10bit

DNA图谱 / 问答 / 标签

目前10bit压制的高清视频用老的播放器会出现花屏现象,求大神给予解决方案!

。。。去更新解码器,有能播放10bit的解码器。

请教各位,10bit和12bit画面有什么区别

 10 bit 在数字电影制作领域并不是陌生的新名词,早在上个世纪 90 年代前期就开始广泛使用,现在,随着 HDTV 的逼近,关于10 bit这一视频技术指标的描述越来越多地出现在我们面前,这里,让我们一起探讨一下关于10 bit 的一些问题。  10 bit 深度  我们了解,目前主要使用的图像质量是 24 bit 或 32 bit 颜色深度,它等于每通道 8 bit 的 R 、G 、B 或每通道 8 bit R 、G 、B 、A 色彩通道的相加,而 8 bit 表示每个原色具有256 个灰阶,即 0 - 255 对应色彩从黑到白的灰度级别, 10 bit 表示单色彩通道具有1024 个灰度级别,色阶范围是 0-1023 。  10 bit 和 8 bit 的灰度级别  通常的我们使用的显示器色彩是 24 bit ,那么现在提出的 10 bit 单通道色彩,两者是怎样一种关系呢?  这是一个非常容易混淆的概念,实际上,可以这样计算,1 位单通道色彩的图像只是黑色和白色两种色彩,而单通道 8 bit 实际相当于显示器定义的 24 bit 或 32 bit ,显示器定义只是简单的色彩通道相加,而不是单通道色彩深度;单通道 16 bit 具有 65536 个灰度级别,和显示器的色彩定义不同,显示器是两个 5 bit 通道加上 1 个 6 bit 通道,色彩还没有达到单通道 8 bit 的图像显示质量。  下图所使用的位深表示 1 bit 、2 bit 、3 bit 以及 8 bit 图像的灰度级别,随着位深的增加,色彩梯度更加平滑,色阈也更加宽广, 8 bit 和 10 bit 也是这样。高位深表示在一个色阈中更多的采样数值,8 bit 提供 256 个采样点,而10 bit 提供1024 个采样点,其色彩精度是8 bit 的4 倍。  也就是说,显示器和图像深度之间是一个单通道色深与颜色数量之间的关系,24 bit 真彩色显示器显示数量是单通道10 bit 色彩数量的六十四分之一。如果按照三原色计算,10 bit 单色彩通道相加为30 bit 色彩,或者说10 亿色。  那么10 bit 的意义何在呢?  举一个很简单的例子,显示器所显示的色彩分辨率是 72 dpi ,足够日常使用了,但在印刷的时候,却还是需要300 dpi 的图像,并且在印刷高质量的印刷品时,可能需要更高的分辨率,比如1200 dpi 。  视频也是如此,虽然肉眼不足以分辨高动态范围的色彩,但在一些专业领域,普遍存在高位深色彩的需要,最明显的应用比如胶片的扫描和输出以及三维动画序列输出。从人眼能分辨的量化来说最高是在8-10bit ,使用14 bit 采样保留胶片制作和图像数据的余量已经完全够了,而 14 bit 的采样数据能够完美地保留到10 bit Cin 、DPX 或者OpenEXR 文件格式当中。  工业光魔开发的10 bit openEXR 图像用于他们的后期特效制作  目前,主流的3D 应用程序和合成系统对于10 bit Cin 、DPX 和OpenEXR 文件格式都非常好。  10 bit 应用  在影视编辑合成领域,数字Betacam 的量化就是10 bit ,而多数数字视频卡的 8 bit 采样输入输出都不能达到数字 Betacam 的色彩精度。  单通道16 bit 目前在视频领域没有被使用,电影胶片的采样也只在10 bit 到14 bit 之间,这是因为,无论设备和计算机处理性能、还有磁盘存储都远远没有达到能够处理 16 bit 数字视频的能力,10 bit 是电影胶片质量和计算机处理性能,分辨率以及磁盘存储之间的一个比较好的平衡点。  下面的例子模拟了8 bit 图像在视频特效处理过程中丢失细节的一些情况。在 Digital Fusion 流程中,给 FastNoise 节点添加 Filter 特效工具的浮雕效果,左图流程中 FastNoise 图像为 8 位深度,右图流程中 FastNoise 为 32 位浮点,其他设置相同。可以看到, Filter 特效工具在不同位深下由于采样细节不同,而得到了两种不同的结果,只是因为使用 8 bit 滤镜的限制导致高亮和暗部图像细节被裁切。  因此,需要更高采样的视频卡最大地保留色彩信息以保证复杂特效的处理和多代复制过程。  高精度在合成工作中的简单应用包括:  1 、 校色  10 bit 提供更精确的选色范围,使校色更加方便。在对10 bit 高动态范围图像进行处理的时候, 10 bit 提供非常宽广的颜色范围,使色彩校准变得更加自由。在下面的例子中,对左边的源图像高进行Gama 调整,可以发现高亮部分仍然保持图像信息。