解释上策均衡、严格下策反复消去策略均衡、纯策略纳什均衡混合策略纳什均衡,并阐述他们之间的关系.
先有上策均衡strictly better Nash Equilibrium,后有严格下策strictly dominated的概念。模型中存在多个上策NE均衡时,才出现混合策略NE即Mixed strategy NE,此时的混合策略为纯策略pure strategy的集合,集合里面的每个元素都是上策,其预期收益相等。先解释这么多,加分后再往下讲。
1、找到纯策略纳什均衡。 2、找到所有子博弈完美均衡。
1.pure-strategy NE={(T,L,E),(B,L,W),(B,R,E)}2.subgame-perfect NE={(B,LW),(B,R,E),(B,μ2,μ3)} μ2=(4/5L,1/5R) μ3=(2/5W,3/5E)
纳什均衡点怎么找
(1)如果是完全信息博弈 张三认为李四:左,中,右的策略概率设为p1,p2,1-p1-p2 张三上策略的期望收益为E1=12*p1+42*p2+42*(1-p1-p2) 同理 中:E2=24*p1+12*p2+60*(1-p1-p2) 下:E3=72*p1+36*p2+42*(1-p1-p2) 如果是完全信息博弈,则较优策略为三者相同,即E1=E2=E3 可解得p1=0.0370 p2=0.3700 1-p1-p2=0.5930 同理李四认为张三:上中下的策略概率为q1 q2 (1-q1-q2) 李四的左策略的期望收益为T1=83*q1+12*q2+47*(1-q1-q2) 中策略收益为T2=56*q1+42*q2+95*(1-q1-q2) 右策略的收益为T3=45*q1+76*q2+59*(1-q1-q2) 同理解得q1=0.6276 q2=0.0140 (1-q1-q2)=0.3584 综上所述 在完全信息博弈的情况下张三的混合策略的策略概率为上0.6276 中0.0140 下0.3584 李四的混合策略的策略概率为左0.0370 中0.3700 右0.5930 其中张三的期望收益为40.8900 李四的期望收益为50.4516 (2)如果是不完全信息无限重复博弈,开始时双方都是以0.333的自然混合概率预测,根据两者的信息背叛不同,回归结果也可不同,此题条件不足.但结果是会是纯策略,博弈次数则无法确定 作业2:纯策略纳什均衡的收益为(60,76)混合策略纳什均衡的收益为(40.8900,50.4516) 实际中应该是纯策略占优
什么是纳什均衡?
纳什均衡是指纳什平衡,纳什平衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。扩展资料:纳什均衡的影响1、改变了经济学的体系和结构。非合作博弈论的概念、内容、模型和分析工具等,均已渗透到微观经济学、宏观经济学、劳动经济学、国际经济学、环境经济学等经济学科的绝大部分学科领域。2、扩展了经济学研究经济问题的范围。原有经济学缺乏将不确定性因素、变动环境因素以及经济个体之间的交互作用模式化的有效办法,因而不能进行微观层次经济问题的解剖分析。3、形成了基于经典博弈的研究范式体系。即可以将各种问题或经济关系,按照经典博弈的类型或特征进行分类,并根据相应的经典博弈的分析方法和模型进行研究,将一个领域所取得的经验方便地移植到另一个领域。4、扩大和加强了经济学与其他社会科学、自然科学的联系。纳什均衡之所以伟大,就因为它普通,而且普通到几乎无处不在。纳什平衡理论既适用于人类的行为规律,也适合于人类以外的其他生物的生存、运动和发展的规律。参考资料来源:百度百科-纳什平衡
假设两个人在玩博弈论,每个人有2个纯策略。问题是这个博弈论最多有几个纯策略纳什均衡?最少有多少个?
