超几何分布

DNA图谱 / 问答 / 标签

超几何分布定义

超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。何分布是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。二项分布定义为:如果事件发生的概率是 p,则不发生的概率 q=1-p,n 次独立重复试验(伯努利试验)中该事件发生次数 X=k 的概率是P(X=k) = C(n,k)(p^k)[(1-p)^(n-k)]。

什么是超几何分布?

问题一:为什么要叫超几何分布这个名字呢?有来历吗 超几何分布和几何分布名字的来源: 几何分布是离绩型概率分布的一种。所描述的是n重伯努利试验成功的概率率。 (所谓的伯努利实验指的是指在一次试验中只考虑两种结果:A发生和A不发生.在相同条件下将伯努利实验重复n次,每次实验A发生的概率都相同,称这样的一系列实验为n重伯努利实验。) 在 n次重伯努利试验中,前n-1次皆失败,第n次才成功的概率就叫做几何分布。 独立重复试验中,试验首次成功所需的试验次数就是服从几何分布。如果用一个事件描述,它就像你向靶子上无规则地乱投,正中耙心的概率。 这个当时的概率抽样事件是不同的。比如,从五个小球中拿一个出来,就像面前挖五个小洞,扔出去看它掉在哪个里面,不管中不中,都能掉一个洞里。而这种,是只有一个目标,但能掉的位置很多,而且不固定。正因为这样,它有当时的那种选号码的分布是不同的。那些类似于点,和线上来选择,而这种类似于面上。 超几何分布是产品抽样检查中用的,其实,它是二项分布的变体。 三项分面是,前面五个洞,扔一次之后,拿出来再扔,还是那样。你所投递的目标,也就耙的面积没有变。但超几何分布是,当你投过一个小球时,如果不对,你所投递那个位置就不会再投中了。这好比投一次,就把那个耙重新换一个,各个相独立。而且,前面那个结果也会带到这个新耙上来。这就像原来投一个平面,现在的新平面既和原来的无关,不又不包含已经投过的那个点,就相当于在多维面中,每个面依次选择一次。你无法像二项分面那样,回到原来那个平面上去投中目标了,因为你试验一次,它就变一次。 这也是,明明二项分布和超几何分布极其相似却迥异的原因。二项分布就像一件事在平面上重复多次。而超几何分布就像,一件事在每个维度上都只做一次。

什么是超几何分布?

超几何分布的期望和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布的特点超几何分布的特点是:超几何分布的模型是不放回抽样;超几何分布中的参数是M,N,n,记作X~H(N,n,M)。超几何分布是统计学上一种离散概率分布。描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=C(M,k)·C(N-M,n-k)/C(N,n),C(a b)为古典概型的组合形式,a为下限,b为上限,此时我们称随机变量X服从超几何分布。

什么是超几何分布?

您好,超几何分布是一种离散概率分布,它描述了从有限总体中抽取固定数量的样本中成功的数量。与二项分布不同,超几何分布不是独立试验的结果,因为每次抽样都会影响到下一次抽样的结果。超几何分布的参数包括总体大小、成功的数量和抽样的数量。它的概率质量函数可以用组合数来表示,其中成功的数量是固定的,而样本中成功的数量是随机的。超几何分布在实际应用中经常用于质量控制、生物统计学和抽样调查等领域。