而在普通 8 bit 图像中,高亮部分降低 Gama 值会变为灰色。  2 、 抠像  10 bit 为抠像工作提供更宽广的色度范围,更精确的 Alpha 控制,以及更平滑的 Matter 边缘。下图显示了不同精度的视频在抠像处理中的差别,低精度图像有严重的锯齿,使得抠像很难达到理想的边缘。  3 、 跟踪  对于跟踪解算,跟踪点的设置最为重要,如果图像压缩太高,放大后马赛克太大,或在序列播放中像素点变化太快,就会导致跟踪点无法确定而失败。高质量、高精度图像为跟踪提供更容易辨识的像素和色彩,使跟踪结果更为精确。  10 bit 流程  10 bit YUV 和10 bit RGB 是工业标准,这一标准来自于北美电视电影工程师协会的标准:  SMPTE 259M  SMPTE 292M  SMPTE 296M  SMPTE 372M  SMPTE 虽然严格地说是美国的标准,但由于其兼容性和影响力,多数 SMPTE 标准成为实际的国际标准。 Sony Digital Betacam 和Panasonic D5 录机都是采用了完全10 bit 标准,新一代的非编卡如 Decklink  Bluefish444 都采用了10 bit 量化提高采集质量。  板卡  系统  Blackmagic Decklink  O2 Anole ( 高端 影视包装 合成 / DI )  强氧 CLIPPER7 编辑、合成系统 ;  强氧 FCP ( 苹果编辑、合成系统 )  DVS  Discreet Flint/Flame ( 高端合成 )  Discreet Smoke ( 高端剪辑 )  Discreet Luster ( DI )  目前主要 10 bit 后期制作设备  作为高清的一个重要标准之一,10 bit 似乎与SD 无关,那么对于SD 电视的制作是不是没有一点意义呢?  首先,10 bit 解决了在SD 视频中YUV色彩空间转换为RGB色彩空间时可能出现带状线和轮廓线的问题,这个问题是色彩空间转换时二次取整造成的,而10 bit 能够很好地解决这个问题。  其次,从整个数字制作环境来考虑,10 bit 同样也是很有意义的。从 0 bit 和12 bit 量化的数字摄像机、到 10 bit 量化的数字Betacam 以及最后采集、制作到输出磁带,标清电视已经可以建立完全10 bit 的数字环境。  我们了解,在数字图像技术中,采样本身就是信号损失的过程,越大的采样值使图像更精确,并且能够降低噪波的产生,在需要后期处理的图像中,从校色、抠像到跟踪技术都需要更精细的图像,高采样图像得到更加柔和的边缘,而低采样的图像会得到很严重锯齿和噪波,甚至导致数字处理失败。与目前市场上的非编工作站相比,10 bit 制作环境在对图像信息的保留和多代复制来说具有质的变化。  存储和数据量  一般传送标清无压缩10 bit YUV 文件的数据速率大约是30MB 每秒,所以采集一分钟序列文件将需要1800 MB 或者1.8 GB 存储空间,1 小时将需要180 GB 存储空间,而HD 完全不同,与HD 相比需要大得多的存储空间。

10bit 和三个10bit的区别

  10 bit 在数字电影制作领域并不是陌生的新名词,早在上个世纪 90 年代前期就开始广泛使用,现在,随着 HDTV 的逼近,关于10 bit这一视频技术指标的描述越来越多地出现在我们面前,这里,让我们一起探讨一下关于10 bit 的一些问题。  10 bit 深度  我们了解,目前主要使用的图像质量是 24 bit 或 32 bit 颜色深度,它等于每通道 8 bit 的 R 、G 、B 或每通道 8 bit R 、G 、B 、A 色彩通道的相加,而 8 bit 表示每个原色具有256 个灰阶,即 0 —— 255 对应色彩从黑到白的灰度级别, 10 bit 表示单色彩通道具有1024 个灰度级别,色阶范围是 0-1023 。  10 bit 和 8 bit 的灰度级别  通常的我们使用的显示器色彩是 24 bit ,那么现在提出的 10 bit 单通道色彩,两者是怎样一种关系呢?  这是一个非常容易混淆的概念,实际上,可以这样计算,1 位单通道色彩的图像只是黑色和白色两种色彩,而单通道 8 bit 实际相当于显示器定义的 24 bit 或 32 bit ,显示器定义只是简单的色彩通道相加,而不是单通道色彩深度;单通道 16 bit 具有 65536 个灰度级别,和显示器的色彩定义不同,显示器是两个 5 bit 通道加上 1 个 6 bit 通道,色彩还没有达到单通道 8 bit 的图像显示质量。  下图所使用的位深表示 1 bit 、2 bit 、3 bit 以及 8 bit 图像的灰度级别,随着位深的增加,色彩梯度更加平滑,色阈也更加宽广, 8 bit 和 10 bit 也是这样。