笛卡尔乘积

DNA图谱 / 问答 / 标签

什么叫直积?什么叫笛卡尔乘积?

直积又叫笛卡尔(Descartes)乘积。设( G1,* )、( G2,· )是两个群,有各自的乘法 *、· 和各自的单位元e、l,分别从G1和G2中任取一个元素组成所有可能的有序对,组成的集合记作G1×G2,在上面定义一个运算◎,对于G1×G2中任意两个元素(a1,B1)、(a2,B2),规定(a1,B1) (a2,B2)=(a1 * a2,B1 · B2),这叫做G1和G2的直积,记作{ G1×G2, ◎ },单位元是(e,l)。设A、B是任意两个集合,在集合A中任意取一个元素x,在集合B中任意取一个元素y,组成一个有序对(x,y),把这样的有序对作为新的元素,他们的全体组成的集合称为集合A和集合B的直积,记为A×B,即A×B={(x,y)|x∈A且y∈B}。例如,R×R =〡(x,y)〡x∈R,y∈R〡即为xOy面上全体点的集合,R×R常常记作R^2运算:1.对任意集合A,根据定义有AxΦ =Φ , Φ xA=Φ2.一般地说,笛卡尔积运算不满足交换律,即AxB≠BxA(当A≠Φ ∧B≠Φ∧A≠B时)3.笛卡尔积运算不满足结合律,即(AxB)xC≠Ax(BxC)(当A≠Φ ∧B≠Φ∧C≠Φ时)4.笛卡尔积运算对并和交运算满足分配律,即Ax(B∪C)=(AxB)∪(AxC)(B∪C)xA=(BxA)∪(CxA)Ax(B∩C)=(AxB)∩(AxC)(B∩C)xA=(BxA)∩(CxA)笛卡尔乘积案例给出三个域:D1=SUPERVISOR = { 张清玫,刘逸 }D2=SPECIALITY= {计算机专业,信息专业}D3=POSTGRADUATE = {李勇,刘晨,王敏}则D1,D2,D3的笛卡尔积为D:D=D1×D2×D3 ={(张清玫, 计算机专业, 李勇), (张清玫, 计算机专业, 刘晨),(张清玫, 计算机专业, 王敏), (张清玫, 信息专业, 李勇),(张清玫, 信息专业, 刘晨), (张清玫, 信息专业, 王敏),(刘逸, 计算机专业, 李勇), (刘逸, 计算机专业, 刘晨),(刘逸, 计算机专业, 王敏), (刘逸, 信息专业, 李勇),(刘逸, 信息专业, 刘晨), (刘逸, 信息专业, 王敏)}这样就把D1,D2,D3这三个集合中的每个元素加以对应组合,形成庞大的集合群。本个例子中的D中就会有2X2X3个元素,如果一个集合有1000个元素,有这样3个集合,他们的笛卡尔积所组成的新集合会达到十亿个元素。假若某个集合是无限集,那么新的集合就将是有无限个元素。

Mathematica 中有没有求两个集合笛卡尔乘积的函数啊???请高手指教啊。。。

有吧,元组Tuples[{A, B}]{{a, 1}, {a, 2}, {a, 3}, {b, 1}, {b, 2}, {b, 3}, {c, 1}, {c, 2}, {c, 3}}最后要看你的笛卡儿积最后的形式吧,集合的操作一般都是列表的操作吧。可以这样:A = {a, b, c}; B = {1, 2, 3};CC = Table[{A[[i]], B[[j]]}, {i, 1, Length[A]}, {j, 1, Length[B]}];矩阵形式MatrixForm[CC]网格形式Grid[cc=Flatten[CC, 1], Frame -> All]表格形式TableForm[cc]还是要看最后你想要的形式是什么样子了,还有别的方式,比如Thread[{a, b, c} -> {1, 2, 3}]这个是箭头表示了{a -> 1, b -> 2, 。。。虽然现在只有三个元素,不过总是可以用不同的方式麻烦点去构造。。。

什么叫直积?什么叫笛卡尔乘积?

直积和笛卡尔乘积同义。1、直积又叫笛卡尔(Descartes)乘积。2、设( G1,* )、( G2,· )是两个群,有各自的乘法 *、· 和各自的单位元e、l,分别从G1和G2中任取一个元素组成所有可能的有序对,组成的集合记作G1×G2,在上面定义一个运算◎,对于G1×G2中任意两个元素(a1,B1)、(a2,B2),规定(a1,B1) (a2,B2)=(a1 * a2,B1 · B2),这叫做G1和G2的直积,记作{ G1×G2, ◎ },单位元是(e,l)。3、用两条直线来代替平面就是直和吧 不用知道平面中的每个向量 只要知道这两条直线中的各自的一个向量组成的向量对就行了,向量对就对应了平面中的向量 那两条直线都是向量空间 各自有自己的加法和数乘结构,从他们就可定义向量对的加法和数乘结构 那两条直线的直和就跟平面是同构的。4、有限个空间做笛卡尔积集合,上面定义加法和数乘构成的向量空间叫直和空间。如果是无限个的话就称为直积空间,这时做笛卡尔积要用到选择公理。

笛卡尔乘积

3乘以3 笛卡尔积(3,3)