核糖核酸

DNA图谱 / 问答 / 标签

人类线粒体脱氧核糖核酸单倍群的简介

【英文】human mitochondrial DNA haplogroup【简写】mtDNA可使研究者追溯母系遗传的人类起源,粒线体研究显示人类是起源于非洲地区 。线粒体DNA单倍群用字母A, B, C, CZ, D, E, F, G, H, pre-HV, HV, I, J, pre-JT, JT, K, L0, L1, L2, L3, L4, L5, L6, M, N, O, P, Q, R, S, T, U, UK, V, W, X, Y和Z.来标记。线粒体夏娃则是理论上一切女性的始祖,即人类最近线粒体共同祖先。以下是最常见的线粒体DNA单倍群分划:【撒哈拉-非洲型】L0, L1, L2, L3, L4, L5, L6【西欧亚型】H,T,U,V,X,K,I,J,W【东欧亚型】A, B, C, D, E, F, G,Y【土著美洲人型】A,B,C,D,X【澳大拉西亚型】O,P,Q,S

请问一下 多肽链,氨基酸,DNA,染色体,脱氧核糖核酸之间的准确的关系

氨基酸是蛋白质的基本单位多肽是个多个氨基酸脱水缩合而成脱氧核糖核苷酸 构成DNA的单位 按照碱基互补原则合成DNA染色体的组成成分之一是DNA染色体是DNA-组蛋白复合体的一种特殊存在形式。DNA-组蛋白复合体高度螺旋化,这个状态就叫做染色体了。染色体也有一些特征,例如带纹,大小,着丝粒位置等,是区别物种和其他染色体的标志。遗传中,DNA的作用是表达基因 ,以出现形状,染色体则在细胞分裂的时候出现,起到自由组合和分离的作用。(因为DNA-组蛋白复合体松散状态非常长。。。不利于各自分离。染色体状态,他们就很短很容易配对分离了) 一种平行关系

核酸核酸包括核糖核酸(RNA)和脱氧核糖核酸(DNA) 两种吗?

核酸(nucleicacid)是重要的生物大分子,它的构件分子是核苷酸(nucleotide)。天然存在的核酸可分为:╭脱氧核糖核酸(deoxyribonucleicacid,dna)╰核糖核酸(ribonucleicacid,rna)dna贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础。rna中参与蛋白质合成的有三类:╭转移rna(transferrna,trna)∣核糖体rna(ribosomalrna,rrna)╰信使rna(messengerrna,mrna)20世纪末,发现许多新的具有特殊功能的rna,几乎涉及细胞功能的各个方面。核苷酸可分为:╭核糖核苷酸:是rna的构件分子╰脱氧核糖核苷酸:是dna构件分子。细胞内还有各种游离的核苷酸和核苷酸衍生物,它们具有重要的生理功能。核苷酸由:╭核苷(nucleoside)╰磷酸核苷由:╭碱基(base)╰戊糖碱基(base):构成核苷酸中的碱基是含氮杂环化合物,由嘧啶(pyrimidine)和嘌呤(purine)构成。核酸:╭嘌呤碱:╭腺嘌呤∣╰鸟嘌呤╰嘧啶碱:╭胞嘧啶∣胸腺嘧啶╰尿嘧啶╭dna中含有腺嘌呤、鸟嘌呤和胞嘧啶,胸腺嘧啶主要存在于dna中。∣╰rna中含有腺嘌呤、鸟嘌呤和胞嘧啶,尿嘧啶主要存在于rna中。在某些trna分子中也有胸腺嘧啶,少数几种噬菌体的dna含尿嘧啶而不是胸腺嘧啶。这五种碱基受介质ph的影响出现酮式、烯醇式互变异构体。在dna和rna中,尤其是trna中还有一些含量甚少的碱基,称为稀有碱基(rarebases)稀有碱基种类很多,大多数是甲基化碱基。trna中含稀有碱基高达10%。戊糖:核酸中有两种戊糖dna中为d-2-脱氧核糖(d-2-deoxyribose),rna中则为d-核糖(d-ribose)。在核苷酸中,为了与碱基中的碳原子编号相区别核糖或脱氧核糖中碳原子标以c-1",c-2"等。脱氧核糖与核糖两者的差别只在于脱氧核糖中与2"位碳原子连结的不是羟基而是氢,这一差别使dna在化学上比rna稳定得多。核苷:核苷是戊糖与碱基之间以糖苷键(glycosidicbond)相连接而成。戊糖中c-1"与嘧啶碱的n-1或者与嘌吟碱的n9相连接,戊糖与碱基间的连接键是n-c键,一般称为n-糖苷键。rna中含有稀有碱基,并且还存在异构化的核苷。如在trna和rrna中含有少量假尿嘧啶核苷(用ψ表示),在它的结构中戊糖的c-1不是与尿嘧啶的n-1相连接,而是与尿嘧啶c-5相连接。核苷酸:核苷中的戊糖5"碳原子上羟基被磷酸酯化形成核苷酸。核苷酸分为核糖核苷酸与脱氧核糖核苷酸两大类。依磷酸基团的多少,有一磷酸核苷、二磷酸核苷、三磷酸核苷。核苷酸在体内除构成核酸外,尚有一些游离核苷酸参与物质代谢、能量代谢与代谢调节,如三磷酸腺苷(atp)是体内重要能量载体;三磷酸尿苷参与糖原的合成;三磷酸胞苷参与磷脂的合成;环腺苷酸(camp)和环鸟苷酸(cgmp)作为第二信使,在信号传递过程中起重要作用;核苷酸还参与某些生物活性物质的组成:如尼克酰胺腺嘌呤二核苷酸(nad+),尼克酰胺腺嘌呤二核苷酸磷酸(nadp+)和黄素腺嘌呤二核苷酸(fad)。核酸的分子结构:一、核酸的一级结构核酸是由核苷酸聚合而成的生物大分子。组成dna的脱氧核糖核苷酸主要是damp、dgmp、dcmp和dtmp,组成rna的核糖核苷酸主要是amp、gmp、cmp和ump。核酸中的核苷酸以3",5"磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5"末端与3"末端。5"末端含磷酸基团,3"末端含羟基。核酸链内的前一个核苷酸的3"羟基和下一个核苷酸的5"磷酸形成3",5"磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。

脱氧核糖核酸的主要生成方式是( )。 a.由二磷酸核苷还原

正确答案:A 解析:无论脱氧嘌呤核苷酸,还是脱氧嘧啶核苷酸,都不能由核糖直接还原而成,而主要是以二磷酸核苷的形式还原产生. 很高兴为你解答,希望对你有所帮助,

请问大家核糖核酸RNA的水解反应式是怎么样的?请问有谁知道三磷酸核苷(ntp)的平均分子量吗?

RNA的水解产物是:腺嘌呤、鸟嘌呤、尿嘧啶、胞嘧啶、核糖、磷酸。水解反应过程是先初步水解为核糖核苷酸,再进一步水解为上述六种单体物质。三磷酸核苷也叫核糖核苷三磷酸。由核苷和三个磷酸基团连接而成的化合物。共有四种:腺苷-5′-三磷酸、鸟苷-5′-三磷酸、胞苷-5′-三磷酸和尿苷-5′-三磷酸。三磷酸核苷的平均分子量:507.184。

核糖核酸和核糖核苷酸有什么区别 关于核糖核酸和核糖核苷酸的区别

1、五碳糖不同,核苷酸是由一个磷酸基团和一个五碳糖还有一个含氮碱基组成的,脱氧核苷酸有用的五碳糖是脱氧核糖,核糖核苷酸拥有的五碳糖是核糖,而脱氧核苷酸是脱氧核酸的基本组成单位,核糖核苷酸是核糖核酸的基本组成单位。 2、化学组成不同,核酸可分为核糖核酸(简称RNA)和脱氧核糖核酸(简称DNA)。一句话,核酸包括核糖核酸。 3、修复范围不同,RNA仅存在于细胞质内,而DNA存在于细胞核及细胞质中,服用二者按比例配比的核酸合剂不仅可修复细胞质亦可修复细胞核,从整体上达到修复细胞的目的。而服用由RNA降解而来的核昔酸,最多只能修复部分细胞质。 4、分解产物不同,核酸在人体内可分解成八种核苷酸,这八种核苷酸又可分解成八种核苷及磷酸,这八种核苷又可再进一步分解成五种碱基和戊糖,而由RNA降解而来的核苷酸只能分解成四种核苷及磷酸,这四种核苷再进一步分解只有得到四种碱基和戊糖。 5、构造不同,核糖核酸是长链,它的构造单元是核糖核苷酸。核糖+碱基=核苷;核苷+磷酸=核苷酸;核苷酸聚合=核糖核酸。

脱氧核糖核酸,核糖酸,核苷酸,核糖核苷酸,脱氧核苷酸是什么关系

对的。一个脱氧核苷酸分子由三个分子组成:一分子含氮碱基、一分子脱氧核糖、一分子磷酸。脱氧核苷酸是脱氧核糖核酸的基本单位。核糖核苷酸是核糖核酸的构成物质,由一分子碱基,一分子五碳糖,一分核糖核苷酸子磷酸构成。而四种核糖核酸(RNA)就是由四种核糖核苷酸碱基(腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U))来区别的。当然RNA也是由这四种核糖核苷酸构成的核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位。尿嘧啶是RNA特有的碱基,相当于DNA中的胸腺嘧啶(T)。

生物里面的脱氧核糖核酸,脱氧核苷酸,核糖核苷酸是什么?

生物中核酸是一种大分子的有机物,包括两种:脱氧核糖核酸(DNA),核糖核酸(RNA)核酸的基本组成单位称为:核苷酸,包括两种:脱氧核糖核苷酸、核糖核苷酸;每一个核苷酸都是有三个部分组成的,一分子磷酸,一分子五碳糖,一分子含氮碱基,五碳糖有两种:核糖和脱氧核糖;含氮碱基有5种(A、G、C、T、U);这些是高中生物科的知识,不知道能不能解决你的疑问。顺祝愉快!

核糖核酸和核糖核苷酸是一样的吗

化学成分不一样 高等生物体内的核酸有DNA和RNA两种,它们的基本单位都是核苷酸。核苷酸分成脱氧核糖核苷酸和核糖核苷酸两种。DAN是由脱氧核苷酸行成的脱氧核苷酸链构成的。脱氧核苷酸是由一个磷酸 脱氧核糖(一种五碳糖)含N碱基构成的。脱氧核苷酸因其含N碱基的不同又分成四种:腺嘌呤脱氧核苷酸 鸟嘌呤脱氧核苷酸 胞嘧啶脱氧核苷酸 胸腺嘧啶脱氧核苷酸。RNA是由核糖核苷酸行成的核糖核苷酸链构成的。核糖核苷酸是由一个磷酸 核糖(另一种五碳糖)含N碱基构成的。核糖核苷酸分成腺嘌呤核糖核苷酸 鸟嘌呤核糖核苷酸 胞嘧啶核糖核苷酸 尿嘧啶核糖核苷酸。脱氧核糖核苷酸其实就是因为其五碳糖比核糖核苷酸的五碳糖缺少一个氧分子而得名。 给个最佳采纳吧 谢谢以上回答你满意么?

组成核糖核酸和脱氧核糖核酸的核苷酸种类分别有几种

成脱氧核糖核酸的有:腺嘌呤脱氧核糖核苷酸;胸腺嘧啶脱氧核糖核苷酸;胞嘧啶脱氧核糖核苷酸;鸟嘌呤脱氧核糖核苷酸;组成核糖核酸的有:腺嘌呤核糖核苷酸;尿嘧啶核糖核苷酸;胞嘧啶核糖核苷酸;鸟嘌呤核糖核苷酸;

核糖核酸和核糖核苷酸是一样的吗

DAN是由脱氧核苷酸行成的脱氧核苷酸链构成的。RNA是由核糖核苷酸行成的核糖核苷酸链构成的:腺嘌呤脱氧核苷酸鸟嘌呤脱氧核苷酸胞嘧啶脱氧核苷酸胸腺嘧啶脱氧核苷酸化学成分不一样高等生物体内的核酸有DNA和RNA两种。脱氧核糖核苷酸其实就是因为其五碳糖比核糖核苷酸的五碳糖缺少一个氧分子而得名。核糖核苷酸是由一个磷酸核糖(另一种五碳糖)含N碱基构成的。核糖核苷酸分成腺嘌呤核糖核苷酸鸟嘌呤核糖核苷酸胞嘧啶核糖核苷酸尿嘧啶核糖核苷酸。脱氧核苷酸因其含N碱基的不同又分成四种。脱氧核苷酸是由一个磷酸脱氧核糖(一种五碳糖)含N碱基构成的。核苷酸分成脱氧核糖核苷酸和核糖核苷酸两种,它们的基本单位都是核苷酸。给个最佳采纳吧谢谢以上回答你满意么

核糖、核糖核苷酸、核糖核酸各由什么元素组成?