高位深表示在一个色阈中更多的采样数值,8 bit 提供 256 个采样点,而10 bit 提供1024 个采样点,其色彩精度是8 bit 的4 倍。  也就是说,显示器和图像深度之间是一个单通道色深与颜色数量之间的关系,24 bit 真彩色显示器显示数量是单通道10 bit 色彩数量的六十四分之一。如果按照三原色计算,10 bit 单色彩通道相加为30 bit 色彩,或者说10 亿色。  那么10 bit 的意义何在呢?  举一个很简单的例子,显示器所显示的色彩分辨率是 72 dpi ,足够日常使用了,但在印刷的时候,却还是需要300 dpi 的图像,并且在印刷高质量的印刷品时,可能需要更高的分辨率,比如1200 dpi 。  视频也是如此,虽然肉眼不足以分辨高动态范围的色彩,但在一些专业领域,普遍存在高位深色彩的需要,最明显的应用比如胶片的扫描和输出以及三维动画序列输出。从人眼能分辨的量化来说最高是在8-10bit ,使用14 bit 采样保留胶片制作和图像数据的余量已经完全够了,而 14 bit 的采样数据能够完美地保留到10 bit Cin 、DPX 或者OpenEXR 文件格式当中。  工业光魔开发的10 bit openEXR 图像用于他们的后期特效制作  目前,主流的3D 应用程序和合成系统对于10 bit Cin 、DPX 和OpenEXR 文件格式都非常好。  10 bit 应用  在影视编辑合成领域,数字Betacam 的量化就是10 bit ,而多数数字视频卡的 8 bit 采样输入输出都不能达到数字 Betacam 的色彩精度。  单通道16 bit 目前在视频领域没有被使用,电影胶片的采样也只在10 bit 到14 bit 之间,这是因为,无论设备和计算机处理性能、还有磁盘存储都远远没有达到能够处理 16 bit 数字视频的能力,10 bit 是电影胶片质量和计算机处理性能,分辨率以及磁盘存储之间的一个比较好的平衡点。  下面的例子模拟了8 bit 图像在视频特效处理过程中丢失细节的一些情况。在 Digital Fusion 流程中,给 FastNoise 节点添加 Filter 特效工具的浮雕效果,左图流程中 FastNoise 图像为 8 位深度,右图流程中 FastNoise 为 32 位浮点,其他设置相同。可以看到, Filter 特效工具在不同位深下由于采样细节不同,而得到了两种不同的结果,只是因为使用 8 bit 滤镜的限制导致高亮和暗部图像细节被裁切。  因此,需要更高采样的视频卡最大地保留色彩信息以保证复杂特效的处理和多代复制过程。  高精度在合成工作中的简单应用包括:  1 、 校色  10 bit 提供更精确的选色范围,使校色更加方便。在对10 bit 高动态范围图像进行处理的时候, 10 bit 提供非常宽广的颜色范围,使色彩校准变得更加自由。在下面的例子中,对左边的源图像高进行Gama 调整,可以发现高亮部分仍然保持图像信息。而在普通 8 bit 图像中,高亮部分降低 Gama 值会变为灰色。  2 、 抠像  10 bit 为抠像工作提供更宽广的色度范围,更精确的 Alpha 控制,以及更平滑的 Matter 边缘。下图显示了不同精度的视频在抠像处理中的差别,低精度图像有严重的锯齿,使得抠像很难达到理想的边缘。  3 、 跟踪  对于跟踪解算,跟踪点的设置最为重要,如果图像压缩太高,放大后马赛克太大,或在序列播放中像素点变化太快,就会导致跟踪点无法确定而失败。高质量、高精度图像为跟踪提供更容易辨识的像素和色彩,使跟踪结果更为精确。  10 bit 流程  10 bit YUV 和10 bit RGB 是工业标准,这一标准来自于北美电视电影工程师协会的标准:  SMPTE 259M  SMPTE 292M  SMPTE 296M  SMPTE 372M  SMPTE 虽然严格地说是美国的标准,但由于其兼容性和影响力,多数 SMPTE 标准成为实际的国际标准。 Sony Digital Betacam 和Panasonic D5 录机都是采用了完全10 bit 标准,新一代的非编卡如 Decklink  Bluefish444 都采用了10 bit 量化提高采集质量。  板卡  系统  Blackmagic Decklink  O2 Anole ( 高端 影视包装 合成 / DI )  强氧 CLIPPER7 编辑、合成系统 ;  强氧 FCP ( 苹果编辑、合成系统 )  DVS  Discreet Flint/Flame ( 高端合成 )  Discreet Smoke ( 高端剪辑 )  Discreet Luster ( DI )  目前主要 10 bit 后期制作设备  作为高清的一个重要标准之一,10 bit 似乎与SD 无关,那么对于SD 电视的制作是不是没有一点意义呢?  