堆时,无论如何,都不会找到两堆,使这两堆中苹果和梨子的总数为偶数。当分为5堆时,分出上述最极端的四堆后,第五堆的苹果和梨子的数目一定在上述四种情况中的一种,其两堆中梨子和苹果的总数为偶数,所以分成5堆可以保证确保找到两堆。5:在坐标平面上,对任意给定的五个整点(纵、横坐标均为整数),求证:其中一定有两个定点,其连线的中点仍为整点。证明:证明:设这五点为p1,p2,p3,p4,p5,其坐标分别为(a1,b1),(a2,b2),(a3,b3),(a4,b4),(a5,b5),其中每个数字都为整数,要使其连线中点为整点,那么其坐标加和一定为偶数,例如:要使p1,p2点连线的中点为整点,那么a1+a2,b1+b2一定为偶数。一个点的坐标形式一共有四种,既为(奇,偶),(偶,奇),(奇,奇),(偶,偶)。符合这四种形式的点,连线中点都不为整点。所以,最极端的情况,就是五个点中,这四种形式的坐标都存在。那么我们就设p1,p2,p3,p4的坐标分别对应上述四种形式的坐标,p1,p2,p3,p4,这四点之间的连线中点都不为整点。但是p5坐标形式一定符合上述四种坐标形式中的一种。所以,p5的坐标一定和p1,p2,p3,p4中其中一个坐标的和为偶数。既:五个点中,至少有两个点,其连线中点仍为整点。6:有20名运动员参加长跑,他们的参赛号码分别是1,2,3,……,19,20,至少从中选出多少参赛号码,才能保证有两个号码的差是13?解:14-1=15-2=16-3=17-4=18-5=19-6=20-7=13,那么采用最不利原则,先把不可能差是13的数选出,即为8,9,10,11,12,13,六个数。然后下面差能够等于13的数,每组挑出一个,那么七组就有7个,然后,剩下的数无论选哪一个都能保证有两个号码的差是13。即需要挑出的号码有6+7+1=14个。抽屉原理就是最不利原则。六个苹果放五个抽屉里,也是采用了最不利原则,即五个抽屉里都有苹果。那么第六个苹果无论放在哪个抽屉里都能保证有一个抽屉里有两个以上的苹果。2023-07-09 05:51:502
抽屉原理的M是什么?K是什么?N又是什么? K是总物体数÷抽屉总数的商?
把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西.多于kn+1就是M2023-07-09 05:51:591
小学六年级数学人教版什么是抽屉原理
从1至10这10个数中,随意选6个数,其中一定有2个数的和是11.说出其中的原理??我们把1~10按(1,10)(2,9)(3,8)(4,7)(5,6)分为5个抽屉,那么取6个数就肯定至少有一个抽屉的两个数都被取到,所以从1至10这10个数中,随意选6个数,其中一定有2个数的和是11.2023-07-09 05:52:061
抽屉原理、最不利原则和最值问题三者有什么区别?
抽屉原理,实际上就是平均原理。a个物体,分配到b个抽屉里,必有一个里面≥a/b;如果a<b,只有有一个抽屉是空的。最不利原则,是对策论中的原则,对策的收益≥最不利收益。相当于最不利时达到最小值。最值问题,数学概念,当自变量在某范围变化时,函数在最大、最小值。相当于,求函数自变量在某区域的时的值域。2023-07-09 05:52:282
抽屉原理最少什么意思
抽屉原理:把多于n个的苹果放进你个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果,如果把苹果换成鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时把抽屉原理叫做鸽笼原理,用来解决表面看来似乎很难的数学问题如有13个人,可以断定他们中至少有2个人生肖相同,利用抽屉原理,人数13比生肖12多所以至少有2个人生肖相同,应用抽屉原理要注意识别“抽屉”和“苹果”,“苹果的数目要大于抽屉的数目2023-07-09 05:52:462
什么是扩展抽屉原理啊?