最多4个pure,最少0个pure。最多4个,选什么都一样就是4个,比如无论两人选什么,每个人的payoff都是0。那么每一组pure都是纳什均衡。(如果强制要求每个payoff都不一样,那么最多是2个。)最少0个。例如两个人选择Yes或No,Player1是和对方一样时payoff为1,不一样时payoff为-1;Player2反之,和player1一样时payoff为-1,不一样时payoff为1。这个就不存在pure纳什均衡。只有一个mix纳什均衡,两个player都半半的几率选择yes和no。
动态博弈写出该博弈的策略式表达 找出纯策略纳什均衡 急求大神详解!!
要识别纳什均衡其实可以使用划线法,首先我们从经销商的角度来看,如果制造商采取产品升级策略,那么经销商的最佳策略是继续特价销售,如果制造商采取不升级,那么经销商的最佳策略是采取不停止特价销售;接着我们站在制造商的角度来看,如果经销商采取停止特价销售,那么制造商的最佳策略是产品升级如果经销商继续特价销售,制造商的最佳策略是采取产品升级。因此综合上面的分析不难发现,该博弈中的优势策略即为唯一的纳什均衡策略(继续特价销售,产品升级)。第三个问题其实是将原有的静态博弈模型转变为了一个动态博弈模型,可以通过逆推归纳法来分析,由于比较麻烦如果你有需要可以直接找我,将原有的博弈展开成为一个博弈树不难发现,无论是谁先动,该博弈的子博弈完美纳什均衡仍然是经销商选择继续特价销售,制造商选择产品升级。如果加入更新成本后,响应的在产品升级那一列中制造商的收益都减5,然后继续使用划线法,不难发现新博弈模型中(停止特价销售,不升级)是新的纳什均衡。
请教占优均衡和纯策略纳什均衡之间的区别
简单来说,占优策略是不管对方有什么策略,"我"都有唯一最优的策略,不会随着情况不同改变。而纳什均衡则是,根据对方的选择来决定自己的最优策略,会根据情况而变。所以,占优策略均衡一定是纳什均衡,而纳什均衡却不一定是占优策略均衡。
纯战略的纳什均衡是什么
混合策略表示的是博弈方对各个纯策略的偏好程度,混合策略纳什均衡是对多次博弈达到均衡结局的各个纯策略选择的概率估计
纯战略纳什均衡
假定房地产市场需求有限,A、B两个开发商都想开发一定规模的房地产,但是市场对房地产的需求只能满足一个房地产的开发量,而且,每个房地产商必须一次性开发这一定规模的房地产才能获利。在这种情况下,无论是对开发商A还是开发商B,都不存在一种策略完全优于另一种策略,也不存在一个策略完全劣于另一个策略。 因为,如果A选择开发,则B的最优策略是不开发;如果A选择不开发,则B的最优策略是开发;类似地,如果B选择开发,则A的最优策略是不开发;如果B选择不开发,则A的最优策略是开发。这样就形成了一个循环选择。 根据纳什均衡含义就是:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是你最好的策略。即双方在对方给定的策略下不愿意调整自己的策略。 这个博弈的纳什均衡点不止一个,而是两个:要么A选择开发,B不开发;要么A选择不开发,B选择开发。在这种情况下,A与B都不存在优势策略,也就是A和B不可能只要选择某一个策略而不考虑对方的所选择的策略。实际上,在有两个或两个以上纳什均衡点的博弈中,其最后结果难以预测。
在只有两个参与人且每个参与人都有三个策略可供选择的情况下,纯策略的纳什均衡最多可有几个?
纯策略的纳什均衡最多有9个,因为每个人都有三个策略可供选择,故会出现9种支付。结果,故最多可有9个。
下面的博弈中有没有纯策略的纳什均衡
纯策略纳什均衡是指在一个纯策略组合中,如果给定其他的策略不变,该节点不会单方面改变自己的策略,否则不会使节点访问代价变小。惟一纯策略均衡的有限次重复博弈的结果就是重复原博弈惟一的纯策略纳什均衡,这就是这种重复博弈惟一的子博弈完美纳什均衡路径。
关于博弈论的纳什均衡题目 急急急急急!