首先,10 bit 解决了在SD 视频中YUV色彩空间转换为RGB色彩空间时可能出现带状线和轮廓线的问题,这个问题是色彩空间转换时二次取整造成的,而10 bit 能够很好地解决这个问题。  其次,从整个数字制作环境来考虑,10 bit 同样也是很有意义的。从 0 bit 和12 bit 量化的数字摄像机、到 10 bit 量化的数字Betacam 以及最后采集、制作到输出磁带,标清电视已经可以建立完全10 bit 的数字环境。  我们了解,在数字图像技术中,采样本身就是信号损失的过程,越大的采样值使图像更精确,并且能够降低噪波的产生,在需要后期处理的图像中,从校色、抠像到跟踪技术都需要更精细的图像,高采样图像得到更加柔和的边缘,而低采样的图像会得到很严重锯齿和噪波,甚至导致数字处理失败。与目前市场上的非编工作站相比,10 bit 制作环境在对图像信息的保留和多代复制来说具有质的变化。  存储和数据量  一般传送标清无压缩10 bit YUV 文件的数据速率大约是30MB 每秒,所以采集一分钟序列文件将需要1800 MB 或者1.8 GB 存储空间,1 小时将需要180 GB 存储空间,而HD 完全不同,与HD 相比需要大得多的存储空间。

10bit是什么

  10 bit 在数字电影制作领域并不是陌生的新名词,早在上个世纪 90 年代前期就开始广泛使用,现在,随着 HDTV 的逼近,关于10 bit这一视频技术指标的描述越来越多地出现在我们面前,这里,让我们一起探讨一下关于10 bit 的一些问题。  10 bit 深度  我们了解,目前主要使用的图像质量是 24 bit 或 32 bit 颜色深度,它等于每通道 8 bit 的 R 、G 、B 或每通道 8 bit R 、G 、B 、A 色彩通道的相加,而 8 bit 表示每个原色具有256 个灰阶,即 0 - 255 对应色彩从黑到白的灰度级别, 10 bit 表示单色彩通道具有1024 个灰度级别,色阶范围是 0-1023 。  10 bit 和 8 bit 的灰度级别  通常的我们使用的显示器色彩是 24 bit ,那么现在提出的 10 bit 单通道色彩,两者是怎样一种关系呢?  这是一个非常容易混淆的概念,实际上,可以这样计算,1 位单通道色彩的图像只是黑色和白色两种色彩,而单通道 8 bit 实际相当于显示器定义的 24 bit 或 32 bit ,显示器定义只是简单的色彩通道相加,而不是单通道色彩深度;单通道 16 bit 具有 65536 个灰度级别,和显示器的色彩定义不同,显示器是两个 5 bit 通道加上 1 个 6 bit 通道,色彩还没有达到单通道 8 bit 的图像显示质量。  下图所使用的位深表示 1 bit 、2 bit 、3 bit 以及 8 bit 图像的灰度级别,随着位深的增加,色彩梯度更加平滑,色阈也更加宽广, 8 bit 和 10 bit 也是这样。高位深表示在一个色阈中更多的采样数值,8 bit 提供 256 个采样点,而10 bit 提供1024 个采样点,其色彩精度是8 bit 的4 倍。  也就是说,显示器和图像深度之间是一个单通道色深与颜色数量之间的关系,24 bit 真彩色显示器显示数量是单通道10 bit 色彩数量的六十四分之一。如果按照三原色计算,10 bit 单色彩通道相加为30 bit 色彩,或者说10 亿色。  那么10 bit 的意义何在呢?  举一个很简单的例子,显示器所显示的色彩分辨率是 72 dpi ,足够日常使用了,但在印刷的时候,却还是需要300 dpi 的图像,并且在印刷高质量的印刷品时,可能需要更高的分辨率,比如1200 dpi 。  视频也是如此,虽然肉眼不足以分辨高动态范围的色彩,但在一些专业领域,普遍存在高位深色彩的需要,最明显的应用比如胶片的扫描和输出以及三维动画序列输出。从人眼能分辨的量化来说最高是在8-10bit ,使用14 bit 采样保留胶片制作和图像数据的余量已经完全够了,而 14 bit 的采样数据能够完美地保留到10 bit Cin 、DPX 或者OpenEXR 文件格式当中。  工业光魔开发的10 bit openEXR 图像用于他们的后期特效制作  目前,主流的3D 应用程序和合成系统对于10 bit Cin 、DPX 和OpenEXR 文件格式都非常好。  10 bit 应用  在影视编辑合成领域,数字Betacam 的量化就是10 bit ,而多数数字视频卡的 8 bit 采样输入输出都不能达到数字 Betacam 的色彩精度。  单通道16 bit 目前在视频领域没有被使用,电影胶片的采样也只在10 bit 到14 bit 之间,这是因为,无论设备和计算机处理性能、还有磁盘存储都远远没有达到能够处理 16 bit 数字视频的能力,10 bit 是电影胶片质量和计算机处理性能,分辨率以及磁盘存储之间的一个比较好的平衡点。  