超几何分布概念

超几何分布是一种描述抽样问题的离散概率分布。在抽样问题中从总体中随机抽取一些元素,每次抽取时都会改变总体的大小,与二项分布不同,超几何分布的随机变量不是独立同分布的,不能用二项分布来描述。超几何分布是概率论与数理统计学中用于描述抽样问题的一种离散概率分布。抽样时从一个有限总体中(取样数量小于或者等于总体量)取出一定数量对象组成样本,这些对象中具有某种特征的数量服从的分布就是超几何分布。特征可以是颜色,形状,大小等等。超几何分布与二项分布类似,二项分布是指在有限次独立重复实验中成功概率一定、每次实验结果只有成功或失败两种可能的分布,超几何分布则考虑的是从有限总体中取出不同个数的点的概率。不同于进行多次独立抽样,超几何分布是不放回抽取,每次抽样后从样本中减去一个对象。从概率分布函数形式上看,超几何分布可以看作是二项分布的一种变形。超几何分布的用途1、抽样问题:超几何分布可以用于从总体中随机地抽取样本,计算样本中包含某种特征的元素个数的概率。例如从一批产品中抽取样本进行检验,以检出次数为超几何分布,可以用于分析产品质量的合格率。2、质量控制问题:在质量控制中,常常需要检查一些产品中特定属性的比例是否符合标准。超几何分布可以用来计算在样本中随机选择n个元素,包含恰好k个具有所求特征的元素的概率。如果这个概率较小,就意味着产品的质量不达标,需要对生产过程进行改进。3、遗传学研究中几对基因的分离和连锁:超几何分布可以用于描述群体中两种不同性状的基因的分离和连锁情况。例如在遗传学研究中,将从一个族群中以随机抽样的方式选择一些个体,研究两种不同基因是否在某些性状上呈现出分离或连锁的现象。

超几何分布有哪几个特征?

超几何分布的期望和方差是EX=nM/N,超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作X-H(n,M,N)。扩展资料:称随机变量X服从超几何分布(hypergeometric distribution)。需要注意的是:(1)超几何分布的模型是不放回抽样。(2)超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。

什么是超几何分布

超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。举例超几何分布中的参数是N,n,M,上述超几何分布记作X~H(N,n,M)。扩展:超几何分布是统计学上一种离散概率分布。统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。统计学用到了大量的数学及其它学科的专业知识,其应用范围几乎覆盖了社会科学和自然科学的各个领域。统计学的英文statistics最早源于现代拉丁文Statisticum Collegium(国会)、意大利文Statista(国民或政治家)以及德文Statistik,最早是由Gottfried Achenwall于1749年使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。十九世纪,统计学在广泛的数据以及资料中探究其意义,并且由John Sinclair引进到英语世界。

什么是超几何分布?

超几何分布公式是P(X=k)=C(M,k)×C(N-M,n-k)/C(N,n)。超几何分布是专业术语,是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。超几何分布是统计学上一种离散概率分布,它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还),称为超几何分布。概括来说九个字:有限总体无放回抽样。超几何分布在生活中最常用的一个例子就是:不放回抽样检查。以不放回抽样检查为例,对这个公式进行解释:有一批产品共有N件,其中有D件不合格产品,在一次抽样检查中随机抽取了n件做检查,抽中k件不合格产品的概率是多少?其中C(N,n)表示从总数量N中抽取n件产品的数目,C(D,k)表示从不合格产品数量D中抽到k件不合格产品的数目,C(N-D,n-k)表示从合格产品数量N-D中抽取n-k合格产品的数目。

超几何分布公式

超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。产品抽样检查中经常遇到一类实际问题,假定在N件产品中有M件不合格品,即不合格率在产品中随机抽n件做检查,发现k件不合格品的概率为,k=0,1,2...min{n,M}。亦可写作(与上式不同的是M可为任意实数,而C表示的组合数M为非负整数)扩展资料如果样本容量n=1,即从有限总体中只抽取一个个案,且恰好抽到符合要求个案的概率,那么超几何分布可以还原成二项分布。如果数据总体的容量N无穷大,也就是将有限总体换成无限总体,此时抽中的个案放回与不放回对于总体中符合要求的个案比例都没有影响,超几何分布也可视为二项分布。在实际应用时,只要数据总体的个案数目是样本容量的10倍以上,即N>10n,就可用二项分布近似描述超几何分布,通过两种概率质量函数计算得到的概率几乎相同。参考资料来源:百度百科-超几何分布
 首页 上一页  1 2