问题一:莫比乌斯带象征什么? 麦比乌斯圈 麦比乌斯圈是什么: 麦比乌斯圈(M??bius strip, M??bius band)是一种单侧、不可定向的曲面。因A.F.麦比乌斯(August Ferdinand M??bius, 1790-1868)发现而得名。将一个长方形纸条ABCD的一端AB固定,另一端DC扭转半周后,把AB和CD粘合在一起 ,得到的曲面就是麦比乌斯圈。 麦比乌斯圈的发现: 数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢? 对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。 有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。 一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈。 麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将两端粘在一起,这样就做成了只有一个面的纸圈儿。 圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯圈激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 麦比乌斯圈就这样被发现了。 奇妙的麦比乌斯圈: 做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们惊奇有趣的结果。 你弄好一个圈,沾好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊. 如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。 如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不仅没有一分为二,反而剪出一个两倍长的纸圈。 有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。 关于麦比乌斯圈的单侧性,可如下直观地了解,如果给麦比乌斯圈着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯圈两面均涂上颜色 ,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。 麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决......>> 问题二:莫比乌斯环象征什么 莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法――橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个 *** 数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。 问题三:莫比乌斯之环到底是什么,深入的? 莫比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“莫比乌斯环拧劲”所以,莫比乌斯带常被认为是无穷大符号「∞」的创意来源。莫比乌斯环和莫比乌斯环拧劲也可能是物质两面性的论证。 [ 从莫比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“莫比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。] - - 节选自“莫比乌斯指环-百度百科”。 借助以上的论证,证明了在宇宙时空下有“暗物质”的存在。“暗物质”是“暗能量”生成物质时的中间态,“空间”的生成而同时生成的新的一对“正反能量体”。 莫比乌斯之环,就是无限循环的一个象征。 问题四:什么是莫比乌斯环? 30分 莫比乌斯环 莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。它是由德国数学家、天文学家莫比乌斯和约翰u30fb李斯丁在1858年独立发现的。 中文名 莫比乌斯环 别 名 梅比斯环或麦比乌斯带 结 构 拓扑学结构 莫比乌斯指环奇妙之处 一、莫比乌斯环只存在一个面。 二、如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的莫比乌斯环空间大一倍的、具有正反两个面的环(在本文中将之编号为:环0),而不是形成两个莫比乌斯环或两个其它形式的环。 三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 莫比乌斯环、环0和生成的所有的环的六个特征: 一、莫比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“莫比乌斯环拧劲”1。 二、从莫比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“莫比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。 三、从莫比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。“演变的裂变”过程将莫比乌斯环的“莫比乌斯拧劲”分解成环0中的四个“拧劲”,“莫比乌斯拧劲”的“能”也被生成了环0中的这四个“拧劲”的“能”,但环0中的这四个“拧劲”的“能”是“莫比乌斯拧劲”的“能”2倍,新生成的1倍于“莫比乌斯拧劲”的“能”的方向与原来的“莫比乌斯拧劲”的“能”的方向相反。 四、从莫比乌斯环生成为环0的过程,还使环0的空间比莫比乌斯环的空间增大了一倍。 五、从环0生成环n和环n+1的过程,环0中的四个“拧劲”的“能”不会增加,但从环0的“裂变”中,每“裂变”一次会增加一个环0的空间。 六、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 从莫比乌斯环的三个奇妙之处和莫比乌斯环、环0以及生成的所有的环的六个特征,我们得到奇妙的启示: 一、无论将莫比乌斯环放在宇宙时空的任何地方,我们同样也会发现莫比乌斯环之外的空间也只能是存在一个面,因此,宇宙时空的任何空间之处也只存在一个面。