核糖、核糖核酸都属于糖类由C,H,O组成。核糖核苷酸是核酸基本组成单位,一分子核糖核酸有一分子磷酸,一分子核酸,一分子含氮碱基组成。元素为C,H,O,N,P

酵母核糖核酸的分离和鉴定。实验原理

一、 实验目的1、掌握酵母RNA提取的方法。2、了解核酸的组成。3、掌握鉴定核酸组分的方法和操作。二、 实验原理酵母核酸中RNA含量较多,DNA则少于2%。RNA可溶于碱性溶液,当碱被中和后,可加乙醇使其沉淀,由此即可得到RNA制品。但是用碱液提取的RNA有不同的降解。RNA含有核糖、嘌呤碱、嘧啶碱和磷酸等组分,加入硫酸煮沸可使其水解,从水解液中可以测出上述组分的存在(见实验内容)三、 实验步骤1、 用托盘天平称1g干酵母于研钵中,加入少许石英砂,再加入2ml 0.04mol/LNaOH溶液,在研钵中充分研磨至少5min。2、 再加4ml 0.04mol/LNaOH溶液于匀浆液中,混匀后,将匀浆液转移到大试管中,再用4ml 0.04mol/LNaOH溶液洗涤研钵,洗涤液并入匀浆液中。3、 将大试管小心在沸水浴中加热30min,冷却后倒入离心管中,与另一组同学的离心管在托盘天平上平衡,然后两组的离心管对称地放入离心机中,2000r/min下离心15min。4、 吸取10ml酸性乙醇溶液于小烧杯中,将离心管上清液小心倒入小烧杯中,边倒入边搅拌,直到RNA沉淀完全。5、 将小烧杯中的液体倒入2个干净的离心管,平衡、离心(2000r/min)3min。6、 弃去两离心管上清液,各离心管中加入95%乙醇2.5ml,振荡、混匀、平衡、离心(2000r/min)3min。7、 弃去两离心管上清液,各离心管加入3ml 1.5mol/L硫酸,混匀、倒入同一个大试管中,贴上标签,放在试管架上,备用。8、 将水解液在沸水浴中加热至少10min,使沉淀RNA充分水解。9、 取一支试管A,加入1ml 0.1mol/L硝酸银溶液,再逐滴加入浓氨水至沉淀消失,然后加入1ml水解液放置片刻,观察有无白色嘌呤碱的银化合物沉淀。10、 另取一支试管B,加入水解液1ml,三氯化铁浓盐酸溶液2ml和地衣酚乙醇溶液0.2ml(约4滴),混匀,用试管夹夹好后放到沸水浴中3~5min,注意观察溶液是否变成绿色,说明核糖的存在。11、 再取一支试管C,加入水解液1ml和定磷试剂1ml,混匀,在沸水浴中加热,注意观察溶液颜色的变化,溶液变蓝,说明磷酸存在。注意事项:离心一定要平衡对称放入离心机中,离心机达到设置转速时才能离开。四、 实验结果第6步中离心管底部有不少的RNA沉淀。试管A:出现白色浑浊现象。有嘌呤碱存在。试管B:加热后,出现鲜绿色,且随着加热时间延长,颜色越来越深。有核糖存在。试管C:加热后,出现蓝色,且随着加热时间延长,颜色越来越深。有磷酸存在。说明RNA的组分中有嘌呤碱、核糖、磷酸。分析:本实验选用酵母,是因为酵母中RNA含量较多,且价格便宜。RNA可溶于碱性溶液,所以本实验用0.04mol/LNaOH溶液来提取。RNA不溶于乙醇,可用酸性乙醇使RNA从溶液中沉淀出来,再用乙醇洗涤沉淀,可得到RNA粗制品。研磨和NaOH使酵母细胞破裂,RNA主要存在于细胞质中,所以RNA被释放出来,同时,NaOH使蛋白质变性。加入酸性乙醇,一方面可以中和NaOH,另一方面,使RNA从溶液中沉淀下来。RNA含有核糖、嘌呤碱、嘧啶碱和磷酸等组分,加入硫酸煮沸可使其水解,从水解液中可以测出上述组分的存在。(1)、强酸使核酸分子的有机磷消化为无机磷,使之与钼酸铵结合成磷钼酸铵(黄色沉淀)PO43- + 3NH4+ + 12MoO42- + 24H+ ===(NH4)3PO4.12MoO3.6H2O + 6H2O当有还原剂(如维生素C)存在时,Mo6+被还原成Mo4+,再与试剂中的其它MoO42-结合成Mo(MoO4)2,呈蓝色,称钼蓝。所以试管C中会出现蓝色。(2)、RNA与硫酸共热,生成的核糖进而脱水转化为糠醛,三氯化铁作为催化剂,可与地衣酚反应,生成绿色化合物,所以试管B中出现绿色。(OR苔黑酚)(3)、嘌呤碱可与硝酸银反应产生白色的飘零银化合物沉淀。所以试管A中出现浑浊现象。(4)、不检测嘧啶碱,是因为与嘌呤碱相比,它难以被水解下来,同时它难检测且现象不明显。扩展资料:酵母核酸提取原理提取和制备RNA 的首要问题是选RNA 含量高的材料。微生物是工业上大量生产核酸的原料,其中RNA 的提制以酵母最为理想,因为酵母核酸中主要是RNA(2.67~10.0%),DNA 很少(0.03~0.516%),而且菌体容易收集,RNA 也易于分离。RNA 提制过程首先要使RNA 从细胞中释放,并使它和蛋白质分离,然后将菌体除去。再根据核酸在等电点时溶解度最小的性质,将pH 调至2.0~2.5,使RNA 沉淀,进行离心收集。然后运用RNA 不溶于有机溶剂乙醇的特性,以乙醇洗涤RNA 沉淀。提取RNA 的方法很多,在工业生产上常用的是稀碱法和浓盐法。浓盐法是在加热的条件下,利用高浓度的盐改变细胞膜的透性,使RNA 释放出来,此法易掌握,产品颜色较好。使用浓盐法提出RNA 时应注意掌握温度,避免在20~70℃之间停留时间过长,因为这是磷酸二酯酶和磷酸单酯酶作用的温度范围,会使RNA 因降解而降低提取率。在90~100℃条件下加热可使蛋白质变性,破坏磷酸二酯酶和磷酸单酯酶,有利于RNA 的提取。参考资料:百度百科—酵母核酸

酵母核糖核酸的分离和鉴定。实验原理

一、实验目的1、掌握酵母RNA提取的方法。2、了解核酸的组成。3、掌握鉴定核酸组分的方法和操作。二、实验原理酵母核酸中RNA含量较多,DNA则少于2%。RNA可溶于碱性溶液,当碱被中和后,可加乙醇使其沉淀,由此即可得到RNA制品。但是用碱液提取的RNA有不同的降解。RNA含有核糖、嘌呤碱、嘧啶碱和磷酸等组分,加入硫酸煮沸可使其水解,从水解液中可以测出上述组分的存在(见实验内容)三、实验步骤1、用托盘天平称1g干酵母于研钵中,加入少许石英砂,再加入2ml 0.04mol/LNaOH溶液,在研钵中充分研磨至少5min。2、再加4ml 0.04mol/LNaOH溶液于匀浆液中,混匀后,将匀浆液转移到大试管中,再用4ml 0.04mol/LNaOH溶液洗涤研钵,洗涤液并入匀浆液中。3、将大试管小心在沸水浴中加热30min,冷却后倒入离心管中,与另一组同学的离心管在托盘天平上平衡,然后两组的离心管对称地放入离心机中,2000r/min下离心15min。4、吸取10ml酸性乙醇溶液于小烧杯中,将离心管上清液小心倒入小烧杯中,边倒入边搅拌,直到RNA沉淀完全。5、将小烧杯中的液体倒入2个干净的离心管,平衡、离心(2000r/min)3min。6、弃去两离心管上清液,各离心管中加入95%乙醇2.5ml,振荡、混匀、平衡、离心(2000r/min)3min。7、弃去两离心管上清液,各离心管加入3ml 1.5mol/L硫酸,混匀、倒入同一个大试管中,贴上标签,放在试管架上,备用。8、将水解液在沸水浴中加热至少10min,使沉淀RNA充分水解。9、取一支试管A,加入1ml 0.1mol/L硝酸银溶液,再逐滴加入浓氨水至沉淀消失,然后加入1ml水解液放置片刻,观察有无白色嘌呤碱的银化合物沉淀。10、另取一支试管B,加入水解液1ml,三氯化铁浓盐酸溶液2ml和地衣酚乙醇溶液0.2ml(约4滴),混匀,用试管夹夹好后放到沸水浴中3~5min,注意观察溶液是否变成绿色,说明核糖的存在。11、再取一支试管C,加入水解液1ml和定磷试剂1ml,混匀,在沸水浴中加热,注意观察溶液颜色的变化,溶液变蓝,说明磷酸存在。注意事项:离心一定要平衡对称放入离心机中,离心机达到设置转速时才能离开。四、实验结果第6步中离心管底部有不少的RNA沉淀。试管A:出现白色浑浊现象。有嘌呤碱存在。试管B:加热后,出现鲜绿色,且随着加热时间延长,颜色越来越深。有核糖存在。试管C:加热后,出现蓝色,且随着加热时间延长,颜色越来越深。有磷酸存在。说明RNA的组分中有嘌呤碱、核糖、磷酸。分析:本实验选用酵母,是因为酵母中RNA含量较多,且价格便宜。RNA可溶于碱性溶液,所以本实验用0.04mol/LNaOH溶液来提取。RNA不溶于乙醇,可用酸性乙醇使RNA从溶液中沉淀出来,再用乙醇洗涤沉淀,可得到RNA粗制品。研磨和NaOH使酵母细胞破裂,RNA主要存在于细胞质中,所以RNA被释放出来,同时,NaOH使蛋白质变性。加入酸性乙醇,一方面可以中和NaOH,另一方面,使RNA从溶液中沉淀下来。RNA含有核糖、嘌呤碱、嘧啶碱和磷酸等组分,加入硫酸煮沸可使其水解,从水解液中可以测出上述组分的存在。(1)、强酸使核酸分子的有机磷消化为无机磷,使之与钼酸铵结合成磷钼酸铵(黄色沉淀)PO43- + 3NH4+ + 12MoO42- + 24H+ ===(NH4)3PO4.12MoO3.6H2O + 6H2O当有还原剂(如维生素C)存在时,Mo6+被还原成Mo4+,再与试剂中的其它MoO42-结合成Mo(MoO4)2,呈蓝色,称钼蓝。所以试管C中会出现蓝色。(2)、RNA与硫酸共热,生成的核糖进而脱水转化为糠醛,三氯化铁作为催化剂,可与地衣酚反应,生成绿色化合物,所以试管B中出现绿色。(OR苔黑酚)(3)、嘌呤碱可与硝酸银反应产生白色的飘零银化合物沉淀。所以试管A中出现浑浊现象。(4)、不检测嘧啶碱,是因为与嘌呤碱相比,它难以被水解下来,同时它难检测且现象不明显。扩展资料:酵母核酸提取原理提取和制备RNA 的首要问题是选RNA 含量高的材料。微生物是工业上大量生产核酸的原料,其中RNA 的提制以酵母最为理想,因为酵母核酸中主要是RNA(2.67~10.0%),DNA 很少(0.03~0.516%),而且菌体容易收集,RNA 也易于分离。RNA 提制过程首先要使RNA 从细胞中释放,并使它和蛋白质分离,然后将菌体除去。再根据核酸在等电点时溶解度最小的性质,将pH 调至2.0~2.5,使RNA 沉淀,进行离心收集。然后运用RNA 不溶于有机溶剂乙醇的特性,以乙醇洗涤RNA 沉淀。提取RNA 的方法很多,在工业生产上常用的是稀碱法和浓盐法。浓盐法是在加热的条件下,利用高浓度的盐改变细胞膜的透性,使RNA 释放出来,此法易掌握,产品颜色较好。使用浓盐法提出RNA 时应注意掌握温度,避免在20~70℃之间停留时间过长,因为这是磷酸二酯酶和磷酸单酯酶作用的温度范围,会使RNA 因降解而降低提取率。在90~100℃条件下加热可使蛋白质变性,破坏磷酸二酯酶和磷酸单酯酶,有利于RNA 的提取。参考资料:百度百科—酵母核酸

DNA和RNA有什么区别呢?同样是遗传物质,脱氧核糖核酸,和核糖核酸

一:分布不同,即DNA主要在细胞核内,RNA主要在细胞质中; 二:数量不同,DNA是由两条脱氧核苷酸链组成,RNA只有一条核糖核苷酸链组成! 三:它们的核糖不同! DNA是双螺旋结构,RNA是单螺旋结构的. 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链.分子量比DNA小,但在大多数细胞中比DNA丰富.RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA).这3类RNA分子都是单链,但具有不同的分子量、结构和功能. 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA.近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒.类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA).hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程).自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进.目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸. DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分.遗传信息的绝大部分贮存在DNA分子中. 分布和功能 原核细胞的染色体是一个长DNA分子.真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子.不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起.DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中.DNA病毒的遗传物质也是DNA. 结构:DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链.大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基.在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%.在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶.40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和.一般用几个层次描绘DNA的结构. 一级结构 DNA的一级结构即是其碱基序列.基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中.1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖.自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立.如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等.现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来. 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程.经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表. 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近.Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名.这种构型适合多核苷酸链的嘌呤嘧啶交替区.1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA.

在“脱氧核糖核酸”中, “脱氧”是什么意思?