用最优反应法分析纯策略纳什均衡的方法如下:1、对博弈者2的每一种策略,找出使得博弈者1收益最高的策略,并在相应的收益数值下划线2、对博弈者1的每一种策略,找出使得博弈者2收益最高的策略,并在相应的收益数值下划线3、如果有一个格子里,有两个下划线,则该格子即为一个纯策略纳什均衡。所以,共有3个纯策略纳什均衡:(b,x),(a,z),(c,w),对应收益分别为(8,9),(8,7),(8,7)。
设某个纯策略博弈的纳什均衡不存在试问:相应的混合策略博弈的纳什均衡会存在吗?试举一例说明.
【答案】:在同时博弈中,纯策略的纳什均衡可能存在,也可能不存在,但相应的}昆合策略纳什均衡总是存在的。例如表10-9所示,在下面的二人同时博弈中,根据条件策略下划线法可知由于没有一个单元格中两个数字之下均有下划线,故纯策略的纳什均衡不存在,但是相应的混合策略纳什均衡却是存在的。首先分别计算甲厂商和乙厂商的混合策略: E甲=4P1ql+9P1(1-ql)+7(1-P1)ql+2(1-P1)(1-q1) =p1(7 -1Oql) +5q1 +2 E乙= 6P1ql+P1(1- q1)+3(1-p1)ql+8(1- P1)(1- q1) =5q1(2p1 -1) -7P1+8 其次分别计算甲厂商和乙厂商的条件混合策略:最后,混合策略纳什均衡参见图10-1中点e,此时混合策略纳什均衡可以表示为: ((P1,p2)(q1,q2))=((0.5,0.5)(0.7,0.3)) 但不存在纯策略博弈的纳什均衡。
博弈论(2)—纳什均衡
如果想观看相关视频可以在西瓜视频(账号zidea)或者哔哩哔哩(账号zidea2015)找到我发布视频解说,注意头像和使用头像一致。 又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。 在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作 最佳应对 。 如果两个博弈的局中人的策略组合分别构成各自的 最佳应对 ,那么这个组合就被定义为纳什均衡。 在给出纳什均衡解释前,我们先得把一个概念说清楚最佳应对。 纳什均衡是刻画局势,如果一个局势下,每个局中人的策略都是相对其他局中人当前策略的最佳对应,则称该局势是一个 纳什均衡 如果一个局中人的某个策略对其他局中人的任何策略都是最佳对应,那么这个策略就是该局中人的 占优策略 在纳什均衡下,局中人没有人会想要改变改变,因为谁改变谁就可能在博弈中处于不利地位。 首先我们来看一看在囚徒困境中纳什均衡,对于囚徒困境的问题的纳什均衡是 双方都坦白 ,属于占优策略 其实不管局中人 2 是抗拒还是坦白,对于局中人的最佳应对都是坦白。从而可以看出纳什均衡点并不一定是整体的最优解。有人可能会说那么为什么不是对于两个人都有利的(抗拒,抗拒)呢,这里最佳应对是无论对手进行策略对自己都是最佳策略,在最后 maxmin 时候就更会了解为什么他们会做出坦白选择,这是一个规避风险的策略。 <img src="./image_003/005.jpg"> 这就是纯策略纳什均衡,混合策略下纳什均衡,女生看舞蹈概率 p 看足球的概率就是 1 - p,男生看舞蹈概率 q 看足球的概率就是 1 - q 妻子随机性的目的: 使丈夫无机可乘,不管丈夫选择哪个策略,其期望收益均相同 当丈夫给出概率分布不会让妻子在看足球和看,关于 以我对丈夫了解他更喜欢看足球, 局中人 1 的策略选择分布记为 , 局中人 2 的策略选择分布记为 。假设局中人 1 的策略分布不变,局中人 2 策略选择的效用为 剪刀—石头—布的混合 纳什均衡态 任何有限博弈(参与人与策略数目均为有限)都至少存在一个纳什均衡,这个均衡可能是纯策略纳什均衡(例如剪刀-石头-布),也可能是混合策略均衡,纳什均衡的多重性(例如性别之战)
纳什均衡的计算!