下面的例子模拟了8 bit 图像在视频特效处理过程中丢失细节的一些情况。在 Digital Fusion 流程中,给 FastNoise 节点添加 Filter 特效工具的浮雕效果,左图流程中 FastNoise 图像为 8 位深度,右图流程中 FastNoise 为 32 位浮点,其他设置相同。可以看到, Filter 特效工具在不同位深下由于采样细节不同,而得到了两种不同的结果,只是因为使用 8 bit 滤镜的限制导致高亮和暗部图像细节被裁切。  因此,需要更高采样的视频卡最大地保留色彩信息以保证复杂特效的处理和多代复制过程。  高精度在合成工作中的简单应用包括:  1 、 校色  10 bit 提供更精确的选色范围,使校色更加方便。在对10 bit 高动态范围图像进行处理的时候, 10 bit 提供非常宽广的颜色范围,使色彩校准变得更加自由。在下面的例子中,对左边的源图像高进行Gama 调整,可以发现高亮部分仍然保持图像信息。而在普通 8 bit 图像中,高亮部分降低 Gama 值会变为灰色。  2 、 抠像  10 bit 为抠像工作提供更宽广的色度范围,更精确的 Alpha 控制,以及更平滑的 Matter 边缘。下图显示了不同精度的视频在抠像处理中的差别,低精度图像有严重的锯齿,使得抠像很难达到理想的边缘。  3 、 跟踪  对于跟踪解算,跟踪点的设置最为重要,如果图像压缩太高,放大后马赛克太大,或在序列播放中像素点变化太快,就会导致跟踪点无法确定而失败。高质量、高精度图像为跟踪提供更容易辨识的像素和色彩,使跟踪结果更为精确。  10 bit 流程  10 bit YUV 和10 bit RGB 是工业标准,这一标准来自于北美电视电影工程师协会的标准:  SMPTE 259M  SMPTE 292M  SMPTE 296M  SMPTE 372M  SMPTE 虽然严格地说是美国的标准,但由于其兼容性和影响力,多数 SMPTE 标准成为实际的国际标准。 Sony Digital Betacam 和Panasonic D5 录机都是采用了完全10 bit 标准,新一代的非编卡如 Decklink  Bluefish444 都采用了10 bit 量化提高采集质量。  板卡  系统  Blackmagic Decklink  O2 Anole ( 高端 影视包装 合成 / DI )  强氧 CLIPPER7 编辑、合成系统 ;  强氧 FCP ( 苹果编辑、合成系统 )  DVS  Discreet Flint/Flame ( 高端合成 )  Discreet Smoke ( 高端剪辑 )  Discreet Luster ( DI )  目前主要 10 bit 后期制作设备  作为高清的一个重要标准之一,10 bit 似乎与SD 无关,那么对于SD 电视的制作是不是没有一点意义呢?  首先,10 bit 解决了在SD 视频中YUV色彩空间转换为RGB色彩空间时可能出现带状线和轮廓线的问题,这个问题是色彩空间转换时二次取整造成的,而10 bit 能够很好地解决这个问题。  其次,从整个数字制作环境来考虑,10 bit 同样也是很有意义的。从 0 bit 和12 bit 量化的数字摄像机、到 10 bit 量化的数字Betacam 以及最后采集、制作到输出磁带,标清电视已经可以建立完全10 bit 的数字环境。  我们了解,在数字图像技术中,采样本身就是信号损失的过程,越大的采样值使图像更精确,并且能够降低噪波的产生,在需要后期处理的图像中,从校色、抠像到跟踪技术都需要更精细的图像,高采样图像得到更加柔和的边缘,而低采样的图像会得到很严重锯齿和噪波,甚至导致数字处理失败。与目前市场上的非编工作站相比,10 bit 制作环境在对图像信息的保留和多代复制来说具有质的变化。  存储和数据量  一般传送标清无压缩10 bit YUV 文件的数据速率大约是30MB 每秒,所以采集一分钟序列文件将需要1800 MB 或者1.8 GB 存储空间,1 小时将需要180 GB 存储空间,而HD 完全不同,与HD 相比需要大得多的存储空间。  下图列表是10 bit 存储空间的最低要求,由于硬盘使用物理寻道,在计算硬盘系统的数据传输速率时,需要考虑到硬盘速度的波动,应增加一定的安全余量,通过增加硬盘数量可以减小安全量度。  