脱氧核糖是一种有机物,化学式为C4H9O3CHO (C5H10O4)。一种存在于一切细胞内的戊糖衍生物,是分子中氢原子数与氧原子数不符合2:1的糖类。天然存在的是D-2-脱氧核糖,比D-核糖在2-位少一个氧原子。D-2-脱氧核糖在晶体中以五元环半缩醛存在,有α-型和β-型两种异构体。它是多核苷酸脱氧核糖核酸的一个组成成分。在DNA中,脱氧核糖磷酸分子由磷酸二酯键连接成链,构成多核苷酸纤维的骨架。中文名脱氧核糖外文名Deoxyribose别名D-脱氧核糖、2-脱氧-D-核糖、胸腺糖化学式C4H9O3CHO (C5H10O4)CAS登录号533-67-5快速导航性能 合成定义中文名称:脱氧核糖别名:D-脱氧核糖、2-脱氧-D-核糖、胸腺糖英文名称:Deoxyribose分子式:C4H9O3CHO (C5H10O4)CAS: 533-67-5MDL: MFCD00135904EINECS: 208-573-0[1]脱氧核糖(醛糖)是重要的五碳糖之一DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌,噬菌体等。有的DNA为环形,有的DNA为线形。不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G≡C)。D-2-脱氧核糖是核糖的一个2位羟基被氢取代的衍生物 。它在细胞中作为脱氧核糖核酸DNA的组分,十分重要。最早由胸腺核苷中析离得到。性能α-D-2-脱氧核呋喃糖的熔点78~82℃,β-异构体熔点96~98℃ ,D-2-脱氧核糖与苯胺形成结晶的半缩醛 ,熔点 175~177℃。它常用于D-2-脱氧核糖的分离提纯和贮存,需要时将半缩醛胺与苯甲醛反应,即得2-脱氧核糖。2-脱氧核糖可进行多种特殊颜色反应,并可进行定量测定。常用的方法是2-脱氧核糖在硫酸和乙酸存在下与二苯胺反应得蓝色,与硫酸亚铁反应也得蓝色 ,称为凯勒-基连尼反应。D-2-脱氧核糖很易与乙醇-HCl作用形成糖苷,这种糖苷很易水解。合成脱氧核糖一般由脱氧核糖核酸制备。生物体从核糖核苷酸合成脱氧核苷酸的过程是被核糖核苷酸还原酶催化的。已发现有三种不同的核糖核苷酸还原酶,以真核生物中的非血红素铁(Ⅲ)酶为例,该反应机理为:首先,酶半胱氨酸残基的-S,夺取C3的氢,生成C3的自由基。接着C2的羟基被一对半胱氨酸残基之一的-SH质子化,碱夺取C2的羟基质子,电子转移形成C2的C=O双键,C3的水离去,C2的自由基转移到C3上,形成一个新的在C3的自由基。这时上面一对半胱氨酸残基的另一个-SH向C3的自由基转移一个氢原子,自身与另一个-S-形成二硫键,但其中一个硫原子仍为自由基负离子。然后该硫负离子对C2的酮基进行还原,生成的氧负被质子化,形成C2的自由基。该自由基再从第一步中生成的半胱氨酸残基-SH夺取一个氢原子,得到脱氧核苷酸的同时,使酶半胱氨酸的-S。得到再生,进行下一个循环。[2]生物体主要用脱氧核糖而非核糖的一个原因是,如果五元糖的2"-位有一个羟基(核糖),在碱的作用下,这个羟基生成的醇负离子很容易进攻与3"-碳相连的磷原子,使另一个糖的5"-氧负离去,从而破坏核酸的聚合结构。这便是RNA比DNA容易在碱存在下水解的缘故。因此生物体宁可多花能量合成脱氧核苷,也要保证DNA的稳定性。该脱氧化过程也使环的构象从C3"-内式变为C2"-内式。[3]

世界上首先人工合成蛋白质和核糖核酸的国家是哪国?

中国。从1958年开始,中国科学院上海生物化学研究所、中国科学院上海有机化学研究所和北京大学化学系三个单位联合,以王应睐为首,由龚岳亭、邹承鲁、杜雨苍、季爱雪、邢其毅、汪猷、徐杰诚等人共同组成一个协作组,在前人对胰岛素结构和肽链合成方法研究的基础上,开始探索用化学方法合成胰岛素。在1965年9月17日完成了结晶牛胰岛素的全合成。经过严格鉴定,它的结构、生物活力、物理化学性质、结晶形状都和天然的牛胰岛素完全一样。这是世界上第一个人工合成的蛋白质。这项成果获1982年中国自然科学一等奖。王应睐因此被著名英国学者李约瑟(Joseph Needham,1900-1995)誉为“中国生物化学的奠基人之一”。从1968年起,我国科学工作者开始人工合成酵母丙氨酸转移核糖核酸的研究。这种核糖核酸由76个核苷酸组成,其中除了4种常见的核苷酸外,还有7种稀有的核苷酸。经过千百次的探寻和摸索,科学工作者终于自行制备出了11种核苷酸、近10种核糖核酸工具酶和有关的化学试剂等,并采取有机化学和酶促合成的方法,把核苷酸连接成小片段,然后分别接成含有35和41个核苷酸的两个半分子。1981年11月20日完成了最后的合成,以后又进行了五次重复合成试验,均获得了成功。中国科学院上海生化研究所王德宝等,利用化学和酶促相结合的方法,先合成了几十个长度为2~8核苷酸的寡核苷酸,然后用T4RNA连接酶连接成6个大片段(长度为9~19核苷酸),再接成两个半分子(长度分别为35和41核苷酸),最后于1981年经氢键配对,T4RNA连接酶连接,在世界上首次人工合成了76核苷酸的整分子酵母丙氨酸tRNA。扩展资料:1、科学意义酵母丙氨酸转移核糖核酸含有11种核苷酸(4种常见的和7种修饰的核苷酸),具有完全的生物活性,既能接受丙氨酸,又能将所携带的丙氨酸参入到蛋白质的合成体系中。由于tRNA在蛋白质生物合成中有着重要的作用,而用合成方法改变tRNA的结构以观察对其功能的影响,又是研究tRNA结构与功能的最直接手段,所以酵母丙氨酸tRNA人工合成的成功,在科学上特别在生命起源的研究上有重大意义。2、化学结构牛胰岛素是一种蛋白质分子,它的化学结构于1955年由英国的科学家桑格测定、阐明:牛胰岛素分子是一条由21个氨基酸组成的A链和另一条由30个氨基酸组成的B链,通过两对二硫链连结而成的一个双链分子,而且A链本身还有一对二硫键。 以后,科学家们又陆续测定了不同生物来源的胰岛素,发现与桑格首次确定的牛胰岛素的化学结构大体相同。人胰岛素也是如此,只有:A链的第8位由苏氨酸代替丙氨酸、第10位由异亮氨酸代替缬氨酸;B链的第30位由苏氨酸代替丙氨酸。参考资料:百度百科-结晶牛胰岛素参考资料:百度百科-人工合成牛胰岛素参考资料:百度百科-酵母丙氨酸转移核糖核酸

据法国《科学与未来》杂志报道,英国科学家最近在实验中合成了与脱氧核糖核酸(DNA)分子结构相近的苏糖核

D

据法国《科学与未来》杂志报道,美国科学家最近在实验室中合成了与脱氧核糖核酸(DNA)分子结构相近的苏

A.同系物中官能团的数目相同,葡萄糖中含5个-OH,二者不互为同系物,故A错误;B.苏糖与甲酸甲酯的结构简式均为CH2O,则含碳的质量分数相同,故B正确;C.含-OH,可发生取代反应,含-CHO,可发生加成反应,故C正确;D.含-CHO,可发生银镜反应,故D正确;故选A.

据法国《科学与未来》杂志报道,美国科学家在实验室中合成了与脱氧核糖核酸(DNA)分子结构相近的苏糖核

A.同系物中官能团的数目相同,葡萄糖中含5个-OH,二者不互为同系物,故A错误;B.苏糖与甲酸甲酯的结构简式均为CH 2 O,则含碳的质量分数相同,故B正确;C.含-OH,可发生取代反应,含-CHO,可发生加成反应,故C正确;D.含-CHO,可与Cu(OH) 2 反应,故D正确;故选A.

世界上首先人工合成蛋白质和核糖核酸的国家是哪国?

中国。从1958年开始,中国科学院上海生物化学研究所、中国科学院上海有机化学研究所和北京大学化学系三个单位联合,以王应睐为首,由龚岳亭、邹承鲁、杜雨苍、季爱雪、邢其毅、汪猷、徐杰诚等人共同组成一个协作组,在前人对胰岛素结构和肽链合成方法研究的基础上,开始探索用化学方法合成胰岛素。在1965年9月17日完成了结晶牛胰岛素的全合成。经过严格鉴定,它的结构、生物活力、物理化学性质、结晶形状都和天然的牛胰岛素完全一样。这是世界上第一个人工合成的蛋白质。这项成果获1982年中国自然科学一等奖。王应睐因此被著名英国学者李约瑟(Joseph Needham,1900-1995)誉为“中国生物化学的奠基人之一”。从1968年起,我国科学工作者开始人工合成酵母丙氨酸转移核糖核酸的研究。这种核糖核酸由76个核苷酸组成,其中除了4种常见的核苷酸外,还有7种稀有的核苷酸。经过千百次的探寻和摸索,科学工作者终于自行制备出了11种核苷酸、近10种核糖核酸工具酶和有关的化学试剂等,并采取有机化学和酶促合成的方法,把核苷酸连接成小片段,然后分别接成含有35和41个核苷酸的两个半分子。1981年11月20日完成了最后的合成,以后又进行了五次重复合成试验,均获得了成功。中国科学院上海生化研究所王德宝等,利用化学和酶促相结合的方法,先合成了几十个长度为2~8核苷酸的寡核苷酸,然后用T4RNA连接酶连接成6个大片段(长度为9~19核苷酸),再接成两个半分子(长度分别为35和41核苷酸),最后于1981年经氢键配对,T4RNA连接酶连接,在世界上首次人工合成了76核苷酸的整分子酵母丙氨酸tRNA。扩展资料:1、科学意义酵母丙氨酸转移核糖核酸含有11种核苷酸(4种常见的和7种修饰的核苷酸),具有完全的生物活性,既能接受丙氨酸,又能将所携带的丙氨酸参入到蛋白质的合成体系中。由于tRNA在蛋白质生物合成中有着重要的作用,而用合成方法改变tRNA的结构以观察对其功能的影响,又是研究tRNA结构与功能的最直接手段,所以酵母丙氨酸tRNA人工合成的成功,在科学上特别在生命起源的研究上有重大意义。2、化学结构牛胰岛素是一种蛋白质分子,它的化学结构于1955年由英国的科学家桑格测定、阐明:牛胰岛素分子是一条由21个氨基酸组成的A链和另一条由30个氨基酸组成的B链,通过两对二硫链连结而成的一个双链分子,而且A链本身还有一对二硫键。 以后,科学家们又陆续测定了不同生物来源的胰岛素,发现与桑格首次确定的牛胰岛素的化学结构大体相同。人胰岛素也是如此,只有:A链的第8位由苏氨酸代替丙氨酸、第10位由异亮氨酸代替缬氨酸;B链的第30位由苏氨酸代替丙氨酸。参考资料:百度百科-结晶牛胰岛素参考资料:百度百科-人工合成牛胰岛素参考资料:百度百科-酵母丙氨酸转移核糖核酸

据法国《科学与未来》杂志报道,美国科学家在实验室中合成了与脱氧核糖核酸(DNA)分子结构相近的苏糖核

A.同系物中官能团的数目相同,葡萄糖中含5个-OH,二者不互为同系物,故A错误;B.苏糖与甲酸甲酯的结构简式均为CH2O,则含碳的质量分数相同,故B正确;C.含-OH,可发生取代反应,含-CHO,可发生加成反应,故C正确;D.含-CHO,可与Cu(OH)2反应,故D正确;故选A.

核糖核酸的三个种类主要是

D

核糖核酸是如何形成的

核糖核酸的形成即RNA链的合成,其过程是RNA按5·----3·方向合成,以DNA双链中的反义链为模版,在RNA聚合酶催化下,以4种三磷酸核苷为原料,根据碱基配对原则,各核苷酸间通过形成磷酸二酯键相连,不需要引物的参与,合成的RNA带有与DNA编码链相同的序列。转录的过程包括模版识别,转录起始,通过启动子及转录的延伸和终止。

高中生物 生物核酸 核糖核酸 区别!

是核酸分为1.脱氧核糖核酸(DNA)2.核糖核酸(RNA)其中脱氧核糖核苷酸是1的单体(由4种碱基ATCG和一个磷酸以及脱氧核糖组成)核糖核苷酸是2的单体(由4种碱基ATCU和一个磷酸以及核糖组成)而核苷酸一共8种,含氮碱基5种1、核酸是一种生物大分子,包括DNA(脱氧核糖核酸)和RNA(核糖核酸)两大类。2、(核糖核苷酸)是RNA的基本单位;(脱氧核糖核苷酸)是DNA的基本单位。3、脱氧核糖(分子式:C5H10N4)是组成脱氧核糖核苷酸小分子之一。4、脱氧核糖核苷酸由一分子C5H10N4、一分子磷酸、一分子含N碱基组成。5、cDNA是环状DNA.6、RNA有三种:mRNA------信使RNA;tRNA------转移RNA;还有一种核糖体RNA------rRNA

核糖核酸检测步骤

1、核酸提取使用硅胶柱离心、磁性硅胶颗粒分离方法以及自动化仪器等商品化试剂或设备并按说明书操作。提取RNA时应注意防止RNA降解。DNA应置于-20℃保存,RNA和需长期保存的DNA应置于-80℃保存。2、逆转录合成cDNA。逆转录cDNA合成反应需使用逆转录引物、dNTPs、逆转录酶、RNA酶抑制剂、DTT、缓冲液和适量无RNA/DNA酶的超纯水以及RNA模板。在扩增仪或水浴箱中,在规定的温度和时间下进行逆转录反应。3、PCR扩增反应PCR反应需使用引物、dNTPs、DNA聚合酶、缓冲液、和适量无RNA/DNA酶超纯水、以及模板。在扩增仪中,按照设定的程序进行扩增。使用二次扩增的套式PCR扩增方法。4、扩增产物定性分析;扩增产物常用分析方法是琼脂糖凝胶电泳法,与分子量标准比较,判断扩增片段是否在预期的分子量范围内。其它扩增产物分析方法还有限制性内切酶酶切分析、特异性探针杂交分析以及DNA序列分析等。5、结果判定和完成报告单:每一次检测需同时做两个阳性对照、两个阴性对照,只有阳性对照扩增出预期的片段、阴性对照没有扩增出任何片段、双份平行样品结果一致的情况下实验才成立,可以作出核酸阳性或阴性反应结果的判定。扩展资料:检测新型冠状病毒特异序列的方法最常见的是荧光定量PCR。因PCR反应模板仅为DNA,因此在进行PCR反应前,应将新型冠状病毒核酸逆转录为DNA。在PCR反应体系中,包含一对特异性引物以及一个Taqman探针,该探针为一段特异性寡核苷酸序列,两端分别标记了报告荧光基团和淬灭荧光基团。探针完整时,报告基团发射的荧光信号被淬灭基团吸收;如反应体系存在靶序列,PCR反应时探针与模板结合,DNA聚合酶沿模板利用酶的外切酶活性将探针酶切降解,报告基团与淬灭基团分离,发出荧光。每扩增一条DNA链,就有一个荧光分子产生。荧光定量PCR仪能够监测出荧光到达预先设定阈值的循环数与病毒核酸浓度有关,病毒核酸浓度越高, Ct值越小。不同生产企业的产品会依据自身产品的性能确定本产品的阳性判断值。参考资料:百度百科——核酸检测法

核糖、核糖核酸、核糖体的组成元素相同吗?