如果宇宙时空的任何空间之处只存在一个面,那么我们就可以认为宇宙时空中的任何一点与其它的点都是相通的,即整个宇宙时空是相通的,任何一点都是宇宙的中心,也是宇宙的边缘,宇宙时空中的任何物质也都是一样,也都处于宇宙的中心,也都处于宇宙的边缘。 二:宇宙时空中的任何一个点都可以通过“裂变”的方式无中生有2地生成一个对立的阴阳两性。无论生成的这一个对立的阴阳两性是否需要载体呈现出来,通过“裂变”的方式,无中生有地、生成的一个对立的阴阳两性,都需要一个比原来的......>> 问题五:把时间比作莫比乌斯环是什么意思 公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰u30fb李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个) 时间就像是个循环,一直向前却又与历史惊人相似,就像小虫在莫比乌斯环上爬 问题六:克莱因瓶和莫比乌斯环有什么意义 不是天文学的吗?德国著名数学家、天文学家莫比乌斯 问题七:什么是神奇的莫比乌斯带 麦比乌斯圈 莫比乌斯环的奇妙之处有三: 一、莫比乌斯环只存在一个面。 二、如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的莫比乌斯环空间大一倍的、具有正反两个面的环(在本文中将之编号为:环0),而不是形成两个莫比乌斯环或两个其它形式的环。 三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 莫比乌斯环、环0和生成的所有的环的六个特征: 一、莫比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“莫比乌斯环拧劲”1。 二、从莫比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“莫比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。 三、从莫比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。“演变的裂变”过程将莫比乌斯环的“莫比乌斯拧劲”分解成环0中的四个“拧劲”,“莫比乌斯拧劲”的“能”也被生成了环0中的这四个“拧劲”的“能”,但环0中的这四个“拧劲”的“能”是“莫比乌斯拧劲”的“能”2倍,新生成的1倍于“莫比乌斯拧劲”的“能”的方向与原来的“莫比乌斯拧劲”的“能”的方向相反。 四、从莫比乌斯环生成为环0的过程,还使环0的空间比莫比乌斯环的空间增大了一倍。 五、从环0生成环n和环n+1的过程,环0中的四个“拧劲”的“能”不会增加,但从环0的“裂变”中,每“裂变”一次会增加一个环0的空间。 六、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 从莫比乌斯环的三个奇妙之处和莫比乌斯环、环0以及生成的所有的环的六个特征,我们得到奇妙的启示: 一、无论将莫比乌斯环放在宇宙时空的任何地方,我们同样也会发现莫比乌斯环之外的空间也只能是存在一个面,因此,宇宙时空的任何空间之处也只存在一个面。如果宇宙时空的任何空间之处只存在一个面,那么我们就可以认为宇宙时空中的任何一点与其它的点都是相通的,即整个宇宙时空是相通的,任何一点都是宇宙的中心,也是宇宙的边缘,宇宙时空中的任何物质也都是一样,也都处于宇宙的中心,也都处于宇宙的边缘。 二:宇宙时空中的任何一个点都可以通过“裂变”的方式无中生有2地生成一个对立的阴阳两性。无论生成的这一个对立的阴阳两性是否需要载体呈现出来,通过“裂变”的方式,无中生有地、生成的一个对立的阴阳两性,都需要一个比原来的空间大一倍的空间,来体现这生成的、一个对立的阴阳两性。 三: 只要存在“裂变”就会使原来的莫比乌斯环不再以“本来面目”存在,或者说,原来的莫比乌斯环已经不存在了。从无中生有的、生......>> 问题八:莫比乌斯环的定义 公元1858年,莫比乌斯发现:把一个扭转180°后再两头粘接起来的纸条,具有魔术般的性质。 因为,普通纸带具有两个面(即双侧 曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘! 我们把这种由莫比乌斯发现的神奇的单面纸带,称为“莫比乌斯带”。 拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,如同上页图那样粘成一个莫比乌斯带。现在像图中那样用剪刀沿纸带的中央把它剪开。你就会惊奇地发现,纸带不仅没有一分为二,反而像图中那样剪出一个两倍长的纸圈! 有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起!为了让读者直观地看到这一不太容易想象出来的事实,我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。 比如旋转三个半圈的带子再剪开后会形成一个三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个莫比乌斯带。 莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。 莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决! 比如在普通空间无法实现的“手套易位问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若自你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。” 在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。 下面的图是一个管子旋转180度连接,中间一根管子旋转90度安装在两头,就是一个亏格为2时8个区域两两相连。林格尔(G.Ringel)和杨斯(F.YOUNGS)1974年证明:Np=[(7+√1+48P)/2],P=2时,N2=8。 问题九:谁能告我莫比乌斯环的原理 方法是两部放样,截面草图分别是一个横的长方形和一个竖的长方形,用半圆作为他们的中心路径。这样做出来就像一个扭曲了90度的半环了,同理再做另一半