无压缩 10 bit YUV(4:2:2)  标准清晰度  帧尺寸  MB/ 秒  MB/ 分  GB/ 小时  720*486/29.97fps  27  1 600  94  720*576/25fps  26  1 582  93  高清晰度  帧尺寸  MB/ 秒  MB/ 分  GB/ 小时  1280*720p/60fps  141  8 438  494  1920*1080/24PsF  127  7 594  445  1920*1080/50i  132  7 910  463  1920*1080/60i  158  9 482  556  无压缩 10 bit RGB(4:4:4)  高清晰度  帧尺寸  MB/ 秒  MB/ 分  GB/ 小时  1280*720p/60fps  211  12 656  742  1920*1080/24PsF  190  11 391  667  1920*1080/50i  198  11 865  695  1920*1080/60i  237  14 238  834  BMD 公司 DeckLink 系列采用的编码方式码流列表  采集视频必须实时,需要能够完成长时间采集的输出和写入的处理能力。在短时间采集和长时间采集两者之间执行性能可能很不相同,特别是碎片、磁盘写入通路速度等等,执行性能需要达到引人注目的数据吞吐能力。  单盘对于所有的情况下的数据吞吐量和容量都不足,需要考虑 RAID 。串行 ATA 硬盘空间满时,其速率将下降一半,所以对于SATA 双硬盘阵列,应保证一倍的安全余量,而对 SATA 八硬盘阵列,30 %的安全余量就足够了。SCSI 硬盘阵列的波动性似乎较小,所以对于SCSI 八硬盘阵列, 20 %的安全余量都已经足够了。一般来说,阵列中硬盘越多越好。  结论  由此,我们已经了解到,HD 不仅仅是一个简单分辨率的增加,10 bit 也不仅仅是简单视觉观感的改善,他是整个标准的革新,也是一场电视技术的革命。  “工欲善其事,必先利其器”,在 HD 到来之前,需要掌握新技术做好充分准备,只有在大量技术知识和经验的积累,我们才能保证 HD 电视的顺利制作。

10bit是什么?

  10 bit 在数字电影制作领域并不是陌生的新名词,早在上个世纪 90 年代前期就开始广泛使用,现在,随着 HDTV 的逼近,关于10 bit这一视频技术指标的描述越来越多地出现在我们面前,这里,让我们一起探讨一下关于10 bit 的一些问题。x0dx0ax0dx0a  10 bit 深度x0dx0ax0dx0a  我们了解,目前主要使用的图像质量是 24 bit 或 32 bit 颜色深度,它等于每通道 8 bit 的 R 、G 、B 或每通道 8 bit R 、G 、B 、A 色彩通道的相加,而 8 bit 表示每个原色具有256 个灰阶,即 0 - 255 对应色彩从黑到白的灰度级别, 10 bit 表示单色彩通道具有1024 个灰度级别,色阶范围是 0-1023 。x0dx0ax0dx0a  10 bit 和 8 bit 的灰度级别x0dx0ax0dx0a  通常的我们使用的显示器色彩是 24 bit ,那么现在提出的 10 bit 单通道色彩,两者是怎样一种关系呢?x0dx0ax0dx0a  这是一个非常容易混淆的概念,实际上,可以这样计算,1 位单通道色彩的图像只是黑色和白色两种色彩,而单通道 8 bit 实际相当于显示器定义的 24 bit 或 32 bit ,显示器定义只是简单的色彩通道相加,而不是单通道色彩深度;单通道 16 bit 具有 65536 个灰度级别,和显示器的色彩定义不同,显示器是两个 5 bit 通道加上 1 个 6 bit 通道,色彩还没有达到单通道 8 bit 的图像显示质量。x0dx0ax0dx0a  下图所使用的位深表示 1 bit 、2 bit 、3 bit 以及 8 bit 图像的灰度级别,随着位深的增加,色彩梯度更加平滑,色阈也更加宽广, 8 bit 和 10 bit 也是这样。高位深表示在一个色阈中更多的采样数值,8 bit 提供 256 个采样点,而10 bit 提供1024 个采样点,其色彩精度是8 bit 的4 倍。x0dx0ax0dx0a  也就是说,显示器和图像深度之间是一个单通道色深与颜色数量之间的关系,24 bit 真彩色显示器显示数量是单通道10 bit 色彩数量的六十四分之一。如果按照三原色计算,10 bit 单色彩通道相加为30 bit 色彩,或者说10 亿色。x0dx0ax0dx0a  那么10 bit 的意义何在呢?x0dx0ax0dx0a  举一个很简单的例子,显示器所显示的色彩分辨率是 72 dpi ,足够日常使用了,但在印刷的时候,却还是需要300 dpi 的图像,并且在印刷高质量的印刷品时,可能需要更高的分辨率,比如1200 dpi 。x0dx0ax0dx0a  视频也是如此,虽然肉眼不足以分辨高动态范围的色彩,但在一些专业领域,普遍存在高位深色彩的需要,最明显的应用比如胶片的扫描和输出以及三维动画序列输出。从人眼能分辨的量化来说最高是在8-10bit ,使用14 bit 采样保留胶片制作和图像数据的余量已经完全够了,而 14 bit 的采样数据能够完美地保留到10 bit Cin 、DPX 或者OpenEXR 文件格式当中。