你好!不一样。核糖由CHO构成。核糖核酸由CHONP. 核糖体因为是由蛋白质和RNA组成所以含有CHONP

什么食物中含有核糖核酸?

解放军总医院营养科刘英华:蛋白质是构成生命的基本物质,核糖核酸起着指导蛋白质合成的作用,它可以改善氨基酸代谢,调节机体免疫功能,有增强记忆的作用。含核糖核酸较多的食物有瘦肉、动物内脏以及肉汤、肉汁、肉馅、鱼类、酵母等。此外,贝壳类食物、干豆类、菠菜、竹笋、蘑菇等也含有丰富的核酸。含核酸很少的食物包括谷类(大米、玉米面、精白面粉、蛋糕、饼干等)、乳类及其制品、蛋类、蔬果类、油脂类以及各种调味品、茶、咖啡、巧克力、泡菜等。---本版编辑

核糖核酸的作用是什么

核糖核酸有三大类,它们的作用分别是:信使RNA:在基因表达时起到携带遗传信息的作用。把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表过程中的遗传信息传递过程。转运RNA:在基因表达的过程中起到识别相应氨基酸的作用。核糖体RNA:是组成成核糖体的主要成分。核糖核酸,缩写名为RNA,RNA是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息传递过程中的桥梁。tRNA的功能是携带符合要求的氨基酸,以mRNA为模板,合成蛋白质。在某些病毒中,是以RNA作为遗传物质的,所以它的作用储存遗传信息。RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U尿嘧啶取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。

核糖核酸各由什么元素组成

核糖含CHO三种核酸含有C、H、O、N、P5种元素

高二生物:核酸与核糖核酸的差别

脱氧核糖核酸脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。事实上,原核细胞(无细胞核)的DNA存在于细胞质中,而真核生物的DNA存在于细胞核中,DNA片断并不像人们通常想像的那样,是单链的分子。严格的说,DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。这种核酸高聚物是由核苷酸链接成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成。DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链。分子链的开头部分称为3"端而结尾部分称为5"端,这些数字表示脱氧核糖中的碳原子编号。DNA的理化结构DNA是大分子高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度。DNA对紫外线有吸收作用,当核酸变性时,吸光值升高;当变性核酸可复性时,吸光值又会恢复到原来水平。温度、有机溶剂、酸碱度、尿素、酰胺等试剂都可以引起DNA分子变性,即使得DNA双键间的氢键断裂,双螺旋结构解开。DNA及其结构的发现早在19世纪,人们就发现了核苷酸的化学成分。1943年,奥斯瓦德·西奥多·艾弗里证明了DNA携带有遗传信息,并认为DNA可能就是基因。詹姆斯·沃森和佛朗西斯·克里克《脱氧核糖核酸的结构》的论文。1957年进一步的研究揭示了DNA制造蛋白质的原理。分子生物学诞生。1962年,沃森、威尔金斯、克里克赢得诺贝尔医学奖。1988年,沃森被任命为人类基因组计划的负责人。核糖核酸核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA(转运RNA), rRNA(核糖体RNA), mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。在病毒方面,很多病毒只以RNA作为其唯一的遗传信息载体(有别于细胞生物普遍用双链DNA作载体)。1982年以来,研究表明,不少RNA,如I、II型内含子,RNase P,HDV,核糖体大亚基RNA等等有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶(ribozyme)。20世纪90年代以来,又发现了RNAi(RNA interference,RNA干扰)等等现象,证明RNA在基因表达调控中起到重要作用。在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。核糖核酸 Ribonucleic Acid (RNA) 本品能促进肝细胞蛋白质合成,改善氨基酸代谢,降低血清谷丙转氨酶,改善肝炎患者血清蛋白电泳,并能调节人体免疫功能,促使病变肝细胞恢复正常。临床用于急慢性肝炎,肝硬化的治疗。肌内注射,6mg/次,以生理盐水稀释,隔日1次,3个月为1疗程。