我第一次接触抽屉原则,是在一本奥赛书的答案上,有一步骤是:由抽屉原则可得……,于是我就问同学,什么是抽屉原则,同学告诉我,三个苹果放进两个抽屉,必有一个抽屉里至少有两个苹果。后来才发现,抽屉原则不只是这么简单的,它有着广泛的应用以及许多种不同的变形,下面简单介绍一下抽屉原则。抽屉原则的常见形式①把n+k(k≥1)个物体以任意方式全部放入n个抽屉中,一定存在一个抽屉中至少有两个物体。②把mn+k(k≥1)个物体以任意方式全部放入n个抽屉中,一定存在一个抽屉中至少有m+1个物体。③把m1+m2+…+mn+k(k≥1)个物体以任意方式全部放入n个抽屉中,那么后在一个抽屉里至少放入了m1+1个物体,或在第二个抽屉里至少放入了m2+1个物体,……,或在第n个抽屉里至少放入了mn+1个物体④把m个物体以任意方式全部放入n个抽屉中,有两种情况:①当n|m时(n|m表示n整除m),一定存在一个抽屉中至少放入了 个物体;②当n不能整除m时,一定存在一个抽屉中至少放入了[ ]+1个物体([x]表示不超过x的最大整数)⑤把无穷多个元素分成有限类,则至少有一类包含无穷多个元素。注:背下来上面的几种形式没有必要,但应当清楚这些形式虽然不同,却都表示的一个意思。理解它们的含义最重要。在各种竞赛题中,往往抽屉原则考得不少,但一般不会很明显的让人看出来,构造抽屉才是抽屉原则中最难的东西。一般来说,题目中一旦出现了“总有”“至少有”“总存在”之类的词,就暗示着我们:要构造抽屉了。2023-07-09 05:53:001
抽屉原理的公式是什么?要详细!明天要考试了,还是理解不了扑克牌问题,求高手~悬赏15~
抽屉原理:n+1样物品放在n个抽屉里,至少有1个抽屉至少有2样物品。随便抽取15张扑克牌,至少有2张是一对(不计王)随便抽取5张扑克牌, 至少有2张同色(不计王)2023-07-09 05:53:072
数学的三大原理之一抽屉原理之二之三是什么
是奥数三大原理,容斥原理、加乘原理、抽屉原理2023-07-09 05:53:184
“数学广角”有什么内容?
“数学广角”是义务教育课程标准实验教科书从二年级上册开始新增设的一个单元,是新教材在向学生渗透数学思想方法方面做出的新的尝试。一、鸡兔同笼鸡兔同笼,是中国古代著名趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路。通常是假设法比较简单易懂一点。二、抽屉原理桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。三、分类分类,是指按照种类、等级或性质分别归类。四、找规律找规律是小学数学和中学数学教学的基本技能,目的是让学生发现、经历、探究图形和数字简单的排列规律,通过比较,从而理解并掌握找规律的方法,培养学生初步的观察、操作、推理能力。五、简单的排列组合排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,在渗透数学思想方法方面做了一些努力和探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来。六、逻辑推理所谓演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程。演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。七、重叠问题日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题,解答重叠问题常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。这个原理叫做包含与排除原理,也叫容斥原理。八、烙饼问题通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的利用。因为五年级的学生已经有了一定的解决问题的能力和基础,可以说,在日常的学习生活中,学生能很容易找到解决问题的方法,而且还会找到解决问题的不同策略,但这里的关键是让学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生的解决问题的能力。九、植树问题为使其更直观,用图示法来说明。树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。十、找次品现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。2023-07-09 05:53:251
抽屉原理的至少数到底是什么?
就是可能是这么多,也可能比这多,但绝不可能比这少。比如三个人里至少有两个人性别相同。因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。最差原则,即考虑所有可能情况中,最不利于某件事情发生的情况。例如,有300人到招聘会求职,其中软件设计有100人,市场营销有80人,财务管理有70人,人力资源管理有50人。构造抽屉的方法:运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有一个属相是不少于4个人。这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。2023-07-09 05:53:354
抽屉原理的计算公式是什么?
如果n+1个物体被放进n个盒子,那么至少有一个盒子包含两个或更多的物体。例1:在13个人中存在两个人,他们的生日在同一月份里。例2:设有n对已婚夫妇。为保证有一对夫妇被选出,至少要从这2n个人中选出多少人?(n+1)2023-07-09 05:54:181
抽屉原理中,什么叫至少
比如桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果,最少每个抽屉都有一个苹果。这一现象就是我们所说的抽屉原理。 至少的意思是“也可能多于”。比如6个苹果放入4个抽屉,至少有一个抽屉中苹果超过1个,也有可能2抽屉中多于1个。2023-07-09 05:54:251
什么是抽屉原理?
抽屉原理 - 表述 抽屉原理的一种更一般的表述为:“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 第一抽屉原理原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。 抽屉原理证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。原理2 :把多于mn+1(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。原理1 、2 、3都是第一抽屉原理的表述。第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。 http://baike.baidu.com/view/8899.htm2023-07-09 05:54:532
什么是抽屉原理?