x0dx0ax0dx0a  工业光魔开发的10 bit openEXR 图像用于他们的后期特效制作x0dx0ax0dx0a  目前,主流的3D 应用程序和合成系统对于10 bit Cin 、DPX 和OpenEXR 文件格式都非常好。x0dx0ax0dx0a  10 bit 应用x0dx0ax0dx0a  在影视编辑合成领域,数字Betacam 的量化就是10 bit ,而多数数字视频卡的 8 bit 采样输入输出都不能达到数字 Betacam 的色彩精度。x0dx0ax0dx0a  单通道16 bit 目前在视频领域没有被使用,电影胶片的采样也只在10 bit 到14 bit 之间,这是因为,无论设备和计算机处理性能、还有磁盘存储都远远没有达到能够处理 16 bit 数字视频的能力,10 bit 是电影胶片质量和计算机处理性能,分辨率以及磁盘存储之间的一个比较好的平衡点。x0dx0ax0dx0a  下面的例子模拟了8 bit 图像在视频特效处理过程中丢失细节的一些情况。在 Digital Fusion 流程中,给 FastNoise 节点添加 Filter 特效工具的浮雕效果,左图流程中 FastNoise 图像为 8 位深度,右图流程中 FastNoise 为 32 位浮点,其他设置相同。可以看到, Filter 特效工具在不同位深下由于采样细节不同,而得到了两种不同的结果,只是因为使用 8 bit 滤镜的限制导致高亮和暗部图像细节被裁切。x0dx0ax0dx0a  因此,需要更高采样的视频卡最大地保留色彩信息以保证复杂特效的处理和多代复制过程。x0dx0ax0dx0a  高精度在合成工作中的简单应用包括:x0dx0ax0dx0a  1 、 校色x0dx0ax0dx0a  10 bit 提供更精确的选色范围,使校色更加方便。在对10 bit 高动态范围图像进行处理的时候, 10 bit 提供非常宽广的颜色范围,使色彩校准变得更加自由。在下面的例子中,对左边的源图像高进行Gama 调整,可以发现高亮部分仍然保持图像信息。而在普通 8 bit 图像中,高亮部分降低 Gama 值会变为灰色。x0dx0ax0dx0a  2 、 抠像x0dx0ax0dx0a  10 bit 为抠像工作提供更宽广的色度范围,更精确的 Alpha 控制,以及更平滑的 Matter 边缘。下图显示了不同精度的视频在抠像处理中的差别,低精度图像有严重的锯齿,使得抠像很难达到理想的边缘。x0dx0ax0dx0a  3 、 跟踪x0dx0ax0dx0a  对于跟踪解算,跟踪点的设置最为重要,如果图像压缩太高,放大后马赛克太大,或在序列播放中像素点变化太快,就会导致跟踪点无法确定而失败。高质量、高精度图像为跟踪提供更容易辨识的像素和色彩,使跟踪结果更为精确。x0dx0ax0dx0a  10 bit 流程x0dx0ax0dx0a  10 bit YUV 和10 bit RGB 是工业标准,这一标准来自于北美电视电影工程师协会的标准:x0dx0ax0dx0a  SMPTE 259Mx0dx0ax0dx0a  SMPTE 292Mx0dx0ax0dx0a  SMPTE 296Mx0dx0ax0dx0a  SMPTE 372Mx0dx0ax0dx0a  SMPTE 虽然严格地说是美国的标准,但由于其兼容性和影响力,多数 SMPTE 标准成为实际的国际标准。 Sony Digital Betacam 和Panasonic D5 录机都是采用了完全10 bit 标准,新一代的非编卡如 Decklinkx0dx0ax0dx0a  Bluefish444 都采用了10 bit 量化提高采集质量。x0dx0ax0dx0a  板卡x0dx0a  系统x0dx0ax0dx0a  Blackmagic Decklinkx0dx0a  O2 Anole ( 高端 影视包装 合成 / DI )x0dx0ax0dx0a  强氧 CLIPPER7 编辑、合成系统 ;x0dx0ax0dx0a  强氧 FCP ( 苹果编辑、合成系统 )x0dx0ax0dx0a  DVSx0dx0a  Discreet Flint/Flame ( 高端合成 )x0dx0ax0dx0a  Discreet Smoke ( 高端剪辑 )x0dx0ax0dx0a  Discreet Luster ( DI )x0dx0ax0dx0a  目前主要 10 bit 后期制作设备x0dx0ax0dx0a  作为高清的一个重要标准之一,10 bit 似乎与SD 无关,那么对于SD 电视的制作是不是没有一点意义呢?x0dx0ax0dx0a  首先,10 bit 解决了在SD 视频中YUV色彩空间转换为RGB色彩空间时可能出现带状线和轮廓线的问题,这个问题是色彩空间转换时二次取整造成的,而10 bit 能够很好地解决这个问题。