核糖核酸详细资料大全

核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA中的T。 基本介绍 中文名 :核糖核酸 外文名 :Ribonucleic Acid 别名 :RNA 构成 :磷酸,u200b核糖和碱基 碱基 :A、G、C、U 本质 :长链状分子 原则 :碱基互补配对原则 过程 :转录 翻译 基因表达调控等 分类,mRNA,tRNA,rRNA,miRNA,小分子RNA,端粒酶RNA,反义RNA,核酶,非编码RNA,细胞中的分布,组成结构,干扰机制,作用,转录,翻译, 分类 核糖核酸 RNA是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息向表型转化过程中的桥梁。在此过程中,转运RNA(Transfer RNA,tRNA)是携带与三联体密码子对应的胺基酸残基与正在进行翻译的mRNA结合,而后核糖体RNA(Ribosomal RNA,rRNA)将各个胺基酸残基通过肽键连线成肽链进而构成蛋白质分子。 RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U尿嘧啶取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。 mRNA 1958年,克里克提出RNA是遗传信息的中间载体这一假设。提出该假设的部分依据是DNA位于真核细胞的细胞核,而蛋白质分子是在细胞质中被合成的。这一事实提示,存在某种物质携带并传递遗传信息。克里克注意到,核糖体含有RNA并提出核糖体RNA(rRNA)是遗传信息的传递载体。由于rRNA是核糖体的组成部分,不可能离开核糖体。克里克假设每个核糖体以其自身的rRNA能够一遍又一遍的重复生产同一种蛋白质。 Francois Jacob及同事提出了另一种假设,认为是非特异性的核糖体翻译一种叫做信使的不稳定的RNA。信使是独立的RNA分子,可将遗传信息从基因传递至核糖体。 1961年Jacob与Sydney Brenner和Matthew Meselson一起发表了关于信使假说的证据。实验发现,T2噬菌体感染大肠杆菌后,其RNA分子与宿主核糖体结合,合成噬菌体蛋白。表明核糖体合成的蛋白种类取决于与之结合的mRNA而非rRNA。其他研究者亦鉴定出一种更好的信使——一组与核糖体瞬时结合的不稳定RNA。与rRNA不同,mRNA碱基的组成与T2噬菌体DNA相似,支持了mRNA而非rRNA是信息分子的假设。 现在我们已经证实,mRNA功能是在蛋白分子合成过程中,作为“信使”分子,将基因组DNA的遗传信息(即碱基排列顺序)传递至核糖体,使核糖体能够以其碱基排列顺序掺入互补配对的tRNA分子,进而合成正确的肽链,实现遗传信息向蛋白质分子的转化。 在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneousnuclearRNA,hnRNA)。 原核生物mRNA一般5′端有一段不翻译区,称前导区,3′端有一段不翻译区,中间是蛋白质的编码区,一般编码几种蛋白质。真核生物mRNA(细胞质中的)一般由5′端帽子结构、5′端不翻译区、翻译区(编码区)、3′端不翻译区和3′端聚腺苷酸尾巴构成。 tRNA 又称转运RNA。如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂。但是,合成蛋白质的原材料——20种胺基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,必须用一种特殊的RNA——转移RNA(transferRNA,tRNA)把胺基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码,依次准确地将它携带的胺基酸,掺入正在合成的肽链中,实现肽链的延伸。所有tRNA的3"端都有相同的三个碱基(CCA),该位点是tRNA负载胺基酸残基的靶位。胺基酸通过其分子的羧基与tRNA末端腺苷的2"-OH或3"-OH间的酯键附着到tRNA上。每种胺基酸可与1-4种tRNA相结合,已知的tRNA的种类在40种以上。 tRNA是分子最小的RNA,其分子量平均约为27000(25000~30000),由70到90个核苷酸组成。而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶。这类稀有碱基一般是在转录后,经过特殊的修饰而成的。 tRNA 大多数tRNA由七十几至九十几个核苷酸组成,参与蛋白质的合成。分子量为25000~30000,沉降常数约为4S(个别tRNA的沉降常数为3S,含63个核苷酸)。曾用名有联接RNA、可溶性RNA、pH5RNA等。一种tRNA只能携带一种胺基酸,如丙氨酸tRNA只携带丙氨酸,但一种胺基酸可被不止一种tRNA携带。同一生物中,携带同一种胺基酸的不同tRNA称作“同功受体tRNA”。组成蛋白质的胺基酸有20种,根据密码子摆动学说至少需要31种tRNA,但在脊椎动物中只存在22种tRNA。 1969年以来,研究了来自各种不同生物,如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能摺叠成三叶草形二级结构(图3-23),而且都具有如下的共性: ①5"末端具有G(大部分)或C。 ②3"末端都以CCA的顺序终结。 ③有一个富有鸟嘌呤的环。 ④有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon),反密码子可以与mRNA链上互补的密码子配对。 ⑤有一个胸腺嘧啶环。 rRNA 又称核糖体RNA(ribosomalRNA),rRNA是组成核糖体的主要成分。核糖体是合成蛋白质的工厂。在大肠杆菌中,rRNA量占细胞总RNA量的75%~85%,而tRNA占15%,mRNA仅占3~5%。 rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome)。大肠杆菌核糖体的30S亚基由1分子沉降系数为16S的rRNA和21个核糖体蛋白组成。50S亚基则由2个rRNA(23S+5S)和34个核糖体蛋白组成。真核生物的核糖体更加复杂,由1个以上的rRNA分子和更多的蛋白质组成。如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。 rRNA S为沉降系数(sedimentationcoefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例。5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸。而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、1900和4700个核苷酸。rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域。在双链区,碱基因氢键相连,表现为发夹式螺旋。 rRNA在蛋白质合成中的功能尚未完全明了。但16S的rRNA3"端有一段核苷酸序列与mRNA的前导序列是互补的,这可能有助于mRNA与核糖体的结合。 miRNA MicroRNAs(miRNAs)是在真核生物中发现的一类内源性的具有调控功能的非编码RNA,其大小长约20~25个核苷酸。成熟的miRNAs是由较长的初级转录物,经过一系列核酸酶的剪下加工而产生的,随后组装进RNA诱导的沉默复合体,通过碱基互补配对的方式识别靶mRNA,并根据互补程度的不同,指导沉默复合体降解靶mRNA,或者阻遏靶mRNA的翻译。最近的研究表明miRNA参与各种各样的调节途径,包括发育、病毒防御、造血过程、器官形成、细胞增殖和凋亡、脂肪代谢等等。 miRNA 除了上述几种主要的RNA外还有一些其他RNA: 小分子RNA ( *** all RNA) 存在于真核生物细胞核和细胞质中,它们的长度为100到300个碱基(酵母中最长的约1000个碱基)。多的每个细胞中可含有105 ~106 个这种RNA分子,少的则不可直接检测到, 它们由RNA聚合酶Ⅱ或RNA聚合酶Ⅲ所合成, 其中某些像mRNA一样可被加帽。 *** all RNA 主要有两种类型的小分子RNA: 一类是snRNA( *** all nuclear RNA),存在于细胞核中; 另一类是scRNA( *** all cyla *** ic RNA),存在于细胞质中。 小分子RNA通常与蛋白质组成复合物,在细胞的生命活动中起重要的作用。 ①snRNA: snRNA ( *** allnuclearRNA,小核RNA)。它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分。发现有五种snRNA,其长度在哺乳动物中约为100~215个核苷酸。snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用。某些snRNPs和剪接作用密切相关,它们分别与供体和受体剪接位点以及分支顺序相互补。 其中位于核仁内的snRNA称为核小体RNA( *** all uncleolar RNA),参与rRNA前体的加工及核糖体亚基的组装。 ②scRNA: scRNA( *** all cyla *** ic RNA,细胞质小RNA)主要位于细胞质内,种类较多,参与蛋白质的合成和运输。SRP颗粒就是一种由一个7SRNA和六种蛋白质组成的核糖核蛋白体颗粒,主要功能是识别信号肽,并将核糖体引导到内质网。 端粒酶RNA 端粒酶RNA(Telomerase RNA Component,TERC),是真核生物细胞中发现的一种非编码RNA。TERC是端粒酶的一部分,在端粒延伸过程中,TERC作为端粒继续延伸的模板,由端粒酶催化实现端粒的延长。 端粒酶是一种核糖核蛋白聚合酶,其通过向端粒末端添加端粒重复序列TTAGGG维持端粒的长度。该酶由一个具有反转录功能的蛋白分子(TERT)和TERC组成。端粒酶参与细胞衰老调控。在真核生物出生后的正常体细胞中,端粒酶处于抑制状态。染色体复制过程中,由于模板DNA起始端被RNA引物先占据,新生链随之延伸。引物RNA脱落后,其空缺处的模板DNA无法再度复制成双链。因此,每复制一次,末端DNA就缩短若干个端粒重复序列,即出现真核细胞分裂中的“末端复制问题”染色体每复制一次,端粒即发生缩短。一旦端粒消耗殆尽,细胞将会立即激活凋亡机制,即细胞走向凋亡。端粒酶表达的失调,将导致肿瘤的发生。 反义RNA 反义RNA(antisenseRNA,asRNA),是一类能够与mRNA互补配对的单链RNA分子。细胞中引入反义RNA,可与mRNA发生互补配对,抑制mRNA的翻译。另外,asRNA还可用于RNA干扰(RNA interference,RNAi)中起始双链RNA的生成。它参与基因表达的调控。 上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA等并不携带翻译为蛋白质的信息,其终产物就是RNA。 核酶 另外还有一种特别的RNA(其分类与上述RNA分类无关)——核酶 核酶(ribozyme)一词用于描述具有催化活性的RNA,即化学本质是核糖核酸(RNA),却具有酶的催化功能。核酶的作用底物可以是不同的分子,有些作用底物就是同一RNA分子中的某些部位。核酶的功能很多,有的能够切割RNA,有的能够切割DNA,有些还具有RNA 连线酶、磷酸酶等活性。与蛋白质酶相比,核酶的催化效率较低,是一种较为原始的催化酶。 大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应,参与RNA自身剪下、加工过程,也具有特异性,甚至具有Km值。 其发现是 科学家大肠杆菌 RNa seP蛋白在切去部分后,在体外高浓度镁离子的情况下,留下的 RNA 部分(MIRNA)具有酶活性 。 非编码RNA 【新型生命暗物质】非编码RNA(核糖核酸),被称为生命体中“暗物质”。日前,中国科学技术大学单革教授实验室发现一类新型环状非编码RNA,并揭示了此类非编码RNA的功能和功能机理。成果发表在国际知名杂志《自然·结构和分子生物学》上。非编码RNA是一大类不编码蛋白质,但在细胞中起著调控作用的RNA分子。 正如宇宙间存在着许多既看不到也感觉不到的“暗物质”“暗能量”一样,在生命体这个“小宇宙”中,也存在这样的神秘“暗物质”—非编码RNA。 越来越多的证据表明,一系列重大疾病的发生发展与非编码RNA调控失衡相关。 环形RNA分子最近数年才引起研究人员注意,而此前的研究主要集中于线形RNA分子。单革教授实验室发现的新型环状非编码RNA,被命名为外显子-内含子环形RNA。在论文中,他们还对这类新型环状非编码RNA为何会成为环形而不是线形分子进行了研究,发现成环序列两端经常会有互补的重复序列存在。 细胞中的分布 左图是用吡罗红甲基绿染色液染色的蟾蜍血涂片。 蟾蜍血涂片(用吡罗红甲基绿染色液染色) 由于DNA和RNA在化学组成与分子结构上存在一定的差别,因而对不同的染料有着不同的反应。所以,可以根据这一反应差异,来研究细胞中DNA与RNA的分布情况,RNA主要分布在细胞质中。 DNA和RNA两种核酸分子都是多聚体,但是它们的聚合程度有所不同。DNA聚合程度高,易于甲基绿结合;RNA聚合程度低易于吡罗红结合。所以当吡罗红与甲基绿混在一起作为染料时吡罗红与核仁、细胞质中的RNA选择性结合,从而显示红色;甲基绿与染色质中的DNA选择性结合,从而显示绿色。综上所述,RNA对吡罗红的亲和力大,被染成红色;DNA对甲基绿的亲和力大,被染成绿色。 组成结构 与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。 RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。 在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA(转运RNA),rRNA(核糖体RNA),mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和胺基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。 在病毒方面,很多病毒只以RNA作为其唯一的遗传信息载体(有别于细胞生物普遍用双链DNA作载体)。 1982年以来,研究表明,不少RNA,如I、II型内含子,RNaseP,HDV,核糖体大亚基RNA等等有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶(ribozyme)。 核糖核酸 20世纪90年代以来,又发现了RNAi(RNAinterference,RNA干扰)等等现象,证明RNA在基因表达调控中起到重要作用。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 干扰机制 1990年,曾有科学家给矮牵牛花插入一种催生红色素的基因,希望能够让花朵更鲜艳。但意想不到的事发生了:矮牵牛花完全褪色,花瓣变成了白色!科学界对此感到极度困惑。 核糖核酸 类似的谜团,直到美国科学家安德鲁·法尔和克雷格·梅洛发现核糖核酸 RNA(核糖核酸)干扰机制才得到科学的解释。两位科学家也正是因为1998年做出的这一发现而荣获2006年的诺贝尔生理学或医学奖。 上世纪八十年代,托马斯.R.切赫博士在研究RNA的成熟体结构中,发现了可以自我拼接的RNA催化作用(核糖核苷酸酶),并依此荣获1989年诺贝尔化学奖。经过多年的深度研究,切赫博士在DNA基因遗传过程中,发现了有趣的mRNA(信使RNA)和tRNA(转运RNA),从而揭开了遗传基因导致出生缺陷、大脑发育、营养吸收、细胞变异以及健康长寿等一系列人类生命密码的神秘面纱。 mRNA(信使RNA)人类的遗传信息主要贮存于DNA的碱基序列中,不过DNA并不直接决定蛋白质的合成。而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体。切赫博士把这种起著传递遗传信息作用的特殊RNA。称为信使RNA(messenger RNA,mRNA)。 简单的说,mRNA就是为了完成基因表达过程中的遗传信息传递。 令人遗憾的是,在遗传转录形成的过程中,仅有25%序列经加工成为mRNA,其余的均呈现非编码序列的前体mRNA形式,这些形势的mRNA在分子大小上差别很大,是导致出生缺陷、大脑发育、营养吸收、细胞变异以及健康长寿等一系列问题的基因遗传因素的关键所在。 切赫博士历经20年升华钻研,成果破译了mRNA编码序列信息奥秘,通过特殊的生物干预手段,最佳化mRNA的序列加工,筛查和剔除基因排列诱发基因和细胞突变的序列,不仅确保mRNA的序列加工的有效与增强,而且从根本上避免不良基因传递或传递序列问题引发细胞突变等一系列遗传问题的发生。 mRNA编码序列信息的成果破译,奠定了OMG配方盐技术的可行性基础。 法尔和梅洛的发现 科学家在矮牵牛花实验中所观察到的奇怪现象,其实是因为生物体内某种特定基因“沉默”了。导致基因“沉默”的机制就是RNA干扰机制。 此前,RNA分子只是被当作从DNA(脱氧核糖核酸)到蛋白质的“中间人”、将遗传信息从“蓝图”传到“工人”手中的“信使”。但法尔和梅洛的研究让人们认识到,RNA作用不可小视,它可以使特定基因开启、关闭、更活跃或更不活跃,从而影响生物的体型和发育等。 诺贝尔奖评审委员会在评价法尔和梅洛的研究成果时说:“他们的发现能解释许多令人困惑、相互矛盾的实验观察结果,并揭示了控制遗传信息流动的自然机制。这开启了一个新的研究领域。” siRNA 的作用原理 RNA干涉(RNAi)在实验室中是一种强大的实验工具,利用具有同源性的双链RNA(dsRNA)诱导序列特异的目标基因的沉寂,迅速阻断基因活性。siRNA在RNA沉寂通道中起中心作用,是对特定信使RNA(mRNA)进行降解的指导要素。siRNA是RNAi途径中的中间产物,是RNAi发挥效应所必需的因子。siRNA的形成主要由Dicer和Rde-1调控完成。由于RNA 病毒入侵、转座子转录、基因组中反向重复序列转录等原因,细胞中出现了dsRNA,Rde-1(RNAi缺陷基因-1)编码的蛋白质识别外源dsRNA,当dsRNA达到一定量的时候,Rde-1引导dsRNA与Rde-1编码的Dicer(Dicer是一种RNaseIII 活性核酸内切酶,具有四个结构域:Argonaute家族的PAZ结构域,III型RNA酶活性区域,dsRNA结合区域以及DEAH/DEXHRNA解旋酶活性区)结合,形成酶-dsRNA复合体。在Dicer酶的作用下,细胞中的单链靶mRNA(与dsRNA具有同源序列)与dsRNA的正义链互换,原来dsRNA中的正义链被mRNA代替而从酶-dsRNA复合物中释放出来,然后,在ATP的参与下,细胞中存在的一种RNA诱导的沉默复合体RNA-induced silencing complex (RISC,由核酸内切酶、核酸外切酶、解旋酶等构成,作用是对靶mRNA进行识别和切割)利用结合在其上的核酸内切酶的活性来切割dsRNA上处于原来正义链位置的靶mRNA分子中与dsRNA反义链互补的区域,形成21-23nt的dsRNA小片段,这些小片段即为siRNA。RNAi干涉的关键步骤是组装RISC和合成介导特异性反应的siRNA蛋白。siRNA并入RISC中,然后与靶标基因编码区或UTR区完全配对,降解靶标基因,因此说siRNA只降解与其序列互补配对的mRNA。其调控的机制是通过互补配对而沉默相应靶位基因的表达,所以是一种典型的负调控机制。siRNA识别靶序列是有高度特异性的,因为降解首先在相对于siRNA来说的中央位置发生,所以这些中央的碱基位点就显得极为重要,一旦发生错配就会严重抑制RNAi的效应。 核糖核酸 RNA干扰技术的前景 RNA干扰技术不仅是研究基因功能的一种强大工具,不久的未来,这种技术也许能用来直接从源头上让致病基因“沉默”,以治疗癌症甚至爱滋病,在农业上也将大有可为。从这个角度来说,“沉默”真的是金。美国哈佛医学院研究人员已用动物实验表明,利用RNA干扰技术可治愈实验鼠的肝炎。 尽管尚有一些难题阻碍著RNA干扰技术的发展,但科学界普遍对这一新兴的生物工程技术寄予厚望。这也是诺贝尔奖评审委员会为什么不坚持研究成果要经过数十年实践验证的“惯例”,而破格为法尔和梅洛颁奖的原因之一。 诺贝尔生理学或医学奖评审委员会主席戈兰·汉松说:“我们为一种基本机制的发现颁奖。这种机制已被全世界的科学家证明是正确的,是给它发个诺贝尔奖的时候了。” 作用 在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA、rRNA,以及mRNA。mRNA是依据DNA序列转录而成的蛋白质合成模板;tRNA是mRNA上遗传密码的识别者和胺基酸的转运者;rRNA是组成核糖体的部分,而核糖体是蛋白质合成的机械。 细胞中还有许多种类和功能不一的小型RNA,像是组成剪接体(spliceosome)的snRNA,负责rRNA成型的snoRNA,以及参与RNAi作用的miRNA与siRNA等,可调节基因表达。而其他如I、II型内含子、RNase P、HDV、核糖体RNA等等都有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶。 转录 转录是指DNA的双链解开,使RNA聚合酶可依照DNA上的碱基序列合成相对应之信使RNA(mRNA)的过程. 在人体需要酵素或是蛋白质时,都会需要进行此过程,才能借由信使mRNA,将密码子带出核模外. 好让核糖体进一步的利用信使RNA(mRNA)来翻译,合成所需之蛋白质u2027 DNA的碱基有A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、T(胸腺嘧啶),而RNA之碱基无T(胸腺嘧啶), 取而代之的是U(尿嘧啶),也就是有A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶). 在DNA中,A与T以两条氢键连结,G与C以三条氢键连结,但RNA只有U而无T, 所以在转录时DNA上的若是A,mRNA就会是U,也就是取代原本T的位置u2027 如下图所示,右边DNA的一股碱基序列若为‘AAACCG",而左方的DNA因配对而就会成‘TTTGGC", 但因RNA无T这个碱基,只有U,因此合成出来的mRNA对应之序列就为‘UUUGGC" 因为DNA太大,无法出入核膜(细胞核的膜),所以才需要有mRNA的出现,让mRNA可穿过核孔(核膜上的孔洞) 到达细胞质进行翻译(核糖体合成蛋白质的过程),因此,转录对不管是人类还是动物甚至是细菌 都是不可或缺的重要反应。 翻译 游离在细胞质中的各种胺基酸,就以mRNA为模板合成具有一定胺基酸顺序的蛋白质,这一过程叫翻译。 首先胺基酸与tRNA结合生成氨酰-tRNA 然后是多肽链的起始: mRNA从核到胞质,在起始因子和Mg 的作用下,小亚基与mRNA的起始部位结合,甲硫氨酰(蛋氨酸)—tRNA的反密码子,识别mRNA上的起始密码AuG(mRNA)互补结合,接着大亚基也结合上去,核糖体上一次可容纳二个密码子。(原核生物中为甲酰甲硫氨酰) 再是多肽链的延长: 第二个密码对应的氨酰基—tRNA进入核糖体的A位,也称受位,密码与反密码的氢键,互补结合。在大亚基上的多肽链转移酶(转肽酶)作用下,供位(P位)的tRNA携带的胺基酸转移到A位的胺基酸后并与之形成肽键(—CO-NH—),tRNA脱离P位并离开P位,重新进入胞质,同时,核糖体沿mRNA往前移动,新的密码又处于核糖体的A位,与之对应的新氨基酰-tRNA又入A位,转肽键把二肽挂于此胺基酸后形成三肽,ribosome又往前移动,由此渐进渐进,如此反复循环,就使mRNA上的核苷酸顺序转变为胺基酸的排列顺序。 最后是多肽链的终止与释放: 肽链的延长不是无限止的。当mRNA上出现终止密码时(UGA、U胺基酸和UGA),就无对应的胺基酸运入核糖体,肽链的合成停止,而被终止因子识别,进入A位,抑制转肽酶作用,使多肽链与tRNA之间水解脱下,顺着大亚基中央管全部释放出,离开核糖体。同时大小亚基与mRNA分离,可再与mRNA起始密码处结合,也可游离于胞质中或被降解,mRNA也可被降解。

核糖核苷酸的简称是核糖核酸吗?

核苷酸为核糖核苷酸和脱氧核糖核苷酸的统称,是核酸的基本组成单位核糖核苷酸是核糖核酸(rna)的基本组成单位脱氧核糖核苷酸是脱氧核糖核酸(dna)的基本组成单位而,核酸分为核糖核酸(rna)和脱氧核糖核酸(dna)就是这么个关系,其实你捋顺了就不难了

核糖核酸有哪几种核苷酸组成的?

腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。它们一起组成脱氧核糖核酸,通常称DNA,DNA携带有合成RNA和蛋白质所必需的遗传信息,是生物体发育和正常运作必不可少的生物大分子。DNA 分子结构中,两条多脱氧核苷酸链围绕一个共同的中心轴盘绕,构成双螺旋结构。脱氧核糖-磷酸链在螺旋结构的外面,碱基朝向里面。两条多脱氧核苷酸链反向互补,通过碱基间的氢键形成的碱基配对相连,形成相当稳定的组合。扩展资料:RNA是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息向表型转化过程中的桥梁。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA中的T。通常从血液、皮肤、唾液、头发和其它组织和体液中分离DNA,以识别罪犯或犯罪行为。常用的遗传指纹识别。该技术比较重复DNA的可变区段的长度,例如短串联重复序列和小卫星,它们在个体之间有不同。参考资料:百度百科--脱氧核糖核酸参考资料:百度百科--核糖核酸

核糖核酸是什么

核糖核酸是核酸的一类,英文缩写为RNA,存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。核糖核酸(RNA)是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息向表型转化过程中的桥梁。 RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U尿嘧啶取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。 在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA、rRNA,以及mRNA。mRNA是依据DNA序列转录而成的蛋白质合成模板;tRNA是mRNA上遗传密码的识别者和氨基酸的转运者;rRNA是组成核糖体的部分,而核糖体是蛋白质合成的机械。

核糖核酸(RNA)是核酸吗?

相同点:这两类核苷酸都有一份五碳糖,一份碱基和一份磷酸组成。不同点:1、基本单位不同,DNA为脱氧核苷酸,RNA为核糖核苷酸。2、五碳糖分类不同,DNA的五碳糖为脱氧核糖,RNA的五碳糖为核糖。3、碱基对不同,DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶,RNA的为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶。扩展资料:组成结构:与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA,rRNA,mRNA。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。在病毒方面,很多病毒只以RNA作为其唯一的遗传信息载体。研究表明,不少RNA,如I、II型内含子,RNaseP,HDV,核糖体大亚基RNA等等有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶。在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA和小核RNA。hnRNA是mRNA的前体。snRNA参与hnRNA的剪接。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。参考资料来源:百度百科-脱氧核糖核酸参考资料来源:百度百科-核糖核酸

【核糖核酸】的意思是什么?【核糖核酸】是什么意思?

【核糖核酸】的意思是什么?【核糖核酸】是什么意思? 【核糖核酸】的意思是: 分子中含有—核糖的一类核酸,存在于细胞以及某些病毒和噬菌体中。细胞内的核糖核酸,按其功能和性质的不同,可分为转移核糖核酸、信使核糖核酸和核糖体核糖核酸三种。★「核糖核酸」在《现代汉语词典》第527页★「核糖核酸」在《汉语辞海》的解释★「核糖核酸」在《重编国语辞典》的解释 核糖核酸是什么意思 分子中含有—核糖的一类核酸,存在于细胞以及某些病毒和噬菌体中。细胞内的核糖核酸,按其功能和性质的不同,可分为转移核糖核酸、信使核糖核酸和核糖体核糖核酸三种。 ★「核糖核酸」在《现代汉语词典》第527页 ★「核糖核酸」在《汉语辞海》的解释 ★「核糖核酸」在《重编国语辞典》的解释 核糖核酸的英语单词1.rna2.rna ribonucleic acid3.ribonucleotide4.ribonucleic acid,rna5.ribonucleic acid (rna)6.rna (ribonucleic acid)7.plant nucleic acid8.ribose nucleic acid 用核糖核酸造句 1.方法分别用脱氧核糖核酸(NA)断电泳、镜观察细胞凋亡,浸条法测定蛋白尿和血尿。2.核糖与脱氧核糖分别是核糖核酸与脱氧核酸(DNA)的结构成分。3.罗莎琳德?富兰克林研究的是脱氧核糖核酸分子的形状。4.生物中存在着两大类核酸:脱氧核糖酸和核糖核酸。5.脱氧核糖核酸重复顺序6.已知它们为脱氧核糖核酸链,是细胞的遗传物质。7.由去氧核糖核酸合成的讯息核糖核酸分子主导著蛋白质的合成。8.转移核糖核酸>

核糖核酸简介

目录 1 拼音 2 英文参考 3 核糖核酸概述 4 核糖核酸的分类 5 核糖核酸研究进展 6 核糖核酸说明书 6.1 药品名称 6.2 英文名称 6.3 核糖核酸的别名 6.4 分类 6.5 剂型 6.6 核糖核酸的药理作用 6.7 核糖核酸的药代动力学 6.8 核糖核酸的适应证 6.9 核糖核酸的禁忌证 6.10 注意事项 6.11 核糖核酸的不良反应 6.12 核糖核酸的用法用量 6.13 核糖核酸与其它药物的相互作用 6.14 专家点评 附: 1 核糖核酸相关药物 * 核糖核酸相关药品说明书其它版本 1 拼音 hé táng hé suān 2 英文参考 ribonucleic acid [21世纪英汉汉英双向词典] ribosomal RNA [湘雅医学专业词典] pla *** onucleic acid [朗道汉英字典] 3 核糖核酸概述 核糖核酸(ribonucleic acid,RNA )是核酸的一类。因分子中含有核糖而得名。存在于一切细胞的细胞质和细胞核中,也存在于大多数已知的植物病毒和部分动物病毒以及一些噬菌体中。核糖核酸是核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。 4 核糖核酸的分类 绝大多数生物体的RNA有以下三种: (1)信使RNA,简写为mRNA。分子为一条多核苷酸单链。功能是从细胞核内的DNA分子上转录出遗传信息,并带到细胞质中的核糖体上,以作为控制蛋白质生物合成的模板。 (2)转移RNA,简写为tRNA。整个分子呈三叶草状。一切tRNA分子都能识别mRNA分子的核苷酸顺序,靠反密码子与mRNA上的密码子“咬合”,使被转运的特定氨基酸在mRNA上落座,按模板的指令合成一定的多肽链。 (3)核糖体RNA,简写作rRNA。是核糖体的组成成分,核糖体是蛋白质生物合成的主要细胞器。在RNA病毒中,只含RNA,则RNA是遗传物质。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。 5 核糖核酸研究进展 1981年我国科学家在世界上首次人工合成了与天然分子完全相同的、由76个核苷酸组成的核糖核酸——酵母丙氨酸转移核糖核酸。许多研究表明RNA的重要性不亚于DNA。如反转录酶可将病毒RNA反转录成前病毒,并整合到宿主细胞DNA分子上,已发现癌基因多与致癌病毒有关,这对癌变机理的探讨有重要价值;再如RNA重组与重组RNA复制技术,可迅速得到大量的和不易用其他方法获得的mRNA,其应用前景不亚于DNA重组技术。 自1965年酵母丙氨酸tRNA的堿基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。 大多数天然RNA分子是一条单链,其许多区域自身发生回折,如可以配对的堿基相遇(A与U,G与C配对),则彼此用氢键连接,构成如DNA那样的双螺旋;不能配对的堿基或突出成环,或以单链的形式连接不成环的区域。对tRNA的二级结构和三级结构了解得较多。细胞的主要RNA在核中由RNA聚合酶催化从基因转录生成,初级转录本经加工后转运到细胞质中发挥作用。线粒体和叶绿体的RNA则由细胞器DNA直接转录产生。有的RNA病毒的RNA依赖逆转录酶合成,另外一些RNA病毒的RNA则由RNA复制酶催化合成。 RNA在强酸下水解产生堿基、磷酸和戊糖。它也可在室温下被稀堿水解成核苷酸,在实验室中常利用这个反应水解RNA样品或除去其他样品中的RNA杂质。 D核糖与浓盐酸和苔黑酚(甲基间苯二酚)共热产生绿色,可利用这个颜色反应定量测定RNA。 6 核糖核酸说明书 6.1 药品名称 核糖核酸 6.2 英文名称 Ribonucleic Acid 6.3 核糖核酸的别名 人肝冻干核糖核酸;Acidum Ribonu Cleinu Cleicum;Acidum Ribonuclesis;RNA;Yeast Nucleic Acid 6.4 分类 消化系统药物 > 肝脏疾病辅助治疗药物 6.5 剂型 1.注射用核糖核酸:每支6mg,10mg; 2.注射剂:10mg(2ml)。 6.6 核糖核酸的药理作用 核糖核酸系从猪或小牛肝脏中提取而得的一种物质,能促进肝细胞合成蛋白质的功能,改善氨基酸代谢,调节机体免疫功能,促使病变肝脏细胞恢复正常。实验室检查证明,核糖核酸能促使肝癌相关抗原甲胎蛋白转阴,降低血清丙氨酸氨基转移氨基转移酶(ALT),改善肝炎患者的血白蛋白电泳。临床试用于306例慢性肝炎及肝硬化的患者,治疗一个疗程,总有效率为70.3%。对慢性迁延性肝炎有效率为83.3%,慢性活动性肝炎有效率为74%。此外,核糖核酸为核苷酸的多聚体,存在于活组织的细胞质及细胞核中,因此,除用于肝病外也可用于治疗智力低下,改善老年痴呆的记忆障碍。 6.7 核糖核酸的药代动力学 (尚不明确) 6.8 核糖核酸的适应证 适用于慢性迁延性肝炎、慢性活动性肝炎及肝硬化的治疗,也可用于亚急性重型肝炎和肝癌的辅助治疗。 6.9 核糖核酸的禁忌证 (尚不明确) 6.10 注意事项 偶有过敏反应,以低剂量给药为好。 6.11 核糖核酸的不良反应 核糖核酸无明显不良反应。 6.12 核糖核酸的用法用量 1.注射剂以氯化钠注射剂稀释,每次6mg,隔日1次,3个月为1疗程。 2.静脉注射:每次30mg,每天1次,或每次50mg,隔日1次,或遵医嘱。 6.13 药物相互作用 (尚不明确) 6.14 专家点评 促使有病的肝细胞恢复正常。适合用于慢性迁延性肝炎和慢性活动性肝炎,肝硬化患者。此外核糖核酸为核苷酸的多聚体,除用于肝病外也可用于治疗智力低下,改善老年痴呆的记忆障碍。 核糖核酸相关药物 核糖核酸 名称:RibonucleicAcid别名:人肝冻干核糖核酸;AcidumRibonuCleinuCl... 人肝冻干核糖核酸 名称:RibonucleicAcid别名:人肝冻干核糖核酸;AcidumRibonuCleinuCl... 核糖核酸染色 onucleicacidstaining概述:核糖核酸在蛋白质合成中起重要作用,与细胞的分裂增生能力... mRNA AMessengerRNA(mRNA)——信使核糖核酸基本信息携带遗传信息,在蛋白质合成时充当模板的... 转录

生物核糖核酸和脱氧核糖核酸的碱基一样吗?

不一样,两类核糖核酸中的碱基有三种是一样的,分别是:腺嘌呤、鸟嘌呤、胞嘧啶,还有两种不一样,在核糖核酸中是脲嘧啶,在脱氧核糖核酸中是胸腺嘧啶。就是说,核糖核酸与脱氧核糖核酸中的碱基共5种,其中3种一样,2种不一样。在所有的细胞生物中都是这样,玉米细胞中也是。

外切酶和核糖核酸内切酶的异同?

1、分类不一样:外切酶按作用的特性差异可以将其分为单链的核酸外切酶和双链的核酸外切酶。核酸内切酶分为DNaseⅠ和DNaseⅡ。2、应用不一样:外切酶可以用来测定基因组DNA中一些特殊的间隔序列和编码序列的位置。核酸内切酶可用于分析病原微生物DNA,通过酶切消化DNA,来了解到病原微生物遗传物质的一定特性,对于动物病毒尤其是对疫苗毒、野毒及变异毒株的检测具有重要的意义。3、概念不一样:外切酶是一类能从多核苷酸链的一端开始按序催化水解3、5-磷酸二酯键,降解核苷酸的酶。核酸内切酶是在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶。扩展资料:核酸内切酶的影响及因素:限制性酶切反应速度与底物的性质有很大的关系,底物的单双链结构、分子的构型、DNA链中酶识别位点的数目以及位点附近的序列等都影响着酶的催化反应。共价闭合环(超螺旋构型)DNA比其相应的线性分子的酶解作用要慢,要使超螺旋构型DNA彻底降解,需要的酶量就大。对于DNA-RNA杂合双链的酶切作用,Molloy等用EcoRI等8种酶切时,结果其 DNA链可被切割,但酶用量比双链DNA大20-50倍。部分限制性酶还可切割单链DNA,如 Hae Ⅲ等。核酸内切酶的应用:用限制性内切酶分析(Restriction EndonucleaseAnalysis REA)病原微生物DNA已成为一种常用的方法,通过酶切消化DNA,然后电泳染色呈现大小不一的片段,对这些片段的迁移率及数量进行分析,便可了解到病原微生物遗传物质的一定特性。在此基础上采用双酶切割或杂交等方法,则可推测出片段的排列顺序和酶切位点,从而推断出DNA间存在的相似性或差异性,对于动物病毒尤其是对疫苗毒、野毒及变异毒株的检测具有重要的意义。参考资料:百度百科-外切酶参考资料:百度百科-核酸内切酶

核糖核酸酶H的定义

所有类型细胞均含有不止一种核糖核酸酶H。核糖核酸酶H(RNaseH)催化DNA-RNA杂合体的RNA部分的核内降解,产生不同链长带3"羟基和5"磷酸末端的寡核糖核酸。