抽屉原理 一、 知识要点 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。 把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。 原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。 原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。 其中 k= (当n能整除m时) 〔 〕+1 (当n不能整除m时) (〔 〕表示不大于 的最大整数,即 的整数部分) 原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 二、 应用抽屉原理解题的步骤 第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。 第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。 第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业 求证:这5名学生中,至少有两个人在做同一科作业。 证明:将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。 即至少有两名学生在做同一科的作业。 例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉 若要符合题意,则小球的数目必须大于3 大于3的最小数字是4 故至少取出4个小球才能符合要求 答:最少要取出4个球。 例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 解:把50名学生看作50个抽屉,把书看成苹果 根据原理1,书的数目要比学生的人数多 即书至少需要50+1=51本 答:最少需要51本。 例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。 解:把这条小路分成每段1米长,共100段 每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 即至少有一段有两棵或两棵以上的树 例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本 试证明:必有两个学生所借的书的类型相同 证明:若学生只借一本书,则不同的类型有A、B、C、D四种 若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种 共有10种类型 把这10种类型看作10个“抽屉” 把11个学生看作11个“苹果” 如果谁借哪种类型的书,就进入哪个抽屉 由抽屉原理,至少有两个学生,他们所借的书的类型相同 例6、 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜 试证明:一定有两个运动员积分相同 证明:设每胜一局得一分 由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能 以这49种可能得分的情况为49个抽屉 现有50名运动员得分 则一定有两名运动员得分相同 例7、 体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解题关键:利用抽屉原理2。 解:根据规定,多有同学拿球的配组方式共有以下9种: {足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝} 以这9种配组方式制造9个抽屉 将这50个同学看作苹果 =5.5……5 由抽屉原理2k=〔 〕+1可得,至少有6人,他们所拿的球类是完全一致的2023-07-09 05:55:123
什么是抽屉原理?
抽屉原理 一、 知识要点 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。 把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。 原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。 原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。 其中 k= (当n能整除m时) 〔 〕+1 (当n不能整除m时) (〔 〕表示不大于 的最大整数,即 的整数部分) 原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 二、 应用抽屉原理解题的步骤 第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。 第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。 第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业 求证:这5名学生中,至少有两个人在做同一科作业。 证明:将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。 即至少有两名学生在做同一科的作业。 例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉 若要符合题意,则小球的数目必须大于3 大于3的最小数字是4 故至少取出4个小球才能符合要求 答:最少要取出4个球。 例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 解:把50名学生看作50个抽屉,把书看成苹果 根据原理1,书的数目要比学生的人数多 即书至少需要50+1=51本 答:最少需要51本。 例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。 解:把这条小路分成每段1米长,共100段 每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 即至少有一段有两棵或两棵以上的树 例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本 试证明:必有两个学生所借的书的类型相同 证明:若学生只借一本书,则不同的类型有A、B、C、D四种 若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种 共有10种类型 把这10种类型看作10个“抽屉” 把11个学生看作11个“苹果” 如果谁借哪种类型的书,就进入哪个抽屉 由抽屉原理,至少有两个学生,他们所借的书的类型相同 例6、 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜 试证明:一定有两个运动员积分相同 证明:设每胜一局得一分 由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能 以这49种可能得分的情况为49个抽屉 现有50名运动员得分 则一定有两名运动员得分相同 例7、 体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解题关键:利用抽屉原理2。 解:根据规定,多有同学拿球的配组方式共有以下9种: {足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝} 以这9种配组方式制造9个抽屉 将这50个同学看作苹果 =5.5……5 由抽屉原理2k=〔 〕+1可得,至少有6人,他们所拿的球类是完全一致的]2023-07-09 05:55:223
抽屉原理是什么
第一抽屉原理 原理1: 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。 抽屉原理 证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。 原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。 证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。 原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。 原理1 、2 、3都是第一抽屉原理的表述。第二抽屉原理 把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。2023-07-09 05:55:313
抽屉原理是什么
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。构造抽屉的方法运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有一个属相是不少于4个人。这时将属相看成12个抽屉,则一个抽屉中有37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。2023-07-09 05:55:381
什么是抽屉原理?
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。趣闻匈牙利大数学家厄杜斯(PaulErdous,1913 - 1996)向当年年仅11岁的波萨(LouisPósa)提出这个问题,而小波萨思考了不足半分钟便能给出正确的答案。波萨是这样考虑问题:取n个盒子,在第一个盒子放1和2,在第二个盒子放3和4,第三个盒子是放5和6,依此类推直到第n个盒子放2n-1和2n这两个数。如果在n个盒子里随意抽出n+1个数。马上看到一定有一个盒子是被抽空的。因此在这n+1个数中必有两个数是连续数,很明显的连续数是互质的。因此这问题就解决了,这就是利用了鸽巢原理的核心思想。2023-07-09 05:55:473
抽屉原理是什么意思
抽屉原理是指如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。 抽屉原理的现象是:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。2023-07-09 05:56:001
什么是 抽屉原理? 请详细告诉我
抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理2023-07-09 05:56:081
抽屉原理是什么?