纯策略:划线法 (4,1) (3,0) (3,2) (7,3) 每个括号第一个数为Player1的收益,第二个数为Player2的收益。 当局中人2选择策略1时,比较纵向两个括号内第一个数,可知局中人1最大收益为4,在4下划线 当局中人2选择策略2时,同上,可知局中人1最大收益为7,在7下划线 当局中人1选择策略1时,比较横向两个括号内第二个数,可知局中人2最佳收益为1,在1下划线 当局中人1选择策略2时,同上,可知局中人2最大收益为3,在3下划线 所以有纯策略那是均衡,双方都取策略1或双方都取策略2 (4,1)及(7,3)拓展资料纳什均衡是指博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况。纳什证明了在每个参与者都只有有限种策略选择并允许混合策略的前提下,纳什均衡定存在。以两家公司的价格大战为例,价格大战存在着两败俱伤的可能,在对方不改变价格的条件下既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖。于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案。相互作用的经济主体假定其他主体所选择的战略为既定时,选择自己的最优战略的状态,也就是纳什均衡。命名原因约翰·福布斯·纳什(John Forbes Nash Jr)1948年作为年轻数学博士生进入普林斯顿大学。其研究成果见于题为《非合作博弈》(1950)的博士论文。该博士论文导致了《n人博弈中的均衡点》(1950)和题为《非合作博弈》(1951)两篇论文的发表。纳什在上述论文中,介绍了合作博弈与非合作博弈的区别。他对非合作博弈的最重要贡献是阐明了包含任意人数局中人和任意偏好的一种通用解概念,也就是不限于两人零和博弈。该解概念后来被称为纳什均衡。
纳什均衡通俗解释是什么?
纳什均衡通俗解释是:纳什平衡是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果任意一位参与者在其他所有参与者的策略确定的情况下,其选择的策略是最优的,那么这个组合就被定义为纳什平衡。扩展资料:纳什平衡可以分成两类,“纯战略纳什平衡”和“混合战略纳什平衡”。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。
纳什均衡是什么?
纳什均衡也就是纳什平衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。扩展资料:纳什均衡的由来:纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为1,其他的则为0。故“纯战略纳什平衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什平衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什平衡,例如“钱币问题"就只有混合战略纳什平衡,而没有纯战略纳什平衡。不过,还是有许多赛局有纯战略纳什平衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略平衡。参考资料来源:百度百科-纳什平衡
纳什均衡是什么?