核糖核酸酶P的介绍

核糖核酸酶 P 是一种核糖核蛋白, 含有一个单链RNA分子, 长度为375个碱基, 结合一个相对分子质量为20kDa的多肽(119个氨基酸残基)。RNA具有催化切割tRNA的能力,蛋白质则起间接的作用,可能是维持RNA结构的稳定。该酶广泛存在于原核生物和真核生物(核仁、叶绿体和线粒体)中,也参与核糖体RNA的加工。

牛核糖核酸酶的基本组成单位

牛胰核糖核酸酶的基本组成单位是由124个氨基酸组成包含8个带巯基(-SH)的半胱氨酸,每两个巯基脱氢后形成1对二硫键(-S-S-)。科学硏究发现,在牛胰核糖核酸酶溶液中加入或去除尿素和β-巯基乙醇会发生如图所示的转化

核糖核酸酶A的用途

核糖核酸酶A(RNase A) 来源:牛胰腺.RNase A是一种被详细研究和具有广泛应用的核酸内切酶.RNase A 对RNA有水解作用,但对DNA则不起作用.RNase A在C端和U端残基处专一地催化RNA的核糖部分3"-与5" -磷酸二酯键的裂开,形成具有 2",3"-环磷酸衍生物寡聚核苷酸.如 pG-pG-pC-pA-pG 被切割产生pG-pG-pCp 和 A-pG.可以用来去除DNA制品中的污染RNA. RNase I是RNase A的另一种叫法,核糖核酸酶(牛胰)/RNA酶/核糖核酸酶A(牛胰)/核糖核酸酶I /RNASE A/ RNase I/RNASE都是一种东西. 主要用于生化研究,测定核酸的结构   · RNase 保护检测   · 去除非特异结合的RNA   · 分析RNA 序列   · 水解蛋白样品中的RNA   · 纯化DNA   此外,它具有显著的细胞毒性,可以杀灭许多肿瘤细胞系,可以抑制导致艾滋病的HIV-1病毒在细胞中的复制,可以治疗乙肝.   (1)从DNA-RNA或RNA—RNA杂合体中去除未杂合的RNA区.   (2)确定DNA或RNA中单碱基突变的位置(Myers et al.1985,Winter et al.1985). 在此方法中,RNA-DNA或RNA-RNA杂合体上的单碱基错配可被RNA酶A识别并切割.利用含SP5或T7噬菌体启动子的质粒,在体外合成与野生型DNA或RNA互补的32p标记RNA探针,然后与待检含单碱基置换的DNA或RNA退火, 所产生的单碱基错配可用RNA酶A切割,通过凝胶电泳分析切割产物的大小即可确定错配的位置.在所有各种可能的单碱基错配中,大约50%可用此法确定.

DNA提取时,加核糖核酸酶的目的?

降解RNA,避免对提取的RNA造成污染。

为了充分还原核糖核酸酶,除了应用β-巯基乙醇外,还需()

为了充分还原核糖核酸酶,除了应用β-巯基乙醇外,还需() A.过甲酸 B.尿素 C.调pH到碱性 D.调pH到酸性 E.加热到50℃ 正确答案:B

脱氧核糖核酸酶Ⅰdnaasei是水解酶类吗

脱氧核糖核酸酶Ⅰ是一种核酸内切酶,你说的水解酶为一类可以将组成DNA分子的脱氧核糖核苷酸之间的连接(3",5"-磷酸二酯键)打开的酶。具体包括:DNA聚合酶α/引发酶(引发及后随链的部分合成),DNA聚合酶δ(DNA复制主要酶),增殖细胞核抗原(滑动夹子,与合成连接性有关),拓扑异构酶(母链DNA拓扑异构化),解(螺)旋酶(能解开DNA双螺旋),单链DNA结合蛋白及复制蛋白(单链DNA结合作用),复制因子C(参与滑动夹子的装配),DNA连接酶(连接冈崎片段及参与修复),核酸酶(去除RNA引物),侧翼核酸内切酶(去除RNA引物)。总体作用是在DNA复制过程中发挥的,在DNA复制过程中起到关键性的作用。以上信息详见高等教育出版社《生物化学》一书第十二章:DNA的生物合成。

胰脱氧核糖核酸酶(DNase I)可以随机地水解溶液中DNA的磷酸二酯键?

从理论上来讲,DNase I是可以作用于DNA中碱基之间的磷酸二酯键的。1、该酶是一种既可以消化单链或双链DNA从而产生单个脱氧核苷酸、单链或双链的寡脱氧核苷酸的核酸内切酶。所以从原理上讲是可以的。2、它水解单链或双链DNA后的产物特点为:5"端为磷酸基团,3"端为羟基,也就是说作用位点包括碱基之间的磷酸二酯键。3、DNase I可在同一位点剪切DNA双链,形成平末端,或1-2个核苷酸突出的粘末端,由此看来,它不仅可以作用于磷酸二酯键,应该也可以作用于氢键。

核糖核酸酶A有哪些作用?

核糖核酸酶A(ribonuclease:A或RNase:A)来源于牛的胰脏,为内切核酸酶,可特异攻击RNA上嘧啶残基的3′端,除去DNA-RNA中未杂交的RNA区,用来确定DNA或RNA中单碱基突变的位置。研究中广泛用来去除DNA样品中的RNA。核糖核酸酶A商品制剂可能会污染其他酶(如DNA酶),使用前应加热煮沸使DNA酶失活。

核糖核酸酶的作用是什么

核糖核酸酶,英语:Ribonuclease,常用缩写:RNase或称RNA酶,是一种可将RNA水解成小分子组成的核酸酶。可粗分为内切核糖核酸酶与外切核糖核酸酶

核糖核酸酶的介绍

核酸分解的第一步是水解核苷酸之间的磷酸二酯键,在高等动植物中都有作用于磷酸二酯键的核酸酶。不同来源的核酸酶,其专一性、作用方式都有所不同。有些核酸酶只能作用于RNA,称为核糖核酸酶(RNase)。

充分还原核糖核酸酶(RNase)需要加哪些试剂

β-巯基乙醇,用于使S-S还原为-SH;尿素,用于使氢键破坏。

脱氧核糖核酸酶I有哪些作用?

脱氧核糖核酸酶I(DNaseI)也来源于牛胰,是内切核酸酶,可优先从嘧啶核苷酸的位置水解双链或单链DNA。在Mgsuperscript2+superscript存在下,独立作用于每条DNA链,且切割位点随机。在Mnsuperscript2+superscript存在下。它可在两条链的大致同一位置切割dsDNA,产生平端或12个核苷酸突出的DNA片段。DNaseI用途广泛,如切口平移标记时在dsDNA上随机产生切口;在闭环DNA上引入单切口,以将分子截短(在亚硫酸氧盐介导的诱变前);建立随机缺失的嵌套缺失体,用于功能分析或测序;在DNA酶足迹法(DNA:footprinting)中分析蛋白—DNA复合物;除去RNA样品中的DNA。

锌指核糖核酸酶的介绍

锌指核糖核酸酶(ZFN)由一个DNA识别域和一个非特异性核酸内切酶构成。DNA识别域是由一系列Cys2-His2锌指蛋白(zinc-fingers)串联组成(一般3~4个),每个锌指蛋白识别并结合一个特异的三联体碱基。锌指蛋白源自转录调控因子家族(transcriptionfactorfamily),在真核生物中从酵母到人类广泛存在,形成alpha-beta-beta二级结构。其中alpha螺旋的16氨基酸残基决定锌指的DNA结合特异性,骨架结构保守。对决定DNA结合特异性的氨基酸引入序列的改变可以获得新的DNA结合特异性。

核糖核酸酶是蛋白质还是RNA?

蛋白质。“核糖核酸酶”就是RNase注意和“核酶”ribozyme 的区别,核酶是RNA。看上去两者好像一回事,那是因为中文翻译造成的,英文你一看就知道两个不一样。

核酶是不是就是核糖核酸酶?具体回答~

不是 核酶(ribozyme)是具有催化功能的RNA分子。核酶又称核酸类酶、酶RNA、类酶RNA。核糖核酸酶(RNase)核酸分解的第一步是水解核苷酸之间的磷酸二酯键,在高等动植物中都有作用于磷酸二酯键的核酸酶。不同来源的核酸酶,其专一性、作用方式都有所不同。有些核酸酶只能作用于RNA,称为核糖核酸酶(RNase). 前者是 RNA 后者是 蛋白质 ,。。

脱氧核糖核酸酶的基本信息

中文名称: 脱氧核糖核酸酶中文别名: DNA酶英文名称: deoxyribonuclease,DNase I英文别名: DNAase,Deoxyribonucleate 5′-oligonucleotido-hydrolase纯度: ≥2,000 Kunitz units/mg proteinCAS号: 9003-98-9

核糖核酸酶H有哪些作用?

核糖核酸酶H(ribonuclease:H或RNase:H)是核酸内切酶,特异性水解与DNA杂交的RNA上的磷酸二酯键,产生带有3′-OH和5′-P末端的产物,不降解单链核酸、dsDNA或dsRNA。许多酶附带有该酶的活性,如AMV反转录酶。主要用于在cDNA克隆合成第二链之前去除RNA;在脱氧核苷酸指导下在特异位点切割RNA;分析体外多聚腺嘌呤反应的产物,在与Oligo(T)或poly(dT)杂交后去掉poly(A)尾,从而在电泳中产生清晰的条带。

在dna的提取过程中防止脱氧核糖核酸酶的水解作用,应采取哪些措施

在dna的提取过程中防止脱氧核糖核酸酶的水解作用,应采取哪些措施相同点:都能以DNA为模板,从5"向3"进行核苷酸或脱氧核苷酸的聚合反应。不同点1、作用底物不同。RNA聚合酶底物是NTP;DNA聚合酶底物是dNTP。2、RNA聚合酶作用不需要引物,而DNA聚合酶作用需要引物。3、RNA聚合酶本身具有一定的解旋功能,而DNA聚合酶没有,当需要解开双链的时候要解旋酶和拓扑异构酶的帮助。4、RNA聚合酶只具有5‘到3"端的聚合酶活性,而DNA聚合酶不仅有5‘到3"端的聚合酶活性,还具有3‘到5"端的外切酶活性。保证DNA复制时候校对,所以复制的忠实性高于转录的。5、RNA聚合酶通常作用于转录过程;DNA聚合酶通常作用于DNA复制过程

“蛋白质翻译过程中终止肽链合成的信使核糖核酸(mRNA)的三联体碱基序列”是什么意思?

就是遗传密码中的蛋白质合成的终止密码。终止密码有3个,分别是UAA,UAG,UGA。指的就是这三组密码。

脱氧核糖核酸是什么?

脱氧核糖核酸是生物细胞内含有的四种生物大分子之一核酸的一种。脱氧核糖核酸通常又称DNA,是染色体的主要组成部分。脱氧核糖核酸携带合成RNA和蛋白质的遗传信息,并通过半保留复制指导生物发展和生活技能的操作。脱氧核糖核酸由脱氧核糖、磷酸盐和碱基组成,碱基包括腺嘌呤、鸟嘌呤和胸腺嘧啶等。DNA的结构为双螺旋结构,结合非常稳定。脱氧核糖核酸可以存储和传输遗传信息,细胞通过DNA复制遗传信息,并通过互补的含氮碱基序列传递遗传信息。日常生活中,DNA可以用来识别罪犯和犯罪行为、指纹识别和亲子鉴定等,并且法医可以通过从血液、皮肤和唾液等组织和体液中分离出DNA进行法医鉴定。

脱氧核糖核酸包含有什么?

脱氧核糖核酸(DNA,为英文Deoxyribonucleicacid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。事实上,原核细胞(无细胞核)的DNA存在于细胞质中,而真核生物的DNA存在于细胞核中,DNA片断并不像人们通常想像的那样,是单链的分子。严格的说,DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。这种核酸高聚物是由核苷酸链接成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成。DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链。

组成核酸和核糖核酸的核酸的种类分别有

脱氧核糖,核糖脱氧核酸的碱基:腺嘌呤(A)鸟嘌呤(G)胞嘧啶(C)胸腺嘧啶(T)核酸的碱基:腺嘌呤(A)鸟嘌呤(G)胞嘧啶(C)尿嘧啶(U)核苷酸:腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸、腺嘌呤脱氧核糖核苷酸、鸟嘌呤脱氧核糖核苷酸、胞嘧啶脱氧核糖核苷酸、胸腺嘧啶脱氧核糖核苷酸除了以上说的传统种类外核酸中的部分稀有碱基DNARNA嘌呤7-甲基鸟嘌呤(m7G)N6-甲基腺嘌呤(m6A)N6-甲基腺嘌呤(m6A)N6,N6-二甲基腺嘌呤7-甲基鸟嘌呤嘧啶5-甲基胞嘧啶(m5C)5-羟甲基胞嘧啶(hm5C)假尿嘧啶(ψ)双氢尿嘧啶(DHU)碱基分子中的酮基或氨基均位于杂环上氮原子的邻位,受介质中pH值的影响,会发生酮式-烯醇式互变异构,或氨基-亚氨基互变异构.碱基的互变异构以上也可以构成其他核苷酸,主要存在与tRNA中

胞嘧啶脱氧核糖核酸 和 胞嘧啶脱氧核苷酸 哪个是对的?

在下准高二一枚核酸是有核苷酸组成的所以第一句话错误正确说法应该是核糖核酸和脱氧核糖核酸第二句话应该是正确的。。吧

胞嘧啶脱氧核糖核酸 和 胞嘧啶脱氧核苷酸 哪个是对的?