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。 抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。 抽屉原理的一种更一般的表述为:把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。利用上述原理容易证明:任意7个整数中,至少有3个数的两两之差是3的倍数。因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。如果问题所讨论的对象有无限多个。 抽屉原理还有另一种表述:把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。用高斯函数来叙述一般形式的抽屉原理的是:将m个元素放入n个抽屉,则在其中一个抽屉里至少会有[(m-1)/n]+1个元素。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。2023-07-09 05:56:151
什么是抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。2023-07-09 05:56:371
抽屉原理是什么
抽屉原理又名“鸽笼原理”,其基本要点是: 当物体的个数比抽屉数多1,即把(n+1)个物体放入n个抽屉里,那么至少有一个抽屉里不止有一个这种物体。即东西多,抽屉少,那么至少有两个东西放在同一个抽屉里。 当物体的个数比抽屉的倍数多时,即把不少于(m乘n+1)个问物体放入n个抽屉里,那么至少有一个抽屉里有(m+1)或(m+1)以上个物体。 运用抽屉原理可以解决许多有趣的数学问题。值得注意得是,抽屉原理只能用来解决存在性的问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个符合条件的抽屉就行了。 由于运用抽屉原理解题时,要从最不利的情况去考虑,所以抽屉原理也叫“最不利原理”。2023-07-09 05:56:472
抽屉原理是什么?
抽屉原理一、 知识要点抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理.把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的常识就是抽屉原理在日常生活中的体现.用它可以解决一些相当复杂甚至无从下手的问题.原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素.原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素.其中 k= (当n能整除m时)〔 〕+1 (当n不能整除m时)(〔 〕表示不大于 的最大整数,即 的整数部分)原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素.二、 应用抽屉原理解题的步骤第一步:分析题意.分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”.第二步:制造抽屉.这个是关键的一步,这一步就是如何设计抽屉.根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路.第三步:运用抽屉原理.观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决.例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业 求证:这5名学生中,至少有两个人在做同一科作业.证明:将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业.例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?把3种颜色看作3个抽屉若要符合题意,则小球的数目必须大于3大于3的最小数字是4故至少取出4个小球才能符合要求答:最少要取出4个球.例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书.把50名学生看作50个抽屉,把书看成苹果根据原理1,书的数目要比学生的人数多即书至少需要50+1=51本答:最少需要51本.例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米.把这条小路分成每段1米长,共100段每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果即至少有一段有两棵或两棵以上的树例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本试证明:必有两个学生所借的书的类型相同证明:若学生只借一本书,则不同的类型有A、B、C、D四种若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种共有10种类型把这10种类型看作10个“抽屉”把11个学生看作11个“苹果”如果谁借哪种类型的书,就进入哪个抽屉由抽屉原理,至少有两个学生,他们所借的书的类型相同例6、 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜试证明:一定有两个运动员积分相同证明:设每胜一局得一分由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能以这49种可能得分的情况为49个抽屉现有50名运动员得分则一定有两名运动员得分相同例7、 体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2.根据规定,多有同学拿球的配组方式共有以下9种:{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}以这9种配组方式制造9个抽屉将这50个同学看作苹果=5.5……5由抽屉原理2k=〔 〕+1可得,至少有6人,他们所拿的球类是完全一致的2023-07-09 05:56:542
抽屉原理是什么意思?
抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。扩展资料:运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有一个属相是不少于4个人。这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。参考资料来源:百度百科-抽屉原理参考资料来源:百度百科-狄利克雷2023-07-09 05:57:031
什么叫抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。2023-07-09 05:57:171
抽屉原理的内容是什么?
三个公式:1、把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。2、把多于mn+1个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。3、把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是所说的“抽屉原理”。原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。抽屉原理证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。原理2:把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。原理1 、2 、3都是第一抽屉原理的表述。2023-07-09 05:57:311
什么是抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或n+(n-1)个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。为小学六年级课程。2023-07-09 05:57:554
抽屉原理是什么重要原理
抽屉原理一、 知识要点抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理.把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的常识就是抽屉原理在日常生活中的体现.用它可以解决一些相当复杂甚至无从下手的问题.原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素.原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素.其中 k= (当n能整除m时)〔 〕+1 (当n不能整除m时)(〔 〕表示不大于 的最大整数,即 的整数部分)原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素.二、 应用抽屉原理解题的步骤第一步:分析题意.分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”.第二步:制造抽屉.这个是关键的一步,这一步就是如何设计抽屉.根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路.第三步:运用抽屉原理.观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决.例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业.证明:将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业.例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?把3种颜色看作3个抽屉若要符合题意,则小球的数目必须大于3大于3的最小数字是4故至少取出4个小球才能符合要求答:最少要取出4个球.例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书.把50名学生看作50个抽屉,把书看成苹果根据原理1,书的数目要比学生的人数多即书至少需要50+1=51本答:最少需要51本.例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米.把这条小路分成每段1米长,共100段每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果即至少有一段有两棵或两棵以上的树2023-07-09 05:58:092