纳什均衡又称非合作博弈均衡,是博弈论中的一个重要术语,以约翰·纳什的名字命名。在博弈过程中,无论对方的战略选择是什么,一方都会选择一定的战略,这就叫主导战略。如果两个博弈者的战略组合构成各自的主导战略,则该组合被定义为纳什均衡。当每个球员的平衡策略是达到其预期收益的最大值时,一个策略组合被称为纳什均衡,同时,所有其他球员遵循这一策略。扩展资料;纳什均衡可分为两类:纯战略纳什均衡和混合战略纳什均衡。要解释纯策略纳什均衡和混合策略纳什均衡,首先要解释纯策略和混合策略。所谓纯策略,就是为玩家提供一个完整的游戏定义。特别是,纯粹的策略决定了在任何情况下都要进行的运动,策略集合是玩家可以执行的纯策略集合。混合策略是通过给每一个纯策略分配一个概率而形成的策略,混合策略允许玩家随机选择纯策略,在混合策略博弈的均衡中,由于每个策略都是随机的,当达到一定的概率时,就可以得到最优支付。由于概率是连续的,即使策略集是有限的,也会有无限的混合策略。当然,严格地说,每个纯策略都是一个“退化”混合策略,一个特定纯策略的概率为1,另一个为0。因此,“纯战略纳什均衡”是指所有参与者都玩纯战略,而相应的“混合战略纳什均衡”则是指至少有一个参与者玩混合战略。并不是每一个博弈都会有纯战略纳什均衡,比如“硬币问题”只有混合战略纳什均衡,而不是纯战略纳什均衡。然而,仍有许多博弈具有纯战略纳什均衡(如协调博弈、囚徒困境博弈和鹿博弈)。甚至,有些游戏可以同时拥有纯策略和混合策略平衡。参考资料来源;百度百科——纳什平衡
如何论证纳什均衡的唯一性
中国的傻吊谈博弈 必谈纳什均衡来源:美国资讯网;博弈圣经著作人对纳什的嘲讽博弈圣经著作人的经典名句;0、1、二维平均,称平衡,0、1、2、三维平均,称均衡。在0、1、二维记录的系统中,有一个冯·诺依曼极小极大定理,0、1、二维系统就不存在平均律,就是不存在均衡,纳什均衡当时就遭到冯·诺依曼的贬低、嘲笑和断然否定。谈到“纳什均衡”,有位记者请纳什用通俗的语言来解释他的理论。纳什说;“‘纳什均衡"并不高深,它就像中国人发明的一种、三个人玩的扑克游戏,“纳什均衡”就是一个简单的三人博弈游戏”。中国有那么多人玩扑克,又玩了那么多年,纳什均衡还提醒了中国人半个多世纪,中国人竟没有一个人发现三个人玩的扑克游戏中、还有一个‘均衡占优理论"。人们不禁要问;纳什他自己玩过几次三人扑克游戏?他和谁玩的?他是怎么发现的均衡?均衡理论又是怎么单方占优的?在他所有的文章中,为什么没有对中国的扑克游戏展开叙述,一副扑克他说三个人玩,一个人18张牌,它是怎么个均衡法呢?他在60多年的时间里,没有给出下文令人失望。博弈圣经著作人的经典名句;科学家在纳什均衡理论中、尚未发现博弈占优策略的任何迹象。在纳什的语文学中,就没有出现过一次0、1、2、三维均衡的概念,纳什均衡哪里来。博弈圣经著作人的经典名句;纳什均衡理论没有任何明确的说法,纳什均衡是美国伪造的产物,传到了世界各地,当然也传遍了中国。“纳什均衡”的本质,是对中国人的发现、发明、创造精神的一种羞辱。博弈圣经著作人的经典名句;二维平衡是指生物的竞争行为,三维均衡是指自然的优劣特性。博弈圣经著作人的经典名句;揭开纳什均衡的画皮,露出真相。【如果纳什均衡是以纳什的名字、命名的一个博弈论术语;假如我把纳什名字去掉、只剩下均衡一词、均衡也就是纯净的博弈论术语;倘若所有博弈论的文章中、都把纳什名字去掉只剩下均衡;再读一篇篇博弈论文章、也都是围绕着均衡一词展开的叙述;发现通篇文章逻辑不通、词意变异、不知所云;只要是属于纳什均衡的理论文章、去掉纳什名字之后、纳什的鬼魅就出现了;通篇文章,捕风捉影、张冠李戴、以讹传讹,添油加醋又像是疯言疯语,更不能被常人所理解。】博弈圣经著作人的经典名句;纳什-是纳什,均衡-是均衡。博弈圣经著作人的经典名句;“纳什均衡” 之所以鬼魅,纳什自己不知道什么是纳什均衡,追随他的门外汉,都假装懂得纳什均衡。“纳什均衡”把所有的门徒变成了精神病、变成了不懂装懂;任何人谈到纳什均衡,就像掉进了魔鬼坑,开口就是自问自答、自说自话、反复无常、自己感到莫名其妙时,还会自圆其说。