x0dx0ax0dx0a  其次,从整个数字制作环境来考虑,10 bit 同样也是很有意义的。从 0 bit 和12 bit 量化的数字摄像机、到 10 bit 量化的数字Betacam 以及最后采集、制作到输出磁带,标清电视已经可以建立完全10 bit 的数字环境。x0dx0ax0dx0a  我们了解,在数字图像技术中,采样本身就是信号损失的过程,越大的采样值使图像更精确,并且能够降低噪波的产生,在需要后期处理的图像中,从校色、抠像到跟踪技术都需要更精细的图像,高采样图像得到更加柔和的边缘,而低采样的图像会得到很严重锯齿和噪波,甚至导致数字处理失败。与目前市场上的非编工作站相比,10 bit 制作环境在对图像信息的保留和多代复制来说具有质的变化。x0dx0ax0dx0a  存储和数据量x0dx0ax0dx0a  一般传送标清无压缩10 bit YUV 文件的数据速率大约是30MB 每秒,所以采集一分钟序列文件将需要1800 MB 或者1.8 GB 存储空间,1 小时将需要180 GB 存储空间,而HD 完全不同,与HD 相比需要大得多的存储空间。x0dx0ax0dx0a  下图列表是10 bit 存储空间的最低要求,由于硬盘使用物理寻道,在计算硬盘系统的数据传输速率时,需要考虑到硬盘速度的波动,应增加一定的安全余量,通过增加硬盘数量可以减小安全量度。x0dx0ax0dx0a  无压缩 10 bit YUV(4:2:2)x0dx0ax0dx0a  标准清晰度x0dx0ax0dx0a  帧尺寸x0dx0a  MB/ 秒x0dx0a  MB/ 分x0dx0a  GB/ 小时x0dx0ax0dx0a  720*486/29.97fpsx0dx0a  27x0dx0a  1 600x0dx0a  94x0dx0ax0dx0a  720*576/25fpsx0dx0a  26x0dx0a  1 582x0dx0a  93x0dx0ax0dx0a  高清晰度x0dx0ax0dx0a  帧尺寸x0dx0a  MB/ 秒x0dx0a  MB/ 分x0dx0a  GB/ 小时x0dx0ax0dx0a  1280*720p/60fpsx0dx0a  141x0dx0a  8 438x0dx0a  494x0dx0ax0dx0a  1920*1080/24PsFx0dx0a  127x0dx0a  7 594x0dx0a  445x0dx0ax0dx0a  1920*1080/50ix0dx0a  132x0dx0a  7 910x0dx0a  463x0dx0ax0dx0a  1920*1080/60ix0dx0a  158x0dx0a  9 482x0dx0a  556x0dx0ax0dx0a  无压缩 10 bit RGB(4:4:4)x0dx0ax0dx0a  高清晰度x0dx0ax0dx0a  帧尺寸x0dx0a  MB/ 秒x0dx0a  MB/ 分x0dx0a  GB/ 小时x0dx0ax0dx0a  1280*720p/60fpsx0dx0a  211x0dx0a  12 656x0dx0a  742x0dx0ax0dx0a  1920*1080/24PsFx0dx0a  190x0dx0a  11 391x0dx0a  667x0dx0ax0dx0a  1920*1080/50ix0dx0a  198x0dx0a  11 865x0dx0a  695x0dx0ax0dx0a  1920*1080/60ix0dx0a  237x0dx0a  14 238x0dx0a  834x0dx0ax0dx0a  BMD 公司 DeckLink 系列采用的编码方式码流列表x0dx0ax0dx0a  采集视频必须实时,需要能够完成长时间采集的输出和写入的处理能力。在短时间采集和长时间采集两者之间执行性能可能很不相同,特别是碎片、磁盘写入通路速度等等,执行性能需要达到引人注目的数据吞吐能力。x0dx0ax0dx0a  单盘对于所有的情况下的数据吞吐量和容量都不足,需要考虑 RAID 。串行 ATA 硬盘空间满时,其速率将下降一半,所以对于SATA 双硬盘阵列,应保证一倍的安全余量,而对 SATA 八硬盘阵列,30 %的安全余量就足够了。SCSI 硬盘阵列的波动性似乎较小,所以对于SCSI 八硬盘阵列, 20 %的安全余量都已经足够了。一般来说,阵列中硬盘越多越好。x0dx0ax0dx0a  结论x0dx0ax0dx0a  由此,我们已经了解到,HD 不仅仅是一个简单分辨率的增加,10 bit 也不仅仅是简单视觉观感的改善,他是整个标准的革新,也是一场电视技术的革命。x0dx0ax0dx0a  “工欲善其事,必先利其器”,在 HD 到来之前,需要掌握新技术做好充分准备,只有在大量技术知识和经验的积累,我们才能保证 HD 电视的顺利制作。