胞嘧啶脱氧核苷酸是对的,表示DNA的一种基本单位。而脱氧核糖核酸是指DNA,所以不能讲胞嘧啶脱氧核糖核酸。

脱氧核糖核酸的分子结构

DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。一级结构  是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。 一级结构每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T ,C=G 查哥夫(Chargaff)法则(即碱基互补配对原则)。二级结构  是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有 的DNA为环形,有的DNA为线形。在碱A与T之间可以形成两个氢键,G 与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形 成互补的双链, 由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形 成双螺旋缠绕状。碱基对之间的距离是0.34nm,10个碱基对转一周,故 旋转一周(螺距)是3.4nm,这是β-DNA的结构,在生物体内自然生成的 DNA几乎都是以β-DNA结构存在。三级结构  是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间 三级结构结构,也称为超螺旋结构。DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变。超螺旋是克服张力而形成的。当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态。如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态。但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋。四级结构  核酸以反式作用存在(如核糖体、剪接体),这可看作是核酸的四级水平的结构。也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,它可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。结构特点  a. DNA是由核酸的单体聚合而成的聚合体。   b. 每一种核酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根,DNA都是由C、H、O、N、P五种元素组成的。   c. 核酸的含氮碱基又可分为五类:鸟嘌呤(Guanine)、胸腺嘧啶(Thymine)、腺嘌呤(Adenine)、胞嘧啶(Cytosine) 、尿嘧啶(Uracil)。   d. DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。   e. DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T C=G 加卡夫法则。    DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。

核糖核酸是如何形成的

核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X109个核苷酸。 单个核苷酸是由含氮有机碱(称碱基)、戊糖和磷酸三部分构成的。 碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶 >(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。 嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。 此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。 戊糖:RNA中的戊糖是D-核糖,DNA中的戊糖是D-2-脱氧核糖。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。 戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。 核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。 核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。 当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。核苷酸是怎么连接的? 3",5"-磷酸二酯键:核酸是由众多核苷酸聚合而成的多聚核苷酸(polynucleotide),相邻二个核苷酸之间的连接键即:3",5"-磷酸二酯键。这种连接可理解为核苷酸糖基上的3"位羟基与相邻5"核苷酸的磷酸残基之间,以及核苷酸糖基上的5"位羟基与相邻3"核苷酸的磷酸残基之间形成的两个酯键。多个核苷酸残基以这种方式连接而成的链式分子就是核酸。无论是DNA还是RNA,其基本结构都是如此,故又称DNA链或RNA链。DNA链的结构如下示意图。 寡核苷酸(oligonucleotide):这是与核酸有关的文献中经常出现的一个术语,一般是指二至十个核苷酸残基以磷酸二酯键连接而成的线性多核苷酸片段。但在使用这一术语时,对核苷酸残基的数目并无严格规定,在不少文献中,把含有三十甚至更多个核苷酸残基的多核苷酸分子也称作寡核苷酸。寡核苷酸目前已可由仪器自动合成,它可作为DNA合成的引物(primer)、基因探针(probe)等,在现代分子生物学研究中具有广泛的用途。 核酸链的简写式:核酸分子的简写式是为了更简单明了的叙述高度复杂的核酸分子而使用的一些简单表示式。它所要表示的主要内容是核酸链中的核苷酸(或碱基)。下面介绍二种常用的简写式。 字符式:书写一条多核苷酸链时,用英文大写字母缩写符号代表碱基(DNA和RNA中所含主要碱基及缩写符号见表1-1),用小写英文字母P代表磷酸残基。核酸分子中的糖基、糖苷键和酯键等均省略不写,将碱基和磷酸相间排列即可。因省略了糖基,故不再注解“脱氧”与否,凡简写式中出现T就视为DNA链,出现U则视为RNA链。以5"和3"表示链的末端及方向,分别置于简写式的左右二端。下面是分别代表DNA链和RNA链片段的二个简写式:5"pApCpTpTpGpApApCpG3"DNA5"pApCpUpUpGpApApCpG3"RNA此式可进一步简化为:5"pACTTGAACG3"5"pACUUGAACG3" 上述简写式的5"-末端均含有一个磷酸残基(与糖基的C-5"位上的羟基相连),3"-末端含有一个自由羟基(与糖基的C-3"位相连),若5"端不写P,则表示5"-末端为自由羟基。双链DNA分子的简写式多采用省略了磷酸残基的写法,在上述简式的基础上再增加一条互补链(complentarystrand)即可,链间的配对碱基用短纵线相连或省略,错配(mismatch)碱基对错行书写在互补链的上下两边,如下所示:5"GGAATCTCAT3"3"CCTTAGAGTA5"5"GGAATC错配) 线条式:在字符书写基础上,以垂线(位于碱基之下)和斜线(位于垂线与P之间)分别表示糖基和磷酸酯键。如下图所示 上式中,斜线与垂线部的交点为糖基的C-3"位,斜线与垂线下端的交点为糖基的C-5"位。这一书写式也可用于表示短链片段。不难看出,简写式表示的中心含义就是核酸分子的一级结构,即核酸分子中的核苷酸(或碱基)排列顺序

这样说对吗? 脱氧核糖核酸是一种由核苷酸聚合成多核苷酸的核酸

准确的说脱氧核糖核酸酸是一种由脱氧核苷酸聚合成的核酸。因为脱氧核糖核酸是大分子物质,基本单位是小分子的脱氧核苷酸,很多个脱氧核苷酸聚合成两条脱氧核苷酸酸长链,两条链之间以氢键相连,盘旋成双螺旋结构,即为脱氧核糖核酸。

DNA的两条脱氧核糖核酸链由什么化学键连接?

1、DNA分子的两条脱氧核糖核酸链上,连有不同种类的碱基。2、碱基的种类为:腺嘌呤(符号A)、鸟嘌呤(符号G)、胞嘧啶(符号C)、胸腺嘧啶(符号T)四种.3、DNA双链的互补碱基对之间以氢键相连。由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是腺嘌呤一定与胸腺嘧啶配对;鸟嘌呤一定与胞嘧啶配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。

组成核酸和核糖核酸的核酸的种类分别有

核酸有核糖核酸和脱氧核糖核酸,每种各四钟总计8种核糖核酸有4种

腺嘌呤 鸟嘌呤 胸腺嘧啶 胞嘧啶 尿嘧啶不属于脱氧核糖核酸

都不是脱氧核糖核酸。但前四个属于脱氧核糖核酸的组成部分腺嘌呤 鸟嘌呤 胸腺嘧啶 胞嘧啶这四种,是脱氧核糖核苷酸的碱基部分。脱氧核糖核苷酸则是脱氧核糖核酸(DNA)的组成部分。类似于汽车是车队的组成部分,而反光镜则是汽车的组成部分。尿嘧啶只存在于核糖核酸(RNA)中,不存在于脱氧核糖核酸(DNA)中

核糖和核糖核苷酸和核糖核酸有什么关系

核糖(脱氧核糖)+碱基→核苷(脱氧核苷)核苷(脱氧核苷)+磷酸→核苷酸(脱氧核苷酸)核苷酸(脱氧核苷酸)脱水缩合→核糖核酸(RNA)或脱氧核糖核酸(DNA)

核糖核酸的作用与功效

核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶),其中,U(尿嘧啶)取代了DNA中的T。核糖核酸在体内的作用主要是引导蛋白质的合成。[1]中文名核糖核酸外文名Ribonucleic Acid[1] 别名RNA[1] 构成磷酸,核糖和碱基[1] 碱基A、G、C、U[1] 快速导航细胞中的分布组成结构干扰机制功能分类核糖核酸人体一个细胞含RNA约10pg(含DNA约7pg)。与DNA相比,RNA种类繁多,分子量较小,含量变化大。RNA可根据结构和功能的不同分为信使RNA和非编码RNA。非编码RNA分为非编码大RNA和非编码小RNA。非编码大RNA包括核糖体RNA、长链非编码RNA。非编码小RNA包括转移RNA、核酶、小分子RNA等。小分子RNA(20~300nt)包括 miRNA、 SiRNA、 piRNA、scRNA、 snRNA、 snoRNA等,细菌也有小分子RNA(50~500nt)。[2]信使RNA信使RNA(mRNA)最早发现于1960年,在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成,具有以下特点。[2]1.含量低,占细胞总RNA的1%~5%。[2]2.种类多,可达105种。不同基因表达不同的mRNA。[2]3.寿命短,不同mRNA指导合成不同的蛋白质,完成使命后即被降解。细菌mRNA的平均半衰期约为1.5分钟。脊椎动物mRNA的半衰期差异极大,平均约为3小时。[2]4.长度差异大哺乳动物mRNA长度为5×102~1×105nt原核生物与真核生物的mRNA虽然在结构上有差异,但功能一样,都是指导蛋白质合成的模板。[2]转移RNA转移RNA(tRNA)在蛋白质合成过程中负责转运氨基酸、解读mRNA遗传密码。tRNA占细胞总RNA的10%~15%,绝大多数位于细胞质中。tRNA由Crick于1955年提出其存在,Zamecnik和 Hoagland于1957年鉴定。[2]1.tRNA一级结构具有以下特点:[2]①是一类单链小分子RNA,长73~95nt(共有序列76nt),沉降系数4S。[2]②是含稀有碱基最多的RNA,含7-15个稀有碱基(占全部碱基的15%~20%),位于非配对区。[2]③5′末端碱基往往是鸟嘌呤。[2]④3"端是CCA序列,其中的腺苷酸常称为A76,其3"—OH是氨基酸结合位点。[2]2.tRNA二级结构约50%碱基配对,形成四段双螺旋,与五段非配对序列形成三叶草形结构。该结构中存在四臂四环:①氨基酸臂。[2]②二氢尿嘧啶臂(DHU臂、D臂)和二氢尿嘧啶环(DHU环、D环),特征是含二氢尿嘧啶(DHU、D)。[2]③反密码子臂和反密码子环,特征是反密码子环含反密码子。反密码子5′端与尿苷酸连接,3′端与嘌呤核苷酸连接。TΨC臂(T臂)和TΨC环(Ψ环),特征是TΨC环含胸腺嘧啶核糖核苷酸T54假尿苷酸Ψ55胞苷酸C56。[2]④额外环3~21nt。[2]

什么是核糖核酸,什么是核糖核苷酸?

一、结构:dna的分子组成为脱氧核糖核苷酸,rna的分子组成为核糖核苷酸;二、异同点:1、含义不同:DNA的为脱氧核糖,RNA的为核糖。2、范围不同:DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶,RNA的为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶。3、表示不同:DNA为双链,RNA为单链。核糖体RNA特点(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。(2)寿命长,rRNA更新慢,寿命长。(3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生物主要有5S、5.8S、18S、28S四种rRNA,另有少量线粒体rRNA、叶绿体rRNA。大肠杆菌16SrRNA的3"端有一段保守序列 ACCUCCU,可与mRNA中的SD序列互补结合。以上内容参考:百度百科-核糖核酸

核糖核酸和核糖核酸的区别有哪些?

一、结构:dna的分子组成为脱氧核糖核苷酸,rna的分子组成为核糖核苷酸;二、异同点:1、含义不同:DNA的为脱氧核糖,RNA的为核糖。2、范围不同:DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶,RNA的为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶。3、表示不同:DNA为双链,RNA为单链。核糖体RNA特点(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。(2)寿命长,rRNA更新慢,寿命长。(3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生物主要有5S、5.8S、18S、28S四种rRNA,另有少量线粒体rRNA、叶绿体rRNA。大肠杆菌16SrRNA的3"端有一段保守序列 ACCUCCU,可与mRNA中的SD序列互补结合。以上内容参考:百度百科-核糖核酸

核糖核酸在什么食物中含有??

含核糖核酸较多的食物有瘦肉、动物内脏以及肉汤、肉汁、肉馅、鱼类、酵母等。此外,贝壳类食物、干豆类、菠菜、竹笋、蘑菇等也含有丰富的核酸。含核酸很少的食物包括谷类(大米、玉米面、精白面粉、蛋糕、饼干等)、乳类及其制品、蛋类、蔬果类、油脂类以及各种调味品、茶、咖啡、巧克力、泡菜等。

核糖核酸与核糖核苷酸的区别?

核糖核苷酸是组成核糖核酸的基本单位,二者是包含关系,就像氨基酸之于蛋白质,葡萄糖之于淀粉。核苷酸是核酸最小的活性分子,而核酸是由四种核苷酸通过化学键组成的双螺旋结构。核酸在人体内可分解成八种核苷酸,这八种核苷酸又可分解成八种核苷及磷酸,这八种核苷又可再进一步分解成五种碱基和戊糖,而由RNA降解而来的核苷酸只能分解成四种核苷及磷酸,这四种核苷再进一步分解只有得到四种碱基和戊糖。

核糖,脱氧核糖,核酸,核糖核酸,脱氧核糖核酸 有什么联系

核糖是一种单糖,分子式C4H9O4CHO。D-核糖和D-2-脱氧核糖是核酸中的碳水化合物组分,以呋喃糖型广泛存在于植物和动物细胞中。D-核糖也是多种维生素、辅酶以及某些抗生素,如新霉素A、B和巴龙霉素的成分。由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。最早由米歇尔于1868年在脓细胞中发现和分离出来。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。

核糖和核糖核酸都含有的元素是什么?

答:核糖和核糖核酸都含有的元素是C、H、O。解析:核糖属单糖,它的化学元素组成是:C、H、O。核糖核酸是遗传物质,它是化学元素组成是:C、H、O、N、P。所以,核糖和核糖核酸都含有的元素是C、H、O

核糖核酸和核糖核酸的区别是什么?

一、结构:dna的分子组成为脱氧核糖核苷酸,rna的分子组成为核糖核苷酸;二、异同点:1、含义不同:DNA的为脱氧核糖,RNA的为核糖。2、范围不同:DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶,RNA的为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶。3、表示不同:DNA为双链,RNA为单链。核糖体RNA特点(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。(2)寿命长,rRNA更新慢,寿命长。(3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生物主要有5S、5.8S、18S、28S四种rRNA,另有少量线粒体rRNA、叶绿体rRNA。大肠杆菌16SrRNA的3"端有一段保守序列 ACCUCCU,可与mRNA中的SD序列互补结合。以上内容参考:百度百科-核糖核酸
 1 2  下一页  尾页