博弈圣经著作人的经典名句;纳什均衡是一份内容不明的谜语,它似乎和任何可理解的逻辑语言都对不上。博弈圣经著作人把“纳什均衡”戏称为“傻吊博弈的图腾”。博弈圣经著作人的经典名句;如果说纳什均衡是一份学术遗产,那就是学术中、独一份的滑稽遗产,他的滑稽级别、足够七星级。纳什均衡是什么,纳什自己不知道,中国的傻吊全都知道……。博弈圣经著作人的经典名句;“纳什均衡成了中国的一个宗教,追随他的门徒;有无知的青年、有无畏的傻吊、还有无耻的教授。”博弈圣经著作人的经典名句;中国的傻吊谈博弈,必谈纳什均衡。博弈圣经著作人的经典名句;中国人醒来吧,应该扪心自问;“纳什均衡”既然像是中国人发明的三人扑克游戏,它的游戏规则是什么?游戏理论又是什么?中国人从三个人玩的扑克游戏中、也可以说从“纳什均衡”中、到底学到了什么?纳什演示“纳什均衡”用的数学符号,是简单的游戏规则、进行了毫无意义的重组。纳什是被媒体炒作、捧杀、被逼无奈时,在纸上写写画画、无可奈何作出的符号游戏、只是一个姿态。按照博弈圣经著作人给虚拟经济下的定义,虚拟经济的使用的是单纯一性的物品,(也许是因为诺贝尔经济学奖错发给了纳什,他又不肯退回奖金)纳什均衡的行为姿态,不再是博弈论术语,而是虚拟经济。博弈圣经著作人给虚拟经济下了一个难以启齿的定义;犹如看魔术大师让一群狗争夺一块骨头,让众人押注的赌博游戏。【通俗的解释虚拟经济是由单纯一性的一个物品(字画或古董)、单纯一性的一个姿态(逞能摆架子,装大官、充大款)、单纯一性的一个玩物(艺人玩猴)】纳什单纯一性的一个姿态(就是那些数字符号)。纳什在20多岁时患上了,妄想型精神分裂症。在他想象的世界里,是魔鬼、武士和纳粹,他觉得自己一直生活在别人的威胁下。他担心自己随时会被其他人杀害,他对世界毁灭和自己的死亡有深深的恐惧。一天早晨,纳什拿着一份《纽约时报》走进办公室,对着空气说,报纸头版左边的文章里、包含着一条来自另一个星球的数字信息,只有他能破解。并且认为自己、是政府对抗苏联的间谍,他整天在数字中寻找拯救美国的密码,他的幻觉也日益严重。最终纳什的家人和朋友、决定将他送进医院治疗,在医院他认为医生是苏联人、要追杀他。经医生诊断,他得的“妄想型精神分裂症”也更加严重。一个被“妄想型精神分裂症”伤害的大脑、一个准精神病人、妄想的“纳什均衡”博弈占优理论,可信吗?博弈圣经著作人的经典名句;【“纳什均衡”一词,像是宗教的“圣言”,追随它的门徒,各自像精神病人一样、在纳什均衡中寻找理由,都想找到合理的理由解释“纳什均衡”,其结果把纳什均衡变成了博弈宗教、纳什变成了教主,门徒解释纳什均衡的疯言疯语,其实就是胡说八道。】博弈圣经著作人的经典名句;如果中国的教授抄袭“纳什均衡”作为标题,捕风捉影、以讹传讹的炒作,是为了编书、售书、挣钱,假如读者想通过“纳什均衡”想占优、想赢钱,就应该先查查纳什50年以来讲过一句“赢钱”吗,他赢过一次吗?因为没有在赌场中验证,他受到了爱因斯坦的冷遇。【纳什既然是个数学家,他就应该把占优策略给出一个数字量化的数学公式、或者是一个数学模板,让所有的人都能成功模仿,也就是说,无论是傻吊或天才操作它,都是一样的赢。】科学的有效性,就应该像打电话一样,只要给出一个电话号码,无论是傻吊或天才有序的按下按键,都是一样的打通电话。博弈圣经著作人的经典名句;科学家的博弈功能,是让其傻吊与天才同等水平。人们等到纳什车祸身亡、全无博弈取胜的结果,历史证明他就没有所谓的占优策略。“纳什均衡”它会是什么?它像UFO一样诡异、令人百思不解。“纳什均衡”的鬼魅让人想入非非,层出不穷的解释让人匪夷所思。美国学术传媒疯狂炒作,把纳什说成天才,吹捧了半个多世纪的纳什均衡、什么非合作博弈策略、什么博弈占有策略,全世界经过半个多世纪的寻找、验证、竟然没有一个人找到赢的策略。纳什均衡荒唐的理论属性、确定了它是学术界丑闻的特征。