nbn

DNA图谱 / 问答 / 标签

已知数列an,bn,其中an=2n-1,bn=3∧n,求anbn的前n项和sn,如何用错位相减

c(n)=a(n)b(n)=(2n-1)3^n,s(n) = (2*1-1)3 + (2*2-1)3^2 + (2*3-1)3^3 + ... + [2*(n-1)-1]3^(n-1) + [2n-1]3^n,3s(n) = (2*1-1)3^2 + (2*2-1)3^3+...+[2(n-1)-1]3^n + [2n-1]3^(n+1),2s(n) = 3s(n) - s(n) = -(2*1-...

已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*),数列{bn}满足b1=1,nbn+1=(n+1)bn,(n∈N*)(

(1)令n=1,得a1=S1=2a1-1,解得a1=1,当n≥2时,an=Sn-Sn-1=2(an-an-1),整理,得an=2an-1,∴an=2n?1.∵数列{bn}满足b1=1,nbn+1=(n+1)bn,∴bn+1n+1=bnn,∴{bnn}是首项为1的常数列,∴bnn=1,∴bn=n.(2)∵数列{bn}的前n项和为Qn,∴Qn=1+2+3+…+n=n(n+1)2,∵Tn=Sn+Qn,∴Tn=2?2n?1?1+n(n?1)2=2n?1+n(n+1)2,当n=1时,λT1≥T2,得λ≥3,当n=2时,λT2≥T3,得λ≥136,猜想:当λ≥3时,3Tn≥Tn+1.证明:3Tn?Tn+1=3[2n?1+n(n+1)2]-[2n+1?1+(n+1)(n+2)2]=2n+n-3≥0.综上所述,λ存在最小值3,使不等式λTn≥Tn+1成立.

bnnbn6st;n

(n+1)[b(n+1)]^2-nbn^2+b(n+1).bn=0[(n+1)b(n+1)-nbn].[b(n+1) + bn]=0case 1:b(n+1) + bn=0bn/b(n-1) = -1bn = (-1)^(n-1)case 2:(n+1)b(n+1)-nbn =0b(n+1)/bn= n/(n+1)bn/b(n-1) = (n-1)/nbn/b1 = 1/nbn =1/n