纳什天才的“纳什均衡”,一定会沦为世界的一大笑柄。1958年,从《财富》杂志对纳什的炒作,把纳什评为新一代天才数学家中、最出色的人物之后,纳什就迅速赢得了荣耀。他到处讲学、演说,与各国大牌数学家会面,事业如日中天。博弈圣经著作人的经典名句;电影《美丽心灵》用构思、杜撰的艺术形式、编造了纳什戏剧性的一生,“纳什均衡”像西方宗教的“经文”一样,演变成了博弈宗教传奇。诺贝尔经济学奖意外地、砸到纳什头上的那种巧合,给了纳什幸运的一生、羞羞答答的一生、不愿见人的一生、学术欺骗的一生、也是他难堪的一生。博弈圣经著作人的经典名句;纳什均衡是半个世纪前,一个“驴头不对马嘴”的概念,纳什之所以一直沉默,是因为他没法说,他不敢说,他到死都不会说。【来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02,从博弈圣经著作人对纳什的嘲讽,到纳什2015年5月23号出车祸死亡,中间有一年半时间他没有作出回应。】博弈圣经著作人的经典名句;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。博弈圣经著作人的经典名句;几个(因为博弈论)获得诺贝尔经济学奖的得主、管理股票的炒股公司,因亏空、也关门大吉了。瑞典皇家科学院、诺贝尔经济学奖委员会委员,斯塔尔说;纳什均衡是一个博弈取胜的幻想,他自己也不知道怎么均衡、不知道怎么单方占优、不知道怎么取胜。因此,纳什在世期间不会向世人做出博弈如何取胜的解释,所以他一直保持沉默。斯塔尔还说;我们今天既然把纳什均衡带到公众面前,可以断定,未来一定会出现博弈的取胜理论,大家担心纳什均衡可能一败涂地,若干年后将变成一大丑闻。来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02博弈圣经著作人对纳什的嘲讽......。纳什均衡 捕风捉影 以讹传讹 是什么玩意儿 博弈圣经著作人笑谈博弈论,人们在寻找一粒爆香的黄豆时,还不如老鼠能选择最近的路程。《博弈圣经》中《人类未知的蓝色档案》一文给出了博弈论的定义:“我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。”博弈圣经著作人说;博弈论是青年人的毒品,是无知者的兴奋剂,是沉默者的摇头丸。博弈圣经著作人对博弈、宗教、伟人,有过美妙的阐述 博弈圣经著作人说;博弈是人与宇宙的宗教。博弈的使命是探索自然界里和思维世界里,所显示出来的崇高、庄严、不可思议的秩序。人们对宇宙,实体、知识、未知的神秘,以及对个体,性质、经验、已知的恐惧——产生了宗教。人们认识到,有些为我们所不能洞察的东西存在其中,感觉到有一种最原始的形式、最深奥的理性、最灿烂的壮美、所产生的博弈情感,构成了真正的宗教感情。没有宗教、没有信仰、没有博弈感情,就不会出现时代伟人。博弈论就是张冠李戴捕风捉影以讹传讹 【典故】讽刺博弈论的最高博弈水平;有人问博弈圣经著作人,什么是博弈论。他回答说;博弈论就是,一问、二答、三无知。也就是说;问者无知、回答者无知、听者更无知。有人追问,到目前为止,那么多博弈论图书,那么多作者,他们的最高博弈水平是什么?博弈圣经著作人一听就笑了;目前他们的最高博弈水平,就是想卖给你一本书,就想赢你一本书钱。博弈圣经著作人通俗的谈菜鸟与金鸟一个人想变得伟大,从一个菜鸟变成一个金鸟,就要利用国家实体特性造个金鸟笼。日后,就可以在媒体的报道中、绘声绘色地描述那个金鸟笼;他是某某大学院校、某某著名教授、某某首席科学家、某某诺贝尔奖得主、甚至某某政府官员,他就自然的钻进了金鸟笼。博弈论理论,是停滞不前的理论,它是太过于急躁、太过于草率的理论。由于博弈论新奇、古怪、原始,一个“囚徒困境”的三维谜团像似神话,人们又错误的认为博弈论能够取胜,因此受到了人们盲目的吹捧和疯狂的参与。人们把博弈取胜的欲望作为动力,博弈竞争的欲望在远古就出现了。一个人有了欲望,就要有实现欲望的对象和博弈对局的背景,加上自己行为的结果,才能取得想要的东西。欲望的天性就是进行交往,建立行为二特性对局,就是博弈的合作。 《博弈圣经》赢的定义;赢不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的0、1、2,三维随机状态中,一粒期望的粒子(常数0.007813,也是私湍边际效应)优先达成。赢也不是福,输也不是罪,输赢与均衡属于第三空地论的内容。但明眼的人都能看得出,所谓那些自称的博弈专家抄来的无效理论、编成的一本本博弈论,就是张冠李戴、捕风捉影、“以讹传讹”,不管他从外国哪个地方抄来的,不管他抄了多少、编了多少本书、多少篇文章,究其低劣的学术品质,他仍然是一个菜鸟。假如博弈论大师,走出那个金鸟笼,再靠讲课赚大钱,靠卖书赚小钱,靠博弈取胜策略赚不到一毛钱,他就是骗子,也许是一个罪犯。更为讽刺的是,一本本博弈论著作,古老的内容千篇一律,里面没有几句精彩的话,没有几个经典的词,更没有定理、定律、定义和法则。至今一个个博弈论专家、矛盾论专家、概率论专家和外行知道得一样多。以往经济学家为了降低风险,建议投资多元化,“不要把鸡蛋放在一个篮子里”,这种分散投资的经济思想,实在是经济学家对博弈取胜的无奈。《博弈圣经》在453节有一段风趣的表述:“我们根本不能完全理解大自然,或许人们不如老鼠在寻找食物时能选择最近的路程,那是大自然的拓扑几何图像的捷径。”看看权威媒体上发表的理论文章,标题或者落款,都是什么什么单位(一个金鸟笼)、某某某人的大名(一个金鸟),即使有一个金鸟笼做背书、做包装,再看他那排列整齐错落有致的垃圾文章,如果只看外观不读内容,真像是一篇好文章,假如读者直接读内容,就会得出结论;文章的段子就是破碎的八卦、文章的内容就是拼凑的垃圾、金鸟笼就是忽悠人、金鸟其实就是一个菜鸟。中国新领导人形容过“笼子政治”的概念,因此中国就是一个笼子政治,金鸟笼里豢养了很多菜鸟,(政治菜鸟、经济菜鸟、学术菜鸟、司法菜鸟、还有博弈论菜鸟等)。他们给中国百姓制造了无数的罪恶,中国百姓很善良,面对东方暴力机器,强权暴力,强权学术,都忍了……。【新领导人说;把权力关进笼子里,就是要把菜鸟的权力关进笼子里……。】......。
生活中有哪些好的纳什均衡例子?
硬币正反:你正在图书馆枯坐,一位陌生美女主动过来和你搭讪,并要求和你一起玩个数学游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”那么该不该和这位姑娘玩这个游戏呢?这基本是废话,当然该。问题是,这个游戏公平吗?每一种游戏依具其规则的不同会存在两种纳什均衡,一种是纯策略纳什均衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什均衡,而在这个游戏中,便应该采用混合策略纳什均衡。纳什均衡理论奠定了现代主流博弈理论和经济理论的根本基础,正如克瑞普斯(Kreps,1990)在《博弈论和经济建模》一书的引言中所说,“在过去的一二十年内,经济学在方法论以及语言、概念等方面,经历了一场温和的革命,非合作博弈理论已经成为范式的中心……在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中,现在人们已经很难找到不懂纳什均衡能够‘消费"近期文献的领域。”
信息经济学 关于纳什均衡一题求解
1、合伙买收益各为202、左上、右上、左下、右下20,20; -60,,100; 100,-60; 0,0;